mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
7b94436202 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -11,6 +11,7 @@ autom4te.cache
|
||||
Makefile
|
||||
Makefile.in
|
||||
INSTALL
|
||||
configure
|
||||
configure.lineno
|
||||
depcomp
|
||||
missing
|
||||
|
12
AUTHORS
12
AUTHORS
@@ -16,16 +16,4 @@ LucasJones
|
||||
|
||||
tpruvot@github
|
||||
|
||||
elmad
|
||||
|
||||
djm34
|
||||
|
||||
palmd
|
||||
|
||||
ig0tik3d
|
||||
|
||||
Wolf0
|
||||
|
||||
Optiminer
|
||||
|
||||
Jay D Dee
|
||||
|
34
Dockerfile
34
Dockerfile
@@ -5,31 +5,19 @@
|
||||
# ex: docker run -it --rm cpuminer-opt:latest -a cryptonight -o cryptonight.eu.nicehash.com:3355 -u 1MiningDW2GKzf4VQfmp4q2XoUvR6iy6PD.worker1 -p x -t 3
|
||||
#
|
||||
|
||||
# Build
|
||||
FROM ubuntu:16.04 as builder
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
build-essential \
|
||||
FROM ubuntu:16.04
|
||||
RUN BUILD_DEPS="build-essential \
|
||||
libssl-dev \
|
||||
libgmp-dev \
|
||||
libcurl4-openssl-dev \
|
||||
libjansson-dev \
|
||||
automake \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
libgmp-dev \
|
||||
libcurl4-openssl-dev \
|
||||
libjansson-dev \
|
||||
automake" && \
|
||||
|
||||
apt-get update && \
|
||||
apt-get install -y ${BUILD_DEPS}
|
||||
|
||||
COPY . /app/
|
||||
RUN cd /app/ && ./build.sh
|
||||
RUN cd /app/ && ./build.sh
|
||||
|
||||
# App
|
||||
FROM ubuntu:16.04
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
libcurl3 \
|
||||
libjansson4 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY --from=builder /app/cpuminer .
|
||||
ENTRYPOINT ["./cpuminer"]
|
||||
ENTRYPOINT ["/app/cpuminer"]
|
||||
CMD ["-h"]
|
||||
|
166
Makefile.am
166
Makefile.am
@@ -22,6 +22,29 @@ cpuminer_SOURCES = \
|
||||
api.c \
|
||||
sysinfos.c \
|
||||
algo-gate-api.c\
|
||||
algo/groestl/sph_groestl.c \
|
||||
algo/skein/sph_skein.c \
|
||||
algo/bmw/sph_bmw.c \
|
||||
algo/shavite/sph_shavite.c \
|
||||
algo/shavite/shavite.c \
|
||||
algo/echo/sph_echo.c \
|
||||
algo/blake/sph_blake.c \
|
||||
algo/blake/sph_blake2b.c \
|
||||
algo/heavy/sph_hefty1.c \
|
||||
algo/blake/mod_blakecoin.c \
|
||||
algo/luffa/sph_luffa.c \
|
||||
algo/cubehash/sph_cubehash.c \
|
||||
algo/simd/sph_simd.c \
|
||||
algo/hamsi/sph_hamsi.c \
|
||||
algo/fugue/sph_fugue.c \
|
||||
algo/gost/sph_gost.c \
|
||||
algo/jh/sph_jh.c \
|
||||
algo/keccak/sph_keccak.c \
|
||||
algo/keccak/keccak.c\
|
||||
algo/sha3/sph_sha2.c \
|
||||
algo/sha3/sph_sha2big.c \
|
||||
algo/shabal/sph_shabal.c \
|
||||
algo/whirlpool/sph_whirlpool.c\
|
||||
crypto/blake2s.c \
|
||||
crypto/oaes_lib.c \
|
||||
crypto/c_keccak.c \
|
||||
@@ -38,80 +61,58 @@ cpuminer_SOURCES = \
|
||||
algo/argon2/ar2/cores.c \
|
||||
algo/argon2/ar2/ar2-scrypt-jane.c \
|
||||
algo/argon2/ar2/blake2b.c \
|
||||
algo/blake/sph_blake.c \
|
||||
algo/blake/blake-hash-4way.c \
|
||||
algo/blake/blake-gate.c \
|
||||
algo/axiom.c \
|
||||
algo/blake/blake.c \
|
||||
algo/blake/blake-4way.c \
|
||||
algo/blake/sph_blake2b.c \
|
||||
algo/blake/blake2b.c \
|
||||
algo/blake/blake2s.c \
|
||||
algo/blake/mod_blakecoin.c \
|
||||
algo/blake/blakecoin.c \
|
||||
algo/blake/decred-gate.c \
|
||||
algo/blake/decred.c \
|
||||
algo/blake/decred-4way.c \
|
||||
algo/blake/pentablake-gate.c \
|
||||
algo/blake/pentablake-4way.c \
|
||||
algo/blake/pentablake.c \
|
||||
algo/bmw/sph_bmw.c \
|
||||
algo/bmw/bmw-hash-4way.c \
|
||||
algo/bmw/bmw256.c \
|
||||
algo/cubehash/sse2/cubehash_sse2.c\
|
||||
algo/cryptonight/cryptolight.c \
|
||||
algo/cryptonight/cryptonight-common.c\
|
||||
algo/cryptonight/cryptonight-aesni.c\
|
||||
algo/cryptonight/cryptonight.c\
|
||||
algo/cubehash/sph_cubehash.c \
|
||||
algo/cubehash/sse2/cubehash_sse2.c\
|
||||
algo/echo/sph_echo.c \
|
||||
algo/drop.c \
|
||||
algo/echo/aes_ni/hash.c\
|
||||
algo/gost/sph_gost.c \
|
||||
algo/groestl/sph_groestl.c \
|
||||
algo/fresh.c \
|
||||
algo/groestl/groestl.c \
|
||||
algo/groestl/myr-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl256.c \
|
||||
algo/fugue/sph_fugue.c \
|
||||
algo/hamsi/sph_hamsi.c \
|
||||
algo/haval/haval.c\
|
||||
algo/heavy/sph_hefty1.c \
|
||||
algo/groestl/sse2/grso.c \
|
||||
algo/groestl/sse2/grso-asm.c \
|
||||
algo/haval/haval.c \
|
||||
algo/heavy/heavy.c \
|
||||
algo/heavy/bastion.c \
|
||||
algo/hodl/aes.c \
|
||||
algo/hmq1725.c \
|
||||
algo/hodl/hodl.cpp \
|
||||
algo/hodl/hodl-gate.c \
|
||||
algo/hodl/hodl_arith_uint256.cpp \
|
||||
algo/hodl/hodl_uint256.cpp \
|
||||
algo/hodl/hash.cpp \
|
||||
algo/hodl/hmac_sha512.cpp \
|
||||
algo/hodl/sha256.cpp \
|
||||
algo/hodl/sha512.cpp \
|
||||
algo/hodl/utilstrencodings.cpp \
|
||||
algo/hodl/hodl-wolf.c \
|
||||
algo/hodl/aes.c \
|
||||
algo/hodl/sha512_avx.c \
|
||||
algo/hodl/sha512_avx2.c \
|
||||
algo/jh/sph_jh.c \
|
||||
algo/jh/jh-hash-4way.c \
|
||||
algo/jh/jha-gate.c \
|
||||
algo/jh/jha-4way.c \
|
||||
algo/jh/jha.c \
|
||||
algo/keccak/sph_keccak.c \
|
||||
algo/keccak/keccak.c\
|
||||
algo/keccak/keccak-hash-4way.c \
|
||||
algo/keccak/keccak-4way.c\
|
||||
algo/keccak/keccak-gate.c \
|
||||
algo/keccak/sse2/keccak.c \
|
||||
algo/lbry.c \
|
||||
algo/luffa/sph_luffa.c \
|
||||
algo/luffa/luffa.c \
|
||||
algo/luffa/sse2/luffa_for_sse2.c \
|
||||
algo/lyra2/lyra2.c \
|
||||
algo/lyra2/sponge.c \
|
||||
algo/lyra2/lyra2rev2.c \
|
||||
algo/lyra2/lyra2re.c \
|
||||
algo/lyra2/lyra2z-gate.c \
|
||||
algo/lyra2/lyra2z.c \
|
||||
algo/lyra2/lyra2z-4way.c \
|
||||
algo/lyra2/lyra2z330.c \
|
||||
algo/lyra2/lyra2h.c \
|
||||
algo/lyra2/zcoin.c \
|
||||
algo/lyra2/zoin.c \
|
||||
algo/keccak/sse2/keccak.c \
|
||||
algo/m7m.c \
|
||||
algo/neoscrypt/neoscrypt.c \
|
||||
algo/nist5/nist5-gate.c \
|
||||
algo/nist5/nist5-4way.c \
|
||||
algo/nist5/nist5.c \
|
||||
algo/nist5/zr5.c \
|
||||
algo/neoscrypt.c \
|
||||
algo/nist5.c \
|
||||
algo/pluck.c \
|
||||
algo/quark/quark.c \
|
||||
algo/qubit/qubit.c \
|
||||
@@ -119,86 +120,33 @@ cpuminer_SOURCES = \
|
||||
algo/ripemd/sph_ripemd.c \
|
||||
algo/scrypt.c \
|
||||
algo/scryptjane/scrypt-jane.c \
|
||||
algo/sha/sph_sha2.c \
|
||||
algo/sha/sph_sha2big.c \
|
||||
algo/sha/sha2.c \
|
||||
algo/sha/sha256t.c \
|
||||
algo/shabal/sph_shabal.c \
|
||||
algo/shabal/shabal-hash-4way.c \
|
||||
algo/shavite/sph_shavite.c \
|
||||
algo/shavite/sph-shavite-aesni.c \
|
||||
algo/shavite/shavite.c \
|
||||
algo/simd/sph_simd.c \
|
||||
algo/sha2/sha2.c \
|
||||
algo/sha2/sha256t.c \
|
||||
algo/simd/sse2/nist.c \
|
||||
algo/simd/sse2/vector.c \
|
||||
algo/skein/sph_skein.c \
|
||||
algo/skein/skein-hash-4way.c \
|
||||
algo/skein/skein.c \
|
||||
algo/skein/skein-4way.c \
|
||||
algo/skein/skein-gate.c \
|
||||
algo/skein/skein2.c \
|
||||
algo/skein/skein2-4way.c \
|
||||
algo/skein/skein2-gate.c \
|
||||
algo/sm3/sm3.c \
|
||||
algo/s3.c \
|
||||
algo/tiger/sph_tiger.c \
|
||||
algo/timetravel.c \
|
||||
algo/timetravel10.c \
|
||||
algo/whirlpool/sph_whirlpool.c \
|
||||
algo/whirlpool/whirlpool-hash-4way.c \
|
||||
algo/whirlpool/whirlpool-gate.c \
|
||||
algo/whirlpool/whirlpool-4way.c \
|
||||
algo/veltor.c \
|
||||
algo/whirlpool/whirlpool.c \
|
||||
algo/whirlpool/whirlpoolx.c \
|
||||
algo/x11/x11-gate.c \
|
||||
algo/x11/x11.c \
|
||||
algo/x11/x11-4way.c \
|
||||
algo/x11/x11gost-gate.c \
|
||||
algo/x11/x11gost.c \
|
||||
algo/x11/x11gost-4way.c \
|
||||
algo/x11/c11-gate.c \
|
||||
algo/x11/c11.c \
|
||||
algo/x11/c11-4way.c \
|
||||
algo/x11/tribus-gate.c \
|
||||
algo/x11/tribus.c \
|
||||
algo/x11/tribus-4way.c \
|
||||
algo/x11/fresh.c \
|
||||
algo/x11/x11evo.c \
|
||||
algo/x13/x13-gate.c \
|
||||
algo/x11/x11gost.c \
|
||||
algo/x11/c11.c \
|
||||
algo/x13/x13.c \
|
||||
algo/x13/x13-4way.c \
|
||||
algo/x13/x13sm3-gate.c \
|
||||
algo/x13/x13sm3.c \
|
||||
algo/x13/x13sm3-4way.c \
|
||||
algo/x13/phi1612-gate.c \
|
||||
algo/x13/phi1612.c \
|
||||
algo/x13/phi1612-4way.c \
|
||||
algo/x13/skunk-gate.c \
|
||||
algo/x13/skunk-4way.c \
|
||||
algo/x13/skunk.c \
|
||||
algo/x13/drop.c \
|
||||
algo/x14/x14-gate.c \
|
||||
algo/x14/x14.c \
|
||||
algo/x14/x14-4way.c \
|
||||
algo/x14/veltor-gate.c \
|
||||
algo/x14/veltor.c \
|
||||
algo/x14/veltor-4way.c \
|
||||
algo/x14/polytimos-gate.c \
|
||||
algo/x14/polytimos.c \
|
||||
algo/x14/polytimos-4way.c \
|
||||
algo/x14/axiom.c \
|
||||
algo/x15/x15-gate.c \
|
||||
algo/x15/x15.c \
|
||||
algo/x15/x15-4way.c \
|
||||
algo/x17/x17-gate.c \
|
||||
algo/x17/x17.c \
|
||||
algo/x17/x17-4way.c \
|
||||
algo/x17/xevan-gate.c \
|
||||
algo/x17/xevan.c \
|
||||
algo/x17/xevan-4way.c \
|
||||
algo/x17/hmq1725.c \
|
||||
algo/xevan.c \
|
||||
algo/yescrypt/yescrypt.c \
|
||||
algo/yescrypt/sha256_Y.c \
|
||||
algo/yescrypt/yescrypt-simd.c
|
||||
algo/yescrypt/yescrypt-common.c \
|
||||
algo/yescrypt/sha256_Y.c\
|
||||
algo/yescrypt/yescrypt-simd.c\
|
||||
algo/zr5.c
|
||||
|
||||
|
||||
disable_flags =
|
||||
|
||||
|
50
README.md
50
README.md
@@ -23,66 +23,52 @@ Supported Algorithms
|
||||
blakecoin blake256r8
|
||||
blake2s Blake-2 S
|
||||
bmw BMW 256
|
||||
c11 Chaincoin
|
||||
c11 Flax
|
||||
cryptolight Cryptonight-light
|
||||
cryptonight cryptonote, Monero (XMR)
|
||||
decred
|
||||
deep Deepcoin (DCN)
|
||||
dmd-gr Diamond-Groestl
|
||||
drop Dropcoin
|
||||
fresh Fresh
|
||||
groestl Groestl coin
|
||||
groestl groestl
|
||||
heavy Heavy
|
||||
hmq1725 Espers
|
||||
hodl Hodlcoin
|
||||
jha Jackpotcoin
|
||||
keccak Maxcoin
|
||||
keccakc Creative coin
|
||||
keccak Keccak
|
||||
lbry LBC, LBRY Credits
|
||||
luffa Luffa
|
||||
lyra2h Hppcoin
|
||||
lyra2re lyra2
|
||||
lyra2rev2 lyra2v2, Vertcoin
|
||||
lyra2rev2 lyrav2
|
||||
lyra2z Zcoin (XZC)
|
||||
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
|
||||
lyra2zoin Zoin (ZOI)
|
||||
m7m Magi (XMG)
|
||||
myr-gr Myriad-Groestl
|
||||
neoscrypt NeoScrypt(128, 2, 1)
|
||||
nist5 Nist5
|
||||
pentablake Pentablake
|
||||
phi1612 phi, LUX coin
|
||||
pluck Pluck:128 (Supcoin)
|
||||
polytimos Ninja
|
||||
pentablake Pentablake
|
||||
quark Quark
|
||||
qubit Qubit
|
||||
scrypt scrypt(1024, 1, 1) (default)
|
||||
scrypt:N scrypt(N, 1, 1)
|
||||
scryptjane:nf
|
||||
sha256d Double SHA-256
|
||||
sha256t Triple SHA-256, Onecoin (OC)
|
||||
sha256d SHA-256d
|
||||
shavite3 Shavite3
|
||||
skein Skein+Sha (Skeincoin)
|
||||
skein2 Double Skein (Woodcoin)
|
||||
skunk Signatum (SIGT)
|
||||
timetravel Machinecoin (MAC)
|
||||
timetravel10 Bitcore
|
||||
tribus Denarius (DNR)
|
||||
vanilla blake256r8vnl (VCash)
|
||||
veltor (VLT)
|
||||
veltor
|
||||
whirlpool
|
||||
whirlpoolx
|
||||
x11 Dash
|
||||
x11 X11
|
||||
x11evo Revolvercoin
|
||||
x11gost sib (SibCoin)
|
||||
x13 X13
|
||||
x13sm3 hsr (Hshare)
|
||||
x14 X14
|
||||
x15 X15
|
||||
x17
|
||||
xevan Bitsend
|
||||
yescrypt Globalboost-Y (BSTY)
|
||||
yescryptr8 BitZeny (ZNY)\n\
|
||||
yescryptr16 Yenten (YTN)
|
||||
yescrypt
|
||||
zr5 Ziftr
|
||||
|
||||
Requirements
|
||||
@@ -97,25 +83,17 @@ algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
|
||||
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
|
||||
performance.
|
||||
|
||||
ARM CPUs are not supported.
|
||||
|
||||
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
|
||||
Centos are known to work and have all dependencies in their repositories.
|
||||
Others may work but may require more effort.
|
||||
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
|
||||
|
||||
MacOS, OSx is not supported.
|
||||
|
||||
3. Stratum pool. Some algos may work wallet mining using getwork.
|
||||
3. Stratum pool, cpuminer-opt only supports stratum minning. Some algos
|
||||
may work wallet mining but there are no guarantees.
|
||||
|
||||
Errata
|
||||
------
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
cpuminer-opt does not work mining Decred algo at Nicehash and produces
|
||||
only "invalid extranonce2 size" rejects.
|
||||
|
||||
@@ -129,10 +107,6 @@ forum at:
|
||||
|
||||
https://bitcointalk.org/index.php?topic=1326803.0
|
||||
|
||||
All problem reports must be accompanied by a proper definition.
|
||||
This should include how the problem occurred, the command line and
|
||||
output from the miner showing the startup and any errors.
|
||||
|
||||
Donations
|
||||
---------
|
||||
|
||||
|
29
README.txt
29
README.txt
@@ -1,9 +1,6 @@
|
||||
This file is included in the Windows binary package. Compile instructions
|
||||
for Linux and Windows can be found in RELEASE_NOTES.
|
||||
|
||||
cpuminer is a console program that is executed from a DOS command prompt.
|
||||
There is no GUI and no mouse support.
|
||||
|
||||
Choose the exe that best matches you CPU's features or use trial and
|
||||
error to find the fastest one that doesn't crash. Pay attention to
|
||||
the features listed at cpuminer startup to ensure you are mining at
|
||||
@@ -11,27 +8,15 @@ optimum speed using all the available features.
|
||||
|
||||
Architecture names and compile options used are only provided for Intel
|
||||
Core series. Pentium and Celeron often have fewer features.
|
||||
AMD is YMMV, see previous paragraph.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
Exe name Compile opts Arch name
|
||||
|
||||
Exe name Compile flags Arch name
|
||||
cpuminer-sse2.exe -march=core2, Core2
|
||||
cpuminer-sse42.exe -march=corei7, Nehalem
|
||||
cpuminer-aes-sse42.exe -maes -msse4.2 Westmere
|
||||
cpuminer-aes-avx.exe -march=corei7-avx, Sandybridge, Ivybridge
|
||||
cpuminer-aes-avx2.exe -march=core-avx2, Haswell, Broadwell, Skylake, Kabylake
|
||||
|
||||
cpuminer-sse2.exe "-march=core2" Core2
|
||||
cpuminer-sse42.exe "-march=corei7" Nehalem
|
||||
cpuminer-aes-sse42.exe "-maes -msse4.2" Westmere
|
||||
cpuminer-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
|
||||
cpuminer-avx2.exe "-march=core-avx2" Haswell...
|
||||
cpuminer-avx-sha "-march=corei7-avx -msha" Ryzen...
|
||||
cpuminer-4way.exe "-march=core-avx2 -DFOUR_WAY" same as avx2
|
||||
cpuminer-4way-sha.exe "-march=core-avx2 -msha -DFOUR_WAY" same as avx2-sha
|
||||
|
||||
4way requires a CPU with AES and AVX2. It is still under development and
|
||||
only a few algos are supported. See change log in RELEASE_NOTES in source
|
||||
package for supported algos.
|
||||
|
||||
Ryzen CPus perform better with AVX than AVX2 therefore an avx-sha build
|
||||
is provided. Four way still uses AVX2.
|
||||
|
||||
|
427
RELEASE_NOTES
427
RELEASE_NOTES
@@ -1,338 +1,8 @@
|
||||
cpuminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
This feature requires recent SW including GCC version 5 or higher and
|
||||
openssl version 1.1 or higher. It may also require using "-march=znver1"
|
||||
compile flag.
|
||||
|
||||
HW SHA support is only available when compiled from source, Windows binaries
|
||||
are not yet available.
|
||||
|
||||
cpuminer-opt is a console program, if you're using a mouse you're doing it
|
||||
wrong.
|
||||
|
||||
Security warning
|
||||
----------------
|
||||
|
||||
Miner programs are often flagged as malware by antivirus programs. This is
|
||||
a false positive, they are flagged simply because they are miners. The source
|
||||
code is open for anyone to inspect. If you don't trust the software, don't use
|
||||
it.
|
||||
|
||||
The cryptographic code has been taken from trusted sources but has been
|
||||
modified for speed at the expense of accepted security practices. This
|
||||
code should not be imported into applications where secure cryptography is
|
||||
required.
|
||||
|
||||
Compile Instructions
|
||||
--------------------
|
||||
|
||||
Requirements:
|
||||
|
||||
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
|
||||
supported.
|
||||
64 bit Linux or Windows operating system. Apple is not supported.
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The following command should install everything you need on Debian based
|
||||
distributions such as Ubuntu:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake
|
||||
|
||||
|
||||
build-essential (for Ubuntu, Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
pthreads
|
||||
zlib
|
||||
|
||||
SHA support on AMD Ryzen CPUs requires gcc version 5 or higher and openssl 1.1
|
||||
or higher. Reports of improved performiance on Ryzen when using openssl 1.0.2
|
||||
have been due to AVX and AVX2 optimizations added to that version.
|
||||
Additional improvements are expected on Ryzen with openssl 1.1.
|
||||
"-march-znver1" or "-msha".
|
||||
|
||||
Additional instructions for static compilalation can be found here:
|
||||
https://lxadm.com/Static_compilation_of_cpuminer
|
||||
Static builds should only considered in a homogeneous HW and SW environment.
|
||||
Local builds will always have the best performance and compatibility.
|
||||
|
||||
Extract cpuminer source.
|
||||
|
||||
tar xvzf cpuminer-opt-x.y.z.tar.gz
|
||||
cd cpuminer-opt-x.y.z
|
||||
|
||||
Run ./build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
make
|
||||
|
||||
Additional optional compile flags, add the following to CFLAGS to activate:
|
||||
|
||||
-DUSE_SPH_SHA
|
||||
|
||||
SPH may give slightly better performance on algos that use sha256 when using
|
||||
openssl 1.0.1 or older. Openssl 1.0.2 adds AVX2 and 1.1 adds SHA and perform
|
||||
better than SPH.
|
||||
|
||||
-DFOUR_WAY
|
||||
|
||||
4 way will give much better performance on supported algos with CPUs
|
||||
that have AVX2 and should only be used on CPUs with AVX2. 4 way algo
|
||||
support will be added incrementally, see change log below for supported algos.
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo -o url -u username -p password
|
||||
|
||||
Windows
|
||||
|
||||
The following in how the Windows binary releases are built. It's old and
|
||||
not very good but it works, for me anyway.
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw_w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt.
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run winbuild.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining
|
||||
|
||||
cpuminer.exe -a algo -o url -u user -p password
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
||||
Compile instruction for Linux and Windows are at the bottom of this file.
|
||||
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.7.9
|
||||
|
||||
Partial 4way optimizations for veltor, skunk, polytimos, lyra2z.
|
||||
Additional 4way optimizations for X algos.
|
||||
New algo yescryptr8 for BitZeny, not to be confused with original
|
||||
yescrypt Globalboost-Y.
|
||||
|
||||
v3.7.8
|
||||
|
||||
Partial 4way optimization for most X algos including c11, xevan, phi, hsr
|
||||
|
||||
v3.7.7
|
||||
|
||||
Fixed regression caused by 64 CPU support.
|
||||
Fixed lyra2h.
|
||||
|
||||
v3.7.6
|
||||
|
||||
Added lyra2h algo for Hppcoin.
|
||||
Added support for more than 64 CPUs.
|
||||
Optimized shavite512 with AES, improves x11 etc.
|
||||
|
||||
v3.7.5
|
||||
|
||||
New algo keccakc for Creative coin with 4way optimizations
|
||||
|
||||
Rewrote some AVX/AVX2 code for more consistent implementation and some
|
||||
optimizing.
|
||||
|
||||
Enhanced capabilities check to support 4way, more precise reporting of
|
||||
features (not all algos use SSE2), and better error messages when using
|
||||
an incompatible pre-built version (Windows users).
|
||||
|
||||
v3.7.4
|
||||
|
||||
Removed unnecessary build options.
|
||||
|
||||
Added 4way support for tribus and nist5.
|
||||
|
||||
v3.7.3
|
||||
|
||||
Added polytimos algo.
|
||||
|
||||
Introducing 4-way AVX2 optimization giving up to 4x performance inprovement
|
||||
on many compute bound algos. First supported algos: skein, skein2, blake &
|
||||
keccak. This feature is only available when compiled from source. See above
|
||||
for instcuctions how to enable 4-way during compilation.
|
||||
|
||||
Updated Dockerfile.
|
||||
|
||||
v3.7.2
|
||||
|
||||
Fixed yescryptr16
|
||||
Changed default sha256 and sha512 to openssl. This should be used when
|
||||
compiling with openssl 1.0.2 or higher (Ubuntu 16.04).
|
||||
This should increase the hashrate for yescrypt, yescryptr16, m7m, xevan, skein,
|
||||
myr-gr & others when openssl 1.0.2 is installed.
|
||||
Users with openssl 1.0.1 (Ubuntu 14.04) may get better perforance by adding
|
||||
"-DUSE_SPH_SHA" to CLAGS.
|
||||
Windows binaries are compiled with -DUSE_SPH_SHA and won't get the speedup.
|
||||
|
||||
v3.7.1
|
||||
|
||||
Added yescryptr16 algo for Yenten coin
|
||||
Added SHA support to yescrypt and yescryptr16
|
||||
Small code cleanup
|
||||
|
||||
v3.7.0
|
||||
|
||||
Fixed x14 misalignment bug.
|
||||
Fixed decred stake version bug.
|
||||
Getwork fixes for algos that use big endian data encoding: m7m, zr5, neoscrypt,
|
||||
decred.
|
||||
|
||||
v3.6.10
|
||||
|
||||
Fixed misalignment bug in hsr.
|
||||
|
||||
v3.6.9
|
||||
|
||||
Added phi1612 algo for LUX coin
|
||||
Added x13sm3 algo, alias hsr, for Hshare coin
|
||||
|
||||
v3.6.8
|
||||
|
||||
Fixed timetravel10 on Windows.
|
||||
|
||||
v3.6.7
|
||||
|
||||
Skunk algo added.
|
||||
Tribus a little faster.
|
||||
Minor restructuring.
|
||||
|
||||
v3.6.6
|
||||
|
||||
added tribus algo for Denarius (DNR)
|
||||
|
||||
configure removed from .gitignore. This should allow git clone to compile
|
||||
on Windows/mingw.
|
||||
|
||||
Fixed CPU temperature monitoring on some CPUs (Linux only).
|
||||
|
||||
Fixed a compile error on FreeBSD (unsupported YMMV).
|
||||
|
||||
v3.6.5
|
||||
|
||||
Cryptonight a little faster.
|
||||
Added jha algo (Jackpotcoin) with AES optimizations.
|
||||
|
||||
v3.6.4
|
||||
|
||||
Added support for Bitcore (BTX) using the timetravel10 algo, optimized for
|
||||
AES and AVX2.
|
||||
"-a bitcore" works as an alias and is less typing that "-a timetravel10".
|
||||
|
||||
v3.6.3
|
||||
|
||||
Fixed all known issues with SHA support on AMD Ryzen CPUs, still no
|
||||
Windows binaries.
|
||||
|
||||
v3.6.2
|
||||
|
||||
SHA accceleration is now supported on AMD Ryzen CPUs when compiled from source,
|
||||
Windows binaries not yet available.
|
||||
Fixed groestl algo.
|
||||
Fixed dmd-gr (Diamond) algo.
|
||||
Fixed lbry compile error on Ryzen.
|
||||
Added SHA support to m7m algo.
|
||||
Hodl support for CPUs without AES has been removed, use legacy version.
|
||||
|
||||
v3.6.1
|
||||
|
||||
Fixed data alignment issue that broke lyra2rev2 AVX2 on Windows.
|
||||
Added preliminary support for HW accelerated SHA.
|
||||
Solo mining most algos should now work, cryptonight confirmed exception.
|
||||
|
||||
v3.6.0
|
||||
|
||||
Preliminary support for solo mining using getwork.
|
||||
|
||||
v3.5.13
|
||||
|
||||
Found more speed in Cubehash, algo improvement depends on chain length,
|
||||
deep +8%, timetravel +1% , xevan +1%
|
||||
Fixed a getwork bug, solo mining is not yet supported but testing is encouraged
|
||||
|
||||
v3.5.12
|
||||
|
||||
New algo sha256t for Onecoin (OC), 29% faster than ocminer version.
|
||||
lyra2zoin algo renamed to lyra2z330, lyra2zoin and zoin still work
|
||||
as aliases.
|
||||
|
||||
v3.5.11
|
||||
|
||||
Fixed hmq1725 crash on Ubuntu 16.04
|
||||
Fixed compile error in hodl.cpp with gcc 6.3
|
||||
Fixed x11 crash on Windows with AVX2
|
||||
|
||||
v3.5.10
|
||||
|
||||
Some AVX2 optimizations introduced for Luffa, shorter chained algos such
|
||||
as Qubit and Deep should see the biggest gains, but many other algos should
|
||||
also see improvement, longer chains like xevan not so much.
|
||||
Rewrite of Groestl AES, now 100% vectorized, small improvement.
|
||||
build.sh and winbuild.sh initialize with distclean instead of clean.
|
||||
Implemented a workaround for a compile error in hodl code when compiling
|
||||
with gcc 6.3.
|
||||
|
||||
V3.5.9
|
||||
|
||||
Reduced stack usage for hmq1725 and small speedup.
|
||||
@@ -498,3 +168,98 @@ AVX2 optimizations improving many algos:
|
||||
- x17 +2.8%
|
||||
- qubit +8.4%
|
||||
|
||||
|
||||
Compile Instructions
|
||||
--------------------
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The folliwing command should install everything you need on Debian based
|
||||
packages:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake
|
||||
|
||||
Building on Linux, see below for Windows.
|
||||
|
||||
Dependencies
|
||||
|
||||
build-essential (for Ubuntu, Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
pthreads
|
||||
zlib
|
||||
|
||||
tar xvzf [file.tar.gz]
|
||||
cd [file]
|
||||
|
||||
Run build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo ...
