mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Compare commits
19 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
9edc650042 | ||
![]() |
218cef337a | ||
![]() |
9ffce7bdb7 | ||
![]() |
c7efa50aad | ||
![]() |
dd5e552357 | ||
![]() |
f449c6725f | ||
![]() |
3363d61524 | ||
![]() |
20fe05054c | ||
![]() |
157508bd07 | ||
![]() |
c24a4bdbc2 | ||
![]() |
59c7848d91 | ||
![]() |
3c02653dbe | ||
![]() |
502ed0b1fe | ||
![]() |
d60a268972 | ||
![]() |
e4265a6f11 | ||
![]() |
a28daca3ce | ||
![]() |
54b8fd7362 | ||
![]() |
ad2275f74a | ||
![]() |
a90d75b8f5 |
84
Makefile.am
84
Makefile.am
@@ -22,7 +22,6 @@ cpuminer_SOURCES = \
|
||||
api.c \
|
||||
sysinfos.c \
|
||||
algo-gate-api.c\
|
||||
crypto/blake2s.c \
|
||||
crypto/oaes_lib.c \
|
||||
crypto/c_keccak.c \
|
||||
crypto/c_groestl.c \
|
||||
@@ -32,12 +31,19 @@ cpuminer_SOURCES = \
|
||||
crypto/hash.c \
|
||||
crypto/aesb.c \
|
||||
crypto/magimath.cpp \
|
||||
algo/argon2/argon2a.c \
|
||||
algo/argon2/ar2/argon2.c \
|
||||
algo/argon2/ar2/opt.c \
|
||||
algo/argon2/ar2/cores.c \
|
||||
algo/argon2/ar2/ar2-scrypt-jane.c \
|
||||
algo/argon2/ar2/blake2b.c \
|
||||
algo/argon2/argon2a/argon2a.c \
|
||||
algo/argon2/argon2a/ar2/argon2.c \
|
||||
algo/argon2/argon2a/ar2/opt.c \
|
||||
algo/argon2/argon2a/ar2/cores.c \
|
||||
algo/argon2/argon2a/ar2/ar2-scrypt-jane.c \
|
||||
algo/argon2/argon2a/ar2/blake2b.c \
|
||||
algo/argon2/argon2d/argon2d-gate.c \
|
||||
algo/argon2/argon2d/blake2/blake2b.c \
|
||||
algo/argon2/argon2d/argon2d/argon2.c \
|
||||
algo/argon2/argon2d/argon2d/core.c \
|
||||
algo/argon2/argon2d/argon2d/opt.c \
|
||||
algo/argon2/argon2d/argon2d/thread.c \
|
||||
algo/argon2/argon2d/argon2d/encoding.c \
|
||||
algo/blake/sph_blake.c \
|
||||
algo/blake/blake-hash-4way.c \
|
||||
algo/blake/blake-gate.c \
|
||||
@@ -45,9 +51,15 @@ cpuminer_SOURCES = \
|
||||
algo/blake/blake-4way.c \
|
||||
algo/blake/sph_blake2b.c \
|
||||
algo/blake/blake2b.c \
|
||||
algo/blake/sph-blake2s.c \
|
||||
algo/blake/blake2s-hash-4way.c \
|
||||
algo/blake/blake2s.c \
|
||||
algo/blake/blake2s-gate.c \
|
||||
algo/blake/blake2s-4way.c \
|
||||
algo/blake/blakecoin-gate.c \
|
||||
algo/blake/mod_blakecoin.c \
|
||||
algo/blake/blakecoin.c \
|
||||
algo/blake/blakecoin-4way.c \
|
||||
algo/blake/decred-gate.c \
|
||||
algo/blake/decred.c \
|
||||
algo/blake/decred-4way.c \
|
||||
@@ -63,17 +75,22 @@ cpuminer_SOURCES = \
|
||||
algo/cryptonight/cryptonight.c\
|
||||
algo/cubehash/sph_cubehash.c \
|
||||
algo/cubehash/sse2/cubehash_sse2.c\
|
||||
algo/cubehash/cube-hash-2way.c \
|
||||
algo/echo/sph_echo.c \
|
||||
algo/echo/aes_ni/hash.c\
|
||||
algo/gost/sph_gost.c \
|
||||
algo/groestl/sph_groestl.c \
|
||||
algo/groestl/groestl.c \
|
||||
algo/groestl/myrgr-gate.c \
|
||||
algo/groestl/myrgr-4way.c \
|
||||
algo/groestl/myr-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl256.c \
|
||||
algo/fugue/sph_fugue.c \
|
||||
algo/hamsi/sph_hamsi.c \
|
||||
algo/haval/haval.c\
|
||||
algo/hamsi/hamsi-hash-4way.c \
|
||||
algo/haval/haval.c \
|
||||
algo/haval/haval-hash-4way.c \
|
||||
algo/heavy/sph_hefty1.c \
|
||||
algo/heavy/heavy.c \
|
||||
algo/heavy/bastion.c \
|
||||
@@ -93,19 +110,26 @@ cpuminer_SOURCES = \
|
||||
algo/keccak/keccak-4way.c\
|
||||
algo/keccak/keccak-gate.c \
|
||||
algo/keccak/sse2/keccak.c \
|
||||
algo/lbry.c \
|
||||
algo/luffa/sph_luffa.c \
|
||||
algo/luffa/luffa.c \