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl, not sure about this
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw__w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run winbuild.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
|
||||
make
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
213
algo-gate-api.c
213
algo-gate-api.c
@@ -77,12 +77,6 @@ void algo_not_tested()
|
||||
applog(LOG_WARNING,"and bad things may happen. Use at your own risk.");
|
||||
}
|
||||
|
||||
void four_way_not_tested()
|
||||
{
|
||||
applog( LOG_WARNING,"Algo %s has not been tested using 4way. It may not", algo_names[opt_algo] );
|
||||
applog( LOG_WARNING,"work or may be slower. Please report your results.");
|
||||
}
|
||||
|
||||
void algo_not_implemented()
|
||||
{
|
||||
applog(LOG_ERR,"Algo %s has not been Implemented.",algo_names[opt_algo]);
|
||||
@@ -104,12 +98,17 @@ void null_hash_suw()
|
||||
{
|
||||
applog(LOG_WARNING,"SWERR: null_hash_suw unsafe null function");
|
||||
};
|
||||
void null_hash_alt()
|
||||
{
|
||||
applog(LOG_WARNING,"SWERR: null_hash_alt unsafe null function");
|
||||
};
|
||||
|
||||
void init_algo_gate( algo_gate_t* gate )
|
||||
{
|
||||
gate->miner_thread_init = (void*)&return_true;
|
||||
gate->scanhash = (void*)&null_scanhash;
|
||||
gate->hash = (void*)&null_hash;
|
||||
gate->hash_alt = (void*)&null_hash_alt;
|
||||
gate->hash_suw = (void*)&null_hash_suw;
|
||||
gate->get_new_work = (void*)&std_get_new_work;
|
||||
gate->get_nonceptr = (void*)&std_get_nonceptr;
|
||||
@@ -120,17 +119,17 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
|
||||
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
|
||||
gate->set_target = (void*)&std_set_target;
|
||||
gate->work_decode = (void*)&std_le_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
|
||||
gate->submit_getwork_result = (void*)&std_submit_getwork_result;
|
||||
gate->build_extraheader = (void*)&std_build_extraheader;
|
||||
gate->set_work_data_endian = (void*)&do_nothing;
|
||||
gate->calc_network_diff = (void*)&std_calc_network_diff;
|
||||
// gate->prevent_dupes = (void*)&return_false;
|
||||
gate->ready_to_mine = (void*)&std_ready_to_mine;
|
||||
gate->resync_threads = (void*)&do_nothing;
|
||||
gate->do_this_thread = (void*)&return_true;
|
||||
gate->longpoll_rpc_call = (void*)&std_longpoll_rpc_call;
|
||||
gate->stratum_handle_response = (void*)&std_stratum_handle_response;
|
||||
gate->optimizations = EMPTY_SET;
|
||||
gate->optimizations = SSE2_OPT;
|
||||
gate->ntime_index = STD_NTIME_INDEX;
|
||||
gate->nbits_index = STD_NBITS_INDEX;
|
||||
gate->nonce_index = STD_NONCE_INDEX;
|
||||
@@ -138,10 +137,6 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->work_cmp_size = STD_WORK_CMP_SIZE;
|
||||
}
|
||||
|
||||
// Ignore warnings for not yet defined register functions
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
|
||||
|
||||
// called by each thread that uses the gate
|
||||
bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
{
|
||||
@@ -155,73 +150,71 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
|
||||
switch (algo)
|
||||
{
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DMD_GR: register_dmd_gr_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_JHA: register_jha_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_KECCAKC: register_keccakc_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2H: register_lyra2h_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PHI1612: register_phi1612_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_POLYTIMOS: register_polytimos_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_SKUNK: register_skunk_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL10: register_timetravel10_algo( gate ); break;
|
||||
case ALGO_TRIBUS: register_tribus_algo ( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
|
||||
// Ignore warnings for not yet defined register fucntions
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
|
||||
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_zcoin_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_S3: register_s3_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_sib_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
|
||||
// restore warnings
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
default:
|
||||
applog(LOG_ERR,"FAIL: algo_gate registration failed, unknown algo %s.\n", algo_names[opt_algo] );
|
||||
return false;
|
||||
@@ -236,9 +229,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
return true;
|
||||
}
|
||||
|
||||
// restore warnings
|
||||
#pragma GCC diagnostic pop
|
||||
|
||||
// override std defaults with jr2 defaults
|
||||
bool register_json_rpc2( algo_gate_t *gate )
|
||||
{
|
||||
@@ -254,7 +244,6 @@ bool register_json_rpc2( algo_gate_t *gate )
|
||||
gate->nonce_index = JR2_NONCE_INDEX;
|
||||
jsonrpc_2 = true; // still needed
|
||||
opt_extranonce = false;
|
||||
// have_gbt = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -267,47 +256,41 @@ void exec_hash_function( int algo, void *output, const void *pdata )
|
||||
gate.hash( output, pdata, 0 );
|
||||
}
|
||||
|
||||
// an algo can have multiple aliases but the aliases must be unique
|
||||
|
||||
#define PROPER (1)
|
||||
#define ALIAS (0)
|
||||
|
||||
// The only difference between the alias and the proper algo name is the
|
||||
// proper name is the one that is defined in ALGO_NAMES. There may be
|
||||
// proper name s the one that is defined in ALGO_NAMES, there may be
|
||||
// multiple aliases that map to the same proper name.
|
||||
// New aliases can be added anywhere in the array as long as NULL is last.
|
||||
// Alphabetic order of alias is recommended.
|
||||
const char* const algo_alias_map[][2] =
|
||||
{
|
||||
// alias proper
|
||||
{ "bitcore", "timetravel10" },
|
||||
{ "bitzeny", "yescryptr8" },
|
||||
{ "blake256r8", "blakecoin" },
|
||||
{ "blake256r8vnl", "vanilla" },
|
||||
{ "blake256r14", "blake" },
|
||||
{ "blake256r14dcr", "decred" },
|
||||
{ "cryptonote", "cryptonight" },
|
||||
{ "cryptonight-light", "cryptolight" },
|
||||
{ "diamond", "dmd-gr" },
|
||||
{ "droplp", "drop" },
|
||||
{ "espers", "hmq1725" },
|
||||
{ "flax", "c11" },
|
||||
{ "hsr", "x13sm3" },
|
||||
{ "jackpot", "jha" },
|
||||
{ "jane", "scryptjane" },
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myriad", "myr-gr" },
|
||||
{ "neo", "neoscrypt" },
|
||||
{ "phi", "phi1612" },
|
||||
// { "sia", "blake2b" },
|
||||
{ "sib", "x11gost" },
|
||||
{ "timetravel8", "timetravel" },
|
||||
{ "ziftr", "zr5" },
|
||||
{ "yenten", "yescryptr16" },
|
||||
{ "yescryptr8k", "yescrypt" },
|
||||
{ "zcoin", "lyra2z" },
|
||||
{ "zoin", "lyra2z330" },
|
||||
{ NULL, NULL }
|
||||
{ "blake256r8", "blakecoin" },
|
||||
{ "blake256r8vnl", "vanilla" },
|
||||
{ "sia", "blake2b" },
|
||||
{ "blake256r14", "blake" },
|
||||
{ "cryptonote", "cryptonight" },
|
||||
{ "cryptonight-light", "cryptolight" },
|
||||
{ "dmd-gr", "groestl" },
|
||||
{ "droplp", "drop" },
|
||||
{ "espers", "hmq1725" },
|
||||
{ "flax", "c11" },
|
||||
{ "jane", "scryptjane" },
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myriad", "myr-gr" },
|
||||
{ "neo", "neoscrypt" },
|
||||
{ "sib", "x11gost" },
|
||||
{ "yes", "yescrypt" },
|
||||
{ "ziftr", "zr5" },
|
||||
{ "zcoin", "lyra2z" },
|
||||
{ "zoin", "lyra2z330" },
|
||||
{ NULL, NULL }
|
||||
};
|
||||
|
||||
// if arg is a valid alias for a known algo it is updated with the proper name.
|
||||
|
@@ -85,13 +85,11 @@
|
||||
|
||||
typedef uint32_t set_t;
|
||||
|
||||
#define EMPTY_SET 0
|
||||
#define SSE2_OPT 1
|
||||
#define AES_OPT 2
|
||||
#define AVX_OPT 4
|
||||
#define AVX2_OPT 8
|
||||
#define SHA_OPT 0x10
|
||||
#define FOUR_WAY_OPT 0x20
|
||||
#define EMPTY_SET 0
|
||||
#define SSE2_OPT 1
|
||||
#define AES_OPT 2
|
||||
#define AVX_OPT 4
|
||||
#define AVX2_OPT 8
|
||||
|
||||
// return set containing all elements from sets a & b
|
||||
inline set_t set_union ( set_t a, set_t b ) { return a | b; }
|
||||
@@ -112,6 +110,7 @@ int ( *scanhash ) ( int, struct work*, uint32_t, uint64_t* );
|
||||
|
||||
// optional unsafe, must be overwritten if algo uses function
|
||||
void ( *hash ) ( void*, const void*, uint32_t ) ;
|
||||
void ( *hash_alt ) ( void*, const void*, uint32_t );
|
||||
void ( *hash_suw ) ( void*, const void* );
|
||||
|
||||
//optional, safe to use default in most cases
|
||||
@@ -131,6 +130,7 @@ void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
|
||||
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
|
||||
void ( *set_work_data_endian ) ( struct work* );
|
||||
double ( *calc_network_diff ) ( struct work* );
|
||||
//bool ( *prevent_dupes ) ( struct work*, struct stratum_ctx*, int );
|
||||
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
|
||||
void ( *resync_threads ) ( struct work* );
|
||||
bool ( *do_this_thread ) ( int );
|
||||
@@ -157,7 +157,7 @@ bool return_false();
|
||||
void *return_null();
|
||||
void algo_not_tested();
|
||||
void algo_not_implemented();
|
||||
void four_way_not_tested();
|
||||
|
||||
|
||||
// Warning: algo_gate.nonce_index should only be used in targetted code
|
||||
// due to different behaviours by different targets. The JR2 index uses an
|
||||
@@ -185,6 +185,7 @@ int null_scanhash();
|
||||
|
||||
// displays warning
|
||||
void null_hash ();
|
||||
void null_hash_alt();
|
||||
void null_hash_suw();
|
||||
|
||||
// optional safe targets, default listed first unless noted.
|
||||
@@ -216,20 +217,18 @@ int64_t get_max64_0xffffLL();
|
||||
void std_set_target ( struct work *work, double job_diff );
|
||||
void scrypt_set_target( struct work *work, double job_diff );
|
||||
|
||||
bool std_le_work_decode( const json_t *val, struct work *work );
|
||||
bool std_be_work_decode( const json_t *val, struct work *work );
|
||||
bool std_work_decode( const json_t *val, struct work *work );
|
||||
bool jr2_work_decode( const json_t *val, struct work *work );
|
||||
|
||||
bool std_le_submit_getwork_result( CURL *curl, struct work *work );
|
||||
bool std_be_submit_getwork_result( CURL *curl, struct work *work );
|
||||
bool std_submit_getwork_result( CURL *curl, struct work *work );
|
||||
bool jr2_submit_getwork_result( CURL *curl, struct work *work );
|
||||
|
||||
void std_le_build_stratum_request( char *req, struct work *work );
|
||||
void std_be_build_stratum_request( char *req, struct work *work );
|
||||
void jr2_build_stratum_request ( char *req, struct work *work );
|
||||
|
||||
// Default is do_nothing (assumed LE)
|
||||
void set_work_data_big_endian( struct work *work );
|
||||
// set_work_data_endian target, default is do_nothing;
|
||||
void swab_work_data( struct work *work );
|
||||
|
||||
double std_calc_network_diff( struct work *work );
|
||||
|
||||
|
@@ -1,3 +1,5 @@
|
||||
#include "miner.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <string.h>
|
||||
@@ -5,11 +6,11 @@
|
||||
|
||||
#include "algo/shabal/sph_shabal.h"
|
||||
|
||||
static __thread uint32_t _ALIGN(64) M[65536][8];
|
||||
static __thread uint32_t _ALIGN(128) M[65536][8];
|
||||
|
||||
void axiomhash(void *output, const void *input)
|
||||
{
|
||||
sph_shabal256_context ctx __attribute__ ((aligned (64)));
|
||||
sph_shabal256_context ctx;
|
||||
const int N = 65536;
|
||||
|
||||
sph_shabal256_init(&ctx);
|
||||
@@ -33,7 +34,7 @@ void axiomhash(void *output, const void *input)
|
||||
sph_shabal256(&ctx, M[p], 32);
|
||||
sph_shabal256(&ctx, M[j], 32);
|
||||
#else
|
||||
uint8_t _ALIGN(64) hash[64];
|
||||
uint8_t _ALIGN(128) hash[64];
|
||||
memcpy(hash, M[p], 32);
|
||||
memcpy(&hash[32], M[j], 32);
|
||||
sph_shabal256(&ctx, hash, 64);
|
||||
@@ -48,8 +49,8 @@ int scanhash_axiom(int thr_id, struct work *work,
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) hash64[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t _ALIGN(128) hash64[8];
|
||||
uint32_t _ALIGN(128) endiandata[20];
|
||||
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
@@ -81,6 +82,7 @@ bool register_axiom_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_axiom;
|
||||
gate->hash = (void*)&axiomhash;
|
||||
gate->hash_alt = (void*)&axiomhash;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
return true;
|
||||
}
|
203
algo/blake/b/sia-rpc.cpp
Normal file
203
algo/blake/b/sia-rpc.cpp
Normal file
@@ -0,0 +1,203 @@
|
||||
#include <ccminer-config.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include <inttypes.h>
|
||||
#include <unistd.h>
|
||||
#include <math.h>
|
||||
#include <sys/time.h>
|
||||
#include <time.h>
|
||||
#include <signal.h>
|
||||
#include <curl/curl.h>
|
||||
#include <miner.h>
|
||||
|
||||
#include "sia-rpc.h"
|
||||
|
||||
static bool sia_debug_diff = false;
|
||||
|
||||
extern int share_result(int result, int pooln, double sharediff, const char *reason);
|
||||
|
||||
/* compute nbits to get the network diff */
|
||||
static void calc_network_diff(struct work *work)
|
||||
{
|
||||
uint32_t nbits = work->data[11]; // unsure if correct
|
||||
uint32_t bits = (nbits & 0xffffff);
|
||||
int16_t shift = (swab32(nbits) & 0xff); // 0x1c = 28
|
||||
|
||||
uint64_t diffone = 0x0000FFFF00000000ull;
|
||||
double d = (double)0x0000ffff / (double)bits;
|
||||
|
||||
for (int m=shift; m < 29; m++) d *= 256.0;
|
||||
for (int m=29; m < shift; m++) d /= 256.0;
|
||||
if (sia_debug_diff)
|
||||
applog(LOG_DEBUG, "net diff: %f -> shift %u, bits %08x", d, shift, bits);
|
||||
|
||||
net_diff = d;
|
||||
}
|
||||
|
||||
// ---- SIA LONGPOLL --------------------------------------------------------------------------------
|
||||
|
||||
struct data_buffer {
|
||||
void *buf;
|
||||
size_t len;
|
||||
};
|
||||
|
||||
static size_t sia_data_cb(const void *ptr, size_t size, size_t nmemb,
|
||||
void *user_data)
|
||||
{
|
||||
struct data_buffer *db = (struct data_buffer *)user_data;
|
||||
size_t len = size * nmemb;
|
||||
size_t oldlen, newlen;
|
||||
void *newmem;
|
||||
static const uchar zero = 0;
|
||||
|
||||
oldlen = db->len;
|
||||
newlen = oldlen + len;
|
||||
|
||||
newmem = realloc(db->buf, newlen + 1);
|
||||
if (!newmem)
|
||||
return 0;
|
||||
|
||||
db->buf = newmem;
|
||||
db->len = newlen;
|
||||
memcpy((char*)db->buf + oldlen, ptr, len);
|
||||
memcpy((char*)db->buf + newlen, &zero, 1); /* null terminate */
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
char* sia_getheader(CURL *curl, struct pool_infos *pool)
|
||||
{
|
||||
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
|
||||
struct data_buffer all_data = { 0 };
|
||||
struct curl_slist *headers = NULL;
|
||||
char data[256] = { 0 };
|
||||
char url[512];
|
||||
|
||||
// nanopool
|
||||
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s", //&longpoll
|
||||
pool->url, pool->user, pool->pass);
|
||||
|
||||
if (opt_protocol)
|
||||
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url);
|
||||
curl_easy_setopt(curl, CURLOPT_POST, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TIMEOUT, opt_timeout);
|
||||
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
|
||||
|
||||
headers = curl_slist_append(headers, "Accept: application/octet-stream");
|
||||
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
|
||||
headers = curl_slist_append(headers, "User-Agent: Sia-Agent"); // required for now
|
||||
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
|
||||
// headers = curl_slist_append(headers, "X-Mining-Extensions: longpoll");
|
||||
|
||||
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
|
||||
|
||||
int rc = curl_easy_perform(curl);
|
||||
if (rc && strlen(curl_err_str)) {
|
||||
applog(LOG_WARNING, "%s", curl_err_str);
|
||||
}
|
||||
|
||||
if (all_data.len >= 112)
|
||||
cbin2hex(data, (const char*) all_data.buf, 112);
|
||||
if (opt_protocol || all_data.len != 112)
|
||||
applog(LOG_DEBUG, "received %d bytes: %s", (int) all_data.len, data);
|
||||
|
||||
curl_slist_free_all(headers);
|
||||
|
||||
return rc == 0 && all_data.len ? strdup(data) : NULL;
|
||||
}
|
||||
|
||||
bool sia_work_decode(const char *hexdata, struct work *work)
|
||||
{
|
||||
uint8_t target[32];
|
||||
if (!work) return false;
|
||||
|
||||
hex2bin((uchar*)target, &hexdata[0], 32);
|
||||
swab256(work->target, target);
|
||||
work->targetdiff = target_to_diff(work->target);
|
||||
|
||||
hex2bin((uchar*)work->data, &hexdata[64], 80);
|
||||
// high 16 bits of the 64 bits nonce
|
||||
work->data[9] = rand() << 16;
|
||||
|
||||
// use work ntime as job id
|
||||
cbin2hex(work->job_id, (const char*)&work->data[10], 4);
|
||||
calc_network_diff(work);
|
||||
|
||||
if (stratum_diff != work->targetdiff) {
|
||||
stratum_diff = work->targetdiff;
|
||||
applog(LOG_WARNING, "Pool diff set to %g", stratum_diff);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool sia_submit(CURL *curl, struct pool_infos *pool, struct work *work)
|
||||
{
|
||||
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
|
||||
struct data_buffer all_data = { 0 };
|
||||
struct curl_slist *headers = NULL;
|
||||
char buf[256] = { 0 };
|
||||
char url[512];
|
||||
|
||||
if (opt_protocol)
|
||||
applog_hex(work->data, 80);
|
||||
//applog_hex(&work->data[8], 16);
|
||||
//applog_hex(&work->data[10], 4);
|
||||
|
||||
// nanopool
|
||||
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s",
|
||||
pool->url, pool->user, pool->pass);
|
||||
|
||||
if (opt_protocol)
|
||||
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url);
|
||||
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TIMEOUT, 10);
|
||||
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
|
||||
|
||||
memcpy(buf, work->data, 80);
|
||||
curl_easy_setopt(curl, CURLOPT_POST, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, 80);
|
||||
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, (void*) buf);
|
||||
|
||||
// headers = curl_slist_append(headers, "Content-Type: application/octet-stream");
|
||||
// headers = curl_slist_append(headers, "Content-Length: 80");
|
||||
headers = curl_slist_append(headers, "Accept:"); // disable Accept hdr
|
||||
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
|
||||
headers = curl_slist_append(headers, "User-Agent: Sia-Agent");
|
||||
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
|
||||
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
|
||||
|
||||
int res = curl_easy_perform(curl) == 0;
|
||||
long errcode;
|
||||
CURLcode c = curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &errcode);
|
||||
if (errcode != 204) {
|
||||
if (strlen(curl_err_str))
|
||||
applog(LOG_ERR, "submit err %ld %s", errcode, curl_err_str);
|
||||
res = 0;
|
||||
}
|
||||
share_result(res, work->pooln, work->sharediff[0], res ? NULL : (char*) all_data.buf);
|
||||
|
||||
curl_slist_free_all(headers);
|
||||
return true;
|
||||
}
|
||||
|
||||
// ---- END SIA LONGPOLL ----------------------------------------------------------------------------
|
6
algo/blake/b/sia-rpc.h
Normal file
6
algo/blake/b/sia-rpc.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#include <miner.h>
|
||||
|
||||
char* sia_getheader(CURL *curl, struct pool_infos *pool);
|
||||
bool sia_work_decode(const char *hexdata, struct work *work);
|
||||
bool sia_submit(CURL *curl, struct pool_infos *pool, struct work *work);
|
||||
|
@@ -1,112 +0,0 @@
|
||||
#include "blake-gate.h"
|
||||
#include "sph_blake.h"
|
||||
#include "blake-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (BLAKE_4WAY)
|
||||
|
||||
void blakehash_4way(void *state, const void *input)
|
||||
{
|
||||
uint32_t vhash[4*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash1[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[4] __attribute__ ((aligned (32)));
|
||||
blake256_4way_context ctx;
|
||||
|
||||
blake256_4way_init( &ctx );
|
||||
blake256_4way( &ctx, input, 16 );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
memcpy( state, hash0, 32 );
|
||||
memcpy( state+32, hash1, 32 );
|
||||
memcpy( state+64, hash1, 32 );
|
||||
memcpy( state+96, hash1, 32 );
|
||||
}
|
||||
|
||||
int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
// uint32_t HTarget = ptarget[7];
|
||||
uint32_t _ALIGN(32) edata[20];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
|
||||
// if (opt_benchmark)
|
||||
// HTarget = 0x7f;
|
||||
|
||||
// we need big endian data...
|
||||
swab32_array( edata, pdata, 20 );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
|
||||
blakehash_4way( hash, vdata );
|
||||
|
||||
if ( hash[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash, ptarget ) )
|
||||
{
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[19] = n;
|
||||
}
|
||||
}
|
||||
if ( (hash+8)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n+1;
|
||||
}
|
||||
}
|
||||
if ( (hash+16)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n+2;
|
||||
}
|
||||
}
|
||||
if ( (hash+24)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n+3;
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -1,26 +0,0 @@
|
||||
#include "blake-gate.h"
|
||||
|
||||
int64_t blake_get_max64 ()
|
||||
{
|
||||
return 0x7ffffLL;
|
||||
}
|
||||
|
||||
bool register_blake_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->get_max64 = (void*)&blake_get_max64;
|
||||
//#if defined (__AVX2__) && defined (FOUR_WAY)
|
||||
// gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
// gate->scanhash = (void*)&scanhash_blake_8way;
|
||||
// gate->hash = (void*)&blakehash_8way;
|
||||
#if defined(BLAKE_4WAY)
|
||||
four_way_not_tested();
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->scanhash = (void*)&scanhash_blake_4way;
|
||||
gate->hash = (void*)&blakehash_4way;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_blake;
|
||||
gate->hash = (void*)&blakehash;
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
@@ -1,21 +0,0 @@
|
||||
#ifndef __BLAKE_GATE_H__
|
||||
#define __BLAKE_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#define BLAKE_4WAY
|
||||
#endif
|
||||
|
||||
#if defined (BLAKE_4WAY)
|
||||
void blakehash_4way(void *state, const void *input);
|
||||
int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
void blakehash( void *state, const void *input );
|
||||
int scanhash_blake( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@@ -1,105 +0,0 @@
|
||||
/* $Id: sph_blake.h 252 2011-06-07 17:55:14Z tp $ */
|
||||
/**
|
||||
* BLAKE interface. BLAKE is a family of functions which differ by their
|
||||
* output size; this implementation defines BLAKE for output sizes 224,
|
||||
* 256, 384 and 512 bits. This implementation conforms to the "third
|
||||
* round" specification.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_blake.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef __BLAKE_HASH_4WAY__
|
||||
#define __BLAKE_HASH_4WAY___
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-256.
|
||||
*/
|
||||
#define SPH_SIZE_blake256 256
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-512.
|
||||
*/
|
||||
#define SPH_SIZE_blake512 512
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __AVX__
|
||||
typedef struct {
|
||||
__m128i buf[16] __attribute__ ((aligned (64)));
|
||||
__m128i H[8];
|
||||
__m128i S[4];
|
||||
size_t ptr;
|
||||
sph_u32 T0, T1;
|
||||
} blake_4way_small_context;
|
||||
|
||||
typedef blake_4way_small_context blake256_4way_context;
|
||||
|
||||
void blake256_4way_init(void *cc);
|
||||
void blake256_4way(void *cc, const void *data, size_t len);
|
||||
void blake256_4way_close(void *cc, void *dst);
|
||||
void blake256_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __AVX2__
|
||||
|
||||
typedef struct {
|
||||
__m256i buf[16] __attribute__ ((aligned (64)));
|
||||
__m256i H[8];
|
||||
__m256i S[4];
|
||||
size_t ptr;
|
||||
sph_u64 T0, T1;
|
||||
} blake_4way_big_context;
|
||||
|
||||
typedef blake_4way_big_context blake512_4way_context;
|
||||
|
||||
void blake512_4way_init(void *cc);
|
||||
void blake512_4way(void *cc, const void *data, size_t len);
|
||||
void blake512_4way_close(void *cc, void *dst);
|
||||
void blake512_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include "sph_blake.h"
|
||||
|
||||
@@ -20,7 +21,7 @@ void blakehash(void *state, const void *input)
|
||||
{
|
||||
sph_blake256_context ctx;
|
||||
|
||||
uint8_t hash[64] __attribute__ ((aligned (32)));
|
||||
uint8_t hash[64];
|
||||
uint8_t *ending = (uint8_t*) input;
|
||||
ending += 64;
|
||||
|
||||
@@ -89,3 +90,19 @@ int scanhash_blake( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
return 0;
|
||||
}
|
||||
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blake_get_max64 ()
|
||||
{
|
||||
return 0x7ffffLL;
|
||||
}
|
||||
|
||||
bool register_blake_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_blake;
|
||||
gate->hash = (void*)&blakehash;
|
||||
gate->hash_alt = (void*)&blakehash;
|
||||
gate->get_max64 = (void*)&blake_get_max64;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@@ -3,20 +3,22 @@
|
||||
* tpruvot@github 2015-2016
|
||||
*/
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "algo/blake/sph_blake2b.h"
|
||||
|
||||
//static __thread sph_blake2b_ctx s_midstate;
|
||||
//static __thread sph_blake2b_ctx s_ctx;
|
||||
static __thread sph_blake2b_ctx s_midstate;
|
||||
static __thread sph_blake2b_ctx s_ctx;
|
||||
#define MIDLEN 76
|
||||
#define A 64
|
||||
|
||||
void blake2b_hash(void *output, const void *input)
|
||||
{
|
||||
uint8_t _ALIGN(A) hash[32];
|
||||
sph_blake2b_ctx ctx __attribute__ ((aligned (64)));
|
||||
sph_blake2b_ctx ctx;
|
||||
|
||||
sph_blake2b_init(&ctx, 32, NULL, 0);
|
||||
sph_blake2b_update(&ctx, input, 80);
|
||||
@@ -25,7 +27,6 @@ void blake2b_hash(void *output, const void *input)
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
/*
|
||||
static void blake2b_hash_end(uint32_t *output, const uint32_t *input)
|
||||
{
|
||||
s_ctx.outlen = MIDLEN;
|
||||
@@ -33,7 +34,6 @@ static void blake2b_hash_end(uint32_t *output, const uint32_t *input)
|
||||
sph_blake2b_update(&s_ctx, (uint8_t*) &input[MIDLEN/4], 80 - MIDLEN);
|
||||
sph_blake2b_final(&s_ctx, (uint8_t*) output);
|
||||
}
|
||||
*/
|
||||
|
||||
int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
@@ -44,6 +44,7 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
// const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t first_nonce = pdata[8];
|
||||
|
||||
uint32_t n = first_nonce;
|
||||
@@ -58,6 +59,7 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
//memcpy(&s_ctx, &s_midstate, sizeof(blake2b_ctx));
|
||||
|
||||
do {
|
||||
// be32enc(&endiandata[19], n);
|
||||
be32enc(&endiandata[8], n);
|
||||
//blake2b_hash_end(vhashcpu, endiandata);
|
||||
blake2b_hash(vhashcpu, endiandata);
|
||||
@@ -65,6 +67,7 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
if (vhashcpu[7] < Htarg && fulltest(vhashcpu, ptarget)) {
|
||||
work_set_target_ratio(work, vhashcpu);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
// pdata[19] = n;
|
||||
pdata[8] = n;
|
||||
return 1;
|
||||
}
|
||||
@@ -72,6 +75,7 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
// pdata[19] = n;
|
||||
pdata[8] = n;
|
||||
|
||||
return 0;
|
||||
@@ -169,8 +173,8 @@ void blake2b_get_new_work( struct work* work, struct work* g_work, int thr_id,
|
||||
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
|
||||
|
||||
if ( memcmp( &work->data[ wkcmp_off ], &g_work->data[ wkcmp_off ], wkcmp_sz )
|
||||
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr )
|
||||
|| strcmp( work->job_id, g_work->job_id ) ) )
|
||||
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) )
|
||||
|| strcmp( work->job_id, g_work->job_id ) )
|
||||
{
|
||||
work_free( work );
|
||||
work_copy( work, g_work );
|
||||
@@ -219,8 +223,6 @@ bool register_blake2b_algo( algo_gate_t* gate )
|
||||
gate->hash = (void*)&blake2b_hash;
|
||||
gate->calc_network_diff = (void*)&blake2b_calc_network_diff;
|
||||
gate->build_stratum_request = (void*)&blake2b_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
gate->build_extraheader = (void*)&blake2b_build_extraheader;
|
||||
gate->get_new_work = (void*)&blake2b_get_new_work;
|
||||
gate->get_max64 = (void*)&blake2b_get_max64;
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <string.h>
|
||||
@@ -12,7 +13,7 @@ static __thread blake2s_state s_ctx;
|
||||
void blake2s_hash(void *output, const void *input)
|
||||
{
|
||||
unsigned char _ALIGN(64) hash[BLAKE2S_OUTBYTES];
|
||||
blake2s_state blake2_ctx __attribute__ ((aligned (64)));
|
||||
blake2s_state blake2_ctx;
|
||||
|
||||
blake2s_init(&blake2_ctx, BLAKE2S_OUTBYTES);
|
||||
blake2s_update(&blake2_ctx, input, 80);
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#define BLAKE32_ROUNDS 8
|
||||
#include "sph_blake.h"
|
||||
@@ -29,7 +30,7 @@ static void blake_midstate_init( const void* input )
|
||||
void blakecoinhash( void *state, const void *input )
|
||||
{
|
||||
sph_blake256_context ctx;
|
||||
uint8_t hash[64] __attribute__ ((aligned (32)));
|
||||
uint8_t hash[64];
|
||||
uint8_t *ending = (uint8_t*) input + 64;
|
||||
|
||||
// copy cached midstate
|
||||
@@ -92,12 +93,10 @@ int scanhash_blakecoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
void blakecoin_gen_merkle_root ( char* merkle_root, struct stratum_ctx* sctx )
|
||||
{
|
||||
SHA256( sctx->job.coinbase, (int)sctx->job.coinbase_size, merkle_root );
|
||||
}
|
||||
*/
|
||||
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blakecoin_get_max64 ()
|
||||
@@ -110,6 +109,7 @@ bool register_vanilla_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_blakecoin;
|
||||
gate->hash = (void*)&blakecoinhash;
|
||||
gate->hash_alt = (void*)&blakecoinhash;
|
||||
gate->get_max64 = (void*)&blakecoin_get_max64;
|
||||
blakecoin_init( &blake_init_ctx );
|
||||
return true;
|
||||
|
@@ -1,157 +0,0 @@
|
||||
#include "decred-gate.h"
|
||||
#include "sph_blake.h"
|
||||
#include "blake-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#if defined (DECRED_4WAY)
|
||||
|
||||
static __thread blake256_4way_context blake_mid;
|
||||
static __thread bool ctx_midstate_done = false;
|
||||
|
||||
void decred_hash_4way( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash1[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[8] __attribute__ ((aligned (32)));
|
||||
blake256_4way_context ctx __attribute__ ((aligned (64)));
|
||||
|
||||
sph_blake256_context ctx2 __attribute__ ((aligned (64)));
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
uint32_t sin0[45], sin1[45], sin2[45], sin3[45];
|
||||
|
||||
mm_deinterleave_4x32x( sin0, sin1, sin2, sin3, input, 180*8 );
|
||||
|
||||
void *tail = input + ( DECRED_MIDSTATE_LEN << 2 );
|
||||
int tail_len = 180 - DECRED_MIDSTATE_LEN;
|
||||
|
||||
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
|
||||
blake256_4way( &ctx, tail, tail_len );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
/*
|
||||
sph_blake256_init( &ctx2 );
|
||||
sph_blake256( &ctx2, sin0, 180 );
|
||||
sph_blake256_close( &ctx2, hash );
|
||||
*/
|
||||
/*
|
||||
blake256_4way_init( &ctx );
|
||||
blake256_4way( &ctx, input, 180 );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
*/
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
/*
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
if ( hash[i] != hash0[i] )
|
||||
printf(" hash mismatch, i = %u\n",i);
|
||||
|
||||
printf("hash: %08lx %08lx %08lx %08lx\n", *hash, *(hash+1),
|
||||
*(hash+2), *(hash+3) );
|
||||
printf("hash0: %08lx %08lx %08lx %08lx\n", *hash0, *(hash0+1),
|
||||
*(hash0+2), *(hash0+3) );
|
||||
printf("\n");
|
||||
*/
|
||||
|
||||
memcpy( state, hash0, 32 );
|
||||
memcpy( state+32, hash1, 32 );
|
||||
memcpy( state+64, hash2, 32 );
|
||||
memcpy( state+96, hash3, 32 );
|
||||
|
||||
// memcpy( state, hash, 32 );
|
||||
|
||||
}
|
||||
|
||||
int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t vdata[48*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t _ALIGN(64) edata[48];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
|
||||
ctx_midstate_done = false;
|
||||
memcpy( edata, pdata, 180 );
|
||||
|
||||
// use the old way until new way updated for size.
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 180*8 );
|
||||
|
||||
blake256_4way_init( &blake_mid );
|
||||
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
|
||||
|
||||
uint32_t *noncep = vdata + DECRED_NONCE_INDEX * 4;
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
* noncep = n;
|
||||
*(noncep+1) = n+1;
|
||||
*(noncep+2) = n+2;
|
||||
*(noncep+3) = n+3;
|
||||
|
||||
decred_hash_4way( hash, vdata );
|
||||
|
||||
if ( hash[7] <= HTarget && fulltest( hash, ptarget ) )
|
||||
{
|
||||
work_set_target_ratio( work, hash );
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[DECRED_NONCE_INDEX] = n;
|
||||
}
|
||||
/*
|
||||
if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
printf("found 1\n");
|
||||
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[8], hash[9], hash[10],hash[11] );
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[12], hash[13], hash[14],hash[15] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n", shash[0], shash[1], shash[2],shash[3] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n\n", shash[4], shash[5], shash[6],shash[7] );
|
||||
|
||||
work_set_target_ratio( work, hash+8 );
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n+1;
|
||||
}
|
||||
*/
|
||||
if ( (hash+16)[7] <= HTarget && fulltest( hash+16, ptarget ) )
|
||||
{
|
||||
work_set_target_ratio( work, hash+16 );
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n+2;
|
||||
}
|
||||
/*
|
||||
if ( (hash+24)[7] <= HTarget && fulltest( hash+24, ptarget ) )
|
||||
{
|
||||
printf("found 3\n");
|
||||
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[0], hash[1], hash[2],hash[3] );
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[4], hash[5], hash[6],hash[7] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n", shash[0], shash[1], shash[2],shash[3] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n\n", shash[4], shash[5], shash[6],shash[7] );
|
||||
|
||||
work_set_target_ratio( work, hash+24 );
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n+3;
|
||||
}
|
||||
*/
|
||||
n += 2;
|
||||
// n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,174 +0,0 @@
|
||||
#include "decred-gate.h"
|
||||
#include <unistd.h>
|
||||
#include <memory.h>
|
||||
#include <string.h>
|
||||
|
||||
uint32_t *decred_get_nonceptr( uint32_t *work_data )
|
||||
{
|
||||
return &work_data[ DECRED_NONCE_INDEX ];
|
||||
}
|
||||
|
||||
double decred_calc_network_diff( struct work* work )
|
||||
{
|
||||
// sample for diff 43.281 : 1c05ea29
|
||||
// todo: endian reversed on longpoll could be zr5 specific...
|
||||
uint32_t nbits = work->data[ DECRED_NBITS_INDEX ];
|
||||
uint32_t bits = ( nbits & 0xffffff );
|
||||
int16_t shift = ( swab32(nbits) & 0xff ); // 0x1c = 28
|
||||
int m;
|
||||
double d = (double)0x0000ffff / (double)bits;
|
||||
|
||||
for ( m = shift; m < 29; m++ )
|
||||
d *= 256.0;
|
||||
for ( m = 29; m < shift; m++ )
|
||||
d /= 256.0;
|
||||
if ( shift == 28 )
|
||||
d *= 256.0; // testnet
|
||||
if ( opt_debug_diff )
|
||||
applog( LOG_DEBUG, "net diff: %f -> shift %u, bits %08x", d,
|
||||
shift, bits );
|
||||
return net_diff;
|
||||
}
|
||||
|
||||
void decred_decode_extradata( struct work* work, uint64_t* net_blocks )
|
||||
{
|
||||
// some random extradata to make the work unique
|
||||
work->data[ DECRED_XNONCE_INDEX ] = (rand()*4);
|
||||
work->height = work->data[32];
|
||||
if (!have_longpoll && work->height > *net_blocks + 1)
|
||||
{
|
||||
char netinfo[64] = { 0 };
|
||||
if (opt_showdiff && net_diff > 0.)
|
||||
{
|
||||
if (net_diff != work->targetdiff)
|
||||
sprintf(netinfo, ", diff %.3f, target %.1f", net_diff,
|
||||
work->targetdiff);
|
||||
else
|
||||
sprintf(netinfo, ", diff %.3f", net_diff);
|
||||
}
|
||||
applog(LOG_BLUE, "%s block %d%s", algo_names[opt_algo], work->height,
|
||||
netinfo);
|
||||
*net_blocks = work->height - 1;
|
||||
}
|
||||
}
|
||||
|
||||
void decred_be_build_stratum_request( char *req, struct work *work,
|
||||
struct stratum_ctx *sctx )
|
||||
{
|
||||
unsigned char *xnonce2str;
|
||||
uint32_t ntime, nonce;
|
||||
char ntimestr[9], noncestr[9];
|
||||
|
||||
be32enc( &ntime, work->data[ DECRED_NTIME_INDEX ] );
|
||||
be32enc( &nonce, work->data[ DECRED_NONCE_INDEX ] );
|
||||
bin2hex( ntimestr, (char*)(&ntime), sizeof(uint32_t) );
|
||||
bin2hex( noncestr, (char*)(&nonce), sizeof(uint32_t) );
|
||||
xnonce2str = abin2hex( (char*)( &work->data[ DECRED_XNONCE_INDEX ] ),
|
||||
sctx->xnonce1_size );
|
||||
snprintf( req, JSON_BUF_LEN,
|
||||
"{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}",
|
||||
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr );
|
||||
free(xnonce2str);
|
||||
}
|
||||
#define min(a,b) (a>b ? (b) :(a))
|
||||
|
||||
void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
{
|
||||
uchar merkle_root[64] = { 0 };
|
||||
uint32_t extraheader[32] = { 0 };
|
||||
int headersize = 0;
|
||||
uint32_t* extradata = (uint32_t*) sctx->xnonce1;
|
||||
size_t t;
|
||||
int i;
|
||||
|
||||
// getwork over stratum, getwork merkle + header passed in coinb1
|
||||
memcpy(merkle_root, sctx->job.coinbase, 32);
|
||||
headersize = min((int)sctx->job.coinbase_size - 32,
|
||||
sizeof(extraheader) );
|
||||
memcpy( extraheader, &sctx->job.coinbase[32], headersize );
|
||||
|
||||
// Increment extranonce2
|
||||
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
|
||||
|
||||
// Assemble block header
|
||||
memset( g_work->data, 0, sizeof(g_work->data) );
|
||||
g_work->data[0] = le32dec( sctx->job.version );
|
||||
for ( i = 0; i < 8; i++ )
|
||||
g_work->data[1 + i] = swab32(
|
||||
le32dec( (uint32_t *) sctx->job.prevhash + i ) );
|
||||
for ( i = 0; i < 8; i++ )
|
||||
g_work->data[9 + i] = swab32( be32dec( (uint32_t *) merkle_root + i ) );
|
||||
|
||||
// for ( i = 0; i < 8; i++ ) // prevhash
|
||||
// g_work->data[1 + i] = swab32( g_work->data[1 + i] );
|
||||
// for ( i = 0; i < 8; i++ ) // merkle
|
||||
// g_work->data[9 + i] = swab32( g_work->data[9 + i] );
|
||||
|
||||
for ( i = 0; i < headersize/4; i++ ) // header
|
||||
g_work->data[17 + i] = extraheader[i];
|
||||
// extradata
|
||||
|
||||
for ( i = 0; i < sctx->xnonce1_size/4; i++ )
|
||||
g_work->data[ DECRED_XNONCE_INDEX + i ] = extradata[i];
|
||||
for ( i = DECRED_XNONCE_INDEX + sctx->xnonce1_size/4; i < 45; i++ )
|
||||
g_work->data[i] = 0;
|
||||
g_work->data[37] = (rand()*4) << 8;
|
||||
// block header suffix from coinb2 (stake version)
|
||||
memcpy( &g_work->data[44],
|
||||
&sctx->job.coinbase[ sctx->job.coinbase_size-4 ], 4 );
|
||||
sctx->bloc_height = g_work->data[32];
|
||||
//applog_hex(work->data, 180);
|
||||
//applog_hex(&work->data[36], 36);
|
||||
}
|
||||
|
||||
#undef min
|
||||
|
||||
bool decred_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id )
|
||||
{
|
||||
if ( have_stratum && strcmp(stratum->job.job_id, work->job_id) )
|
||||
// need to regen g_work..
|
||||
return false;
|
||||
if ( have_stratum && !work->data[0] && !opt_benchmark )
|
||||
{
|
||||
sleep(1);
|
||||
return false;
|
||||
}
|
||||
// extradata: prevent duplicates
|
||||
work->data[ DECRED_XNONCE_INDEX ] += 1;
|
||||
work->data[ DECRED_XNONCE_INDEX + 1 ] |= thr_id;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool register_decred_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(DECRED_4WAY)
|
||||
four_way_not_tested();
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred_4way;
|
||||
gate->hash = (void*)&decred_hash_4way;
|
||||
#else
|
||||
gate->optimizations = SSE2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred;
|
||||
gate->hash = (void*)&decred_hash;
|
||||
#endif
|
||||
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
gate->build_extraheader = (void*)&decred_build_extraheader;
|
||||
gate->ready_to_mine = (void*)&decred_ready_to_mine;
|
||||
gate->nbits_index = DECRED_NBITS_INDEX;
|
||||
gate->ntime_index = DECRED_NTIME_INDEX;
|
||||
gate->nonce_index = DECRED_NONCE_INDEX;
|
||||
gate->work_data_size = DECRED_DATA_SIZE;
|
||||
gate->work_cmp_size = DECRED_WORK_COMPARE_SIZE;
|
||||
allow_mininginfo = false;
|
||||
have_gbt = false;
|
||||
return true;
|
||||
}
|
||||
|
@@ -1,36 +0,0 @@
|
||||
#ifndef __DECRED_GATE_H__
|
||||
#define __DECRED_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#define DECRED_NBITS_INDEX 29
|
||||
#define DECRED_NTIME_INDEX 34
|
||||
#define DECRED_NONCE_INDEX 35
|
||||
#define DECRED_XNONCE_INDEX 36
|
||||
#define DECRED_DATA_SIZE 192
|
||||
#define DECRED_WORK_COMPARE_SIZE 140
|
||||
#define DECRED_MIDSTATE_LEN 128
|
||||
|
||||
#if defined (__AVX2__)
|
||||
//void blakehash_84way(void *state, const void *input);
|
||||
//int scanhash_blake_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
// uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#define DECRED_4WAY
|
||||
#endif
|
||||
|
||||
#if defined (DECRED_4WAY)
|
||||
void decred_hash_4way(void *state, const void *input);
|
||||
int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
void decred_hash( void *state, const void *input );
|
||||
int scanhash_decred( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
||||
|
@@ -1,11 +1,10 @@
|
||||
#include "decred-gate.h"
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include "sph_blake.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
#ifndef min
|
||||
#define min(a,b) (a>b ? b : a)
|
||||
@@ -14,33 +13,33 @@
|
||||
#define max(a,b) (a<b ? b : a)
|
||||
#endif
|
||||
*/
|
||||
/*
|
||||
|
||||
#define DECRED_NBITS_INDEX 29
|
||||
#define DECRED_NTIME_INDEX 34
|
||||
#define DECRED_NONCE_INDEX 35
|
||||
#define DECRED_XNONCE_INDEX 36
|
||||
#define DECRED_DATA_SIZE 192
|
||||
#define DECRED_WORK_COMPARE_SIZE 140
|
||||
*/
|
||||
|
||||
static __thread sph_blake256_context blake_mid;
|
||||
static __thread bool ctx_midstate_done = false;
|
||||
|
||||
void decred_hash(void *state, const void *input)
|
||||
{
|
||||
// #define MIDSTATE_LEN 128
|
||||
sph_blake256_context ctx __attribute__ ((aligned (64)));
|
||||
#define MIDSTATE_LEN 128
|
||||
sph_blake256_context ctx;
|
||||
|
||||
uint8_t *ending = (uint8_t*) input;
|
||||
ending += DECRED_MIDSTATE_LEN;
|
||||
ending += MIDSTATE_LEN;
|
||||
|
||||
if (!ctx_midstate_done) {
|
||||
sph_blake256_init(&blake_mid);
|
||||
sph_blake256(&blake_mid, input, DECRED_MIDSTATE_LEN);
|
||||
sph_blake256(&blake_mid, input, MIDSTATE_LEN);
|
||||
ctx_midstate_done = true;
|
||||
}
|
||||
memcpy(&ctx, &blake_mid, sizeof(blake_mid));
|
||||
|
||||
sph_blake256(&ctx, ending, (180 - DECRED_MIDSTATE_LEN));
|
||||
sph_blake256(&ctx, ending, (180 - MIDSTATE_LEN));
|
||||
sph_blake256_close(&ctx, state);
|
||||
}
|
||||
|
||||
@@ -54,14 +53,14 @@ void decred_hash_simple(void *state, const void *input)
|
||||
|
||||
int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t _ALIGN(64) endiandata[48];
|
||||
uint32_t _ALIGN(64) hash32[8];
|
||||
uint32_t _ALIGN(128) endiandata[48];
|
||||
uint32_t _ALIGN(128) hash32[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
// #define DCR_NONCE_OFT32 35
|
||||
#define DCR_NONCE_OFT32 35
|
||||
|
||||
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
|
||||
const uint32_t first_nonce = pdata[DCR_NONCE_OFT32];
|
||||
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
|
||||
|
||||
uint32_t n = first_nonce;
|
||||
@@ -81,7 +80,7 @@ int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t
|
||||
|
||||
do {
|
||||
//be32enc(&endiandata[DCR_NONCE_OFT32], n);
|
||||
endiandata[DECRED_NONCE_INDEX] = n;
|
||||
endiandata[DCR_NONCE_OFT32] = n;
|
||||
decred_hash(hash32, endiandata);
|
||||
|
||||
if (hash32[7] <= HTarget && fulltest(hash32, ptarget)) {
|
||||
@@ -92,7 +91,7 @@ int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t
|
||||
applog_hash(ptarget);
|
||||
applog_compare_hash(hash32, ptarget);
|
||||
#endif
|
||||
pdata[DECRED_NONCE_INDEX] = n;
|
||||
pdata[DCR_NONCE_OFT32] = n;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -101,17 +100,24 @@ int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[DECRED_NONCE_INDEX] = n;
|
||||
pdata[DCR_NONCE_OFT32] = n;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
uint32_t *decred_get_nonceptr( uint32_t *work_data )
|
||||
{
|
||||
return &work_data[ DECRED_NONCE_INDEX ];
|
||||
}
|
||||
|
||||
// does decred need a custom stratum_get_g_work to fix nicehash
|
||||
// bad extranonce2 size?
|
||||
//
|
||||
// does decred need a custom init_nonce?
|
||||
// does it need to increment nonce, seems not because gen_work_now always
|
||||
// returns true
|
||||
|
||||
double decred_calc_network_diff( struct work* work )
|
||||
//void decred_calc_network_diff( struct work* work )
|
||||
{
|
||||
// sample for diff 43.281 : 1c05ea29
|
||||
// todo: endian reversed on longpoll could be zr5 specific...
|
||||
@@ -173,7 +179,7 @@ void decred_be_build_stratum_request( char *req, struct work *work,
|
||||
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr );
|
||||
free(xnonce2str);
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
// data shared between gen_merkle_root and build_extraheader.
|
||||
__thread uint32_t decred_extraheader[32] = { 0 };
|
||||
@@ -189,7 +195,6 @@ void decred_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
#define min(a,b) (a>b ? (b) :(a))
|
||||
|
||||
void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
@@ -227,15 +232,11 @@ void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
for ( i = 0; i < headersize/4; i++ ) // header
|
||||
g_work->data[17 + i] = extraheader[i];
|
||||
// extradata
|
||||
|
||||
for ( i = 0; i < sctx->xnonce1_size/4; i++ )
|
||||
g_work->data[ DECRED_XNONCE_INDEX + i ] = extradata[i];
|
||||
for ( i = DECRED_XNONCE_INDEX + sctx->xnonce1_size/4; i < 45; i++ )
|
||||
g_work->data[i] = 0;
|
||||
g_work->data[37] = (rand()*4) << 8;
|
||||
// block header suffix from coinb2 (stake version)
|
||||
memcpy( &g_work->data[44],
|
||||
&sctx->job.coinbase[ sctx->job.coinbase_size-4 ], 4 );
|
||||
sctx->bloc_height = g_work->data[32];
|
||||
//applog_hex(work->data, 180);
|
||||
//applog_hex(&work->data[36], 36);
|
||||
@@ -243,6 +244,21 @@ void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
|
||||
#undef min
|
||||
|
||||
/*
|
||||
bool decred_prevent_dupes( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id )
|
||||
{
|
||||
return false;
|
||||
if ( have_stratum && strcmp(stratum->job.job_id, work->job_id) )
|
||||
// need to regen g_work..
|
||||
return true;
|
||||
// extradata: prevent duplicates
|
||||
work->data[ DECRED_XNONCE_INDEX ] += 1;
|
||||
work->data[ DECRED_XNONCE_INDEX + 1 ] |= thr_id;
|
||||
return false;
|
||||
}
|
||||
*/
|
||||
|
||||
bool decred_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id )
|
||||
{
|
||||
@@ -266,13 +282,14 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred;
|
||||
gate->hash = (void*)&decred_hash;
|
||||
gate->hash_alt = (void*)&decred_hash;
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
// gate->gen_merkle_root = (void*)&decred_gen_merkle_root;
|
||||
gate->build_extraheader = (void*)&decred_build_extraheader;
|
||||
// gate->prevent_dupes = (void*)&decred_prevent_dupes;
|
||||
gate->ready_to_mine = (void*)&decred_ready_to_mine;
|
||||
gate->nbits_index = DECRED_NBITS_INDEX;
|
||||
gate->ntime_index = DECRED_NTIME_INDEX;
|
||||
@@ -283,4 +300,4 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
have_gbt = false;
|
||||
return true;
|
||||
}
|
||||
*/
|
||||
|
||||
|
@@ -1,206 +0,0 @@
|
||||
#include "pentablake-gate.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "blake-hash-4way.h"
|
||||
#include "sph_blake.h"
|
||||
|
||||
//#define DEBUG_ALGO
|
||||
|
||||
#ifdef PENTABLAKE_4WAY
|
||||
|
||||
extern void pentablakehash_4way( void *output, const void *input )
|
||||
{
|
||||
unsigned char _ALIGN(32) hash[128];
|
||||
// // same as uint32_t hashA[16], hashB[16];
|
||||
// #define hashB hash+64
|
||||
|
||||
uint64_t hash0[8] __attribute__ ((aligned (64)));
|
||||
uint64_t hash1[8] __attribute__ ((aligned (64)));
|
||||
uint64_t hash2[8] __attribute__ ((aligned (64)));
|
||||
uint64_t hash3[8] __attribute__ ((aligned (64)));
|
||||
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
blake512_4way_context ctx;
|
||||
|
||||
|
||||
blake512_4way_init( &ctx );
|
||||
blake512_4way( &ctx, input, 80 );
|
||||
blake512_4way_close( &ctx, vhash );
|
||||
|
||||
uint64_t sin0[10], sin1[10], sin2[10], sin3[10];
|
||||
mm256_deinterleave_4x64( sin0, sin1, sin2, sin3, input, 640 );
|
||||
sph_blake512_context ctx2_blake;
|
||||
sph_blake512_init(&ctx2_blake);
|
||||
sph_blake512(&ctx2_blake, sin0, 80);
|
||||
sph_blake512_close(&ctx2_blake, (void*) hash);
|
||||
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
uint64_t* hash64 = (uint64_t*)hash;
|
||||
for( int i = 0; i < 8; i++ )
|
||||
{
|
||||
if ( hash0[i] != hash64[i] )
|
||||
printf("hash mismatch %u\n",i);
|
||||
}
|
||||
|
||||
blake512_4way_init( &ctx );
|
||||
blake512_4way( &ctx, vhash, 64 );
|
||||
blake512_4way_close( &ctx, vhash );
|
||||
|
||||
blake512_4way_init( &ctx );
|
||||
blake512_4way( &ctx, vhash, 64 );
|
||||
blake512_4way_close( &ctx, vhash );
|
||||
|
||||
blake512_4way_init( &ctx );
|
||||
blake512_4way( &ctx, vhash, 64 );
|
||||
blake512_4way_close( &ctx, vhash );
|
||||
|
||||
blake512_4way_init( &ctx );
|
||||
blake512_4way( &ctx, vhash, 64 );
|
||||
blake512_4way_close( &ctx, vhash );
|
||||
|
||||
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
memcpy( output, hash0, 32 );
|
||||
memcpy( output+32, hash1, 32 );
|
||||
memcpy( output+64, hash2, 32 );
|
||||
memcpy( output+96, hash3, 32 );
|
||||
|
||||
/*
|
||||
uint64_t sin0[10] __attribute__ ((aligned (64)));
|
||||
uint64_t sin1[10] __attribute__ ((aligned (64)));
|
||||
uint64_t sin2[10] __attribute__ ((aligned (64)));
|
||||
uint64_t sin3[10] __attribute__ ((aligned (64)));
|
||||
|
||||
sph_blake512_context ctx_blake;
|
||||
|
||||
sph_blake512_init(&ctx_blake);
|
||||
sph_blake512(&ctx_blake, input, 80);
|
||||
sph_blake512_close(&ctx_blake, hash);
|
||||
|
||||
sph_blake512_init(&ctx_blake);
|
||||
sph_blake512(&ctx_blake, hash, 64);
|
||||
sph_blake512_close(&ctx_blake, hash);
|
||||
|
||||
sph_blake512_init(&ctx_blake);
|
||||
sph_blake512(&ctx_blake, hash, 64);
|
||||
sph_blake512_close(&ctx_blake, hash);
|
||||
|
||||
sph_blake512_init(&ctx_blake);
|
||||
sph_blake512(&ctx_blake, hash, 64);
|
||||
sph_blake512_close(&ctx_blake, hash);
|
||||
|
||||
sph_blake512_init(&ctx_blake);
|
||||
sph_blake512(&ctx_blake, hash, 64);
|
||||
sph_blake512_close(&ctx_blake, hash);
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
*/
|
||||
}
|
||||
|
||||
int scanhash_pentablake_4way( int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t hash[4*8] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t endiandata[32] __attribute__ ((aligned (64)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t n = pdata[19] - 1;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
|
||||
uint32_t *noncep1 = vdata + 75;
|
||||
uint32_t *noncep2 = vdata + 77;
|
||||
uint32_t *noncep3 = vdata + 79;
|
||||
|
||||
// uint32_t _ALIGN(32) hash64[8];
|
||||
// uint32_t _ALIGN(32) endiandata[32];
|
||||
|
||||
uint64_t htmax[] = {
|
||||
0,
|
||||
0xF,
|
||||
0xFF,
|
||||
0xFFF,
|
||||
0xFFFF,
|
||||
0x10000000
|
||||
};
|
||||
uint32_t masks[] = {
|
||||
0xFFFFFFFF,
|
||||
0xFFFFFFF0,
|
||||
0xFFFFFF00,
|
||||
0xFFFFF000,
|
||||
0xFFFF0000,
|
||||
0
|
||||
};
|
||||
|
||||
// we need bigendian data...
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
uint64_t *edata = (uint64_t*)endiandata;
|
||||
mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
for ( int m=0; m < 6; m++ )
|
||||
{
|
||||
if ( Htarg <= htmax[m] )
|
||||
{
|
||||
uint32_t mask = masks[m];
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
be32enc( noncep0, n );
|
||||
be32enc( noncep1, n+1 );
|
||||
be32enc( noncep2, n+2 );
|
||||
be32enc( noncep3, n+3 );
|
||||
|
||||
pentablakehash_4way( hash, vdata );
|
||||
|
||||
// return immediately on nonce found, only one submit
|
||||
if ( ( !(hash[7] & mask) ) && fulltest( hash, ptarget ) )
|
||||
{
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[19] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( (! ((hash+8)[7] & mask) ) && fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( ( !((hash+16)[7] & mask) ) && fulltest( hash+16, ptarget ) )
|
||||
{
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( ( !((hash+24)[7] & mask) ) && fulltest( hash+24, ptarget ) )
|
||||
{
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
n += 4;
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,16 +0,0 @@
|
||||
#include "pentablake-gate.h"
|
||||
|
||||
bool register_pentablake_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (PENTABLAKE_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_pentablake_4way;
|
||||
gate->hash = (void*)&pentablakehash_4way;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_pentablake;
|
||||
gate->hash = (void*)&pentablakehash;
|
||||
#endif
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -1,21 +0,0 @@
|
||||
#ifndef __PENTABLAKE_GATE_H__
|
||||
#define __PENTABLAKE_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#define PENTABLAKE_4WAY
|
||||
#endif
|
||||
|
||||
#if defined(PENTABLAKE_4WAY)
|
||||
void pentablakehash_4way( void *state, const void *input );
|
||||
int scanhash_pentablake_4way( int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
void pentablakehash( void *state, const void *input );
|
||||
int scanhash_pentablake( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#endif
|
||||
|
@@ -1,4 +1,5 @@
|
||||
#include "pentablake-gate.h"
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
@@ -110,3 +111,11 @@ int scanhash_pentablake(int thr_id, struct work *work, uint32_t max_nonce,
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool register_pentablake_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_pentablake;
|
||||
gate->hash = (void*)&pentablakehash;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -813,7 +813,6 @@ blake32(sph_blake_small_context *sc, const void *data, size_t len)
|
||||
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
|
||||
if (len < (sizeof sc->buf) - ptr) {
|
||||
memcpy(buf + ptr, data, len);
|
||||
ptr += len;
|
||||
@@ -872,7 +871,6 @@ blake32_close(sph_blake_small_context *sc,
|
||||
} else {
|
||||
sc->T0 -= 512 - bit_len;
|
||||
}
|
||||
|
||||
if (bit_len <= 446) {
|
||||
memset(u.buf + ptr + 1, 0, 55 - ptr);
|
||||
if (out_size_w32 == 8)
|
||||
@@ -892,9 +890,9 @@ blake32_close(sph_blake_small_context *sc,
|
||||
sph_enc32be_aligned(u.buf + 60, tl);
|
||||
blake32(sc, u.buf, 64);
|
||||
}
|
||||
out = dst;
|
||||
for (k = 0; k < out_size_w32; k ++)
|
||||
sph_enc32be(out + (k << 2), sc->H[k]);
|
||||
out = dst;
|
||||
for (k = 0; k < out_size_w32; k ++)
|
||||
sph_enc32be(out + (k << 2), sc->H[k]);
|
||||
}
|
||||
|
||||
#if SPH_64
|
||||
@@ -984,11 +982,9 @@ blake64_close(sph_blake_big_context *sc,
|
||||
u.buf[111] |= 1;
|
||||
sph_enc64be_aligned(u.buf + 112, th);
|
||||
sph_enc64be_aligned(u.buf + 120, tl);
|
||||
|
||||
blake64(sc, u.buf + ptr, 128 - ptr);
|
||||
} else {
|
||||
memset(u.buf + ptr + 1, 0, 127 - ptr);
|
||||
|
||||
blake64(sc, u.buf + ptr, 128 - ptr);
|
||||
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00);
|
||||
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF);
|
||||
@@ -997,7 +993,6 @@ blake64_close(sph_blake_big_context *sc,
|
||||
u.buf[111] = 1;
|
||||
sph_enc64be_aligned(u.buf + 112, th);
|
||||
sph_enc64be_aligned(u.buf + 120, tl);
|
||||
|
||||
blake64(sc, u.buf, 128);
|
||||
}
|
||||
out = dst;
|
||||
|
@@ -42,7 +42,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-224.
|
||||
|
@@ -31,7 +31,7 @@
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "sph_blake2b.h"
|
||||
|
||||
// Cyclic right rotation.
|
||||
|
@@ -1,969 +0,0 @@
|
||||
/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */
|
||||
/*
|
||||
* BMW implementation.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include "bmw-hash-4way.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
//#include "sph_bmw.h"
|
||||
|
||||
//#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_BMW
|
||||
#define SPH_SMALL_FOOTPRINT_BMW 1
|
||||
//#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning (disable: 4146)
|
||||
#endif
|
||||
|
||||
//#undef SPH_ROTL64
|
||||
//#define SPH_ROTL64(x,n) (((x) << (n)) | ((x) >> (64 - (n))))
|
||||
//#define SPH_ROTL64(x,n) mm256_rotl_64(x,n)
|
||||
|
||||
static const sph_u32 IV256[] = {
|
||||
SPH_C32(0x40414243), SPH_C32(0x44454647),
|
||||
SPH_C32(0x48494A4B), SPH_C32(0x4C4D4E4F),
|
||||
SPH_C32(0x50515253), SPH_C32(0x54555657),
|
||||
SPH_C32(0x58595A5B), SPH_C32(0x5C5D5E5F),
|
||||
SPH_C32(0x60616263), SPH_C32(0x64656667),
|
||||
SPH_C32(0x68696A6B), SPH_C32(0x6C6D6E6F),
|
||||
SPH_C32(0x70717273), SPH_C32(0x74757677),
|
||||
SPH_C32(0x78797A7B), SPH_C32(0x7C7D7E7F)
|
||||
};
|
||||
|
||||
#if SPH_64
|
||||
|
||||
static const sph_u64 IV512[] = {
|
||||
SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F),
|
||||
SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F),
|
||||
SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF),
|
||||
SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF),
|
||||
SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF),
|
||||
SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF),
|
||||
SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF),
|
||||
SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF)
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#define XCAT(x, y) XCAT_(x, y)
|
||||
#define XCAT_(x, y) x ## y
|
||||
|
||||
#define LPAR (
|
||||
|
||||
/*
|
||||
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
|
||||
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
|
||||
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
|
||||
^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23))
|
||||
#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \
|
||||
^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25))
|
||||
#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \
|
||||
^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29))
|
||||
#define ss4(x) (((x) >> 1) ^ (x))
|
||||
#define ss5(x) (((x) >> 2) ^ (x))
|
||||
#define rs1(x) SPH_ROTL32(x, 3)
|
||||
#define rs2(x) SPH_ROTL32(x, 7)
|
||||
#define rs3(x) SPH_ROTL32(x, 13)
|
||||
#define rs4(x) SPH_ROTL32(x, 16)
|
||||
#define rs5(x) SPH_ROTL32(x, 19)
|
||||
#define rs6(x) SPH_ROTL32(x, 23)
|
||||
#define rs7(x) SPH_ROTL32(x, 27)
|
||||
|
||||
#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555))
|
||||
|
||||
#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
|
||||
(SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \
|
||||
- SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m))
|
||||
|
||||
#define expand1s_inner(qf, mf, hf, i16, \
|
||||
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
|
||||
i9, i10, i11, i12, i13, i14, i15, \
|
||||
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
|
||||
SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \
|
||||
+ ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \
|
||||
+ ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \
|
||||
+ ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \
|
||||
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
|
||||
|
||||
#define expand1s(qf, mf, hf, i16) \
|
||||
expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
|
||||
#define expand1s_(qf, mf, hf, i16, ix, iy) \
|
||||
expand1s_inner LPAR qf, mf, hf, i16, ix, iy)
|
||||
|
||||
#define expand2s_inner(qf, mf, hf, i16, \
|
||||
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
|
||||
i9, i10, i11, i12, i13, i14, i15, \
|
||||
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
|
||||
SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \
|
||||
+ qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \
|
||||
+ qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \
|
||||
+ qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \
|
||||
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
|
||||
|
||||
#define expand2s(qf, mf, hf, i16) \
|
||||
expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
|
||||
#define expand2s_(qf, mf, hf, i16, ix, iy) \
|
||||
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
|
||||
*/
|
||||
#if SPH_64
|
||||
|
||||
#define sb0(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 1), \
|
||||
_mm256_slli_epi64( (x), 3) ), \
|
||||
_mm256_xor_si256( mm256_rotl_64( (x), 4), \
|
||||
mm256_rotl_64( (x), 37) ) )
|
||||
|
||||
#define sb1(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 1), \
|
||||
_mm256_slli_epi64( (x), 2) ), \
|
||||
_mm256_xor_si256( mm256_rotl_64( (x), 13), \
|
||||
mm256_rotl_64( (x), 43) ) )
|
||||
|
||||
#define sb2(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 2), \
|
||||
_mm256_slli_epi64( (x), 1) ), \
|
||||
_mm256_xor_si256( mm256_rotl_64( (x), 19), \
|
||||
mm256_rotl_64( (x), 53) ) )
|
||||
|
||||
#define sb3(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 2), \
|
||||
_mm256_slli_epi64( (x), 2) ), \
|
||||
_mm256_xor_si256( mm256_rotl_64( (x), 28), \
|
||||
mm256_rotl_64( (x), 59) ) )
|
||||
|
||||
#define sb4(x) \
|
||||
_mm256_xor_si256( (x), _mm256_srli_epi64( (x), 1 ) )
|
||||
|
||||
#define sb5(x) \
|
||||
_mm256_xor_si256( (x), _mm256_srli_epi64( (x), 2 ) )
|
||||
|
||||
#define rb1(x) mm256_rotl_64( x, 5 )
|
||||
#define rb2(x) mm256_rotl_64( x, 11 )
|
||||
#define rb3(x) mm256_rotl_64( x, 27 )
|
||||
#define rb4(x) mm256_rotl_64( x, 32 )
|
||||
#define rb5(x) mm256_rotl_64( x, 37 )
|
||||
#define rb6(x) mm256_rotl_64( x, 43 )
|
||||
#define rb7(x) mm256_rotl_64( x, 53 )
|
||||
|
||||
#define rol_off( M, j, off ) \
|
||||
mm256_rotl_64( M[ ( (j) + (off) ) & 15 ] , \
|
||||
( ( (j) + (off) ) & 15 ) + 1 )
|
||||
|
||||
#define add_elt_b( M, H, j ) \
|
||||
_mm256_xor_si256( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_add_epi64( rol_off( M, j, 0 ), \
|
||||
rol_off( M, j, 3 ) ), \
|
||||
rol_off( M, j, 10 ) ), \
|
||||
_mm256_set1_epi64x( ( (j) + 16 ) * 0x0555555555555555ULL ) ), \
|
||||
H[ ( (j)+7 ) & 15 ] )
|
||||
|
||||
#define expand1b( qt, M, H, i ) \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)-16 ] ), \
|
||||
sb2( qt[ (i)-15 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)-14 ] ), \
|
||||
sb0( qt[ (i)-13 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)-12 ] ), \
|
||||
sb2( qt[ (i)-11 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)-10 ] ), \
|
||||
sb0( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)- 8 ] ), \
|
||||
sb2( qt[ (i)- 7 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)- 6 ] ), \
|
||||
sb0( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)- 4 ] ), \
|
||||
sb2( qt[ (i)- 3 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)- 2 ] ), \
|
||||
sb0( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
add_elt_b( M, H, (i)-16 ) )
|
||||
|
||||
#define expand2b( qt, M, H, i) \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)-16 ], rb1( qt[ (i)-15 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)-14 ], rb2( qt[ (i)-13 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)-12 ], rb3( qt[ (i)-11 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)-10 ], rb4( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)- 8 ], rb5( qt[ (i)- 7 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)- 6 ], rb6( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)- 4 ], rb7( qt[ (i)- 3 ] ) ), \
|
||||
_mm256_add_epi64( sb4( qt[ (i)- 2 ] ), \
|
||||
sb5( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
add_elt_b( M, H, (i)-16 ) )
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
#define MAKE_W( i0, op01, i1, op12, i2, op23, i3, op34, i4) \
|
||||
((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
|
||||
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
|
||||
*/
|
||||
|
||||
/*
|
||||
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
|
||||
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
|
||||
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
|
||||
#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13)
|
||||
#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14)
|
||||
#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15)
|
||||
#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13)
|
||||
#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14)
|
||||
#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15)
|
||||
#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14)
|
||||
#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15)
|
||||
#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9)
|
||||
#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10)
|
||||
#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11)
|
||||
#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12)
|
||||
#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13)
|
||||
|
||||
#if SPH_SMALL_FOOTPRINT_BMW
|
||||
|
||||
#define MAKE_Qas do { \
|
||||
unsigned u; \
|
||||
sph_u32 Ws[16]; \
|
||||
Ws[ 0] = Ws0; \
|
||||
Ws[ 1] = Ws1; \
|
||||
Ws[ 2] = Ws2; \
|
||||
Ws[ 3] = Ws3; \
|
||||
Ws[ 4] = Ws4; \
|
||||
Ws[ 5] = Ws5; \
|
||||
Ws[ 6] = Ws6; \
|
||||
Ws[ 7] = Ws7; \
|
||||
Ws[ 8] = Ws8; \
|
||||
Ws[ 9] = Ws9; \
|
||||
Ws[10] = Ws10; \
|
||||
Ws[11] = Ws11; \
|
||||
Ws[12] = Ws12; \
|
||||
Ws[13] = Ws13; \
|
||||
Ws[14] = Ws14; \
|
||||
Ws[15] = Ws15; \
|
||||
for (u = 0; u < 15; u += 5) { \
|
||||
qt[u + 0] = SPH_T32(ss0(Ws[u + 0]) + H(u + 1)); \
|
||||
qt[u + 1] = SPH_T32(ss1(Ws[u + 1]) + H(u + 2)); \
|
||||
qt[u + 2] = SPH_T32(ss2(Ws[u + 2]) + H(u + 3)); \
|
||||
qt[u + 3] = SPH_T32(ss3(Ws[u + 3]) + H(u + 4)); \
|
||||
qt[u + 4] = SPH_T32(ss4(Ws[u + 4]) + H(u + 5)); \
|
||||
} \
|
||||
qt[15] = SPH_T32(ss0(Ws[15]) + H(0)); \
|
||||
} while (0)
|
||||
|
||||
#define MAKE_Qbs do { \
|
||||
qt[16] = expand1s(Qs, M, H, 16); \
|
||||
qt[17] = expand1s(Qs, M, H, 17); \
|
||||
qt[18] = expand2s(Qs, M, H, 18); \
|
||||
qt[19] = expand2s(Qs, M, H, 19); \
|
||||
qt[20] = expand2s(Qs, M, H, 20); \
|
||||
qt[21] = expand2s(Qs, M, H, 21); \
|
||||
qt[22] = expand2s(Qs, M, H, 22); \
|
||||
qt[23] = expand2s(Qs, M, H, 23); \
|
||||
qt[24] = expand2s(Qs, M, H, 24); \
|
||||
qt[25] = expand2s(Qs, M, H, 25); \
|
||||
qt[26] = expand2s(Qs, M, H, 26); \
|
||||
qt[27] = expand2s(Qs, M, H, 27); \
|
||||
qt[28] = expand2s(Qs, M, H, 28); \
|
||||
qt[29] = expand2s(Qs, M, H, 29); \
|
||||
qt[30] = expand2s(Qs, M, H, 30); \
|
||||
qt[31] = expand2s(Qs, M, H, 31); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
|
||||
#define MAKE_Qas do { \
|
||||
qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \
|
||||
qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \
|
||||
qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \
|
||||
qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \
|
||||
qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \
|
||||
qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \
|
||||
qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \
|
||||
qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \
|
||||
qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \
|
||||
qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \
|
||||
qt[10] = SPH_T32(ss0(Ws10) + H(11)); \
|
||||
qt[11] = SPH_T32(ss1(Ws11) + H(12)); \
|
||||
qt[12] = SPH_T32(ss2(Ws12) + H(13)); \
|
||||
qt[13] = SPH_T32(ss3(Ws13) + H(14)); \
|
||||
qt[14] = SPH_T32(ss4(Ws14) + H(15)); \
|
||||
qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \
|
||||
} while (0)
|
||||
|
||||
#define MAKE_Qbs do { \
|
||||
qt[16] = expand1s(Qs, M, H, 16); \
|
||||
qt[17] = expand1s(Qs, M, H, 17); \
|
||||
qt[18] = expand2s(Qs, M, H, 18); \
|
||||
qt[19] = expand2s(Qs, M, H, 19); \
|
||||
qt[20] = expand2s(Qs, M, H, 20); \
|
||||
qt[21] = expand2s(Qs, M, H, 21); \
|
||||
qt[22] = expand2s(Qs, M, H, 22); \
|
||||
qt[23] = expand2s(Qs, M, H, 23); \
|
||||
qt[24] = expand2s(Qs, M, H, 24); \
|
||||
qt[25] = expand2s(Qs, M, H, 25); \
|
||||
qt[26] = expand2s(Qs, M, H, 26); \
|
||||
qt[27] = expand2s(Qs, M, H, 27); \
|
||||
qt[28] = expand2s(Qs, M, H, 28); \
|
||||
qt[29] = expand2s(Qs, M, H, 29); \
|
||||
qt[30] = expand2s(Qs, M, H, 30); \
|
||||
qt[31] = expand2s(Qs, M, H, 31); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
#define MAKE_Qs do { \
|
||||
MAKE_Qas; \
|
||||
MAKE_Qbs; \
|
||||
} while (0)
|
||||
|
||||
#define Qs(j) (qt[j])
|
||||
*/
|
||||
#if SPH_64
|
||||
|
||||
#define Wb0 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
|
||||
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
|
||||
_mm256_xor_si256( M[10], H[10] ) ), \
|
||||
_mm256_xor_si256( M[13], H[13] ) ), \
|
||||
_mm256_xor_si256( M[14], H[14] ) )
|
||||
|
||||
#define Wb1 \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 6], H[ 6] ), \
|
||||
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
|
||||
_mm256_xor_si256( M[11], H[11] ) ), \
|
||||
_mm256_xor_si256( M[14], H[14] ) ), \
|
||||
_mm256_xor_si256( M[15], H[15] ) )
|
||||
|
||||
#define Wb2 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
|
||||
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
|
||||
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
|
||||
_mm256_xor_si256( M[12], H[12] ) ), \
|
||||
_mm256_xor_si256( M[15], H[15] ) )
|
||||
|
||||
#define Wb3 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
|
||||
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
|
||||
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
|
||||
_mm256_xor_si256( M[10], H[10] ) ), \
|
||||
_mm256_xor_si256( M[13], H[13] ) )
|
||||
|
||||
#define Wb4 \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
|
||||
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
|
||||
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
|
||||
_mm256_xor_si256( M[11], H[11] ) ), \
|
||||
_mm256_xor_si256( M[14], H[14] ) )
|
||||
|
||||
#define Wb5 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
|
||||
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
|
||||
_mm256_xor_si256( M[10], H[10] ) ), \
|
||||
_mm256_xor_si256( M[12], H[12] ) ), \
|
||||
_mm256_xor_si256( M[15], H[15] ) )
|
||||
|
||||
#define Wb6 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 4], H[ 4] ), \
|
||||
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
|
||||
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
|
||||
_mm256_xor_si256( M[11], H[11] ) ), \
|
||||
_mm256_xor_si256( M[13], H[13] ) )
|
||||
|
||||
#define Wb7 \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
|
||||
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
|
||||
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
|
||||
_mm256_xor_si256( M[12], H[12] ) ), \
|
||||
_mm256_xor_si256( M[14], H[14] ) )
|
||||
|
||||
#define Wb8 \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
|
||||
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
|
||||
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
|
||||
_mm256_xor_si256( M[13], H[13] ) ), \
|
||||
_mm256_xor_si256( M[15], H[15] ) )
|
||||
|
||||
#define Wb9 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
|
||||
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
|
||||
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
|
||||
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
|
||||
_mm256_xor_si256( M[14], H[14] ) )
|
||||
|
||||
#define Wb10 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
|
||||
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
|
||||
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
|
||||
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
|
||||
_mm256_xor_si256( M[15], H[15] ) )
|
||||
|
||||
#define Wb11 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
|
||||
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
|
||||
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
|
||||
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
|
||||
_mm256_xor_si256( M[ 9], H[ 9] ) )
|
||||
|
||||
#define Wb12 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
|
||||
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
|
||||
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
|
||||
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
|
||||
_mm256_xor_si256( M[10], H[10] ) )
|
||||
|
||||
#define Wb13 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
|
||||
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
|
||||
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
|
||||
_mm256_xor_si256( M[10], H[10] ) ), \
|
||||
_mm256_xor_si256( M[11], H[11] ) )
|
||||
|
||||
#define Wb14 \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
|
||||
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
|
||||
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
|
||||
_mm256_xor_si256( M[11], H[11] ) ), \
|
||||
_mm256_xor_si256( M[12], H[12] ) )
|
||||
|
||||
#define Wb15 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( \
|
||||
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
|
||||
_mm256_xor_si256( M[ 4], H[4] ) ), \
|
||||
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
|
||||
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
|
||||
_mm256_xor_si256( M[13], H[13] ) )
|
||||
|
||||
void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
|
||||
{
|
||||
__m256i qt[32], xl, xh; \
|
||||
|
||||
qt[ 0] = sb0( Wb0 ) + H[ 1];
|
||||
qt[ 1] = sb1( Wb1 ) + H[ 2];
|
||||
qt[ 2] = sb2( Wb2 ) + H[ 3];
|
||||
qt[ 3] = sb3( Wb3 ) + H[ 4];
|
||||
qt[ 4] = sb4( Wb4 ) + H[ 5];
|
||||
qt[ 5] = sb0( Wb5 ) + H[ 6];
|
||||
qt[ 6] = sb1( Wb6 ) + H[ 7];
|
||||
qt[ 7] = sb2( Wb7 ) + H[ 8];
|
||||
qt[ 8] = sb3( Wb8 ) + H[ 9];
|
||||
qt[ 9] = sb4( Wb9 ) + H[10];
|
||||
qt[10] = sb0( Wb10) + H[11];
|
||||
qt[11] = sb1( Wb11) + H[12];
|
||||
qt[12] = sb2( Wb12) + H[13];
|
||||
qt[13] = sb3( Wb13) + H[14];
|
||||
qt[14] = sb4( Wb14) + H[15];
|
||||
qt[15] = sb0( Wb15) + H[ 0];
|
||||
qt[16] = expand1b( qt, M, H, 16 );
|
||||
qt[17] = expand1b( qt, M, H, 17 );
|
||||
qt[18] = expand2b( qt, M, H, 18 );
|
||||
qt[19] = expand2b( qt, M, H, 19 );
|
||||
qt[20] = expand2b( qt, M, H, 20 );
|
||||
qt[21] = expand2b( qt, M, H, 21 );
|
||||
qt[22] = expand2b( qt, M, H, 22 );
|
||||
qt[23] = expand2b( qt, M, H, 23 );
|
||||
qt[24] = expand2b( qt, M, H, 24 );
|
||||
qt[25] = expand2b( qt, M, H, 25 );
|
||||
qt[26] = expand2b( qt, M, H, 26 );
|
||||
qt[27] = expand2b( qt, M, H, 27 );
|
||||
qt[28] = expand2b( qt, M, H, 28 );
|
||||
qt[29] = expand2b( qt, M, H, 29 );
|
||||
qt[30] = expand2b( qt, M, H, 30 );
|
||||
qt[31] = expand2b( qt, M, H, 31 );
|
||||
xl = _mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[16], qt[17] ),
|
||||
_mm256_xor_si256( qt[18], qt[19] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[20], qt[21] ),
|
||||
_mm256_xor_si256( qt[22], qt[23] ) ) );
|
||||
xh = _mm256_xor_si256( xl,
|
||||
_mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[24], qt[25] ),
|
||||
_mm256_xor_si256( qt[26], qt[27] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[28], qt[29] ),
|
||||
_mm256_xor_si256( qt[30], qt[31] ) )));
|
||||
dH[ 0] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[0],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 5 ),
|
||||
_mm256_srli_epi64( qt[16], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[24] ), qt[ 0] ));
|
||||
dH[ 1] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[1],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 7 ),
|
||||
_mm256_slli_epi64( qt[17], 8 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[25] ), qt[ 1] ));
|
||||
dH[ 2] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[2],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 5 ),
|
||||
_mm256_slli_epi64( qt[18], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[26] ), qt[ 2] ));
|
||||
dH[ 3] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[3],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 1 ),
|
||||
_mm256_slli_epi64( qt[19], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[27] ), qt[ 3] ));
|
||||
dH[ 4] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[4],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 3 ),
|
||||
_mm256_slli_epi64( qt[20], 0 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[28] ), qt[ 4] ));
|
||||
dH[ 5] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[5],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 6 ),
|
||||
_mm256_srli_epi64( qt[21], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[29] ), qt[ 5] ));
|
||||
dH[ 6] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[6],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 4 ),
|
||||
_mm256_slli_epi64( qt[22], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[30] ), qt[ 6] ));
|
||||
dH[ 7] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[7],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 11 ),
|
||||
_mm256_slli_epi64( qt[23], 2 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[31] ), qt[ 7] ));
|
||||
dH[ 8] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[4], 9 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[24] ), M[ 8] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 8 ),
|
||||
_mm256_xor_si256( qt[23], qt[ 8] ) ) );
|
||||
dH[ 9] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[5], 10 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[25] ), M[ 9] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 6 ),
|
||||
_mm256_xor_si256( qt[16], qt[ 9] ) ) );
|
||||
dH[10] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[6], 11 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[26] ), M[10] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 6 ),
|
||||
_mm256_xor_si256( qt[17], qt[10] ) ) );
|
||||
dH[11] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[7], 12 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[27] ), M[11] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 4 ),
|
||||
_mm256_xor_si256( qt[18], qt[11] ) ) );
|
||||
dH[12] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[0], 13 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[28] ), M[12] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 3 ),
|
||||
_mm256_xor_si256( qt[19], qt[12] ) ) );
|
||||
dH[13] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[1], 14 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[29] ), M[13] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 4 ),
|
||||
_mm256_xor_si256( qt[20], qt[13] ) ) );
|
||||
dH[14] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[2], 15 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[30] ), M[14] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 7 ),
|
||||
_mm256_xor_si256( qt[21], qt[14] ) ) );
|
||||
dH[15] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rotl_64( dH[3], 16 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[31] ), M[15] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 2 ),
|
||||
_mm256_xor_si256( qt[22], qt[15] ) ) );
|
||||
}
|
||||
|
||||
#endif // 64
|
||||
|
||||
//#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_ROTL32, M, Qs, dH)
|
||||
|
||||
|
||||
/*
|
||||
static void
|
||||
compress_small(const unsigned char *data, const sph_u32 h[16], sph_u32 dh[16])
|
||||
{
|
||||
#define M(x) sph_dec32le_aligned(data + 4 * (x))
|
||||
#define H(x) (h[x])
|
||||
#define dH(x) (dh[x])
|
||||
|
||||
FOLDs;
|
||||
|
||||
#undef M
|
||||
#undef H
|
||||
#undef dH
|
||||
}
|
||||
|
||||
static const sph_u32 final_s[16] = {
|
||||
SPH_C32(0xaaaaaaa0), SPH_C32(0xaaaaaaa1), SPH_C32(0xaaaaaaa2),
|
||||
SPH_C32(0xaaaaaaa3), SPH_C32(0xaaaaaaa4), SPH_C32(0xaaaaaaa5),
|
||||
SPH_C32(0xaaaaaaa6), SPH_C32(0xaaaaaaa7), SPH_C32(0xaaaaaaa8),
|
||||
SPH_C32(0xaaaaaaa9), SPH_C32(0xaaaaaaaa), SPH_C32(0xaaaaaaab),
|
||||
SPH_C32(0xaaaaaaac), SPH_C32(0xaaaaaaad), SPH_C32(0xaaaaaaae),
|
||||
SPH_C32(0xaaaaaaaf)
|
||||
};
|
||||
|
||||
static void
|
||||
bmw32_4way_init(bmw_4way_small_context *sc, const sph_u32 *iv)
|
||||
{
|
||||
memcpy(sc->H, iv, sizeof sc->H);
|
||||
sc->ptr = 0;
|
||||
#if SPH_64
|
||||
sc->bit_count = 0;
|
||||
#else
|
||||
sc->bit_count_high = 0;
|
||||
sc->bit_count_low = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
bmw32_4way(bmw_4way_small_context *sc, const void *data, size_t len)
|
||||
{
|
||||
unsigned char *buf;
|
||||
size_t ptr;
|
||||
sph_u32 htmp[16];
|
||||
sph_u32 *h1, *h2;
|
||||
#if !SPH_64
|
||||
sph_u32 tmp;
|
||||
#endif
|
||||
|
||||
#if SPH_64
|
||||
sc->bit_count += (sph_u64)len << 3;
|
||||
#else
|
||||
tmp = sc->bit_count_low;
|
||||
sc->bit_count_low = SPH_T32(tmp + ((sph_u32)len << 3));
|
||||
if (sc->bit_count_low < tmp)
|
||||
sc->bit_count_high ++;
|
||||
sc->bit_count_high += len >> 29;
|
||||
#endif
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
h1 = sc->H;
|
||||
h2 = htmp;
|
||||
while (len > 0) {
|
||||
size_t clen;
|
||||
|
||||
clen = (sizeof sc->buf) - ptr;
|
||||
if (clen > len)
|
||||
clen = len;
|
||||
memcpy(buf + ptr, data, clen);
|
||||
data = (const unsigned char *)data + clen;
|
||||
len -= clen;
|
||||
ptr += clen;
|
||||
if (ptr == sizeof sc->buf) {
|
||||
sph_u32 *ht;
|
||||
|
||||
compress_small(buf, h1, h2);
|
||||
ht = h1;
|
||||
h1 = h2;
|
||||
h2 = ht;
|
||||
ptr = 0;
|
||||
}
|
||||
}
|
||||
sc->ptr = ptr;
|
||||
if (h1 != sc->H)
|
||||
memcpy(sc->H, h1, sizeof sc->H);
|
||||
}
|
||||
|
||||
static void
|
||||
bmw32_4way_close(bmw_4way_small_context *sc, unsigned ub, unsigned n,
|
||||
void *dst, size_t out_size_w32)
|
||||
{
|
||||
unsigned char *buf, *out;
|
||||
size_t ptr, u, v;
|
||||
unsigned z;
|
||||
sph_u32 h1[16], h2[16], *h;
|
||||
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
z = 0x80 >> n;
|
||||
buf[ptr ++] = ((ub & -z) | z) & 0xFF;
|
||||
h = sc->H;
|
||||
if (ptr > (sizeof sc->buf) - 8) {
|
||||
memset(buf + ptr, 0, (sizeof sc->buf) - ptr);
|
||||
compress_small(buf, h, h1);
|
||||
ptr = 0;
|
||||
h = h1;
|
||||
}
|
||||
memset(buf + ptr, 0, (sizeof sc->buf) - 8 - ptr);
|
||||
#if SPH_64
|
||||
sph_enc64le_aligned(buf + (sizeof sc->buf) - 8,
|
||||
SPH_T64(sc->bit_count + n));
|
||||
#else
|
||||
sph_enc32le_aligned(buf + (sizeof sc->buf) - 8,
|
||||
sc->bit_count_low + n);
|
||||
sph_enc32le_aligned(buf + (sizeof sc->buf) - 4,
|
||||
SPH_T32(sc->bit_count_high));
|
||||
#endif
|
||||
compress_small(buf, h, h2);
|
||||
for (u = 0; u < 16; u ++)
|
||||
sph_enc32le_aligned(buf + 4 * u, h2[u]);
|
||||
compress_small(buf, final_s, h1);
|
||||
out = dst;
|
||||
for (u = 0, v = 16 - out_size_w32; u < out_size_w32; u ++, v ++)
|
||||
sph_enc32le(out + 4 * u, h1[v]);
|
||||
}
|
||||
*/
|
||||
#if SPH_64
|
||||
|
||||
static const __m256i final_b[16] =
|
||||
{
|
||||
{ 0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0,
|
||||
0xaaaaaaaaaaaaaaa0, 0xaaaaaaaaaaaaaaa0 },
|
||||
{ 0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1,
|
||||
0xaaaaaaaaaaaaaaa1, 0xaaaaaaaaaaaaaaa1 },
|
||||
{ 0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2,
|
||||
0xaaaaaaaaaaaaaaa2, 0xaaaaaaaaaaaaaaa2 },
|
||||
{ 0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3,
|
||||
0xaaaaaaaaaaaaaaa3, 0xaaaaaaaaaaaaaaa3 },
|
||||
{ 0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4,
|
||||
0xaaaaaaaaaaaaaaa4, 0xaaaaaaaaaaaaaaa4 },
|
||||
{ 0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5,
|
||||
0xaaaaaaaaaaaaaaa5, 0xaaaaaaaaaaaaaaa5 },
|
||||
{ 0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6,
|
||||
0xaaaaaaaaaaaaaaa6, 0xaaaaaaaaaaaaaaa6 },
|
||||
{ 0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7,
|
||||
0xaaaaaaaaaaaaaaa7, 0xaaaaaaaaaaaaaaa7 },
|
||||
{ 0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8,
|
||||
0xaaaaaaaaaaaaaaa8, 0xaaaaaaaaaaaaaaa8 },
|
||||
{ 0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9,
|
||||
0xaaaaaaaaaaaaaaa9, 0xaaaaaaaaaaaaaaa9 },
|
||||
{ 0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa,
|
||||
0xaaaaaaaaaaaaaaaa, 0xaaaaaaaaaaaaaaaa },
|
||||
{ 0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab,
|
||||
0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaab },
|
||||
{ 0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac,
|
||||
0xaaaaaaaaaaaaaaac, 0xaaaaaaaaaaaaaaac },
|
||||
{ 0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad,
|
||||
0xaaaaaaaaaaaaaaad, 0xaaaaaaaaaaaaaaad },
|
||||
{ 0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae,
|
||||
0xaaaaaaaaaaaaaaae, 0xaaaaaaaaaaaaaaae },
|
||||
{ 0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf,
|
||||
0xaaaaaaaaaaaaaaaf, 0xaaaaaaaaaaaaaaaf }
|
||||
};
|
||||
|
||||
static void
|
||||
bmw64_4way_init( bmw_4way_big_context *sc, const sph_u64 *iv )
|
||||
{
|
||||
for ( int i = 0; i < 16; i++ )
|
||||
sc->H[i] = _mm256_set1_epi64x( iv[i] );
|
||||
sc->ptr = 0;
|
||||
sc->bit_count = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
bmw64_4way( bmw_4way_big_context *sc, const void *data, size_t len )
|
||||
{
|
||||
__m256i *vdata = (__m256i*)data;
|
||||
__m256i *buf;
|
||||
__m256i htmp[16];
|
||||
__m256i *h1, *h2;
|
||||
size_t ptr;
|
||||
const int buf_size = 128; // bytes of one lane, compatible with len
|
||||
|
||||
sc->bit_count += (sph_u64)len << 3;
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
h1 = sc->H;
|
||||
h2 = htmp;
|
||||
while ( len > 0 )
|
||||
{
|
||||
size_t clen;
|
||||
clen = buf_size - ptr;
|
||||
if ( clen > len )
|
||||
clen = len;
|
||||
memcpy_256( buf + (ptr>>3), vdata, clen >> 3 );
|
||||
vdata = vdata + (clen>>3);
|
||||
len -= clen;
|
||||
ptr += clen;
|
||||
if ( ptr == buf_size )
|
||||
{
|
||||
__m256i *ht;
|
||||
compress_big( buf, h1, h2 );
|
||||
ht = h1;
|
||||
h1 = h2;
|
||||
h2 = ht;
|
||||
ptr = 0;
|
||||
}
|
||||
}
|
||||
sc->ptr = ptr;
|
||||
if ( h1 != sc->H )
|
||||
memcpy_256( sc->H, h1, 16 );
|
||||
}
|
||||
|
||||
static void
|
||||
bmw64_4way_close(bmw_4way_big_context *sc, unsigned ub, unsigned n,
|
||||
void *dst, size_t out_size_w64)
|
||||
{
|
||||
__m256i *buf;
|
||||
__m256i h1[16], h2[16], *h;
|
||||
size_t ptr, u, v;
|
||||
unsigned z;
|
||||
const int buf_size = 128; // bytes of one lane, compatible with len
|
||||
|
||||
buf = sc->buf;
|
||||
ptr = sc->ptr;
|
||||
z = 0x80 >> n;
|
||||
buf[ ptr>>3 ] = _mm256_set1_epi64x( z );
|
||||
ptr += 8;
|
||||
h = sc->H;
|
||||
|
||||
if ( ptr > (buf_size - 8) )
|
||||
{
|
||||
memset_zero_256( buf + (ptr>>3), (buf_size - ptr) >> 3 );
|
||||
compress_big( buf, h, h1 );
|
||||
ptr = 0;
|
||||
h = h1;
|
||||
}
|
||||
memset_zero_256( buf + (ptr>>3), (buf_size - 8 - ptr) >> 3 );
|
||||
buf[ (buf_size - 8) >> 3 ] = _mm256_set1_epi64x( sc->bit_count + n );
|
||||
compress_big( buf, h, h2 );
|
||||
for ( u = 0; u < 16; u ++ )
|
||||
buf[u] = h2[u];
|
||||
compress_big( buf, final_b, h1 );
|
||||
for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++)
|
||||
casti_m256i(dst,u) = h1[v];
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void
|
||||
bmw256_4way_init(void *cc)
|
||||
{
|
||||
// bmw32_4way_init(cc, IV256);
|
||||
}
|
||||
|
||||
void
|
||||
bmw256_4way(void *cc, const void *data, size_t len)
|
||||
{
|
||||
// bmw32_4way(cc, data, len);
|
||||
}
|
||||
|
||||
void
|
||||
bmw256_4way_close(void *cc, void *dst)
|
||||
{
|
||||
// bmw256_4way_addbits_and_close(cc, 0, 0, dst);
|
||||
}
|
||||
|
||||
void
|
||||
bmw256_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
|
||||
{
|
||||
// bmw32_4way_close(cc, ub, n, dst, 8);
|
||||
}
|
||||
|
||||
#if SPH_64
|
||||
|
||||
void
|
||||
bmw512_4way_init(void *cc)
|
||||
{
|
||||
bmw64_4way_init(cc, IV512);
|
||||
}
|
||||
|
||||
void
|
||||
bmw512_4way(void *cc, const void *data, size_t len)
|
||||
{
|
||||
bmw64_4way(cc, data, len);
|
||||
}
|
||||
|
||||
void
|
||||
bmw512_4way_close(void *cc, void *dst)
|
||||
{
|
||||
bmw512_4way_addbits_and_close(cc, 0, 0, dst);
|
||||
}
|
||||
|
||||
void
|
||||
bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
|
||||
{
|
||||
bmw64_4way_close(cc, ub, n, dst, 8);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -1,154 +0,0 @@
|
||||
/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */
|
||||
/**
|
||||
* BMW interface. BMW (aka "Blue Midnight Wish") is a family of
|
||||
* functions which differ by their output size; this implementation
|
||||
* defines BMW for output sizes 224, 256, 384 and 512 bits.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_bmw.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef BMW_HASH_H__
|
||||
#define BMW_HASH_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#ifdef __AVX2__
|
||||
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-224.
|
||||
*/
|
||||
#define SPH_SIZE_bmw224 224
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-256.
|
||||
*/
|
||||
#define SPH_SIZE_bmw256 256
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-384.
|
||||
*/
|
||||
#define SPH_SIZE_bmw384 384
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-512.
|
||||
*/
|
||||
#define SPH_SIZE_bmw512 512
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* This structure is a context for BMW-224 and BMW-256 computations:
|
||||
* it contains the intermediate values and some data from the last
|
||||
* entered block. Once a BMW computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running BMW
|
||||
* computation can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char buf[64]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
sph_u32 H[16];
|
||||
#if SPH_64
|
||||
sph_u64 bit_count;
|
||||
#else
|
||||
sph_u32 bit_count_high, bit_count_low;
|
||||
#endif
|
||||
#endif
|
||||
} bmw_4way_small_context;
|
||||
|
||||
typedef bmw_4way_small_context bmw256_4way_context;
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* This structure is a context for BMW-384 and BMW-512 computations:
|
||||
* it contains the intermediate values and some data from the last
|
||||
* entered block. Once a BMW computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running BMW
|
||||
* computation can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
__m256i buf[16];
|
||||
__m256i H[16];
|
||||
|
||||
// unsigned char buf[128]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
// sph_u64 H[16];
|
||||
sph_u64 bit_count;
|
||||
#endif
|
||||
} bmw_4way_big_context;
|
||||
|
||||
typedef bmw_4way_big_context bmw512_4way_context;
|
||||
|
||||
#endif
|
||||
|
||||
void bmw256_4way_init(void *cc);
|
||||
|
||||
void bmw256_4way(void *cc, const void *data, size_t len);
|
||||
|
||||
void bmw256_4way_close(void *cc, void *dst);
|
||||
|
||||
void bmw256_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#if SPH_64
|
||||
|
||||
void bmw512_4way_init(void *cc);
|
||||
|
||||
void bmw512_4way(void *cc, const void *data, size_t len);
|
||||
|
||||
void bmw512_4way_close(void *cc, void *dst);
|
||||
|
||||
void bmw512_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <string.h>
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-224.
|
||||
|
@@ -2,6 +2,7 @@
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#if defined(__arm__) || defined(_MSC_VER)
|
||||
|
@@ -109,43 +109,43 @@ static __thread cryptonight_ctx ctx;
|
||||
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
|
||||
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
|
||||
uint8_t ExpandedKey[256] __attribute__((aligned(64)));
|
||||
__m128i *longoutput, *expkey, *xmminput;
|
||||
size_t i, j;
|
||||
|
||||
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
|
||||
memcpy( ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE );
|
||||
ExpandAESKey256( ExpandedKey );
|
||||
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
|
||||
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
|
||||
memcpy(ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE);
|
||||
ExpandAESKey256(ExpandedKey);
|
||||
|
||||
longoutput = (__m128i*)ctx.long_state;
|
||||
xmminput = (__m128i*)ctx.text;
|
||||
expkey = (__m128i*)ExpandedKey;
|
||||
__m128i *longoutput, *expkey, *xmminput;
|
||||
longoutput = (__m128i *)ctx.long_state;
|
||||
expkey = (__m128i *)ExpandedKey;
|
||||
xmminput = (__m128i *)ctx.text;
|
||||
|
||||
// prefetch expkey, xmminput and enough longoutput for 4 iterations
|
||||
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
|
||||
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
|
||||
|
||||
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
|
||||
_mm_prefetch( xmminput, _MM_HINT_T0 );
|
||||
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
|
||||
for ( i = 0; i < 64; i += 16 )
|
||||
{
|
||||
_mm_prefetch( longoutput + i, _MM_HINT_T0 );
|
||||
_mm_prefetch( longoutput + i + 4, _MM_HINT_T0 );
|
||||
_mm_prefetch( longoutput + i + 8, _MM_HINT_T0 );
|
||||
_mm_prefetch( longoutput + i + 12, _MM_HINT_T0 );
|
||||
}
|
||||
_mm_prefetch( expkey, _MM_HINT_T0 );
|
||||
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
|
||||
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
|
||||
for ( i = 0; i < 64; i += 16 )
|
||||
{
|
||||
__builtin_prefetch( longoutput + i, 1, 0 );
|
||||
__builtin_prefetch( longoutput + i + 4, 1, 0 );
|
||||
__builtin_prefetch( longoutput + i + 8, 1, 0 );
|
||||
__builtin_prefetch( longoutput + i + 12, 1, 0 );
|
||||
}
|
||||
|
||||
// n-4 iterations
|
||||
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
|
||||
i += INIT_SIZE_M128I )
|
||||
for ( i = 0; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
|
||||
{
|
||||
// prefetch 4 iterations ahead.
|
||||
// prefetch 4 loops ahead,
|
||||
__builtin_prefetch( longoutput + i + 64, 1, 0 );
|
||||
__builtin_prefetch( longoutput + i + 68, 1, 0 );
|
||||
|
||||
for ( j = 0; j < 10; j++ )
|
||||
for (j = 0; j < 10; j++ )
|
||||
{
|
||||
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
|
||||
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
|
||||
@@ -165,99 +165,84 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
|
||||
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
|
||||
}
|
||||
// last 4 iterations
|
||||
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
|
||||
{
|
||||
for ( j = 0; j < 10; j++ )
|
||||
{
|
||||
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
|
||||
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
|
||||
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
|
||||
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
|
||||
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
|
||||
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
|
||||
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
|
||||
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
|
||||
}
|
||||
_mm_store_si128( &( longoutput[i ] ), xmminput[0] );
|
||||
_mm_store_si128( &( longoutput[i+1] ), xmminput[1] );
|
||||
_mm_store_si128( &( longoutput[i+2] ), xmminput[2] );
|
||||
_mm_store_si128( &( longoutput[i+3] ), xmminput[3] );
|
||||
_mm_store_si128( &( longoutput[i+4] ), xmminput[4] );
|
||||
_mm_store_si128( &( longoutput[i+5] ), xmminput[5] );
|
||||
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
|
||||
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
|
||||
}
|
||||
|
||||
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
|
||||
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
|
||||
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
|
||||
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
|
||||
// cast_m128i( ctx.a ) = _mm_xor_si128( casti_m128i( ctx.state.k, 0 ) ,
|
||||
// casti_m128i( ctx.state.k, 2 ) );
|
||||
// cast_m128i( ctx.b ) = _mm_xor_si128( casti_m128i( ctx.state.k, 1 ),
|
||||
// casti_m128i( ctx.state.k, 3 ) );
|
||||
|
||||
uint64_t a[2] __attribute((aligned(16))),
|
||||
b[2] __attribute((aligned(16))),
|
||||
c[2] __attribute((aligned(16)));
|
||||
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
|
||||
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
|
||||
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
|
||||
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
|
||||
|
||||
// for (i = 0; i < 2; i++)
|
||||
// {
|
||||
// ctx.a[i] = ((uint64_t *)ctx.state.k)[i] ^ ((uint64_t *)ctx.state.k)[i+4];
|
||||
// ctx.b[i] = ((uint64_t *)ctx.state.k)[i+2] ^ ((uint64_t *)ctx.state.k)[i+6];
|
||||
// }
|
||||
|
||||
__m128i b_x = _mm_load_si128((__m128i *)ctx.b);
|
||||
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
|
||||
a[0] = ctx.a[0];
|
||||
a[1] = ctx.a[1];
|
||||
__m128i b_x = _mm_load_si128( (__m128i*)ctx.b );
|
||||
__m128i a_x = _mm_load_si128( (__m128i*)a );
|
||||
__m128i* lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
|
||||
__m128i c_x = _mm_load_si128( lsa );
|
||||
uint64_t *nextblock;
|
||||
uint64_t hi, lo;
|
||||
|
||||
// n-1 iterations
|
||||
for( i = 0; __builtin_expect( i < 0x7ffff, 1 ); i++ )
|
||||
|
||||
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
|
||||
{
|
||||
c_x = _mm_aesenc_si128( c_x, a_x );
|
||||
_mm_store_si128( (__m128i*)c, c_x );
|
||||
b_x = _mm_xor_si128( b_x, c_x );
|
||||
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
_mm_store_si128( lsa, b_x );
|
||||
uint64_t c[2];
|
||||
__builtin_prefetch( &ctx.long_state[c[0] & 0x1FFFF0], 0, 1 );
|
||||
|
||||
__m128i c_x = _mm_load_si128(
|
||||
(__m128i *)&ctx.long_state[a[0] & 0x1FFFF0]);
|
||||
__m128i a_x = _mm_load_si128((__m128i *)a);
|
||||
c_x = _mm_aesenc_si128(c_x, a_x);
|
||||
_mm_store_si128((__m128i *)c, c_x);
|
||||
|
||||
b_x = _mm_xor_si128(b_x, c_x);
|
||||
_mm_store_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0], b_x);
|
||||
|
||||
uint64_t *nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
// uint64_t b[2];
|
||||
b[0] = nextblock[0];
|
||||
b[1] = nextblock[1];
|
||||
|
||||
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
|
||||
__asm__( "mulq %3\n\t"
|
||||
: "=d" ( hi ),
|
||||
"=a" ( lo )
|
||||
: "%a" ( c[0] ),
|
||||
"rm" ( b[0] )
|
||||
: "cc" );
|
||||
{
|
||||
uint64_t hi, lo;
|
||||
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
|
||||
|
||||
b_x = c_x;
|
||||
nextblock[0] = a[0] + hi;
|
||||
nextblock[1] = a[1] + lo;
|
||||
a[0] = b[0] ^ nextblock[0];
|
||||
a[1] = b[1] ^ nextblock[1];
|
||||
lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
|
||||
a_x = _mm_load_si128( (__m128i*)a );
|
||||
c_x = _mm_load_si128( lsa );
|
||||
__asm__("mulq %3\n\t"
|
||||
: "=d" (hi),
|
||||
"=a" (lo)
|
||||
: "%a" (c[0]),
|
||||
"rm" (b[0])
|
||||
: "cc" );
|
||||
|
||||
a[0] += hi;
|
||||
a[1] += lo;
|
||||
}
|
||||
uint64_t *dst = (uint64_t*)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
// __m128i *dst = (__m128i*)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
|
||||
// *dst = cast_m128i( a );
|
||||
dst[0] = a[0];
|
||||
dst[1] = a[1];
|
||||
|
||||
// cast_m128i( a ) = _mm_xor_si128( cast_m128i( a ), cast_m128i( b ) );
|
||||
a[0] ^= b[0];
|
||||
a[1] ^= b[1];
|
||||
b_x = c_x;
|
||||
__builtin_prefetch( &ctx.long_state[a[0] & 0x1FFFF0], 0, 3 );
|
||||
}
|
||||
// abreviated nth iteration
|
||||
c_x = _mm_aesenc_si128( c_x, a_x );
|
||||
_mm_store_si128( (__m128i*)c, c_x );
|
||||
b_x = _mm_xor_si128( b_x, c_x );
|
||||
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
_mm_store_si128( lsa, b_x );
|
||||
b[0] = nextblock[0];
|
||||
b[1] = nextblock[1];
|
||||
|
||||
__asm__( "mulq %3\n\t"
|
||||
: "=d" ( hi ),
|
||||
"=a" ( lo )
|
||||
: "%a" ( c[0] ),
|
||||
"rm" ( b[0] )
|
||||
: "cc" );
|
||||
|
||||
nextblock[0] = a[0] + hi;
|
||||
nextblock[1] = a[1] + lo;
|
||||
|
||||
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
|
||||
memcpy( ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE );
|
||||
ExpandAESKey256( ExpandedKey );
|
||||
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
|
||||
|
||||
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
|
||||
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
|
||||
|
||||
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
|
||||
|
||||
_mm_prefetch( xmminput, _MM_HINT_T0 );
|
||||
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
|
||||
for ( i = 0; i < 64; i += 16 )
|
||||
@@ -271,11 +256,9 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
|
||||
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
|
||||
|
||||
// n-4 iterations
|
||||
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
|
||||
i += INIT_SIZE_M128I )
|
||||
for ( i = 0; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
|
||||
{
|
||||
// stay 4 iterations ahead.
|
||||
// stay 4 loops ahead,
|
||||
_mm_prefetch( longoutput + i + 64, _MM_HINT_T0 );
|
||||
_mm_prefetch( longoutput + i + 68, _MM_HINT_T0 );
|
||||
|
||||
@@ -300,34 +283,10 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
|
||||
}
|
||||
}
|
||||
// last 4 iterations
|
||||
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
|
||||
{
|
||||
xmminput[0] = _mm_xor_si128( longoutput[i ], xmminput[0] );
|
||||
xmminput[1] = _mm_xor_si128( longoutput[i+1], xmminput[1] );
|
||||
xmminput[2] = _mm_xor_si128( longoutput[i+2], xmminput[2] );
|
||||
xmminput[3] = _mm_xor_si128( longoutput[i+3], xmminput[3] );
|
||||
xmminput[4] = _mm_xor_si128( longoutput[i+4], xmminput[4] );
|
||||
xmminput[5] = _mm_xor_si128( longoutput[i+5], xmminput[5] );
|
||||
xmminput[6] = _mm_xor_si128( longoutput[i+6], xmminput[6] );
|
||||
xmminput[7] = _mm_xor_si128( longoutput[i+7], xmminput[7] );
|
||||
|
||||
for( j = 0; j < 10; j++ )
|
||||
{
|
||||
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
|
||||
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
|
||||
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
|
||||
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
|
||||
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
|
||||
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
|
||||
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
|
||||
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
memcpy( ctx.state.init, ctx.text, INIT_SIZE_BYTE);
|
||||
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
#endif
|
||||
}
|
||||
|
@@ -5,6 +5,7 @@
|
||||
// Modified for CPUminer by Lucas Jones
|
||||
|
||||
#include "cpuminer-config.h"
|
||||
//#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
|
@@ -42,7 +42,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for CubeHash-224.
|
||||
|
@@ -9,7 +9,11 @@
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#include "cubehash_sse2.h"
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
#include "algo/sha3/sha3-defs.h"
|
||||
|
||||
//enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 };
|
||||
|
||||
//#if defined(OPTIMIZE_SSE2)
|
||||
|
||||
static void transform( cubehashParam *sp )
|
||||
{
|
||||
@@ -139,71 +143,72 @@ int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
|
||||
if ( blockbytes <= 0 || blockbytes >= 256)
|
||||
blockbytes = CUBEHASH_BLOCKBYTES;
|
||||
|
||||
// all sizes of __m128i
|
||||
sp->hashlen = hashbitlen/128;
|
||||
sp->blocksize = blockbytes/16;
|
||||
sp->rounds = rounds;
|
||||
sp->pos = 0;
|
||||
|
||||
sp->hashbitlen = hashbitlen;
|
||||
sp->rounds = rounds;
|
||||
sp->blockbytes = blockbytes;
|
||||
for ( i = 0; i < 8; ++i )
|
||||
sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
|
||||
|
||||
sp->x[0] = _mm_set_epi32( 0, rounds, blockbytes, hashbitlen / 8 );
|
||||
|
||||
sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8);
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform(sp);
|
||||
// sp->pos = 0;
|
||||
sp->pos = 0;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
int
|
||||
cubehashReset(cubehashParam *sp)
|
||||
{
|
||||
return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes);
|
||||
}
|
||||
|
||||
int cubehashUpdate( cubehashParam *sp, const byte *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const __m128i* in = (__m128i*)data;
|
||||
int i;
|
||||
uint64_t databitlen = 8 * size;
|
||||
|
||||
// It is assumed data is aligned to 256 bits and is a multiple of 128 bits.
|
||||
// Current usage sata is either 64 or 80 bytes.
|
||||
/* caller promises us that previous data had integral number of bytes */
|
||||
/* so sp->pos is a multiple of 8 */
|
||||
|
||||
for ( i = 0; i < len; i++ )
|
||||
while ( databitlen >= 8 )
|
||||
{
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
data += 1;
|
||||
databitlen -= 8;
|
||||
sp->pos += 8;
|
||||
if ( sp->pos == 8 * sp->blockbytes )
|
||||
{
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
if ( databitlen > 0 )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
sp->pos += databitlen;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
int cubehashDigest( cubehashParam *sp, byte *digest )
|
||||
{
|
||||
__m128i* hash = (__m128i*)digest;
|
||||
int i;
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ],
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 ) );
|
||||
transform( sp );
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) );
|
||||
transform(sp);
|
||||
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0));
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->x[i];
|
||||
for ( i = 0; i < sp->hashbitlen / 8; ++i )
|
||||
digest[i] = ((unsigned char *) sp->x)[i];
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
@@ -211,45 +216,48 @@ int cubehashDigest( cubehashParam *sp, byte *digest )
|
||||
int cubehashUpdateDigest( cubehashParam *sp, byte *digest,
|
||||
const byte *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const __m128i* in = (__m128i*)data;
|
||||
__m128i* hash = (__m128i*)digest;
|
||||
uint64_t databitlen = 8 * size;
|
||||
int hashlen128 = sp->hashbitlen/128;
|
||||
int i;
|
||||
|
||||
// It is assumed data is aligned to 256 bits and is a multiple of 128 bits.
|
||||
// Current usage sata is either 64 or 80 bytes.
|
||||
/* caller promises us that previous data had integral number of bytes */
|
||||
/* so sp->pos is a multiple of 8 */
|
||||
|
||||
for ( i = 0; i < len; i++ )
|
||||
while ( databitlen >= 8 )
|
||||
{
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
data += 1;
|
||||
databitlen -= 8;
|
||||
sp->pos += 8;
|
||||
if ( sp->pos == 8 * sp->blockbytes )
|
||||
{
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
transform(sp);
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
if ( databitlen > 0 )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
sp->pos += databitlen;
|
||||
}
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ],
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 ) );
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) );
|
||||
transform( sp );
|
||||
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32(1,0,0,0) );
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->x[i];
|
||||
for ( i = 0; i < hashlen128; i++ )
|
||||
( (__m128i*)digest )[i] = ( (__m128i*)sp->x )[i];
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
@@ -3,35 +3,58 @@
|
||||
|
||||
#include "compat.h"
|
||||
#include <stdint.h>
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
#include "algo/sha3/sha3-defs.h"
|
||||
//#include <beecrypt/beecrypt.h>
|
||||
|
||||
//#if defined(__SSE2__)
|
||||
#define OPTIMIZE_SSE2
|
||||
//#endif
|
||||
|
||||
#if defined(OPTIMIZE_SSE2)
|
||||
#include <emmintrin.h>
|
||||
#endif
|
||||
|
||||
/*!\brief Holds all the parameters necessary for the CUBEHASH algorithm.
|
||||
* \ingroup HASH_cubehash_m
|
||||
*/
|
||||
|
||||
struct _cubehashParam
|
||||
//#endif
|
||||
{
|
||||
int hashlen; // __m128i
|
||||
int hashbitlen;
|
||||
int rounds;
|
||||
int blocksize; // __m128i
|
||||
int pos; // number of __m128i read into x from current block
|
||||
__m128i _ALIGN(256) x[8]; // aligned for __m256i
|
||||
int blockbytes;
|
||||
int pos; /* number of bits read into x from current block */
|
||||
#if defined(OPTIMIZE_SSE2)
|
||||
__m128i _ALIGN(256) x[8];
|
||||
#else
|
||||
uint32_t x[32];
|
||||
#endif
|
||||
};
|
||||
|
||||
//#ifndef __cplusplus
|
||||
typedef struct _cubehashParam cubehashParam;
|
||||
//#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*!\var cubehash256
|
||||
* \brief Holds the full API description of the CUBEHASH algorithm.
|
||||
*/
|
||||
//extern BEECRYPTAPI const hashFunction cubehash256;
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashInit(cubehashParam* sp, int hashbitlen, int rounds, int blockbytes);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashReset(cubehashParam* sp);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashUpdate(cubehashParam* sp, const byte *data, size_t size);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashDigest(cubehashParam* sp, byte *digest);
|
||||
|
||||
int cubehashUpdateDigest( cubehashParam *sp, byte *digest, const byte *data,
|
||||
|
@@ -32,6 +32,7 @@
|
||||
#define POK_BOOL_MASK 0x00008000
|
||||
#define POK_DATA_MASK 0xFFFF0000
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <string.h>
|
||||
@@ -244,12 +245,12 @@ bool register_drop_algo( algo_gate_t* gate )
|
||||
algo_not_tested();
|
||||
gate->scanhash = (void*)&scanhash_drop;
|
||||
gate->hash = (void*)&droplp_hash_pok;
|
||||
gate->hash_alt = (void*)&droplp_hash_pok;
|
||||
gate->hash_suw = (void*)&droplp_hash_pok;
|
||||
gate->get_new_work = (void*)&drop_get_new_work;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
|
||||
gate->work_decode = (void*)&std_be_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
|
||||
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
|
||||
gate->set_work_data_endian = (void*)&swab_work_data;
|
||||
gate->display_extra_data = (void*)&drop_display_pok;
|
||||
gate->work_data_size = 80;
|
||||
gate->work_cmp_size = 72;
|
@@ -22,7 +22,7 @@
|
||||
#endif
|
||||
|
||||
|
||||
#include "algo/sha/sha3_common.h"
|
||||
#include "algo/sha3/sha3_common.h"
|
||||
|
||||
#include <emmintrin.h>
|
||||
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#ifndef VPERM_H
|
||||
#define VPERM_H
|
||||
|
||||
#include "algo/sha/sha3_common.h"
|
||||
#include "algo/sha3/sha3_common.h"
|
||||
#include <tmmintrin.h>
|
||||
|
||||
/*
|
||||
@@ -53,12 +53,11 @@ extern const unsigned int _k_aesmix4[];
|
||||
x = _mm_shuffle_epi8(*((__m128i*)table + 0), x);\
|
||||
x = _mm_xor_si128(x, t1)
|
||||
|
||||
#if 0
|
||||
// compiled erroneously with 32-bit msc compiler
|
||||
t2 = _mm_shuffle_epi8(table[0], x);\
|
||||
x = _mm_shuffle_epi8(table[1], t1);\
|
||||
x = _mm_xor_si128(x, t2)
|
||||
#endif
|
||||
//t2 = _mm_shuffle_epi8(table[0], x);\
|
||||
//x = _mm_shuffle_epi8(table[1], t1);\
|
||||
//x = _mm_xor_si128(x, t2)
|
||||
|
||||
|
||||
// input: x
|
||||
// output: t2, t3
|
||||
|
@@ -71,7 +71,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#define AES_BIG_ENDIAN 0
|
||||
#include "algo/sha/aes_helper.c"
|
||||
#include "algo/sha3/aes_helper.c"
|
||||
|
||||
#if SPH_ECHO_64
|
||||
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-224.
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-224.
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
@@ -130,6 +131,7 @@ bool register_fresh_algo( algo_gate_t* gate )
|
||||
algo_not_tested();
|
||||
gate->scanhash = (void*)&scanhash_fresh;
|
||||
gate->hash = (void*)&freshhash;
|
||||
gate->hash_alt = (void*)&freshhash;
|
||||
gate->set_target = (void*)&fresh_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
@@ -2,7 +2,7 @@
|
||||
#define SPH_FUGUE_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for GOST-256.
|
||||
|
@@ -13,8 +13,8 @@
|
||||
|
||||
/* global constants */
|
||||
__m128i ROUND_CONST_Lx;
|
||||
//__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
//__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
__m128i TRANSP_MASK;
|
||||
@@ -22,9 +22,11 @@ __m128i SUBSH_MASK[8];
|
||||
__m128i ALL_1B;
|
||||
__m128i ALL_FF;
|
||||
|
||||
|
||||
#define tos(a) #a
|
||||
#define tostr(a) tos(a)
|
||||
|
||||
|
||||
/* xmm[i] will be multiplied by 2
|
||||
* xmm[j] will be lost
|
||||
* xmm[k] has to be all 0x1b */
|
||||
@@ -151,6 +153,352 @@ __m128i ALL_FF;
|
||||
b1 = _mm_xor_si128(b1, a4);\
|
||||
}/*MixBytes*/
|
||||
|
||||
#if (LENGTH <= 256)
|
||||
|
||||
#define SET_CONSTANTS(){\
|
||||
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
|
||||
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
|
||||
SUBSH_MASK[0] = _mm_set_epi32(0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00);\
|
||||
SUBSH_MASK[1] = _mm_set_epi32(0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801);\
|
||||
SUBSH_MASK[2] = _mm_set_epi32(0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02);\
|
||||
SUBSH_MASK[3] = _mm_set_epi32(0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03);\
|
||||
SUBSH_MASK[4] = _mm_set_epi32(0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04);\
|
||||
SUBSH_MASK[5] = _mm_set_epi32(0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05);\
|
||||
SUBSH_MASK[6] = _mm_set_epi32(0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906);\
|
||||
SUBSH_MASK[7] = _mm_set_epi32(0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07);\
|
||||
for(i = 0; i < ROUNDS512; i++)\
|
||||
{\
|
||||
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
|
||||
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
|
||||
}\
|
||||
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
|
||||
}while(0); \
|
||||
|
||||
/* one round
|
||||
* i = round number
|
||||
* a0-a7 = input rows
|
||||
* b0-b7 = output rows
|
||||
*/
|
||||
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
|
||||
/* AddRoundConstant */\
|
||||
b1 = ROUND_CONST_Lx;\
|
||||
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
|
||||
a1 = _mm_xor_si128(a1, b1);\
|
||||
a2 = _mm_xor_si128(a2, b1);\
|
||||
a3 = _mm_xor_si128(a3, b1);\
|
||||
a4 = _mm_xor_si128(a4, b1);\
|
||||
a5 = _mm_xor_si128(a5, b1);\
|
||||
a6 = _mm_xor_si128(a6, b1);\
|
||||
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
|
||||
\
|
||||
/* ShiftBytes + SubBytes (interleaved) */\
|
||||
b0 = _mm_xor_si128(b0, b0);\
|
||||
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
|
||||
a0 = _mm_aesenclast_si128(a0, b0);\
|
||||
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
|
||||
a1 = _mm_aesenclast_si128(a1, b0);\
|
||||
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
|
||||
a2 = _mm_aesenclast_si128(a2, b0);\
|
||||
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
|
||||
a3 = _mm_aesenclast_si128(a3, b0);\
|
||||
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
|
||||
a4 = _mm_aesenclast_si128(a4, b0);\
|
||||
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
|
||||
a5 = _mm_aesenclast_si128(a5, b0);\
|
||||
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
|
||||
a6 = _mm_aesenclast_si128(a6, b0);\
|
||||
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
|
||||
a7 = _mm_aesenclast_si128(a7, b0);\
|
||||
\
|
||||
/* MixBytes */\
|
||||
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
|
||||
\
|
||||
}
|
||||
|
||||
/* 10 rounds, P and Q in parallel */
|
||||
#define ROUNDS_P_Q(){\
|
||||
ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
}
|
||||
|
||||
/* Matrix Transpose Step 1
|
||||
* input is a 512-bit state with two columns in one xmm
|
||||
* output is a 512-bit state with two rows in one xmm
|
||||
* inputs: i0-i3
|
||||
* outputs: i0, o1-o3
|
||||
* clobbers: t0
|
||||
*/
|
||||
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
|
||||
t0 = TRANSP_MASK;\
|
||||
\
|
||||
i0 = _mm_shuffle_epi8(i0, t0);\
|
||||
i1 = _mm_shuffle_epi8(i1, t0);\
|
||||
i2 = _mm_shuffle_epi8(i2, t0);\
|
||||
i3 = _mm_shuffle_epi8(i3, t0);\
|
||||
\
|
||||
o1 = i0;\
|
||||
t0 = i2;\
|
||||
\
|
||||
i0 = _mm_unpacklo_epi16(i0, i1);\
|
||||
o1 = _mm_unpackhi_epi16(o1, i1);\
|
||||
i2 = _mm_unpacklo_epi16(i2, i3);\
|
||||
t0 = _mm_unpackhi_epi16(t0, i3);\
|
||||
\
|
||||
i0 = _mm_shuffle_epi32(i0, 216);\
|
||||
o1 = _mm_shuffle_epi32(o1, 216);\
|
||||
i2 = _mm_shuffle_epi32(i2, 216);\
|
||||
t0 = _mm_shuffle_epi32(t0, 216);\
|
||||
\
|
||||
o2 = i0;\
|
||||
o3 = o1;\
|
||||
\
|
||||
i0 = _mm_unpacklo_epi32(i0, i2);\
|
||||
o1 = _mm_unpacklo_epi32(o1, t0);\
|
||||
o2 = _mm_unpackhi_epi32(o2, i2);\
|
||||
o3 = _mm_unpackhi_epi32(o3, t0);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Step 2
|
||||
* input are two 512-bit states with two rows in one xmm
|
||||
* output are two 512-bit states with one row of each state in one xmm
|
||||
* inputs: i0-i3 = P, i4-i7 = Q
|
||||
* outputs: (i0, o1-o7) = (P|Q)
|
||||
* possible reassignments: (output reg = input reg)
|
||||
* * i1 -> o3-7
|
||||
* * i2 -> o5-7
|
||||
* * i3 -> o7
|
||||
* * i4 -> o3-7
|
||||
* * i5 -> o6-7
|
||||
*/
|
||||
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
|
||||
o1 = i0;\
|
||||
o2 = i1;\
|
||||
i0 = _mm_unpacklo_epi64(i0, i4);\
|
||||
o1 = _mm_unpackhi_epi64(o1, i4);\
|
||||
o3 = i1;\
|
||||
o4 = i2;\
|
||||
o2 = _mm_unpacklo_epi64(o2, i5);\
|
||||
o3 = _mm_unpackhi_epi64(o3, i5);\
|
||||
o5 = i2;\
|
||||
o6 = i3;\
|
||||
o4 = _mm_unpacklo_epi64(o4, i6);\
|
||||
o5 = _mm_unpackhi_epi64(o5, i6);\
|
||||
o7 = i3;\
|
||||
o6 = _mm_unpacklo_epi64(o6, i7);\
|
||||
o7 = _mm_unpackhi_epi64(o7, i7);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Inverse Step 2
|
||||
* input are two 512-bit states with one row of each state in one xmm
|
||||
* output are two 512-bit states with two rows in one xmm
|
||||
* inputs: i0-i7 = (P|Q)
|
||||
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
|
||||
*/
|
||||
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
|
||||
o0 = i0;\
|
||||
i0 = _mm_unpacklo_epi64(i0, i1);\
|
||||
o0 = _mm_unpackhi_epi64(o0, i1);\
|
||||
o1 = i2;\
|
||||
i2 = _mm_unpacklo_epi64(i2, i3);\
|
||||
o1 = _mm_unpackhi_epi64(o1, i3);\
|
||||
o2 = i4;\
|
||||
i4 = _mm_unpacklo_epi64(i4, i5);\
|
||||
o2 = _mm_unpackhi_epi64(o2, i5);\
|
||||
o3 = i6;\
|
||||
i6 = _mm_unpacklo_epi64(i6, i7);\
|
||||
o3 = _mm_unpackhi_epi64(o3, i7);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Output Step 2
|
||||
* input is one 512-bit state with two rows in one xmm
|
||||
* output is one 512-bit state with one row in the low 64-bits of one xmm
|
||||
* inputs: i0,i2,i4,i6 = S
|
||||
* outputs: (i0-7) = (0|S)
|
||||
*/
|
||||
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
|
||||
t0 = _mm_xor_si128(t0, t0);\
|
||||
i1 = i0;\
|
||||
i3 = i2;\
|
||||
i5 = i4;\
|
||||
i7 = i6;\
|
||||
i0 = _mm_unpacklo_epi64(i0, t0);\
|
||||
i1 = _mm_unpackhi_epi64(i1, t0);\
|
||||
i2 = _mm_unpacklo_epi64(i2, t0);\
|
||||
i3 = _mm_unpackhi_epi64(i3, t0);\
|
||||
i4 = _mm_unpacklo_epi64(i4, t0);\
|
||||
i5 = _mm_unpackhi_epi64(i5, t0);\
|
||||
i6 = _mm_unpacklo_epi64(i6, t0);\
|
||||
i7 = _mm_unpackhi_epi64(i7, t0);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Output Inverse Step 2
|
||||
* input is one 512-bit state with one row in the low 64-bits of one xmm
|
||||
* output is one 512-bit state with two rows in one xmm
|
||||
* inputs: i0-i7 = (0|S)
|
||||
* outputs: (i0, i2, i4, i6) = S
|
||||
*/
|
||||
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
|
||||
i0 = _mm_unpacklo_epi64(i0, i1);\
|
||||
i2 = _mm_unpacklo_epi64(i2, i3);\
|
||||
i4 = _mm_unpacklo_epi64(i4, i5);\
|
||||
i6 = _mm_unpacklo_epi64(i6, i7);\
|
||||
endif\
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
|
||||
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
/* load IV into registers xmm12 - xmm15 */
|
||||
xmm12 = chaining[0];
|
||||
xmm13 = chaining[1];
|
||||
xmm14 = chaining[2];
|
||||
xmm15 = chaining[3];
|
||||
|
||||
/* transform chaining value from column ordering into row ordering */
|
||||
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
|
||||
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
|
||||
|
||||
/* store transposed IV */
|
||||
chaining[0] = xmm12;
|
||||
chaining[1] = xmm2;
|
||||
chaining[2] = xmm6;
|
||||
chaining[3] = xmm7;
|
||||
}
|
||||
|
||||
void TF512(u64* h, u64* m)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
static __m128i TEMP1;
|
||||
static __m128i TEMP2;
|
||||
|
||||
#ifdef IACA_TRACE
|
||||
IACA_START;
|
||||
#endif
|
||||
|
||||
/* load message into registers xmm12 - xmm15 */
|
||||
xmm12 = message[0];
|
||||
xmm13 = message[1];
|
||||
xmm14 = message[2];
|
||||
xmm15 = message[3];
|
||||
|
||||
/* transform message M from column ordering into row ordering */
|
||||
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
|
||||
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
|
||||
|
||||
/* load previous chaining value */
|
||||
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
|
||||
xmm8 = chaining[0];
|
||||
xmm0 = chaining[1];
|
||||
xmm4 = chaining[2];
|
||||
xmm5 = chaining[3];
|
||||
|
||||
/* xor message to CV get input of P */
|
||||
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
|
||||
xmm8 = _mm_xor_si128(xmm8, xmm12);
|
||||
xmm0 = _mm_xor_si128(xmm0, xmm2);
|
||||
xmm4 = _mm_xor_si128(xmm4, xmm6);
|
||||
xmm5 = _mm_xor_si128(xmm5, xmm7);
|
||||
|
||||
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
|
||||
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
|
||||
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
|
||||
Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
|
||||
|
||||
/* compute the two permutations P and Q in parallel */
|
||||
ROUNDS_P_Q();
|
||||
|
||||
/* unpack again to get two rows of P or two rows of Q in one xmm register */
|
||||
Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
|
||||
|
||||
/* xor output of P and Q */
|
||||
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
|
||||
xmm0 = _mm_xor_si128(xmm0, xmm8);
|
||||
xmm1 = _mm_xor_si128(xmm1, xmm10);
|
||||
xmm2 = _mm_xor_si128(xmm2, xmm12);
|
||||
xmm3 = _mm_xor_si128(xmm3, xmm14);
|
||||
|
||||
/* xor CV (feed-forward) */
|
||||
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
|
||||
xmm0 = _mm_xor_si128(xmm0, (chaining[0]));
|
||||
xmm1 = _mm_xor_si128(xmm1, (chaining[1]));
|
||||
xmm2 = _mm_xor_si128(xmm2, (chaining[2]));
|
||||
xmm3 = _mm_xor_si128(xmm3, (chaining[3]));
|
||||
|
||||
/* store CV */
|
||||
chaining[0] = xmm0;
|
||||
chaining[1] = xmm1;
|
||||
chaining[2] = xmm2;
|
||||
chaining[3] = xmm3;
|
||||
|
||||
#ifdef IACA_TRACE
|
||||
IACA_END;
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
void OF512(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
static __m128i TEMP1;
|
||||
static __m128i TEMP2;
|
||||
|
||||
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
|
||||
xmm8 = chaining[0];
|
||||
xmm10 = chaining[1];
|
||||
xmm12 = chaining[2];
|
||||
xmm14 = chaining[3];
|
||||
|
||||
/* there are now 2 rows of the CV in one xmm register */
|
||||
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
|
||||
/* result: the 8 input rows of P in xmm8 - xmm15 */
|
||||
Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
|
||||
|
||||
/* compute the permutation P */
|
||||
/* result: the output of P(CV) in xmm8 - xmm15 */
|
||||
ROUNDS_P_Q();
|
||||
|
||||
/* unpack again to get two rows of P in one xmm register */
|
||||
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
|
||||
Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
|
||||
|
||||
/* xor CV to P output (feed-forward) */
|
||||
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
|
||||
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
|
||||
xmm10 = _mm_xor_si128(xmm10, (chaining[1]));
|
||||
xmm12 = _mm_xor_si128(xmm12, (chaining[2]));
|
||||
xmm14 = _mm_xor_si128(xmm14, (chaining[3]));
|
||||
|
||||
/* transform state back from row ordering into column ordering */
|
||||
/* result: final hash value in xmm9, xmm11 */
|
||||
Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
|
||||
|
||||
/* we only need to return the truncated half of the state */
|
||||
chaining[2] = xmm9;
|
||||
chaining[3] = xmm11;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if (LENGTH > 256)
|
||||
|
||||
#define SET_CONSTANTS(){\
|
||||
ALL_FF = _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);\
|
||||
@@ -420,8 +768,9 @@ __m128i ALL_FF;
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT( __m128i* chaining )
|
||||
void INIT(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
@@ -449,8 +798,10 @@ void INIT( __m128i* chaining )
|
||||
chaining[7] = xmm15;
|
||||
}
|
||||
|
||||
void TF1024( __m128i* chaining, const __m128i* message )
|
||||
void TF1024(u64* h, u64* m)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i QTEMP[8];
|
||||
@@ -563,8 +914,9 @@ void TF1024( __m128i* chaining, const __m128i* message )
|
||||
return;
|
||||
}
|
||||
|
||||
void OF1024( __m128i* chaining )
|
||||
void OF1024(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
@@ -609,3 +961,5 @@ void OF1024( __m128i* chaining )
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -15,8 +15,8 @@
|
||||
__m128i ROUND_CONST_Lx;
|
||||
__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
//__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
//__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
__m128i TRANSP_MASK;
|
||||
__m128i SUBSH_MASK[8];
|
||||
__m128i ALL_1B;
|
||||
@@ -351,8 +351,9 @@ __m128i ALL_FF;
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT256( __m128i* chaining )
|
||||
void INIT256(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
|
||||
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
@@ -373,8 +374,10 @@ void INIT256( __m128i* chaining )
|
||||
chaining[3] = xmm7;
|
||||
}
|
||||
|
||||
void TF512( __m128i* chaining, __m128i* message )
|
||||
void TF512(u64* h, u64* m)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
@@ -446,8 +449,9 @@ void TF512( __m128i* chaining, __m128i* message )
|
||||
return;
|
||||
}
|
||||
|
||||
void OF512( __m128i* chaining )
|
||||
void OF512(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
|
@@ -6,9 +6,6 @@
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
// Optimized for hash and data length that are integrals of __m128i
|
||||
|
||||
|
||||
#include <memory.h>
|
||||
#include "hash-groestl.h"
|
||||
#include "miner.h"
|
||||
@@ -52,191 +49,196 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void Transform( hashState_groestl *ctx, const u8 *in, unsigned long long len )
|
||||
{
|
||||
/* increment block counter */
|
||||
ctx->block_counter += len/SIZE;
|
||||
/* digest message, one block at a time */
|
||||
for ( ; len >= SIZE; len -= SIZE, in += SIZE )
|
||||
TF1024( (u64*)ctx->chaining, (u64*)in );
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void OutputTransformation( hashState_groestl *ctx )
|
||||
{
|
||||
/* determine variant */
|
||||
OF1024( (u64*)ctx->chaining );
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* initialise context */
|
||||
HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
|
||||
{
|
||||
int i;
|
||||
u8 i = 0;
|
||||
|
||||
ctx->hashlen = hashlen;
|
||||
|
||||
SET_CONSTANTS();
|
||||
|
||||
for ( i = 0; i < SIZE / 8; i++ )
|
||||
ctx->chaining[i] = 0;
|
||||
for ( i = 0; i < SIZE; i++ )
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
for ( i = 0; i < SIZE512; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT(ctx->chaining);
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/*
|
||||
HashReturn_gr init_groestl( hashState_groestl* ctx )
|
||||
{
|
||||
return Xinit_groestl( ctx, 64 );
|
||||
}
|
||||
*/
|
||||
|
||||
HashReturn_gr reinit_groestl( hashState_groestl* ctx )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < SIZE / 8; i++ )
|
||||
ctx->chaining[i] = 0;
|
||||
for ( i = 0; i < SIZE; i++ )
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
for ( i = 0; i < SIZE512; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT(ctx->chaining);
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG( (u64)LENGTH );
|
||||
INIT( ctx->chaining );
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
//// midstate is broken
|
||||
// To use midstate:
|
||||
// 1. midstate must process all full blocks.
|
||||
// 2. tail must be less than a full block and may not straddle a
|
||||
// block boundary.
|
||||
// 3. midstate and tail each must be multiples of 128 bits.
|
||||
// 4. For best performance midstate length is a multiple of block size.
|
||||
// 5. Midstate will work at reduced impact than full hash, if total hash
|
||||
// (midstate + tail) is less than 1 block.
|
||||
// This, unfortunately, is the case with all current users.
|
||||
// 6. the morefull blocks the bigger the gain
|
||||
|
||||
// use only for midstate precalc
|
||||
HashReturn_gr update_groestl( hashState_groestl* ctx, const void* input,
|
||||
DataLength_gr databitlen )
|
||||
/* update state with databitlen bits of input */
|
||||
HashReturn_gr update_groestl( hashState_groestl* ctx,
|
||||
const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
{
|
||||
__m128i* in = (__m128i*)input;
|
||||
const int len = (int)databitlen / 128; // bits to __m128i
|
||||
const int blocks = len / SIZE512; // __M128i to blocks
|
||||
int rem = ctx->rem_ptr;
|
||||
int i;
|
||||
int i;
|
||||
const int msglen = (int)(databitlen/8);
|
||||
|
||||
ctx->blk_count = blocks;
|
||||
ctx->databitlen = databitlen;
|
||||
/* digest bulk of message */
|
||||
Transform( ctx, input, msglen );
|
||||
|
||||
// digest any full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
|
||||
// adjust buf_ptr to last block
|
||||
ctx->buf_ptr = blocks * SIZE512;
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
|
||||
// copy any remaining data to buffer for final hash, it may already
|
||||
// contain data from a previous update for a midstate precalc
|
||||
for ( i = 0; i < len % SIZE512; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
// adjust rem_ptr for possible new data
|
||||
ctx->rem_ptr += i;
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
// deprecated do not use
|
||||
HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
|
||||
/* finalise: process remaining data (including padding), perform
|
||||
output transformation, and write hash result to 'output' */
|
||||
HashReturn_gr final_groestl( hashState_groestl* ctx,
|
||||
BitSequence_gr* output )
|
||||
{
|
||||
const int len = (int)ctx->databitlen / 128; // bits to __m128i
|
||||
const int blocks = ctx->blk_count + 1; // adjust for final block
|
||||
int i, j;
|
||||
|
||||
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE512 - hashlen_m128i; // where in buffer
|
||||
int i;
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
|
||||
// first pad byte = 0x80, last pad byte = block count
|
||||
// everything in between is zero
|
||||
// this will pad up to 120 bytes
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
|
||||
if ( rem_ptr == len - 1 )
|
||||
{
|
||||
// only 128 bits left in buffer, all padding at once
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i = rem_ptr + 1; i < SIZE512 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
|
||||
// add length padding, second last byte is zero unless blocks > 255
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
|
||||
0, 0 ,0,0, 0,0,0,0 );
|
||||
}
|
||||
/* digest final padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation( ctx );
|
||||
|
||||
// digest final padding block and do output transform
|
||||
TF1024( ctx->chaining, ctx->buffer );
|
||||
OF1024( ctx->chaining );
|
||||
// store hash result in output
|
||||
for ( i = ( SIZE - ctx->hashlen) / 16, j = 0; i < SIZE / 16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining , i );
|
||||
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i];
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
|
||||
const void* input, DataLength_gr databitlen )
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx,
|
||||
BitSequence_gr* output, const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
{
|
||||
const int len = (int)databitlen / 128;
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE512 - hashlen_m128i;
|
||||
int rem = ctx->rem_ptr;
|
||||
int blocks = len / SIZE512;
|
||||
__m128i* in = (__m128i*)input;
|
||||
int i;
|
||||
const int inlen = (int)(databitlen/8); // need bytes
|
||||
int i, j;
|
||||
|
||||
// --- update ---
|
||||
/* digest bulk of message */
|
||||
Transform( ctx, input, inlen );
|
||||
|
||||
// digest any full blocks, process directly from input
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
|
||||
ctx->buf_ptr = blocks * SIZE512;
|
||||
/* store remaining data in buffer */
|
||||
i = ( inlen / SIZE ) * SIZE;
|
||||
while ( i < inlen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
|
||||
// copy any remaining data to buffer, it may already contain data
|
||||
// from a previous update for a midstate precalc
|
||||
for ( i = 0; i < len % SIZE512; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
i += rem; // use i as rem_ptr in final
|
||||
// start of final
|
||||
|
||||
//--- final ---
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
|
||||
blocks++; // adjust for final block
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
memset( ctx->buffer + ctx->buf_ptr, 0, SIZE - ctx->buf_ptr );
|
||||
|
||||
/* digest first padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
|
||||
if ( i == len -1 )
|
||||
{
|
||||
// only 128 bits left in buffer, all padding at once
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i += 1; i < SIZE512 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
// this will pad up to 120 bytes
|
||||
memset( ctx->buffer + ctx->buf_ptr, 0, SIZE - ctx->buf_ptr - LENGTHFIELDLEN );
|
||||
|
||||
// add length padding, second last byte is zero unless blocks > 255
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
|
||||
0, 0 ,0,0, 0,0,0,0 );
|
||||
}
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while (ctx->buf_ptr > SIZE - LENGTHFIELDLEN)
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
|
||||
// digest final padding block and do output transform
|
||||
TF1024( ctx->chaining, ctx->buffer );
|
||||
OF1024( ctx->chaining );
|
||||
/* digest final padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation( ctx );
|
||||
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
|
||||
// store hash result in output
|
||||
for ( i = ( SIZE - ctx->hashlen) / 16, j = 0; i < SIZE / 16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining , i );
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/* hash bit sequence */
|
||||
|
@@ -9,8 +9,6 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#if defined(_WIN64) || defined(__WINDOWS__)
|
||||
#include <windows.h>
|
||||
@@ -21,27 +19,27 @@
|
||||
|
||||
#include "brg_endian.h"
|
||||
#define NEED_UINT_64T
|
||||
#include "algo/sha/brg_types.h"
|
||||
#include "brg_types.h"
|
||||
|
||||
/* some sizes (number of bytes) */
|
||||
#define ROWS (8)
|
||||
#define LENGTHFIELDLEN (ROWS)
|
||||
//#define COLS512 (8)
|
||||
#define COLS512 (8)
|
||||
#define COLS1024 (16)
|
||||
//#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE_1024 ((ROWS)*(COLS1024))
|
||||
//#define ROUNDS512 (10)
|
||||
#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
#define ROUNDS512 (10)
|
||||
#define ROUNDS1024 (14)
|
||||
|
||||
//#if LENGTH<=256
|
||||
//#define COLS (COLS512)
|
||||
//#define SIZE (SIZE512)
|
||||
//#define ROUNDS (ROUNDS512)
|
||||
//#else
|
||||
#if LENGTH<=256
|
||||
#define COLS (COLS512)
|
||||
#define SIZE (SIZE512)
|
||||
#define ROUNDS (ROUNDS512)
|
||||
#else
|
||||
#define COLS (COLS1024)
|
||||
//#define SIZE (SIZE1024)
|
||||
#define SIZE (SIZE1024)
|
||||
#define ROUNDS (ROUNDS1024)
|
||||
//#endif
|
||||
#endif
|
||||
|
||||
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
|
||||
|
||||
@@ -63,29 +61,31 @@ typedef unsigned char BitSequence_gr;
|
||||
typedef unsigned long long DataLength_gr;
|
||||
typedef enum { SUCCESS_GR = 0, FAIL_GR = 1, BAD_HASHBITLEN_GR = 2} HashReturn_gr;
|
||||
|
||||
#define SIZE512 (SIZE_1024/16)
|
||||
// Use area128 overlay for buffer to facilitate fast copying
|
||||
|
||||
typedef struct {
|
||||
__attribute__ ((aligned (64))) __m128i chaining[SIZE512];
|
||||
__attribute__ ((aligned (64))) __m128i buffer[SIZE512];
|
||||
int hashlen; // byte
|
||||
int blk_count; // SIZE_m128i
|
||||
int buf_ptr; // __m128i offset
|
||||
int rem_ptr;
|
||||
int databitlen; // bits
|
||||
__attribute__ ((aligned (32))) u64 chaining[SIZE/8]; // actual state
|
||||
__attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; // data buffer
|
||||
u64 block_counter; /* message block counter */
|
||||
int hashlen; // bytes
|
||||
int buf_ptr; /* data buffer pointer */
|
||||
} hashState_groestl;
|
||||
|
||||
//HashReturn_gr init_groestl( hashState_groestl* );
|
||||
|
||||
HashReturn_gr init_groestl( hashState_groestl*, int );
|
||||
|
||||
HashReturn_gr reinit_groestl( hashState_groestl* );
|
||||
|
||||
HashReturn_gr update_groestl( hashState_groestl*, const void*,
|
||||
HashReturn_gr update_groestl( hashState_groestl*, const BitSequence_gr*,
|
||||
DataLength_gr );
|
||||
|
||||
HashReturn_gr final_groestl( hashState_groestl*, void* );
|
||||
HashReturn_gr final_groestl( hashState_groestl*, BitSequence_gr* );
|
||||
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl*, void*,
|
||||
const void*, DataLength_gr );
|
||||
HashReturn_gr hash_groestl( int, const BitSequence_gr*, DataLength_gr,
|
||||
BitSequence_gr* );
|
||||
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl*,
|
||||
BitSequence_gr*, const BitSequence_gr*, DataLength_gr );
|
||||
|
||||
#endif /* __hash_h */
|
||||
|
@@ -49,201 +49,187 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void Transform256(hashState_groestl256 *ctx,
|
||||
const u8 *in,
|
||||
unsigned long long len) {
|
||||
/* increment block counter */
|
||||
ctx->block_counter += len/SIZE;
|
||||
|
||||
/* digest message, one block at a time */
|
||||
for (; len >= SIZE; len -= SIZE, in += SIZE)
|
||||
TF512((u64*)ctx->chaining, (u64*)in);
|
||||
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void OutputTransformation256(hashState_groestl256 *ctx) {
|
||||
/* determine variant */
|
||||
OF512((u64*)ctx->chaining);
|
||||
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* initialise context */
|
||||
HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
|
||||
{
|
||||
int i;
|
||||
u8 i = 0;
|
||||
|
||||
ctx->hashlen = hashlen;
|
||||
|
||||
SET_CONSTANTS();
|
||||
|
||||
for (i=0; i<SIZE/8; i++)
|
||||
ctx->chaining[i] = 0;
|
||||
for (i=0; i<SIZE; i++)
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
for ( i = 0; i < SIZE256; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT256( ctx->chaining );
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG((u64)256);
|
||||
|
||||
INIT256(ctx->chaining);
|
||||
|
||||
/* set other variables */
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
|
||||
HashReturn_gr reinit_groestl256(hashState_groestl256* ctx)
|
||||
{
|
||||
int i;
|
||||
for (i=0; i<SIZE/8; i++)
|
||||
ctx->chaining[i] = 0;
|
||||
for (i=0; i<SIZE; i++)
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
for ( i = 0; i < SIZE256; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = 256;
|
||||
|
||||
INIT256(ctx->chaining);
|
||||
|
||||
/* set other variables */
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
// Use this only for midstate and never for cryptonight
|
||||
HashReturn_gr update_groestl256( hashState_groestl256* ctx, const void* input,
|
||||
DataLength_gr databitlen )
|
||||
HashReturn_gr update_groestl256( hashState_groestl256* ctx,
|
||||
const BitSequence_gr* input, DataLength_gr databitlen )
|
||||
{
|
||||
__m128i* in = (__m128i*)input;
|
||||
const int len = (int)databitlen / 128; // bits to __m128i
|
||||
const int blocks = len / SIZE256; // __M128i to blocks
|
||||
int rem = ctx->rem_ptr;
|
||||
int i;
|
||||
const int msglen = (int)(databitlen/8); // bytes
|
||||
int i;
|
||||
|
||||
ctx->blk_count = blocks;
|
||||
ctx->databitlen = databitlen;
|
||||
/* digest bulk of message */
|
||||
Transform256( ctx, input, msglen );
|
||||
|
||||
// digest any full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF512( ctx->chaining, &in[ i * SIZE256 ] );
|
||||
// adjust buf_ptr to last block
|
||||
ctx->buf_ptr = blocks * SIZE256;
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
|
||||
// Copy any remainder to buffer
|
||||
for ( i = 0; i < len % SIZE256; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
// adjust rem_ptr for new data
|
||||
ctx->rem_ptr += i;
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
// don't use this at all
|
||||
HashReturn_gr final_groestl256( hashState_groestl256* ctx, void* output )
|
||||
HashReturn_gr final_groestl256( hashState_groestl256* ctx,
|
||||
BitSequence_gr* output )
|
||||
{
|
||||
const int len = (int)ctx->databitlen / 128; // bits to __m128i
|
||||
const int blocks = ctx->blk_count + 1; // adjust for final block
|
||||
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE256 - hashlen_m128i; // where in buffer
|
||||
int i;
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
|
||||
// first pad byte = 0x80, last pad byte = block count
|
||||
// everything in between is zero
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
|
||||
if ( rem_ptr == len - 1 )
|
||||
{
|
||||
// all padding at once
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i = rem_ptr + 1; i < SIZE256 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
// add length padding
|
||||
// cheat since we know the block count is trivial, good if block < 256
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0 );
|
||||
}
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
|
||||
// digest final padding block and do output transform
|
||||
TF512( ctx->chaining, ctx->buffer );
|
||||
OF512( ctx->chaining );
|
||||
/* digest final padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation256( ctx );
|
||||
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i];
|
||||
/* store hash result in output */
|
||||
for ( int i = ( (SIZE - ctx->hashlen) / 16 ), j = 0; i < SIZE/16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining, i );
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256* ctx,
|
||||
void* output, const void* input, DataLength_gr databitlen )
|
||||
BitSequence_gr* output, const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
{
|
||||
const int len = (int)databitlen / 128;
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE256 - hashlen_m128i;
|
||||
int rem = ctx->rem_ptr;
|
||||
int blocks = len / SIZE256;
|
||||
__m128i* in = (__m128i*)input;
|
||||
int i;
|
||||
const int msglen = (int)(databitlen/8); // bytes
|
||||
int i, j;
|
||||
|
||||
// --- update ---
|
||||
/* digest bulk of message */
|
||||
Transform256( ctx, input, msglen );
|
||||
|
||||
// digest any full blocks, process directly from input
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF512( ctx->chaining, &in[ i * SIZE256 ] );
|
||||
ctx->buf_ptr = blocks * SIZE256;
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
|
||||
// cryptonight has 200 byte input, an odd number of __m128i
|
||||
// remainder is only 8 bytes, ie u64.
|
||||
if ( databitlen % 128 !=0 )
|
||||
{
|
||||
// must be cryptonight, copy 64 bits of data
|
||||
*(uint64_t*)(ctx->buffer) = *(uint64_t*)(&in[ ctx->buf_ptr ] );
|
||||
i = -1; // signal for odd length
|
||||
}
|
||||
else
|
||||
{
|
||||
// Copy any remaining data to buffer for final transform
|
||||
for ( i = 0; i < len % SIZE256; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
i += rem; // use i as rem_ptr in final
|
||||
}
|
||||
// start of final
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
|
||||
//--- final ---
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
|
||||
// adjust for final block
|
||||
blocks++;
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
|
||||
if ( i == len - 1 )
|
||||
{
|
||||
// all padding at once
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
|
||||
0, 0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
if ( i == -1 )
|
||||
{
|
||||
// cryptonight odd length
|
||||
((uint64_t*)ctx->buffer)[ 1 ] = 0x80ull;
|
||||
// finish the block with zero and length padding as normal
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
// add zero padding
|
||||
for ( i += 1; i < SIZE256 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
// add length padding
|
||||
// cheat since we know the block count is trivial, good if block < 256
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
|
||||
0, 0,0,0, 0,0,0,0 );
|
||||
}
|
||||
/* digest final padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation256( ctx );
|
||||
|
||||
// digest final padding block and do output transform
|
||||
TF512( ctx->chaining, ctx->buffer );
|
||||
OF512( ctx->chaining );
|
||||
/* store hash result in output */
|
||||
for ( i = ( (SIZE - ctx->hashlen) / 16 ), j = 0; i < SIZE/16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining, i );
|
||||
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/* hash bit sequence */
|
||||
|
@@ -9,7 +9,6 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <immintrin.h>
|
||||
#include <stdio.h>
|
||||
#if defined(_WIN64) || defined(__WINDOWS__)
|
||||
#include <windows.h>
|
||||
@@ -35,27 +34,29 @@ typedef crypto_uint64 u64;
|
||||
|
||||
#include "brg_endian.h"
|
||||
#define NEED_UINT_64T
|
||||
#include "algo/sha/brg_types.h"
|
||||
#include "brg_types.h"
|
||||
|
||||
#ifdef IACA_TRACE
|
||||
#include IACA_MARKS
|
||||
#endif
|
||||
|
||||
#define LENGTH (256)
|
||||
//#ifndef LENGTH
|
||||
//#define LENGTH (256)
|
||||
//#endif
|
||||
|
||||
/* some sizes (number of bytes) */
|
||||
#define ROWS (8)
|
||||
#define LENGTHFIELDLEN (ROWS)
|
||||
#define COLS512 (8)
|
||||
//#define COLS1024 (16)
|
||||
#define SIZE_512 ((ROWS)*(COLS512))
|
||||
//#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
#define COLS1024 (16)
|
||||
#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
#define ROUNDS512 (10)
|
||||
//#define ROUNDS1024 (14)
|
||||
#define ROUNDS1024 (14)
|
||||
|
||||
//#if LENGTH<=256
|
||||
#define COLS (COLS512)
|
||||
//#define SIZE (SIZE512)
|
||||
#define SIZE (SIZE512)
|
||||
#define ROUNDS (ROUNDS512)
|
||||
//#else
|
||||
//#define COLS (COLS1024)
|
||||
@@ -88,34 +89,28 @@ typedef enum
|
||||
BAD_HASHBITLEN_GR = 2
|
||||
} HashReturn_gr;
|
||||
|
||||
#define SIZE256 (SIZE_512/16)
|
||||
|
||||
typedef struct {
|
||||
__attribute__ ((aligned (32))) __m128i chaining[SIZE256];
|
||||
__attribute__ ((aligned (32))) __m128i buffer[SIZE256];
|
||||
// __attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
|
||||
// __attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
|
||||
// u64 block_counter; /* message block counter */
|
||||
__attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
|
||||
__attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
|
||||
u64 block_counter; /* message block counter */
|
||||
int hashlen; // bytes
|
||||
int blk_count;
|
||||
int buf_ptr; /* data buffer pointer */
|
||||
int rem_ptr;
|
||||
int databitlen;
|
||||
} hashState_groestl256;
|
||||
|
||||
HashReturn_gr init_groestl256( hashState_groestl256*, int );
|
||||
|
||||
HashReturn_gr reinit_groestl256( hashState_groestl256* );
|
||||
HashReturn_gr reinit_groestl( hashState_groestl256* );
|
||||
|
||||
HashReturn_gr update_groestl256( hashState_groestl256*, const void*,
|
||||
HashReturn_gr update_groestl( hashState_groestl256*, const BitSequence_gr*,
|
||||
DataLength_gr );
|
||||
|
||||
HashReturn_gr final_groestl256( hashState_groestl256*, void* );
|
||||
HashReturn_gr final_groestl( hashState_groestl256*, BitSequence_gr* );
|
||||
|
||||
HashReturn_gr hash_groestli256( int, const BitSequence_gr*, DataLength_gr,
|
||||
HashReturn_gr hash_groestl( int, const BitSequence_gr*, DataLength_gr,
|
||||
BitSequence_gr* );
|
||||
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256*, void*,
|
||||
const void*, DataLength_gr );
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256*,
|
||||
BitSequence_gr*, const BitSequence_gr*,
|
||||
DataLength_gr );
|
||||
|
||||
#endif /* __hash_h */
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <stdio.h>
|
||||
@@ -14,7 +15,7 @@
|
||||
typedef struct
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512_context groestl1, groestl2;
|
||||
sph_groestl512_context groestl;
|
||||
#else
|
||||
hashState_groestl groestl1, groestl2;
|
||||
#endif
|
||||
@@ -26,42 +27,43 @@ static groestl_ctx_holder groestl_ctx;
|
||||
void init_groestl_ctx()
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512_init( &groestl_ctx.groestl1 );
|
||||
sph_groestl512_init( &groestl_ctx.groestl2 );
|
||||
sph_groestl512_init( &groestl_ctx.groestl );
|
||||
#else
|
||||
init_groestl( &groestl_ctx.groestl1, 64 );
|
||||
init_groestl( &groestl_ctx.groestl2, 64 );
|
||||
#endif
|
||||
}
|
||||
|
||||
void groestlhash( void *output, const void *input )
|
||||
void groestlhash(void *output, const void *input)
|
||||
{
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
groestl_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(32) hash[16];
|
||||
groestl_ctx_holder ctx;
|
||||
memcpy( &ctx, &groestl_ctx, sizeof(groestl_ctx) );
|
||||
|
||||
// memset(&hash[0], 0, sizeof(hash));
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512(&ctx.groestl1, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl1, hash);
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
|
||||
sph_groestl512(&ctx.groestl2, hash, 64);
|
||||
sph_groestl512_close(&ctx.groestl2, hash);
|
||||
sph_groestl512(&ctx.groestl, hash, 64);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
#else
|
||||
update_and_final_groestl( &ctx.groestl1, (char*)hash,
|
||||
(const char*)input, 640 );
|
||||
update_groestl( &ctx.groestl1, (char*)input, 640 );
|
||||
final_groestl( &ctx.groestl1,(char*)hash);
|
||||
|
||||
update_and_final_groestl( &ctx.groestl2, (char*)hash,
|
||||
(const char*)hash, 512 );
|
||||
update_groestl( &ctx.groestl2, (char*)hash, 512 );
|
||||
final_groestl( &ctx.groestl2, (char*)hash);
|
||||
#endif
|
||||
memcpy(output, hash, 32);
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_groestl( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
int scanhash_groestl(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
@@ -72,7 +74,7 @@ int scanhash_groestl( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
do {
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8];
|
||||
be32enc(&endiandata[19], nonce);
|
||||
groestlhash(hash, endiandata);
|
||||
|
||||
@@ -98,21 +100,16 @@ void groestl_set_target( struct work* work, double job_diff )
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_dmd_gr_algo( algo_gate_t* gate )
|
||||
bool register_groestl_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_groestl_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_groestl;
|
||||
gate->hash = (void*)&groestlhash;
|
||||
gate->hash_alt = (void*)&groestlhash;
|
||||
gate->set_target = (void*)&groestl_set_target;
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
||||
bool register_groestl_algo( algo_gate_t* gate )
|
||||
{
|
||||
register_dmd_gr_algo( gate );
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <stdio.h>
|
||||
@@ -10,9 +11,7 @@
|
||||
#else
|
||||
#include "aes_ni/hash-groestl.h"
|
||||
#endif
|
||||
|
||||
#include <openssl/sha.h>
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include "algo/sha3/sph_sha2.h"
|
||||
|
||||
typedef struct {
|
||||
#ifdef NO_AES_NI
|
||||
@@ -20,11 +19,7 @@ typedef struct {
|
||||
#else
|
||||
hashState_groestl groestl;
|
||||
#endif
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX sha;
|
||||
#else
|
||||
sph_sha256_context sha;
|
||||
#endif
|
||||
sph_sha256_context sha;
|
||||
} myrgr_ctx_holder;
|
||||
|
||||
myrgr_ctx_holder myrgr_ctx;
|
||||
@@ -36,44 +31,37 @@ void init_myrgr_ctx()
|
||||
#else
|
||||
init_groestl (&myrgr_ctx.groestl, 64 );
|
||||
#endif
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &myrgr_ctx.sha );
|
||||
#else
|
||||
sph_sha256_init( &myrgr_ctx.sha );
|
||||
#endif
|
||||
sph_sha256_init(&myrgr_ctx.sha);
|
||||
}
|
||||
|
||||
void myriadhash( void *output, const void *input )
|
||||
void myriadhash(void *output, const void *input)
|
||||
{
|
||||
myrgr_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
myrgr_ctx_holder ctx;
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
|
||||
uint32_t _ALIGN(32) hash[16];
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
#else
|
||||
update_and_final_groestl( &ctx.groestl, (char*)input,
|
||||
(const char*)input, 640 );
|
||||
update_groestl( &ctx.groestl, (char*)input, 640 );
|
||||
final_groestl( &ctx.groestl, (char*)hash);
|
||||
#endif
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Update( &ctx.sha, hash, 64 );
|
||||
SHA256_Final( (unsigned char*) hash, &ctx.sha );
|
||||
#else
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
#endif
|
||||
memcpy(output, hash, 32);
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
int scanhash_myriad(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
@@ -84,7 +72,7 @@ int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
do {
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8];
|
||||
be32enc(&endiandata[19], nonce);
|
||||
myriadhash(hash, endiandata);
|
||||
|
||||
@@ -104,10 +92,11 @@ int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
bool register_myriad_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
init_myrgr_ctx();
|
||||
gate->scanhash = (void*)&scanhash_myriad;
|
||||
gate->hash = (void*)&myriadhash;
|
||||
gate->hash_alt = (void*)&myriadhash;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -40,7 +40,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for Groestl-224.
|
||||
|
133
algo/groestl/sse2/brg_endian.h
Normal file
133
algo/groestl/sse2/brg_endian.h
Normal file
@@ -0,0 +1,133 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _BRG_ENDIAN_H
|
||||
#define _BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __sun )
|
||||
# include <sys/isa_defs.h>
|
||||
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined( _AIX )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
231
algo/groestl/sse2/brg_types.h
Normal file
231
algo/groestl/sse2/brg_types.h
Normal file
@@ -0,0 +1,231 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
(a few lines added by Soeren S. Thomsen, October 2008)
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef _BRG_TYPES_H
|
||||
#define _BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# include <stddef.h>
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 )
|
||||
# include <stdint.h>
|
||||
# define ptrint_t intptr_t
|
||||
#else
|
||||
# define ptrint_t int
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI8
|
||||
# define BRG_UI8
|
||||
# if UCHAR_MAX == 255u
|
||||
typedef unsigned char uint_8t;
|
||||
# else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI16
|
||||
# define BRG_UI16
|
||||
# if USHRT_MAX == 65535u
|
||||
typedef unsigned short uint_16t;
|
||||
# else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI32
|
||||
# define BRG_UI32
|
||||
# if UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
typedef unsigned int uint_32t;
|
||||
# elif ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
typedef unsigned long uint_32t;
|
||||
# elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
# else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI64
|
||||
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( __MVS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned int long long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##u
|
||||
typedef unsigned int uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ul
|
||||
typedef unsigned long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined( BRG_UI64 )
|
||||
# if defined( NEED_UINT_64T )
|
||||
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to detect and set the memory alignment of pointers.
|
||||
Note that offsets are in bytes.
|
||||
|
||||
ALIGN_OFFSET(x,n) return the positive or zero offset of
|
||||
the memory addressed by the pointer 'x'
|
||||
from an address that is aligned on an
|
||||
'n' byte boundary ('n' is a power of 2)
|
||||
|
||||
ALIGN_FLOOR(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not higher than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
|
||||
ALIGN_CEIL(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not lower than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
*/
|
||||
|
||||
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
|
||||
#define ALIGN_FLOOR(x,n) ((uint_8t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
|
||||
#define ALIGN_CEIL(x,n) ((uint_8t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8. NOTE that the
|
||||
buffer size is in bytes but the type length is in bits
|
||||
|
||||
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
UNIT_CAST(x,size) casts a variable to a type of
|
||||
length 'size' bits
|
||||
|
||||
UPTR_CAST(x,size) casts a pointer to a pointer to a
|
||||
varaiable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define UI_TYPE(size) uint_##size##t
|
||||
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
|
||||
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
|
||||
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
|
||||
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
|
||||
|
||||
/* Added by Soeren S. Thomsen (begin) */
|
||||
#define u8 uint_8t
|
||||
#define u32 uint_32t
|
||||
#define u64 uint_64t
|
||||
/* (end) */
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
1063
algo/groestl/sse2/grso-asm.c
Normal file
1063
algo/groestl/sse2/grso-asm.c
Normal file
File diff suppressed because it is too large
Load Diff
10
algo/groestl/sse2/grso-asm.h
Normal file
10
algo/groestl/sse2/grso-asm.h
Normal file
@@ -0,0 +1,10 @@
|
||||
#ifndef GRSOASM_H
|
||||
#define GRSOASM_H
|
||||
|
||||
#include "grso.h"
|
||||
|
||||
void grsoP1024ASM (u64 *x) ;
|
||||
|
||||
void grsoQ1024ASM (u64 *x) ;
|
||||
|
||||
#endif
|
1016
algo/groestl/sse2/grso-asm2.c
Normal file
1016
algo/groestl/sse2/grso-asm2.c
Normal file
File diff suppressed because it is too large
Load Diff
11
algo/groestl/sse2/grso-asm2.h
Normal file
11
algo/groestl/sse2/grso-asm2.h
Normal file
@@ -0,0 +1,11 @@
|
||||
#ifndef GRSOASM_H
|
||||
#define GRSOASM_H
|
||||
/* really same as the mmx asm.h */
|
||||
/* made just in case something must be changed */
|
||||
#include "grso.h"
|
||||
|
||||
void grsoP1024ASM (u64 *x) ;
|
||||
|
||||
void grsoQ1024ASM (u64 *x) ;
|
||||
|
||||
#endif
|
110
algo/groestl/sse2/grso-macro.c
Normal file
110
algo/groestl/sse2/grso-macro.c
Normal file
@@ -0,0 +1,110 @@
|
||||
/* hash.c January 2011
|
||||
*
|
||||
* Groestl-512 implementation with inline assembly containing mmx and
|
||||
* sse instructions. Optimized for Opteron.
|
||||
* Authors: Krystian Matusiewicz and Soeren S. Thomsen
|
||||
*
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
//#include "grso.h"
|
||||
//#include "grso-asm.h"
|
||||
// #include "grsotab.h"
|
||||
|
||||
#define DECL_GRS
|
||||
|
||||
/* load initial constants */
|
||||
#define GRS_I \
|
||||
do { \
|
||||
int i; \
|
||||
/* set initial value */ \
|
||||
for (i = 0; i < grsoCOLS-1; i++) sts_grs.grsstate[i] = 0; \
|
||||
sts_grs.grsstate[grsoCOLS-1] = grsoU64BIG((u64)(8*grsoDIGESTSIZE)); \
|
||||
\
|
||||
/* set other variables */ \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
sts_grs.grsblock_counter = 0; \
|
||||
} while (0); \
|
||||
|
||||
/* load hash */
|
||||
#define GRS_U \
|
||||
do { \
|
||||
unsigned char* in = hash; \
|
||||
unsigned long long index = 0; \
|
||||
\
|
||||
/* if the buffer contains data that has not yet been digested, first \
|
||||
add data to buffer until full */ \
|
||||
if (sts_grs.grsbuf_ptr) { \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE && index < 64) { \
|
||||
hashbuf[(int)sts_grs.grsbuf_ptr++] = in[index++]; \
|
||||
} \
|
||||
if (sts_grs.grsbuf_ptr < grsoSIZE) continue; \
|
||||
\
|
||||
/* digest buffer */ \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
} \
|
||||
\
|
||||
/* digest bulk of message */ \
|
||||
grsoTransform(&sts_grs, in+index, 64-index); \
|
||||
index += ((64-index)/grsoSIZE)*grsoSIZE; \
|
||||
\
|
||||
/* store remaining data in buffer */ \
|
||||
while (index < 64) { \
|
||||
hashbuf[(int)sts_grs.grsbuf_ptr++] = in[index++]; \
|
||||
} \
|
||||
\
|
||||
} while (0);
|
||||
|
||||
/* groestl512 hash loaded */
|
||||
/* hash = groestl512(loaded) */
|
||||
#define GRS_C \
|
||||
do { \
|
||||
char *out = hash; \
|
||||
int i, j = 0; \
|
||||
unsigned char *s = (unsigned char*)sts_grs.grsstate; \
|
||||
\
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0x80; \
|
||||
\
|
||||
/* pad with '0'-bits */ \
|
||||
if (sts_grs.grsbuf_ptr > grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
/* padding requires two blocks */ \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE) { \
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0; \
|
||||
} \
|
||||
/* digest first padding block */ \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
} \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0; \
|
||||
} \
|
||||
\
|
||||
/* length padding */ \
|
||||
sts_grs.grsblock_counter++; \
|
||||
sts_grs.grsbuf_ptr = grsoSIZE; \
|
||||
while (sts_grs.grsbuf_ptr > grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
hashbuf[--sts_grs.grsbuf_ptr] = (unsigned char)sts_grs.grsblock_counter; \
|
||||
sts_grs.grsblock_counter >>= 8; \
|
||||
} \
|
||||
\
|
||||
/* digest final padding block */ \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
/* perform output transformation */ \
|
||||
grsoOutputTransformation(&sts_grs); \
|
||||
\
|
||||
/* store hash result in output */ \
|
||||
for (i = grsoSIZE-grsoDIGESTSIZE; i < grsoSIZE; i++,j++) { \
|
||||
out[j] = s[i]; \
|
||||
} \
|
||||
\
|
||||
/* zeroise relevant variables and deallocate memory */ \
|
||||
for (i = 0; i < grsoCOLS; i++) { \
|
||||
sts_grs.grsstate[i] = 0; \
|
||||
} \
|
||||
for (i = 0; i < grsoSIZE; i++) { \
|
||||
hashbuf[i] = 0; \
|
||||
} \
|
||||
} while (0);
|
||||
|
||||
|
57
algo/groestl/sse2/grso.c
Normal file
57
algo/groestl/sse2/grso.c
Normal file
@@ -0,0 +1,57 @@
|
||||
/* hash.c January 2011
|
||||
*
|
||||
* Groestl-512 implementation with inline assembly containing mmx and
|
||||
* sse instructions. Optimized for Opteron.
|
||||
* Authors: Krystian Matusiewicz and Soeren S. Thomsen
|
||||
*
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
#include "algo/groestl/sse2/grso-asm.h"
|
||||
#include "algo/groestl/sse2/grso.h"
|
||||
#include "algo/groestl/sse2/grsotab.h"
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void grsoTransform(grsoState *ctx,
|
||||
const unsigned char *in,
|
||||
unsigned long long len) {
|
||||
u64 y[grsoCOLS+2] __attribute__ ((aligned (16)));
|
||||
u64 z[grsoCOLS+2] __attribute__ ((aligned (16)));
|
||||
u64 *m, *h = (u64*)ctx->grsstate;
|
||||
int i;
|
||||
|
||||
/* increment block counter */
|
||||
ctx->grsblock_counter += len/grsoSIZE;
|
||||
|
||||
/* digest message, one block at a time */
|
||||
for (; len >= grsoSIZE; len -= grsoSIZE, in += grsoSIZE) {
|
||||
m = (u64*)in;
|
||||
for (i = 0; i < grsoCOLS; i++) {
|
||||
y[i] = m[i];
|
||||
z[i] = m[i] ^ h[i];
|
||||
}
|
||||
|
||||
grsoQ1024ASM(y);
|
||||
grsoP1024ASM(z);
|
||||
|
||||
/* h' == h + Q(m) + P(h+m) */
|
||||
for (i = 0; i < grsoCOLS; i++) {
|
||||
h[i] ^= z[i] ^ y[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void grsoOutputTransformation(grsoState *ctx) {
|
||||
u64 z[grsoCOLS] __attribute__ ((aligned (16)));
|
||||
int j;
|
||||
|
||||
for (j = 0; j < grsoCOLS; j++) {
|
||||
z[j] = ctx->grsstate[j];
|
||||
}
|
||||
grsoP1024ASM(z);
|
||||
for (j = 0; j < grsoCOLS; j++) {
|
||||
ctx->grsstate[j] ^= z[j];
|
||||
}
|
||||
}
|
||||
|
62
algo/groestl/sse2/grso.h
Normal file
62
algo/groestl/sse2/grso.h
Normal file
@@ -0,0 +1,62 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "brg_endian.h"
|
||||
#include "brg_types.h"
|
||||
|
||||
/* some sizes (number of bytes) */
|
||||
#define grsoROWS 8
|
||||
#define grsoLENGTHFIELDLEN grsoROWS
|
||||
#define grsoCOLS 16
|
||||
#define grsoSIZE (grsoROWS*grsoCOLS)
|
||||
#define grsoDIGESTSIZE 64
|
||||
|
||||
#define grsoROUNDS 14
|
||||
|
||||
#define grsoROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&((u64)0xffffffffffffffffULL))
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
|
||||
#error
|
||||
#endif /* IS_BIG_ENDIAN */
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*n)))
|
||||
#define grsoU64BIG(a) \
|
||||
((grsoROTL64(a, 8) & ((u64)0x000000ff000000ffULL)) | \
|
||||
(grsoROTL64(a,24) & ((u64)0x0000ff000000ff00ULL)) | \
|
||||
(grsoROTL64(a,40) & ((u64)0x00ff000000ff0000ULL)) | \
|
||||
(grsoROTL64(a,56) & ((u64)0xff000000ff000000ULL)))
|
||||
#endif /* IS_LITTLE_ENDIAN */
|
||||
|
||||
typedef struct {
|
||||
u64 grsstate[grsoCOLS]; /* actual state */
|
||||
u64 grsblock_counter; /* message block counter */
|
||||
int grsbuf_ptr; /* data buffer pointer */
|
||||
} grsoState;
|
||||
|
||||
//extern int grsoInit(grsoState* ctx);
|
||||
//extern int grsoUpdate(grsoState* ctx, const unsigned char* in,
|
||||
// unsigned long long len);
|
||||
//extern int grsoUpdateq(grsoState* ctx, const unsigned char* in);
|
||||
//extern int grsoFinal(grsoState* ctx,
|
||||
// unsigned char* out);
|
||||
//
|
||||
//extern int grsohash(unsigned char *out,
|
||||
// const unsigned char *in,
|
||||
// unsigned long long len);
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void grsoTransform( grsoState *ctx, const unsigned char *in,
|
||||
unsigned long long len );
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void grsoOutputTransformation( grsoState *ctx );
|
||||
|
||||
int grso_init ( grsoState* sts_grs );
|
||||
int grso_update ( grsoState* sts_grs, char* hashbuf, char* hash );
|
||||
int grso_close ( grsoState *sts_grs, char* hashbuf, char* hash );
|
||||
|
||||
|
||||
#endif /* __hash_h */
|
23
algo/groestl/sse2/grsotab.h
Normal file
23
algo/groestl/sse2/grsotab.h
Normal file
File diff suppressed because one or more lines are too long
@@ -36,7 +36,7 @@
|
||||
#define SPH_HAMSI_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
|
@@ -66,7 +66,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "algo/sha3/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for HAVAL-128/3.
|
||||
|
@@ -1,3 +1,4 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <stdio.h>
|
||||
@@ -24,7 +25,7 @@
|
||||
|
||||
void bastionhash(void *output, const void *input)
|
||||
{
|
||||
unsigned char hash[64] __attribute__ ((aligned (64)));
|
||||
unsigned char _ALIGN(128) hash[64] = { 0 };
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_echo512_context ctx_echo;
|
||||
@@ -35,6 +36,7 @@ void bastionhash(void *output, const void *input)
|
||||
sph_fugue512_context ctx_fugue;
|
||||
sph_whirlpool_context ctx_whirlpool;
|
||||
sph_shabal512_context ctx_shabal;
|
||||
// sph_skein512_context ctx_skein;
|
||||
sph_hamsi512_context ctx_hamsi;
|
||||
|
||||
unsigned char hashbuf[128] __attribute__ ((aligned (16)));
|
||||
@@ -45,10 +47,8 @@ void bastionhash(void *output, const void *input)
|
||||
HEFTY1(input, 80, hash);
|
||||
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
|
||||
if (hash[0] & 0x8)
|
||||
{
|
||||
@@ -60,6 +60,9 @@ void bastionhash(void *output, const void *input)
|
||||
SKN_I;
|
||||
SKN_U;
|
||||
SKN_C;
|
||||
// sph_skein512_init(&ctx_skein);
|
||||
// sph_skein512(&ctx_skein, hash, 64);
|
||||
// sph_skein512_close(&ctx_skein, hash);
|
||||
}
|
||||
|
||||
sph_whirlpool_init(&ctx_whirlpool);
|
||||
@@ -78,17 +81,13 @@ void bastionhash(void *output, const void *input)
|
||||
sph_echo512_close(&ctx_echo, hash);
|
||||
#else
|
||||
init_echo( &ctx_echo, 512 );
|
||||
update_final_echo ( &ctx_echo,(BitSequence*)hash,
|
||||
(const BitSequence*)hash, 512 );
|
||||
// update_echo ( &ctx_echo, hash, 512 );
|
||||
// final_echo( &ctx_echo, hash );
|
||||
update_echo ( &ctx_echo, hash, 512 );
|
||||
final_echo( &ctx_echo, hash );
|
||||
#endif
|
||||
} else {
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
}
|
||||
|
||||
sph_shabal512_init(&ctx_shabal);
|
||||
@@ -99,6 +98,9 @@ void bastionhash(void *output, const void *input)
|
||||
SKN_I;
|
||||
SKN_U;
|
||||
SKN_C;
|
||||
// sph_skein512_init(&ctx_skein);
|
||||
// sph_skein512(&ctx_skein, hash, 64);
|
||||
// sph_skein512_close(&ctx_skein, hash);
|
||||
|
||||
if (hash[0] & 0x8)
|
||||
{
|
||||
@@ -122,10 +124,8 @@ void bastionhash(void *output, const void *input)
|
||||
sph_hamsi512_close(&ctx_hamsi, hash);
|
||||
} else {
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
}
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
@@ -170,6 +170,7 @@ bool register_bastion_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_bastion;
|
||||
gate->hash = (void*)&bastionhash;
|
||||
gate->hash_alt = (void*)&bastionhash;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -2,6 +2,7 @@
|
||||
#include <openssl/sha.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
#include "sph_hefty1.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
|
@@ -1,12 +1,16 @@
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
#include "algo/groestl/sph_groestl.h"
|
||||
#include "algo/jh/sph_jh.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
|
||||
#include "algo/luffa/sph_luffa.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/shavite/sph_shavite.h"
|
||||
@@ -16,13 +20,14 @@
|
||||
#include "algo/fugue/sph_fugue.h"
|
||||
#include "algo/shabal/sph_shabal.h"
|
||||
#include "algo/whirlpool/sph_whirlpool.h"
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include "algo/sha2/sph-sha2.h"
|
||||
#include "algo/haval/sph-haval.h"
|
||||
#include <openssl/sha.h>
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/groestl/aes_ni/hash-groestl.h"
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
#endif
|
||||
|
||||
#include "algo/luffa/sse2/luffa_for_sse2.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/simd/sse2/nist.h"
|
||||
@@ -42,11 +47,7 @@ typedef struct {
|
||||
sph_fugue512_context fugue1, fugue2;
|
||||
sph_shabal512_context shabal1;
|
||||
sph_whirlpool_context whirlpool1, whirlpool2, whirlpool3, whirlpool4;
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA512_CTX sha1, sha2;
|
||||
#else
|
||||
sph_sha512_context sha1, sha2;
|
||||
#endif
|
||||
sph_haval256_5_context haval1, haval2;
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512_context groestl1, groestl2;
|
||||
@@ -57,8 +58,8 @@ typedef struct {
|
||||
#endif
|
||||
} hmq1725_ctx_holder;
|
||||
|
||||
static hmq1725_ctx_holder hmq1725_ctx __attribute__ ((aligned (64)));
|
||||
static __thread sph_bmw512_context hmq_bmw_mid __attribute__ ((aligned (64)));
|
||||
static hmq1725_ctx_holder hmq1725_ctx;
|
||||
static __thread sph_bmw512_context hmq_bmw_mid;
|
||||
|
||||
void init_hmq1725_ctx()
|
||||
{
|
||||
@@ -101,13 +102,9 @@ void init_hmq1725_ctx()
|
||||
sph_whirlpool_init(&hmq1725_ctx.whirlpool3);
|
||||
sph_whirlpool_init(&hmq1725_ctx.whirlpool4);
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA512_Init( &hmq1725_ctx.sha1 );
|
||||
SHA512_Init( &hmq1725_ctx.sha2 );
|
||||
#else
|
||||
sph_sha512_init(&hmq1725_ctx.sha1);
|
||||
sph_sha512_init(&hmq1725_ctx.sha2);
|
||||
#endif
|
||||
|
||||
sph_haval256_5_init(&hmq1725_ctx.haval1);
|
||||
sph_haval256_5_init(&hmq1725_ctx.haval2);
|
||||
|
||||
@@ -130,13 +127,13 @@ void hmq_bmw512_midstate( const void* input )
|
||||
sph_bmw512( &hmq_bmw_mid, input, 64 );
|
||||
}
|
||||
|
||||
__thread hmq1725_ctx_holder h_ctx __attribute__ ((aligned (64)));
|
||||
__thread hmq1725_ctx_holder h_ctx;
|
||||
|
||||
extern void hmq1725hash(void *state, const void *input)
|
||||
{
|
||||
const uint32_t mask = 24;
|
||||
uint32_t hashA[32] __attribute__((aligned(64)));
|
||||
uint32_t hashB[32] __attribute__((aligned(64)));
|
||||
uint32_t hashA[16] __attribute__((aligned(64)));
|
||||
uint32_t hashB[16] __attribute__((aligned(64)));
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
@@ -274,13 +271,8 @@ extern void hmq1725hash(void *state, const void *input)
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA512_Update( &h_ctx.sha1, hashB, 64 );
|
||||
SHA512_Final( (unsigned char*) hashA, &h_ctx.sha1 );
|
||||
#else
|
||||
sph_sha512 (&h_ctx.sha1, hashB, 64); //7
|
||||
sph_sha512_close(&h_ctx.sha1, hashA); //8
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
@@ -291,13 +283,8 @@ extern void hmq1725hash(void *state, const void *input)
|
||||
(const char*)hashA, 512 );
|
||||
#endif
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA512_Update( &h_ctx.sha2, hashB, 64 );
|
||||
SHA512_Final( (unsigned char*) hashA, &h_ctx.sha2 );
|
||||
#else
|
||||
sph_sha512 (&h_ctx.sha2, hashB, 64); //2
|
||||
sph_sha512_close(&h_ctx.sha2, hashA); //3
|
||||
#endif
|
||||
|
||||
if ( hashA[0] & mask ) //4
|
||||
{
|
||||
@@ -320,8 +307,8 @@ extern void hmq1725hash(void *state, const void *input)
|
||||
int scanhash_hmq1725( int thr_id, struct work *work, int32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t endiandata[32] __attribute__((aligned(64)));
|
||||
uint32_t hash64[8] __attribute__((aligned(64)));
|
||||
uint32_t endiandata[20] __attribute__((aligned(64)));
|
||||
uint32_t hash64[8] __attribute__((aligned(32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t n = pdata[19] - 1;
|
||||
@@ -429,10 +416,11 @@ int scanhash_hmq1725( int thr_id, struct work *work, int32_t max_nonce,
|
||||
bool register_hmq1725_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_hmq1725_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->scanhash = (void*)&scanhash_hmq1725;
|
||||
gate->hash = (void*)&hmq1725hash;
|
||||
gate->hash_alt = (void*)&hmq1725hash;
|
||||
return true;
|
||||
};
|
||||
|
171
algo/hodl/block.h
Normal file
171
algo/hodl/block.h
Normal file
@@ -0,0 +1,171 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_PRIMITIVES_BLOCK_H
|
||||
#define BITCOIN_PRIMITIVES_BLOCK_H
|
||||
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
|
||||
/** Nodes collect new transactions into a block, hash them into a hash tree,
|
||||
* and scan through nonce values to make the block's hash satisfy proof-of-work
|
||||
* requirements. When they solve the proof-of-work, they broadcast the block
|
||||
* to everyone and the block is added to the block chain. The first transaction
|
||||
* in the block is a special one that creates a new coin owned by the creator
|
||||
* of the block.
|
||||
*/
|
||||
class CBlockHeader
|
||||
{
|
||||
public:
|
||||
// header
|
||||
static const int32_t CURRENT_VERSION=4;
|
||||
int32_t nVersion;
|
||||
uint256 hashPrevBlock;
|
||||
uint256 hashMerkleRoot;
|
||||
uint32_t nTime;
|
||||
uint32_t nBits;
|
||||
uint32_t nNonce;
|
||||
uint32_t nStartLocation;
|
||||
uint32_t nFinalCalculation;
|
||||
|
||||
CBlockHeader()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(this->nVersion);
|
||||
nVersion = this->nVersion;
|
||||
READWRITE(hashPrevBlock);
|
||||
READWRITE(hashMerkleRoot);
|
||||
READWRITE(nTime);
|
||||
READWRITE(nBits);
|
||||
READWRITE(nNonce);
|
||||
READWRITE(nStartLocation);
|
||||
READWRITE(nFinalCalculation);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
nVersion = CBlockHeader::CURRENT_VERSION;
|
||||
hashPrevBlock.SetNull();
|
||||
hashMerkleRoot.SetNull();
|
||||
nTime = 0;
|
||||
nBits = 0;
|
||||
nNonce = 0;
|
||||
nStartLocation = 0;
|
||||
nFinalCalculation = 0;
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return (nBits == 0);
|
||||
}
|
||||
|
||||
uint256 GetHash() const;
|
||||
uint256 GetMidHash() const;
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad,int nThreads);
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad);
|
||||
|
||||
int64_t GetBlockTime() const
|
||||
{
|
||||
return (int64_t)nTime;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class CBlock : public CBlockHeader
|
||||
{
|
||||
public:
|
||||
// network and disk
|
||||
//std::vector<CTransaction> vtx;
|
||||
std::vector<int> vtx;
|
||||
|
||||
// memory only
|
||||
mutable std::vector<uint256> vMerkleTree;
|
||||
|
||||
CBlock()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
CBlock(const CBlockHeader &header)
|
||||
{
|
||||
SetNull();
|
||||
*((CBlockHeader*)this) = header;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(*(CBlockHeader*)this);
|
||||
READWRITE(vtx);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
CBlockHeader::SetNull();
|
||||
vtx.clear();
|
||||
vMerkleTree.clear();
|
||||
}
|
||||
|
||||
CBlockHeader GetBlockHeader() const
|
||||
{
|
||||
CBlockHeader block;
|
||||
block.nVersion = nVersion;
|
||||
block.hashPrevBlock = hashPrevBlock;
|
||||
block.hashMerkleRoot = hashMerkleRoot;
|
||||
block.nTime = nTime;
|
||||
block.nBits = nBits;
|
||||
block.nNonce = nNonce;
|
||||
block.nStartLocation = nStartLocation;
|
||||
block.nFinalCalculation = nFinalCalculation;
|
||||
return block;
|
||||
}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
|
||||
/** Describes a place in the block chain to another node such that if the
|
||||
* other node doesn't have the same branch, it can find a recent common trunk.
|
||||
* The further back it is, the further before the fork it may be.
|
||||
*/
|
||||
struct CBlockLocator
|
||||
{
|
||||
std::vector<uint256> vHave;
|
||||
|
||||
CBlockLocator() {}
|
||||
|
||||
CBlockLocator(const std::vector<uint256>& vHaveIn)
|
||||
{
|
||||
vHave = vHaveIn;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
if (!(nType & SER_GETHASH))
|
||||
READWRITE(nVersion);
|
||||
READWRITE(vHave);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
vHave.clear();
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return vHave.empty();
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_PRIMITIVES_BLOCK_H
|
70
algo/hodl/common.h
Normal file
70
algo/hodl/common.h
Normal file
@@ -0,0 +1,70 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_COMMON_H
|
||||
#define BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
#if defined(HAVE_CONFIG_H)
|
||||
#include "bitcoin-config.h"
|
||||
#endif
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
uint16_t static inline ReadLE16(const unsigned char* ptr)
|
||||
{
|
||||
return le16toh(*((uint16_t*)ptr));
|
||||
}
|
||||
|
||||
uint32_t static inline ReadLE32(const unsigned char* ptr)
|
||||
{
|
||||
return le32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadLE64(const unsigned char* ptr)
|
||||
{
|
||||
return le64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteLE16(unsigned char* ptr, uint16_t x)
|
||||
{
|
||||
*((uint16_t*)ptr) = htole16(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htole32(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htole64(x);
|
||||
}
|
||||
|
||||
uint32_t static inline ReadBE32(const unsigned char* ptr)
|
||||
{
|
||||
return be32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadBE64(const unsigned char* ptr)
|
||||
{
|
||||
return be64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteBE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htobe32(x);
|
||||
}
|
||||
|
||||
void static inline WriteBE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htobe64(x);
|
||||
}
|
||||
|
||||
#endif // BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
//#endif
|
83
algo/hodl/hash.cpp
Normal file
83
algo/hodl/hash.cpp
Normal file
@@ -0,0 +1,83 @@
|
||||
// Copyright (c) 2013-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hash.h"
|
||||
#include "common.h"
|
||||
#include "hmac_sha512.h"
|
||||
|
||||
|
||||
inline uint32_t ROTL32(uint32_t x, int8_t r)
|
||||
{
|
||||
return (x << r) | (x >> (32 - r));
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash)
|
||||
{
|
||||
// The following is MurmurHash3 (x86_32), see http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
|
||||
uint32_t h1 = nHashSeed;
|
||||
if (vDataToHash.size() > 0)
|
||||
{
|
||||
const uint32_t c1 = 0xcc9e2d51;
|
||||
const uint32_t c2 = 0x1b873593;
|
||||
|
||||
const int nblocks = vDataToHash.size() / 4;
|
||||
|
||||
//----------
|
||||
// body
|
||||
const uint8_t* blocks = &vDataToHash[0] + nblocks * 4;
|
||||
|
||||
for (int i = -nblocks; i; i++) {
|
||||
uint32_t k1 = ReadLE32(blocks + i*4);
|
||||
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
|
||||
h1 ^= k1;
|
||||
h1 = ROTL32(h1, 13);
|
||||
h1 = h1 * 5 + 0xe6546b64;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
const uint8_t* tail = (const uint8_t*)(&vDataToHash[0] + nblocks * 4);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
|
||||
switch (vDataToHash.size() & 3) {
|
||||
case 3:
|
||||
k1 ^= tail[2] << 16;
|
||||
case 2:
|
||||
k1 ^= tail[1] << 8;
|
||||
case 1:
|
||||
k1 ^= tail[0];
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
h1 ^= k1;
|
||||
};
|
||||
}
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
h1 ^= vDataToHash.size();
|
||||
h1 ^= h1 >> 16;
|
||||
h1 *= 0x85ebca6b;
|
||||
h1 ^= h1 >> 13;
|
||||
h1 *= 0xc2b2ae35;
|
||||
h1 ^= h1 >> 16;
|
||||
|
||||
return h1;
|
||||
}
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
|
||||
{
|
||||
unsigned char num[4];
|
||||
num[0] = (nChild >> 24) & 0xFF;
|
||||
num[1] = (nChild >> 16) & 0xFF;
|
||||
num[2] = (nChild >> 8) & 0xFF;
|
||||
num[3] = (nChild >> 0) & 0xFF;
|
||||
CHMAC_SHA512(chainCode.begin(), chainCode.size()).Write(&header, 1).Write(data, 32).Write(num, 4).Finalize(output);
|
||||
}
|
||||
|
176
algo/hodl/hash.h
Normal file
176
algo/hodl/hash.h
Normal file
@@ -0,0 +1,176 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_HASH_H
|
||||
#define BITCOIN_HASH_H
|
||||
|
||||
#include <iostream>
|
||||
//#include "ripemd160.h"
|
||||
#include "sha256.h"
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
//#include "version.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
static const int PROTOCOL_VERSION = 70002;
|
||||
|
||||
typedef uint256 ChainCode;
|
||||
|
||||
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
|
||||
class CHash256 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
sha.Reset().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash256& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash256& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
|
||||
/*
|
||||
class CHash160 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
CRIPEMD160().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash160& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash160& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
*/
|
||||
|
||||
/** Compute the 256-bit hash of an object. */
|
||||
template<typename T1>
|
||||
inline uint256 Hash(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of two objects. */
|
||||
template<typename T1, typename T2>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of three objects. */
|
||||
template<typename T1, typename T2, typename T3>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end,
|
||||
const T3 p3begin, const T3 p3end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** Compute the 160-bit hash an object. */
|
||||
/*
|
||||
template<typename T1>
|
||||
inline uint160 Hash160(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static unsigned char pblank[1] = {};
|
||||
uint160 result;
|
||||
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
*/
|
||||
/** Compute the 160-bit hash of a vector. */
|
||||
/*
|
||||
inline uint160 Hash160(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
return Hash160(vch.begin(), vch.end());
|
||||
}
|
||||
*/
|
||||
|
||||
/** A writer stream (for serialization) that computes a 256-bit hash. */
|
||||
class CHashWriter
|
||||
{
|
||||
private:
|
||||
CHash256 ctx;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CHashWriter& write(const char *pch, size_t size) {
|
||||
ctx.Write((const unsigned char*)pch, size);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
// invalidates the object
|
||||
uint256 GetHash() {
|
||||
uint256 result;
|
||||
ctx.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CHashWriter& operator<<(const T& obj) {
|
||||
// Serialize to this stream
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
};
|
||||
|
||||
/** Compute the 256-bit hash of an object's serialization. */
|
||||
template<typename T>
|
||||
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
|
||||
{
|
||||
CHashWriter ss(nType, nVersion);
|
||||
ss << obj;
|
||||
return ss.GetHash();
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
|
||||
|
||||
#endif // BITCOIN_HASH_H
|
33
algo/hodl/hmac_sha512.cpp
Normal file
33
algo/hodl/hmac_sha512.cpp
Normal file
@@ -0,0 +1,33 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hmac_sha512.h"
|
||||
#include <string.h>
|
||||
|
||||
CHMAC_SHA512::CHMAC_SHA512(const unsigned char* key, size_t keylen)
|
||||
{
|
||||
unsigned char rkey[128];
|
||||
if (keylen <= 128) {
|
||||
memcpy(rkey, key, keylen);
|
||||
memset(rkey + keylen, 0, 128 - keylen);
|
||||
} else {
|
||||
CSHA512().Write(key, keylen).Finalize(rkey);
|
||||
memset(rkey + 64, 0, 64);
|
||||
}
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c;
|
||||
outer.Write(rkey, 128);
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c ^ 0x36;
|
||||
inner.Write(rkey, 128);
|
||||
}
|
||||
|
||||
void CHMAC_SHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
unsigned char temp[64];
|
||||
inner.Finalize(temp);
|
||||
outer.Write(temp, 64).Finalize(hash);
|
||||
}
|
32
algo/hodl/hmac_sha512.h
Normal file
32
algo/hodl/hmac_sha512.h
Normal file
@@ -0,0 +1,32 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
#define BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
|
||||
#include "sha512.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for HMAC-SHA-512. */
|
||||
class CHMAC_SHA512
|
||||
{
|
||||
private:
|
||||
CSHA512 outer;
|
||||
CSHA512 inner;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CHMAC_SHA512(const unsigned char* key, size_t keylen);
|
||||
CHMAC_SHA512& Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
inner.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_HMAC_SHA512_H
|
@@ -1,7 +1,10 @@
|
||||
#include <memory.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "miner.h"
|
||||
//#include "algo-gate-api.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl.h"
|
||||
#include "hodl-wolf.h"
|
||||
|
||||
#define HODL_NSTARTLOC_INDEX 20
|
||||
@@ -94,7 +97,11 @@ bool hodl_do_this_thread( int thr_id )
|
||||
int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
#ifdef NO_AES_NI
|
||||
GetPsuedoRandomData( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl( thr_id, work, max_nonce, hashes_done );
|
||||
#else
|
||||
GenRandomGarbage( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl_wolf( thr_id, work, max_nonce, hashes_done );
|
||||
@@ -103,10 +110,6 @@ int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
|
||||
bool register_hodl_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
applog( LOG_ERR, "Only CPUs with AES are supported, use legacy version.");
|
||||
return false;
|
||||
#endif
|
||||
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&hodl_scanhash;
|
||||
|
@@ -13,41 +13,35 @@
|
||||
void GenerateGarbageCore(CacheEntry *Garbage, int ThreadID, int ThreadCount, void *MidHash)
|
||||
{
|
||||
#ifdef __AVX__
|
||||
uint64_t* TempBufs[SHA512_PARALLEL_N] ;
|
||||
uint64_t* TempBufs[SHA512_PARALLEL_N];
|
||||
uint64_t* desination[SHA512_PARALLEL_N];
|
||||
|
||||
for ( int i=0; i<SHA512_PARALLEL_N; ++i )
|
||||
{
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
TempBufs[i] = (uint64_t*)malloc(32);
|
||||
memcpy(TempBufs[i], MidHash, 32);
|
||||
}
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for ( uint32_t i = StartChunk;
|
||||
i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N )
|
||||
{
|
||||
for ( int j=0; j<SHA512_PARALLEL_N; ++j )
|
||||
{
|
||||
( (uint32_t*)TempBufs[j] )[0] = i + j;
|
||||
desination[j] = (uint64_t*)( (uint8_t *)Garbage + ( (i+j)
|
||||
* GARBAGE_CHUNK_SIZE ) );
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N) {
|
||||
for(int j=0; j<SHA512_PARALLEL_N; ++j) {
|
||||
((uint32_t*)TempBufs[j])[0] = i + j;
|
||||
desination[j] = (uint64_t*)((uint8_t *)Garbage + ((i+j) * GARBAGE_CHUNK_SIZE));
|
||||
}
|
||||
sha512Compute32b_parallel( TempBufs, desination );
|
||||
sha512Compute32b_parallel(TempBufs, desination);
|
||||
}
|
||||
|
||||
for ( int i=0; i<SHA512_PARALLEL_N; ++i )
|
||||
free( TempBufs[i] );
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
free(TempBufs[i]);
|
||||
}
|
||||
#else
|
||||
uint32_t TempBuf[8];
|
||||
memcpy( TempBuf, MidHash, 32 );
|
||||
memcpy(TempBuf, MidHash, 32);
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for ( uint32_t i = StartChunk;
|
||||
i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i )
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i)
|
||||
{
|
||||
TempBuf[0] = i;
|
||||
SHA512( ( uint8_t *)TempBuf, 32,
|
||||
( (uint8_t *)Garbage ) + ( i * GARBAGE_CHUNK_SIZE ) );
|
||||
SHA512((uint8_t *)TempBuf, 32, ((uint8_t *)Garbage) + (i * GARBAGE_CHUNK_SIZE));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
168
algo/hodl/hodl.cpp
Normal file
168
algo/hodl/hodl.cpp
Normal file
@@ -0,0 +1,168 @@
|
||||
#include "miner.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "block.h"
|
||||
#include <sstream>
|
||||
#include "tinyformat.h"
|
||||
#include <unordered_map>
|
||||
#include "hash.h"
|
||||
#include <openssl/aes.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/sha.h>
|
||||
|
||||
#define BEGIN(a) ((char*)&(a))
|
||||
#define END(a) ((char*)&((&(a))[1]))
|
||||
#define PSUEDORANDOM_DATA_SIZE 30 //2^30 = 1GB
|
||||
#define PSUEDORANDOM_DATA_CHUNK_SIZE 6 //2^6 = 64 bytes //must be same as SHA512_DIGEST_LENGTH 64
|
||||
#define L2CACHE_TARGET 12 // 2^12 = 4096 bytes
|
||||
#define AES_ITERATIONS 15
|
||||
|
||||
void SHA512Filler(char *mainMemoryPsuedoRandomData, int threadNumber, uint256 midHash){
|
||||
//Generate psuedo random data to store in main memory
|
||||
uint32_t chunks=(1<<(PSUEDORANDOM_DATA_SIZE-PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^(30-6) = 16 mil
|
||||
uint32_t chunkSize=(1<<(PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^6 = 64 bytes
|
||||
unsigned char hash_tmp[sizeof(midHash)];
|
||||
memcpy((char*)&hash_tmp[0], (char*)&midHash, sizeof(midHash) );
|
||||
uint32_t* index = (uint32_t*)hash_tmp;
|
||||
// uint32_t chunksToProcess=chunks/totalThreads;
|
||||
uint32_t chunksToProcess = chunks / opt_n_threads;
|
||||
uint32_t startChunk=threadNumber*chunksToProcess;
|
||||
for( uint32_t i = startChunk; i < startChunk+chunksToProcess; i++){
|
||||
//This changes the first character of hash_tmp
|
||||
*index = i;
|
||||
SHA512((unsigned char*)hash_tmp, sizeof(hash_tmp), (unsigned char*)&(mainMemoryPsuedoRandomData[i*chunkSize]));
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
// max_nonce is not used by this function
|
||||
int scanhash_hodl( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
unsigned char *mainMemoryPsuedoRandomData = hodl_scratchbuf;
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
//retreive target
|
||||
std::stringstream s;
|
||||
for (int i = 7; i>=0; i--)
|
||||
s << strprintf("%08x", ptarget[i]);
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock=uint256S(p.str());
|
||||
pblock.hashMerkleRoot=uint256S(m.str());
|
||||
uint256 hashTarget=uint256S(s.str());
|
||||
int collisions=0;
|
||||
uint256 hash;
|
||||
|
||||
//Begin AES Search
|
||||
//Allocate temporary memory
|
||||
uint32_t cacheMemorySize = (1<<L2CACHE_TARGET); //2^12 = 4096 bytes
|
||||
uint32_t comparisonSize=(1<<(PSUEDORANDOM_DATA_SIZE-L2CACHE_TARGET)); //2^(30-12) = 256K
|
||||
unsigned char *cacheMemoryOperatingData;
|
||||
unsigned char *cacheMemoryOperatingData2;
|
||||
cacheMemoryOperatingData=new unsigned char[cacheMemorySize+16];
|
||||
cacheMemoryOperatingData2=new unsigned char[cacheMemorySize];
|
||||
//Create references to data as 32 bit arrays
|
||||
uint32_t* cacheMemoryOperatingData32 = (uint32_t*)cacheMemoryOperatingData;
|
||||
uint32_t* cacheMemoryOperatingData322 = (uint32_t*)cacheMemoryOperatingData2;
|
||||
|
||||
//Search for pattern in psuedorandom data
|
||||
unsigned char key[32] = {0};
|
||||
unsigned char iv[AES_BLOCK_SIZE];
|
||||
int outlen1, outlen2;
|
||||
|
||||
//Iterate over the data
|
||||
// int searchNumber=comparisonSize/totalThreads;
|
||||
int searchNumber = comparisonSize / opt_n_threads;
|
||||
int startLoc=threadNumber*searchNumber;
|
||||
EVP_CIPHER_CTX ctx;
|
||||
for(int32_t k = startLoc;k<startLoc+searchNumber && !work_restart[threadNumber].restart;k++){
|
||||
//copy data to first l2 cache
|
||||
memcpy((char*)&cacheMemoryOperatingData[0], (char*)&mainMemoryPsuedoRandomData[k*cacheMemorySize], cacheMemorySize);
|
||||
for(int j=0;j<AES_ITERATIONS;j++){
|
||||
//use last 4 bytes of first cache as next location
|
||||
uint32_t nextLocation = cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
//Copy data from indicated location to second l2 cache -
|
||||
memcpy((char*)&cacheMemoryOperatingData2[0], (char*)&mainMemoryPsuedoRandomData[nextLocation*cacheMemorySize], cacheMemorySize);
|
||||
//XOR location data into second cache
|
||||
for(uint32_t i = 0; i < cacheMemorySize/4; i++)
|
||||
cacheMemoryOperatingData322[i] = cacheMemoryOperatingData32[i] ^ cacheMemoryOperatingData322[i];
|
||||
memcpy(key,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-32],32);
|
||||
memcpy(iv,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-AES_BLOCK_SIZE],AES_BLOCK_SIZE);
|
||||
EVP_EncryptInit(&ctx, EVP_aes_256_cbc(), key, iv);
|
||||
EVP_EncryptUpdate(&ctx, cacheMemoryOperatingData, &outlen1, cacheMemoryOperatingData2, cacheMemorySize);
|
||||
EVP_EncryptFinal(&ctx, cacheMemoryOperatingData + outlen1, &outlen2);
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
}
|
||||
//use last X bits as solution
|
||||
uint32_t solution=cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
if(solution<1000){
|
||||
uint32_t proofOfCalculation=cacheMemoryOperatingData32[(cacheMemorySize/4)-2];
|
||||
pblock.nStartLocation = k;
|
||||
pblock.nFinalCalculation = proofOfCalculation;
|
||||
hash = Hash(BEGIN(pblock.nVersion), END(pblock.nFinalCalculation));
|
||||
collisions++;
|
||||
if (UintToArith256(hash) <= UintToArith256(hashTarget) && !work_restart[threadNumber].restart){
|
||||
pdata[21] = swab32(pblock.nFinalCalculation);
|
||||
pdata[20] = swab32(pblock.nStartLocation);
|
||||
*hashes_done = collisions;
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
*hashes_done = collisions;
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData, uint32_t *pdata,
|
||||
int thr_id )
|
||||
{
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock= uint256S(p.str());
|
||||
pblock.hashMerkleRoot= uint256S(m.str());
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
uint256 midHash = Hash(BEGIN(pblock.nVersion), END(pblock.nNonce));
|
||||
SHA512Filler( mainMemoryPsuedoRandomData, thr_id, midHash);
|
||||
}
|
11
algo/hodl/hodl.h
Normal file
11
algo/hodl/hodl.h
Normal file
@@ -0,0 +1,11 @@
|
||||
extern int scanhash_hodl( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
extern void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData,
|
||||
uint32_t *pdata, int thr_id );
|
||||
|
||||
void hodl_set_target( struct work* work, double diff );
|
||||
|
||||
void hodl_copy_workdata( struct work* work, struct work* g_work );
|
||||
|
||||
|
258
algo/hodl/hodl_arith_uint256.cpp
Normal file
258
algo/hodl/hodl_arith_uint256.cpp
Normal file
@@ -0,0 +1,258 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include "common.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>::base_uint(const std::string& str)
|
||||
{
|
||||
SetHex(str);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i + k + 1 < WIDTH && shift != 0)
|
||||
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
|
||||
if (i + k < WIDTH)
|
||||
pn[i + k] |= (a.pn[i] << shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i - k - 1 >= 0 && shift != 0)
|
||||
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
|
||||
if (i - k >= 0)
|
||||
pn[i - k] |= (a.pn[i] >> shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
uint64_t n = carry + (uint64_t)b32 * pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> a = *this;
|
||||
*this = 0;
|
||||
for (int j = 0; j < WIDTH; j++) {
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i + j < WIDTH; i++) {
|
||||
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
|
||||
pn[i + j] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> div = b; // make a copy, so we can shift.
|
||||
base_uint<BITS> num = *this; // make a copy, so we can subtract.
|
||||
*this = 0; // the quotient.
|
||||
int num_bits = num.bits();
|
||||
int div_bits = div.bits();
|
||||
if (div_bits == 0)
|
||||
throw uint_error("Division by zero");
|
||||
if (div_bits > num_bits) // the result is certainly 0.
|
||||
return *this;
|
||||
int shift = num_bits - div_bits;
|
||||
div <<= shift; // shift so that div and num align.
|
||||
while (shift >= 0) {
|
||||
if (num >= div) {
|
||||
num -= div;
|
||||
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
|
||||
}
|
||||
div >>= 1; // shift back.
|
||||
shift--;
|
||||
}
|
||||
// num now contains the remainder of the division.
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 0; i--) {
|
||||
if (pn[i] < b.pn[i])
|
||||
return -1;
|
||||
if (pn[i] > b.pn[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
bool base_uint<BITS>::EqualTo(uint64_t b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 2; i--) {
|
||||
if (pn[i])
|
||||
return false;
|
||||
}
|
||||
if (pn[1] != (b >> 32))
|
||||
return false;
|
||||
if (pn[0] != (b & 0xfffffffful))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
double base_uint<BITS>::getdouble() const
|
||||
{
|
||||
double ret = 0.0;
|
||||
double fact = 1.0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
ret += fact * pn[i];
|
||||
fact *= 4294967296.0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::GetHex() const
|
||||
{
|
||||
return ArithToUint256(*this).GetHex();
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
*this = UintToArith256(uint256S(psz));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
unsigned int base_uint<BITS>::bits() const
|
||||
{
|
||||
for (int pos = WIDTH - 1; pos >= 0; pos--) {
|
||||
if (pn[pos]) {
|
||||
for (int bits = 31; bits > 0; bits--) {
|
||||
if (pn[pos] & 1 << bits)
|
||||
return 32 * pos + bits + 1;
|
||||
}
|
||||
return 32 * pos + 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_uint<256>
|
||||
template base_uint<256>::base_uint(const std::string&);
|
||||
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
|
||||
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
|
||||
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
|
||||
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
|
||||
template bool base_uint<256>::EqualTo(uint64_t) const;
|
||||
template double base_uint<256>::getdouble() const;
|
||||
template std::string base_uint<256>::GetHex() const;
|
||||
template std::string base_uint<256>::ToString() const;
|
||||
template void base_uint<256>::SetHex(const char*);
|
||||
template void base_uint<256>::SetHex(const std::string&);
|
||||
template unsigned int base_uint<256>::bits() const;
|
||||
|
||||
// This implementation directly uses shifts instead of going
|
||||
// through an intermediate MPI representation.
|
||||
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
|
||||
{
|
||||
int nSize = nCompact >> 24;
|
||||
uint32_t nWord = nCompact & 0x007fffff;
|
||||
if (nSize <= 3) {
|
||||
nWord >>= 8 * (3 - nSize);
|
||||
*this = nWord;
|
||||
} else {
|
||||
*this = nWord;
|
||||
*this <<= 8 * (nSize - 3);
|
||||
}
|
||||
if (pfNegative)
|
||||
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
|
||||
if (pfOverflow)
|
||||
*pfOverflow = nWord != 0 && ((nSize > 34) ||
|
||||
(nWord > 0xff && nSize > 33) ||
|
||||
(nWord > 0xffff && nSize > 32));
|
||||
return *this;
|
||||
}
|
||||
|
||||
uint32_t arith_uint256::GetCompact(bool fNegative) const
|
||||
{
|
||||
int nSize = (bits() + 7) / 8;
|
||||
uint32_t nCompact = 0;
|
||||
if (nSize <= 3) {
|
||||
nCompact = GetLow64() << 8 * (3 - nSize);
|
||||
} else {
|
||||
arith_uint256 bn = *this >> 8 * (nSize - 3);
|
||||
nCompact = bn.GetLow64();
|
||||
}
|
||||
// The 0x00800000 bit denotes the sign.
|
||||
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
|
||||
if (nCompact & 0x00800000) {
|
||||
nCompact >>= 8;
|
||||
nSize++;
|
||||
}
|
||||
assert((nCompact & ~0x007fffff) == 0);
|
||||
assert(nSize < 256);
|
||||
nCompact |= nSize << 24;
|
||||
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
|
||||
return nCompact;
|
||||
}
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &a)
|
||||
{
|
||||
uint256 b;
|
||||
for(int x=0; x<a.WIDTH; ++x)
|
||||
WriteLE32(b.begin() + x*4, a.pn[x]);
|
||||
return b;
|
||||
}
|
||||
arith_uint256 UintToArith256(const uint256 &a)
|
||||
{
|
||||
arith_uint256 b;
|
||||
for(int x=0; x<b.WIDTH; ++x)
|
||||
b.pn[x] = ReadLE32(a.begin() + x*4);
|
||||
return b;
|
||||
}
|
290
algo/hodl/hodl_arith_uint256.h
Normal file
290
algo/hodl/hodl_arith_uint256.h
Normal file
@@ -0,0 +1,290 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_ARITH_UINT256_H
|
||||
#define BITCOIN_ARITH_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class uint256;
|
||||
|
||||
class uint_error : public std::runtime_error {
|
||||
public:
|
||||
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
|
||||
};
|
||||
|
||||
/** Template base class for unsigned big integers. */
|
||||
template<unsigned int BITS>
|
||||
class base_uint
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/32 };
|
||||
uint32_t pn[WIDTH];
|
||||
public:
|
||||
|
||||
base_uint()
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
base_uint(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
}
|
||||
|
||||
base_uint& operator=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
explicit base_uint(const std::string& str);
|
||||
|
||||
bool operator!() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (pn[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
const base_uint operator~() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
const base_uint operator-() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
ret++;
|
||||
return ret;
|
||||
}
|
||||
|
||||
double getdouble() const;
|
||||
|
||||
base_uint& operator=(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] ^= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator&=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] &= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] |= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(uint64_t b)
|
||||
{
|
||||
pn[0] ^= (unsigned int)b;
|
||||
pn[1] ^= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(uint64_t b)
|
||||
{
|
||||
pn[0] |= (unsigned int)b;
|
||||
pn[1] |= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator<<=(unsigned int shift);
|
||||
base_uint& operator>>=(unsigned int shift);
|
||||
|
||||
base_uint& operator+=(const base_uint& b)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
{
|
||||
uint64_t n = carry + pn[i] + b.pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(const base_uint& b)
|
||||
{
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator+=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator*=(uint32_t b32);
|
||||
base_uint& operator*=(const base_uint& b);
|
||||
base_uint& operator/=(const base_uint& b);
|
||||
|
||||
base_uint& operator++()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (++pn[i] == 0 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator++(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
++(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
base_uint& operator--()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator--(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
--(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int CompareTo(const base_uint& b) const;
|
||||
bool EqualTo(uint64_t b) const;
|
||||
|
||||
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
|
||||
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
|
||||
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
|
||||
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
|
||||
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
|
||||
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
|
||||
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
|
||||
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
|
||||
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
|
||||
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
|
||||
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
|
||||
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
|
||||
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
|
||||
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
|
||||
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
|
||||
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
|
||||
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
|
||||
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(pn);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the position of the highest bit set plus one, or zero if the
|
||||
* value is zero.
|
||||
*/
|
||||
unsigned int bits() const;
|
||||
|
||||
uint64_t GetLow64() const
|
||||
{
|
||||
assert(WIDTH >= 2);
|
||||
return pn[0] | (uint64_t)pn[1] << 32;
|
||||
}
|
||||
};
|
||||
|
||||
/** 256-bit unsigned big integer. */
|
||||
class arith_uint256 : public base_uint<256> {
|
||||
public:
|
||||
arith_uint256() {}
|
||||
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
|
||||
arith_uint256(uint64_t b) : base_uint<256>(b) {}
|
||||
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
|
||||
|
||||
/**
|
||||
* The "compact" format is a representation of a whole
|
||||
* number N using an unsigned 32bit number similar to a
|
||||
* floating point format.
|
||||
* The most significant 8 bits are the unsigned exponent of base 256.
|
||||
* This exponent can be thought of as "number of bytes of N".
|
||||
* The lower 23 bits are the mantissa.
|
||||
* Bit number 24 (0x800000) represents the sign of N.
|
||||
* N = (-1^sign) * mantissa * 256^(exponent-3)
|
||||
*
|
||||
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
|
||||
* MPI uses the most significant bit of the first byte as sign.
|
||||
* Thus 0x1234560000 is compact (0x05123456)
|
||||
* and 0xc0de000000 is compact (0x0600c0de)
|
||||
*
|
||||
* Bitcoin only uses this "compact" format for encoding difficulty
|
||||
* targets, which are unsigned 256bit quantities. Thus, all the
|
||||
* complexities of the sign bit and using base 256 are probably an
|
||||
* implementation accident.
|
||||
*/
|
||||
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
|
||||
uint32_t GetCompact(bool fNegative = false) const;
|
||||
|
||||
friend uint256 ArithToUint256(const arith_uint256 &);
|
||||
friend arith_uint256 UintToArith256(const uint256 &);
|
||||
};
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &);
|
||||
arith_uint256 UintToArith256(const uint256 &);
|
||||
|
||||
#endif // BITCOIN_ARITH_UINT256_H
|
145
algo/hodl/hodl_uint256.cpp
Normal file
145
algo/hodl/hodl_uint256.cpp
Normal file
@@ -0,0 +1,145 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_blob<BITS>::base_blob(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
assert(vch.size() == sizeof(data));
|
||||
memcpy(data, &vch[0], sizeof(data));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::GetHex() const
|
||||
{
|
||||
char psz[sizeof(data) * 2 + 1];
|
||||
for (unsigned int i = 0; i < sizeof(data); i++)
|
||||
sprintf(psz + i * 2, "%02x", data[sizeof(data) - i - 1]);
|
||||
return std::string(psz, psz + sizeof(data) * 2);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
// skip leading spaces
|
||||
while (isspace(*psz))
|
||||
psz++;
|
||||
|
||||
// skip 0x
|
||||
if (psz[0] == '0' && tolower(psz[1]) == 'x')
|
||||
psz += 2;
|
||||
|
||||
// hex string to uint
|
||||
const char* pbegin = psz;
|
||||
while (::HexDigit(*psz) != -1)
|
||||
psz++;
|
||||
psz--;
|
||||
unsigned char* p1 = (unsigned char*)data;
|
||||
unsigned char* pend = p1 + WIDTH;
|
||||
while (psz >= pbegin && p1 < pend) {
|
||||
*p1 = ::HexDigit(*psz--);
|
||||
if (psz >= pbegin) {
|
||||
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
|
||||
p1++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_blob<160>
|
||||
template base_blob<160>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<160>::GetHex() const;
|
||||
template std::string base_blob<160>::ToString() const;
|
||||
template void base_blob<160>::SetHex(const char*);
|
||||
template void base_blob<160>::SetHex(const std::string&);
|
||||
|
||||
// Explicit instantiations for base_blob<256>
|
||||
template base_blob<256>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<256>::GetHex() const;
|
||||
template std::string base_blob<256>::ToString() const;
|
||||
template void base_blob<256>::SetHex(const char*);
|
||||
template void base_blob<256>::SetHex(const std::string&);
|
||||
|
||||
static void inline HashMix(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
a -= c;
|
||||
a ^= ((c << 4) | (c >> 28));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 6) | (a >> 26));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 8) | (b >> 24));
|
||||
b += a;
|
||||
a -= c;
|
||||
a ^= ((c << 16) | (c >> 16));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 19) | (a >> 13));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 4) | (b >> 28));
|
||||
b += a;
|
||||
}
|
||||
|
||||
static void inline HashFinal(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
c ^= b;
|
||||
c -= ((b << 14) | (b >> 18));
|
||||
a ^= c;
|
||||
a -= ((c << 11) | (c >> 21));
|
||||
b ^= a;
|
||||
b -= ((a << 25) | (a >> 7));
|
||||
c ^= b;
|
||||
c -= ((b << 16) | (b >> 16));
|
||||
a ^= c;
|
||||
a -= ((c << 4) | (c >> 28));
|
||||
b ^= a;
|
||||
b -= ((a << 14) | (a >> 18));
|
||||
c ^= b;
|
||||
c -= ((b << 24) | (b >> 8));
|
||||
}
|
||||
|
||||
uint64_t uint256::GetHash(const uint256& salt) const
|
||||
{
|
||||
uint32_t a, b, c;
|
||||
const uint32_t *pn = (const uint32_t*)data;
|
||||
const uint32_t *salt_pn = (const uint32_t*)salt.data;
|
||||
a = b = c = 0xdeadbeef + WIDTH;
|
||||
|
||||
a += pn[0] ^ salt_pn[0];
|
||||
b += pn[1] ^ salt_pn[1];
|
||||
c += pn[2] ^ salt_pn[2];
|
||||
HashMix(a, b, c);
|
||||
a += pn[3] ^ salt_pn[3];
|
||||
b += pn[4] ^ salt_pn[4];
|
||||
c += pn[5] ^ salt_pn[5];
|
||||
HashMix(a, b, c);
|
||||
a += pn[6] ^ salt_pn[6];
|
||||
b += pn[7] ^ salt_pn[7];
|
||||
HashFinal(a, b, c);
|
||||
|
||||
return ((((uint64_t)b) << 32) | c);
|
||||
}
|
||||
|
158
algo/hodl/hodl_uint256.h
Normal file
158
algo/hodl/hodl_uint256.h
Normal file
@@ -0,0 +1,158 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_UINT256_H
|
||||
#define BITCOIN_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
/** Template base class for fixed-sized opaque blobs. */
|
||||
template<unsigned int BITS>
|
||||
class base_blob
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/8 };
|
||||
uint8_t data[WIDTH];
|
||||
public:
|
||||
base_blob()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
explicit base_blob(const std::vector<unsigned char>& vch);
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (data[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
friend inline bool operator==(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) == 0; }
|
||||
friend inline bool operator!=(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) != 0; }
|
||||
friend inline bool operator<(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) < 0; }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned char* begin()
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
unsigned char* end()
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
const unsigned char* begin() const
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
const unsigned char* end() const
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int nType, int nVersion) const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int nType, int nVersion) const
|
||||
{
|
||||
s.write((char*)data, sizeof(data));
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int nType, int nVersion)
|
||||
{
|
||||
s.read((char*)data, sizeof(data));
|
||||
}
|
||||
};
|
||||
|
||||
/** 160-bit opaque blob.
|
||||
* @note This type is called uint160 for historical reasons only. It is an opaque
|
||||
* blob of 160 bits and has no integer operations.
|
||||
*/
|
||||
class uint160 : public base_blob<160> {
|
||||
public:
|
||||
uint160() {}
|
||||
uint160(const base_blob<160>& b) : base_blob<160>(b) {}
|
||||
explicit uint160(const std::vector<unsigned char>& vch) : base_blob<160>(vch) {}
|
||||
};
|
||||
|
||||
/** 256-bit opaque blob.
|
||||
* @note This type is called uint256 for historical reasons only. It is an
|
||||
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
|
||||
* those are required.
|
||||
*/
|
||||
class uint256 : public base_blob<256> {
|
||||
public:
|
||||
uint256() {}
|
||||
uint256(const base_blob<256>& b) : base_blob<256>(b) {}
|
||||
explicit uint256(const std::vector<unsigned char>& vch) : base_blob<256>(vch) {}
|
||||
|
||||
/** A cheap hash function that just returns 64 bits from the result, it can be
|
||||
* used when the contents are considered uniformly random. It is not appropriate
|
||||
* when the value can easily be influenced from outside as e.g. a network adversary could
|
||||
* provide values to trigger worst-case behavior.
|
||||
* @note The result of this function is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetCheapHash() const
|
||||
{
|
||||
uint64_t result;
|
||||
memcpy((void*)&result, (void*)data, 8);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** A more secure, salted hash function.
|
||||
* @note This hash is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetHash(const uint256& salt) const;
|
||||
};
|
||||
|
||||
/* uint256 from const char *.
|
||||
* This is a separate function because the constructor uint256(const char*) can result
|
||||
* in dangerously catching uint256(0).
|
||||
*/
|
||||
inline uint256 uint256S(const char *str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
/* uint256 from std::string.
|
||||
* This is a separate function because the constructor uint256(const std::string &str) can result
|
||||
* in dangerously catching uint256(0) via std::string(const char*).
|
||||
*/
|
||||
inline uint256 uint256S(const std::string& str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
|
||||
#endif // BITCOIN_UINT256_H
|
155
algo/hodl/my-byteswap.h
Normal file
155
algo/hodl/my-byteswap.h
Normal file
@@ -0,0 +1,155 @@
|
||||
/* Macros to swap the order of bytes in integer values.
|
||||
Copyright (C) 1997-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#if !defined _BYTESWAP_H && !defined _NETINET_IN_H && !defined _ENDIAN_H
|
||||
# error "Never use <bits/byteswap.h> directly; include <byteswap.h> instead."
|
||||
#endif
|
||||
|
||||
#ifndef _BITS_BYTESWAP_H
|
||||
#define _BITS_BYTESWAP_H 1
|
||||
|
||||
#include <features.h>
|
||||
#include <bits/types.h>
|
||||
#include <bits/wordsize.h>
|
||||
|
||||
/* Swap bytes in 16 bit value. */
|
||||
#define __bswap_constant_16(x) \
|
||||
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
|
||||
|
||||
/* Get __bswap_16. */
|
||||
#include <bits/byteswap-16.h>
|
||||
|
||||
/* Swap bytes in 32 bit value. */
|
||||
#define __bswap_constant_32(x) \
|
||||
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
|
||||
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
|
||||
|
||||
#ifdef __GNUC__
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __builtin_bswap32 (__bsx);
|
||||
}
|
||||
# elif __GNUC__ >= 2
|
||||
# if __WORDSIZE == 64 || (defined __i486__ || defined __pentium__ \
|
||||
|| defined __pentiumpro__ || defined __pentium4__ \
|
||||
|| defined __k8__ || defined __athlon__ \
|
||||
|| defined __k6__ || defined __nocona__ \
|
||||
|| defined __core2__ || defined __geode__ \
|
||||
|| defined __amdfam10__)
|
||||
/* To swap the bytes in a word the i486 processors and up provide the
|
||||
`bswap' opcode. On i386 we have to use three instructions. */
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("rorw $8, %w0;" \
|
||||
"rorl $16, %0;" \
|
||||
"rorw $8, %w0" \
|
||||
: "=r" (__v) \
|
||||
: "0" (__x) \
|
||||
: "cc"); \
|
||||
__v; }))
|
||||
# endif
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __x = (x); __bswap_constant_32 (__x); }))
|
||||
# endif
|
||||
#else
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __bswap_constant_32 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if __GNUC_PREREQ (2, 0)
|
||||
/* Swap bytes in 64 bit value. */
|
||||
# define __bswap_constant_64(x) \
|
||||
(__extension__ ((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56)))
|
||||
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __builtin_bswap64 (__bsx);
|
||||
}
|
||||
# elif __WORDSIZE == 64
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ __uint64_t __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_64 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %q0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ union { __extension__ __uint64_t __ll; \
|
||||
unsigned int __l[2]; } __w, __r; \
|
||||
if (__builtin_constant_p (x)) \
|
||||
__r.__ll = __bswap_constant_64 (x); \
|
||||
else \
|
||||
{ \
|
||||
__w.__ll = (x); \
|
||||
__r.__l[0] = __bswap_32 (__w.__l[1]); \
|
||||
__r.__l[1] = __bswap_32 (__w.__l[0]); \
|
||||
} \
|
||||
__r.__ll; }))
|
||||
# endif
|
||||
#else
|
||||
# define __bswap_constant_64(x) \
|
||||
((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56))
|
||||
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __bswap_constant_64 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _BITS_BYTESWAP_H */
|
103
algo/hodl/my-endian.h
Normal file
103
algo/hodl/my-endian.h
Normal file
@@ -0,0 +1,103 @@
|
||||
/* Copyright (C) 1992-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
// cloned from /usr/endian.h and modified
|
||||
|
||||
|
||||
|
||||
#ifndef _ENDIAN_H
|
||||
#define _ENDIAN_H 1
|
||||
|
||||
//#include <features.h>
|
||||
|
||||
/* Definitions for byte order, according to significance of bytes,
|
||||
from low addresses to high addresses. The value is what you get by
|
||||
putting '4' in the most significant byte, '3' in the second most
|
||||
significant byte, '2' in the second least significant byte, and '1'
|
||||
in the least significant byte, and then writing down one digit for
|
||||
each byte, starting with the byte at the lowest address at the left,
|
||||
and proceeding to the byte with the highest address at the right. */
|
||||
|
||||
#define __LITTLE_ENDIAN 1234
|
||||
#define __BIG_ENDIAN 4321
|
||||
#define __PDP_ENDIAN 3412
|
||||
|
||||
/* This file defines `__BYTE_ORDER' for the particular machine. */
|
||||
//#include <bits/endian.h>
|
||||
#define __BYTE_ORDER __LITTLE_ENDIAN
|
||||
|
||||
/* Some machines may need to use a different endianness for floating point
|
||||
values. */
|
||||
#ifndef __FLOAT_WORD_ORDER
|
||||
# define __FLOAT_WORD_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#ifdef __USE_BSD
|
||||
# define LITTLE_ENDIAN __LITTLE_ENDIAN
|
||||
# define BIG_ENDIAN __BIG_ENDIAN
|
||||
# define PDP_ENDIAN __PDP_ENDIAN
|
||||
# define BYTE_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) LO, HI
|
||||
#elif __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) HI, LO
|
||||
#endif
|
||||
|
||||
|
||||
#if defined __USE_BSD && !defined __ASSEMBLER__
|
||||
/* Conversion interfaces. */
|
||||
//# include <bits/byteswap.h>
|
||||
#include "my-byteswap.h"
|
||||
|
||||
|
||||
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define htobe16(x) __bswap_16 (x)
|
||||
# define htole16(x) (x)
|
||||
# define be16toh(x) __bswap_16 (x)
|
||||
# define le16toh(x) (x)
|
||||
|
||||
# define htobe32(x) __bswap_32 (x)
|
||||
# define htole32(x) (x)
|
||||
# define be32toh(x) __bswap_32 (x)
|
||||
# define le32toh(x) (x)
|
||||
|
||||
# define htobe64(x) __bswap_64 (x)
|
||||
# define htole64(x) (x)
|
||||
# define be64toh(x) __bswap_64 (x)
|
||||
# define le64toh(x) (x)
|
||||
|
||||
# else
|
||||
# define htobe16(x) (x)
|
||||
# define htole16(x) __bswap_16 (x)
|
||||
# define be16toh(x) (x)
|
||||
# define le16toh(x) __bswap_16 (x)
|
||||
|
||||
# define htobe32(x) (x)
|
||||
# define htole32(x) __bswap_32 (x)
|
||||
# define be32toh(x) (x)
|
||||
# define le32toh(x) __bswap_32 (x)
|
||||
|
||||
# define htobe64(x) (x)
|
||||
# define htole64(x) __bswap_64 (x)
|
||||
# define be64toh(x) (x)
|
||||
# define le64toh(x) __bswap_64 (x)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif /* endian.h */
|
862
algo/hodl/serialize.h
Normal file
862
algo/hodl/serialize.h
Normal file
@@ -0,0 +1,862 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_SERIALIZE_H
|
||||
#define BITCOIN_SERIALIZE_H
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <ios>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
class CScript;
|
||||
|
||||
static const unsigned int MAX_SIZE = 0x02000000;
|
||||
|
||||
/**
|
||||
* Used to bypass the rule against non-const reference to temporary
|
||||
* where it makes sense with wrappers such as CFlatData or CTxDB
|
||||
*/
|
||||
template<typename T>
|
||||
inline T& REF(const T& val)
|
||||
{
|
||||
return const_cast<T&>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Used to acquire a non-const pointer "this" to generate bodies
|
||||
* of const serialization operations from a template
|
||||
*/
|
||||
template<typename T>
|
||||
inline T* NCONST_PTR(const T* val)
|
||||
{
|
||||
return const_cast<T*>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get begin pointer of vector (non-const version).
|
||||
* @note These functions avoid the undefined case of indexing into an empty
|
||||
* vector, as well as that of indexing after the end of the vector.
|
||||
*/
|
||||
template <class T, class TAl>
|
||||
inline T* begin_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get begin pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* begin_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get end pointer of vector (non-const version) */
|
||||
template <class T, class TAl>
|
||||
inline T* end_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
/** Get end pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* end_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
|
||||
/*
|
||||
* Lowest-level serialization and conversion.
|
||||
* @note Sizes of these types are verified in the tests
|
||||
*/
|
||||
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
|
||||
{
|
||||
s.write((char*)&obj, 1);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
|
||||
{
|
||||
obj = htole16(obj);
|
||||
s.write((char*)&obj, 2);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
|
||||
{
|
||||
obj = htole32(obj);
|
||||
s.write((char*)&obj, 4);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
|
||||
{
|
||||
obj = htole64(obj);
|
||||
s.write((char*)&obj, 8);
|
||||
}
|
||||
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
|
||||
{
|
||||
uint8_t obj;
|
||||
s.read((char*)&obj, 1);
|
||||
return obj;
|
||||
}
|
||||
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
|
||||
{
|
||||
uint16_t obj;
|
||||
s.read((char*)&obj, 2);
|
||||
return le16toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
|
||||
{
|
||||
uint32_t obj;
|
||||
s.read((char*)&obj, 4);
|
||||
return le32toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
|
||||
{
|
||||
uint64_t obj;
|
||||
s.read((char*)&obj, 8);
|
||||
return le64toh(obj);
|
||||
}
|
||||
inline uint64_t ser_double_to_uint64(double x)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline uint32_t ser_float_to_uint32(float x)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline double ser_uint64_to_double(uint64_t y)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
inline float ser_uint32_to_float(uint32_t y)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Templates for serializing to anything that looks like a stream,
|
||||
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
|
||||
//
|
||||
|
||||
enum
|
||||
{
|
||||
// primary actions
|
||||
SER_NETWORK = (1 << 0),
|
||||
SER_DISK = (1 << 1),
|
||||
SER_GETHASH = (1 << 2),
|
||||
};
|
||||
|
||||
#define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action))
|
||||
|
||||
/**
|
||||
* Implement three methods for serializable objects. These are actually wrappers over
|
||||
* "SerializationOp" template, which implements the body of each class' serialization
|
||||
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
|
||||
* added as members.
|
||||
*/
|
||||
#define ADD_SERIALIZE_METHODS \
|
||||
size_t GetSerializeSize(int nType, int nVersion) const { \
|
||||
CSizeComputer s(nType, nVersion); \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
return s.size(); \
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Serialize(Stream& s, int nType, int nVersion) const { \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Unserialize(Stream& s, int nType, int nVersion) { \
|
||||
SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic Types
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(char a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(uint8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(uint16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(int32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(uint32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(int64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(uint64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(float a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(double a, int, int=0) { return 8; }
|
||||
|
||||
template<typename Stream> inline void Serialize(Stream& s, char a, int, int=0) { ser_writedata8(s, a); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Serialize(Stream& s, int8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, float a, int, int=0) { ser_writedata32(s, ser_float_to_uint32(a)); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, double a, int, int=0) { ser_writedata64(s, ser_double_to_uint64(a)); }
|
||||
|
||||
template<typename Stream> inline void Unserialize(Stream& s, char& a, int, int=0) { a = ser_readdata8(s); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, float& a, int, int=0) { a = ser_uint32_to_float(ser_readdata32(s)); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, double& a, int, int=0) { a = ser_uint64_to_double(ser_readdata64(s)); }
|
||||
|
||||
inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; ser_writedata8(s, f); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, bool& a, int, int=0) { char f=ser_readdata8(s); a=f; }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Compact Size
|
||||
* size < 253 -- 1 byte
|
||||
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
|
||||
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
|
||||
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
|
||||
*/
|
||||
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253) return sizeof(unsigned char);
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
|
||||
else return sizeof(unsigned char) + sizeof(uint64_t);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void WriteCompactSize(Stream& os, uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253)
|
||||
{
|
||||
ser_writedata8(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max())
|
||||
{
|
||||
ser_writedata8(os, 253);
|
||||
ser_writedata16(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max())
|
||||
{
|
||||
ser_writedata8(os, 254);
|
||||
ser_writedata32(os, nSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
ser_writedata8(os, 255);
|
||||
ser_writedata64(os, nSize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
uint64_t ReadCompactSize(Stream& is)
|
||||
{
|
||||
uint8_t chSize = ser_readdata8(is);
|
||||
uint64_t nSizeRet = 0;
|
||||
if (chSize < 253)
|
||||
{
|
||||
nSizeRet = chSize;
|
||||
}
|
||||
else if (chSize == 253)
|
||||
{
|
||||
nSizeRet = ser_readdata16(is);
|
||||
if (nSizeRet < 253)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else if (chSize == 254)
|
||||
{
|
||||
nSizeRet = ser_readdata32(is);
|
||||
if (nSizeRet < 0x10000u)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else
|
||||
{
|
||||
nSizeRet = ser_readdata64(is);
|
||||
if (nSizeRet < 0x100000000ULL)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
if (nSizeRet > (uint64_t)MAX_SIZE)
|
||||
throw std::ios_base::failure("ReadCompactSize(): size too large");
|
||||
return nSizeRet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
|
||||
* The high bit in each byte signifies whether another digit follows. To make
|
||||
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
|
||||
* Thus, the byte sequence a[] with length len, where all but the last byte
|
||||
* has bit 128 set, encodes the number:
|
||||
*
|
||||
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
|
||||
*
|
||||
* Properties:
|
||||
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
|
||||
* * Every integer has exactly one encoding
|
||||
* * Encoding does not depend on size of original integer type
|
||||
* * No redundancy: every (infinite) byte sequence corresponds to a list
|
||||
* of encoded integers.
|
||||
*
|
||||
* 0: [0x00] 256: [0x81 0x00]
|
||||
* 1: [0x01] 16383: [0xFE 0x7F]
|
||||
* 127: [0x7F] 16384: [0xFF 0x00]
|
||||
* 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F]
|
||||
* 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F]
|
||||
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
|
||||
*/
|
||||
|
||||
template<typename I>
|
||||
inline unsigned int GetSizeOfVarInt(I n)
|
||||
{
|
||||
int nRet = 0;
|
||||
while(true) {
|
||||
nRet++;
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
}
|
||||
return nRet;
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
void WriteVarInt(Stream& os, I n)
|
||||
{
|
||||
unsigned char tmp[(sizeof(n)*8+6)/7];
|
||||
int len=0;
|
||||
while(true) {
|
||||
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
len++;
|
||||
}
|
||||
do {
|
||||
ser_writedata8(os, tmp[len]);
|
||||
} while(len--);
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
I ReadVarInt(Stream& is)
|
||||
{
|
||||
I n = 0;
|
||||
while(true) {
|
||||
unsigned char chData = ser_readdata8(is);
|
||||
n = (n << 7) | (chData & 0x7F);
|
||||
if (chData & 0x80)
|
||||
n++;
|
||||
else
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
|
||||
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
|
||||
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
|
||||
|
||||
/**
|
||||
* Wrapper for serializing arrays and POD.
|
||||
*/
|
||||
class CFlatData
|
||||
{
|
||||
protected:
|
||||
char* pbegin;
|
||||
char* pend;
|
||||
public:
|
||||
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
|
||||
template <class T, class TAl>
|
||||
explicit CFlatData(std::vector<T,TAl> &v)
|
||||
{
|
||||
pbegin = (char*)begin_ptr(v);
|
||||
pend = (char*)end_ptr(v);
|
||||
}
|
||||
char* begin() { return pbegin; }
|
||||
const char* begin() const { return pbegin; }
|
||||
char* end() { return pend; }
|
||||
const char* end() const { return pend; }
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return pend - pbegin;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
s.write(pbegin, pend - pbegin);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
s.read(pbegin, pend - pbegin);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
class CVarInt
|
||||
{
|
||||
protected:
|
||||
I &n;
|
||||
public:
|
||||
CVarInt(I& nIn) : n(nIn) { }
|
||||
|
||||
unsigned int GetSerializeSize(int, int) const {
|
||||
return GetSizeOfVarInt<I>(n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream &s, int, int) const {
|
||||
WriteVarInt<Stream,I>(s, n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int) {
|
||||
n = ReadVarInt<Stream,I>(s);
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t Limit>
|
||||
class LimitedString
|
||||
{
|
||||
protected:
|
||||
std::string& string;
|
||||
public:
|
||||
LimitedString(std::string& string) : string(string) {}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
size_t size = ReadCompactSize(s);
|
||||
if (size > Limit) {
|
||||
throw std::ios_base::failure("String length limit exceeded");
|
||||
}
|
||||
string.resize(size);
|
||||
if (size != 0)
|
||||
s.read((char*)&string[0], size);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
WriteCompactSize(s, string.size());
|
||||
if (!string.empty())
|
||||
s.write((char*)&string[0], string.size());
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return GetSizeOfCompactSize(string.size()) + string.size();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
|
||||
|
||||
/**
|
||||
* Forward declarations
|
||||
*/
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C> unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str, int, int=0);
|
||||
|
||||
/**
|
||||
* vector
|
||||
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
|
||||
*/
|
||||
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename T, typename A, typename V> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename T, typename A> inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Serialize(Stream& os, const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Unserialize(Stream& is, CScript& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T> unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A> unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A> unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* If none of the specialized versions above matched, default to calling member function.
|
||||
* "int nType" is changed to "long nType" to keep from getting an ambiguous overload error.
|
||||
* The compiler will only cast int to long if none of the other templates matched.
|
||||
* Thanks to Boost serialization for this idea.
|
||||
*/
|
||||
template<typename T>
|
||||
inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion)
|
||||
{
|
||||
return a.GetSerializeSize((int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Serialize(Stream& os, const T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Serialize(os, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Unserialize(Stream& is, T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Unserialize(is, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C>
|
||||
unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]);
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Serialize(Stream& os, const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
WriteCompactSize(os, str.size());
|
||||
if (!str.empty())
|
||||
os.write((char*)&str[0], str.size() * sizeof(str[0]));
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Unserialize(Stream& is, std::basic_string<C>& str, int, int)
|
||||
{
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
str.resize(nSize);
|
||||
if (nSize != 0)
|
||||
is.read((char*)&str[0], nSize * sizeof(str[0]));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* vector
|
||||
*/
|
||||
template<typename T, typename A>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T, typename A, typename V>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
nSize += GetSerializeSize((*vi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename T, typename A>
|
||||
inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize_impl(v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
if (!v.empty())
|
||||
os.write((char*)&v[0], v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
::Serialize(os, (*vi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize_impl(os, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
// Limit size per read so bogus size value won't cause out of memory
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
while (i < nSize)
|
||||
{
|
||||
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
|
||||
v.resize(i + blk);
|
||||
is.read((char*)&v[i], blk * sizeof(T));
|
||||
i += blk;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
unsigned int nMid = 0;
|
||||
while (nMid < nSize)
|
||||
{
|
||||
nMid += 5000000 / sizeof(T);
|
||||
if (nMid > nSize)
|
||||
nMid = nSize;
|
||||
v.resize(nMid);
|
||||
for (; i < nMid; i++)
|
||||
Unserialize(is, v[i], nType, nVersion);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize_impl(is, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize((const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& os, const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, (const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& is, CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, (std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T>
|
||||
unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, item.first, nType, nVersion);
|
||||
Serialize(os, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, item.first, nType, nVersion);
|
||||
Unserialize(is, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
nSize += GetSerializeSize((*mi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
Serialize(os, (*mi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
std::pair<K, T> item;
|
||||
Unserialize(is, item, nType, nVersion);
|
||||
mi = m.insert(mi, item);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
nSize += GetSerializeSize((*it), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
Serialize(os, (*it), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::set<K, Pred, A>::iterator it = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
K key;
|
||||
Unserialize(is, key, nType, nVersion);
|
||||
it = m.insert(it, key);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
|
||||
*/
|
||||
struct CSerActionSerialize
|
||||
{
|
||||
bool ForRead() const { return false; }
|
||||
};
|
||||
struct CSerActionUnserialize
|
||||
{
|
||||
bool ForRead() const { return true; }
|
||||
};
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action)
|
||||
{
|
||||
::Serialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action)
|
||||
{
|
||||
::Unserialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class CSizeComputer
|
||||
{
|
||||
protected:
|
||||
size_t nSize;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CSizeComputer& write(const char *psz, size_t nSize)
|
||||
{
|
||||
this->nSize += nSize;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CSizeComputer& operator<<(const T& obj)
|
||||
{
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return nSize;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_SERIALIZE_H
|
187
algo/hodl/sha256.cpp
Normal file
187
algo/hodl/sha256.cpp
Normal file
@@ -0,0 +1,187 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha256.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-256 implementation.
|
||||
namespace sha256
|
||||
{
|
||||
uint32_t inline Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint32_t inline Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint32_t inline Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); }
|
||||
uint32_t inline Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); }
|
||||
uint32_t inline sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); }
|
||||
uint32_t inline sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); }
|
||||
|
||||
/** One round of SHA-256. */
|
||||
void inline Round(uint32_t a, uint32_t b, uint32_t c, uint32_t& d, uint32_t e, uint32_t f, uint32_t g, uint32_t& h, uint32_t k, uint32_t w)
|
||||
{
|
||||
uint32_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint32_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667ul;
|
||||
s[1] = 0xbb67ae85ul;
|
||||
s[2] = 0x3c6ef372ul;
|
||||
s[3] = 0xa54ff53aul;
|
||||
s[4] = 0x510e527ful;
|
||||
s[5] = 0x9b05688cul;
|
||||
s[6] = 0x1f83d9abul;
|
||||
s[7] = 0x5be0cd19ul;
|
||||
}
|
||||
|
||||
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
|
||||
void Transform(uint32_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = ReadBE32(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = ReadBE32(chunk + 4));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = ReadBE32(chunk + 8));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = ReadBE32(chunk + 12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = ReadBE32(chunk + 16));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = ReadBE32(chunk + 20));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = ReadBE32(chunk + 24));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = ReadBE32(chunk + 28));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = ReadBE32(chunk + 32));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = ReadBE32(chunk + 36));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = ReadBE32(chunk + 40));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = ReadBE32(chunk + 44));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = ReadBE32(chunk + 48));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = ReadBE32(chunk + 52));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = ReadBE32(chunk + 56));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = ReadBE32(chunk + 60));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha256
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-256
|
||||
|
||||
CSHA256::CSHA256() : bytes(0)
|
||||
{
|
||||
sha256::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 64;
|
||||
if (bufsize && bufsize + len >= 64) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 64 - bufsize);
|
||||
bytes += 64 - bufsize;
|
||||
data += 64 - bufsize;
|
||||
sha256::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 64) {
|
||||
// Process full chunks directly from the source.
|
||||
sha256::Transform(s, data);
|
||||
bytes += 64;
|
||||
data += 64;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[64] = {0x80};
|
||||
unsigned char sizedesc[8];
|
||||
WriteBE64(sizedesc, bytes << 3);
|
||||
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
|
||||
Write(sizedesc, 8);
|
||||
WriteBE32(hash, s[0]);
|
||||
WriteBE32(hash + 4, s[1]);
|
||||
WriteBE32(hash + 8, s[2]);
|
||||
WriteBE32(hash + 12, s[3]);
|
||||
WriteBE32(hash + 16, s[4]);
|
||||
WriteBE32(hash + 20, s[5]);
|
||||
WriteBE32(hash + 24, s[6]);
|
||||
WriteBE32(hash + 28, s[7]);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha256::Initialize(s);
|
||||
return *this;
|
||||
}
|
28
algo/hodl/sha256.h
Normal file
28
algo/hodl/sha256.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA256_H
|
||||
#define BITCOIN_CRYPTO_SHA256_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-256. */
|
||||
class CSHA256
|
||||
{
|
||||
private:
|
||||
uint32_t s[8];
|
||||
unsigned char buf[64];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 32;
|
||||
|
||||
CSHA256();
|
||||
CSHA256& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA256& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA256_H
|
205
algo/hodl/sha512.cpp
Normal file
205
algo/hodl/sha512.cpp
Normal file
@@ -0,0 +1,205 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha512.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-512 implementation.
|
||||
namespace sha512
|
||||
{
|
||||
uint64_t inline Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint64_t inline Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint64_t inline Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); }
|
||||
uint64_t inline Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); }
|
||||
uint64_t inline sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); }
|
||||
uint64_t inline sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); }
|
||||
|
||||
/** One round of SHA-512. */
|
||||
void inline Round(uint64_t a, uint64_t b, uint64_t c, uint64_t& d, uint64_t e, uint64_t f, uint64_t g, uint64_t& h, uint64_t k, uint64_t w)
|
||||
{
|
||||
uint64_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint64_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint64_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667f3bcc908ull;
|
||||
s[1] = 0xbb67ae8584caa73bull;
|
||||
s[2] = 0x3c6ef372fe94f82bull;
|
||||
s[3] = 0xa54ff53a5f1d36f1ull;
|
||||
s[4] = 0x510e527fade682d1ull;
|
||||
s[5] = 0x9b05688c2b3e6c1full;
|
||||
s[6] = 0x1f83d9abfb41bd6bull;
|
||||
s[7] = 0x5be0cd19137e2179ull;
|
||||
}
|
||||
|
||||
/** Perform one SHA-512 transformation, processing a 128-byte chunk. */
|
||||
void Transform(uint64_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98d728ae22ull, w0 = ReadBE64(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x7137449123ef65cdull, w1 = ReadBE64(chunk + 8));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcfec4d3b2full, w2 = ReadBE64(chunk + 16));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba58189dbbcull, w3 = ReadBE64(chunk + 24));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25bf348b538ull, w4 = ReadBE64(chunk + 32));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1b605d019ull, w5 = ReadBE64(chunk + 40));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4af194f9bull, w6 = ReadBE64(chunk + 48));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5da6d8118ull, w7 = ReadBE64(chunk + 56));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98a3030242ull, w8 = ReadBE64(chunk + 64));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b0145706fbeull, w9 = ReadBE64(chunk + 72));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be4ee4b28cull, w10 = ReadBE64(chunk + 80));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3d5ffb4e2ull, w11 = ReadBE64(chunk + 88));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74f27b896full, w12 = ReadBE64(chunk + 96));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe3b1696b1ull, w13 = ReadBE64(chunk + 104));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a725c71235ull, w14 = ReadBE64(chunk + 112));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174cf692694ull, w15 = ReadBE64(chunk + 120));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc77ac9c65ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f592b0275ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa6ea6e483ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da831153b5ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152ee66dfabull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d2db43210ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c898fb213full, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7beef0ee4ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc5ac42aedull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d139d95b3dfull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a73548baf63deull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb3c77b2a8ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e47edaee6ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c851482353bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a14cf10364ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664bbc423001ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70d0f89791ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a30654be30ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774cdf8eeb99ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5e19b48a8ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3c5c95a63ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4ae3418acbull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f7763e373ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee5defb2fcull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f43172f60ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814a1f0ab72ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc702081a6439ecull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0xeada7dd6cde0eb1eull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0xf57d4f7fee6ed178ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x06f067aa72176fbaull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x0a637dc5a2c898a6ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x113f9804bef90daeull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x1b710b35131c471bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x28db77f523047d84ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x32caab7b40c72493ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x3c9ebe0a15c9bebcull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x431d67c49c100d4cull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5fcb6fab3ad6faecull, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x6c44198c4a475817ull, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha512
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-512
|
||||
|
||||
CSHA512::CSHA512() : bytes(0)
|
||||
{
|
||||
sha512::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 128;
|
||||
if (bufsize && bufsize + len >= 128) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 128 - bufsize);
|
||||
bytes += 128 - bufsize;
|
||||
data += 128 - bufsize;
|
||||
sha512::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 128) {
|
||||
// Process full chunks directly from the source.
|
||||
sha512::Transform(s, data);
|
||||
data += 128;
|
||||
bytes += 128;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[128] = {0x80};
|
||||
unsigned char sizedesc[16] = {0x00};
|
||||
WriteBE64(sizedesc + 8, bytes << 3);
|
||||
Write(pad, 1 + ((239 - (bytes % 128)) % 128));
|
||||
Write(sizedesc, 16);
|
||||
WriteBE64(hash, s[0]);
|
||||
WriteBE64(hash + 8, s[1]);
|
||||
WriteBE64(hash + 16, s[2]);
|
||||
WriteBE64(hash + 24, s[3]);
|
||||
WriteBE64(hash + 32, s[4]);
|
||||
WriteBE64(hash + 40, s[5]);
|
||||
WriteBE64(hash + 48, s[6]);
|
||||
WriteBE64(hash + 56, s[7]);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha512::Initialize(s);
|
||||
return *this;
|
||||
}
|
28
algo/hodl/sha512.h
Normal file
28
algo/hodl/sha512.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA512_H
|
||||
#define BITCOIN_CRYPTO_SHA512_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-512. */
|
||||
class CSHA512
|
||||
{
|
||||
private:
|
||||
uint64_t s[8];
|
||||
unsigned char buf[128];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CSHA512();
|
||||
CSHA512& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA512& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA512_H
|
@@ -4,11 +4,6 @@
|
||||
//Dependencies
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __FreeBSD__
|
||||
#include <sys/endian.h>
|
||||
#endif
|
||||
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
|
||||
|
@@ -3,11 +3,6 @@
|
||||
//Dependencies
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef __FreeBSD__
|
||||
#include <sys/endian.h>
|
||||
#endif
|
||||
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
#include "immintrin.h"
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user