|
||||
algo/luffa/sse2/luffa_for_sse2.c \
|
||||
algo/luffa/luffa_for_sse2.c \
|
||||
algo/luffa/luffa-hash-2way.c \
|
||||
algo/lyra2/lyra2.c \
|
||||
algo/lyra2/sponge.c \
|
||||
algo/lyra2/lyra2rev2-gate.c \
|
||||
algo/lyra2/lyra2rev2.c \
|
||||
algo/lyra2/lyra2rev2-4way.c \
|
||||
algo/lyra2/lyra2re.c \
|
||||
algo/lyra2/lyra2z-gate.c \
|
||||
algo/lyra2/lyra2z.c \
|
||||
algo/lyra2/lyra2z-4way.c \
|
||||
algo/lyra2/lyra2z330.c \
|
||||
algo/lyra2/lyra2h-gate.c \
|
||||
algo/lyra2/lyra2h.c \
|
||||
algo/lyra2/lyra2h-4way.c \
|
||||
algo/lyra2/allium-gate.c \
|
||||
algo/lyra2/allium-4way.c \
|
||||
algo/lyra2/allium.c \
|
||||
algo/m7m.c \
|
||||
algo/neoscrypt/neoscrypt.c \
|
||||
algo/nist5/nist5-gate.c \
|
||||
@@ -113,15 +137,31 @@ cpuminer_SOURCES = \
|
||||
algo/nist5/nist5.c \
|
||||
algo/nist5/zr5.c \
|
||||
algo/pluck.c \
|
||||
algo/quark/quark-gate.c \
|
||||
algo/quark/quark.c \
|
||||
algo/quark/quark-4way.c \
|
||||
algo/quark/anime-gate.c \
|
||||
algo/quark/anime.c \
|
||||
algo/quark/anime-4way.c \
|
||||
algo/qubit/qubit-gate.c \
|
||||
algo/qubit/qubit.c \
|
||||
algo/qubit/qubit-2way.c \
|
||||
algo/qubit/deep-gate.c \
|
||||
algo/qubit/deep-2way.c \
|
||||
algo/qubit/deep.c \
|
||||
algo/ripemd/sph_ripemd.c \
|
||||
algo/ripemd/ripemd-hash-4way.c \
|
||||
algo/ripemd/lbry-gate.c \
|
||||
algo/ripemd/lbry.c \
|
||||
algo/ripemd/lbry-4way.c \
|
||||
algo/scrypt.c \
|
||||
algo/scryptjane/scrypt-jane.c \
|
||||
algo/sha/sph_sha2.c \
|
||||
algo/sha/sph_sha2big.c \
|
||||
algo/sha/sha2-hash-4way.c \
|
||||
algo/sha/sha2.c \
|
||||
algo/sha/sha256t-gate.c \
|
||||
algo/sha/sha256t-4way.c \
|
||||
algo/sha/sha256t.c \
|
||||
algo/shabal/sph_shabal.c \
|
||||
algo/shabal/shabal-hash-4way.c \
|
||||
@@ -129,8 +169,9 @@ cpuminer_SOURCES = \
|
||||
algo/shavite/sph-shavite-aesni.c \
|
||||
algo/shavite/shavite.c \
|
||||
algo/simd/sph_simd.c \
|
||||
algo/simd/sse2/nist.c \
|
||||
algo/simd/sse2/vector.c \
|
||||
algo/simd/nist.c \
|
||||
algo/simd/vector.c \
|
||||
algo/simd/simd-hash-2way.c \
|
||||
algo/skein/sph_skein.c \
|
||||
algo/skein/skein-hash-4way.c \
|
||||
algo/skein/skein.c \
|
||||
@@ -140,9 +181,8 @@ cpuminer_SOURCES = \
|
||||
algo/skein/skein2-4way.c \
|
||||
algo/skein/skein2-gate.c \
|
||||
algo/sm3/sm3.c \
|
||||
algo/sm3/sm3-hash-4way.c \
|
||||
algo/tiger/sph_tiger.c \
|
||||
algo/timetravel.c \
|
||||
algo/timetravel10.c \
|
||||
algo/whirlpool/sph_whirlpool.c \
|
||||
algo/whirlpool/whirlpool-hash-4way.c \
|
||||
algo/whirlpool/whirlpool-gate.c \
|
||||
@@ -161,8 +201,19 @@ cpuminer_SOURCES = \
|
||||
algo/x11/tribus-gate.c \
|
||||
algo/x11/tribus.c \
|
||||
algo/x11/tribus-4way.c \
|
||||
algo/x11/timetravel-gate.c \
|
||||
algo/x11/timetravel.c \
|
||||
algo/x11/timetravel-4way.c \
|
||||
algo/x11/timetravel10-gate.c \
|
||||
algo/x11/timetravel10.c \
|
||||
algo/x11/timetravel10-4way.c \
|
||||
algo/x11/fresh.c \
|
||||
algo/x11/x11evo.c \
|
||||
algo/x11/x11evo-4way.c \
|
||||
algo/x11/x11evo-gate.c \
|
||||
algo/x12/x12-gate.c \
|
||||
algo/x12/x12.c \
|
||||
algo/x12/x12-4way.c \
|
||||
algo/x13/x13-gate.c \
|
||||
algo/x13/x13.c \
|
||||
algo/x13/x13-4way.c \
|
||||
@@ -195,10 +246,13 @@ cpuminer_SOURCES = \
|
||||
algo/x17/xevan-gate.c \
|
||||
algo/x17/xevan.c \
|
||||
algo/x17/xevan-4way.c \
|
||||
algo/x17/x16r-gate.c \
|
||||
algo/x17/x16r.c \
|
||||
algo/x17/x16r-4way.c \
|
||||
algo/x17/hmq1725.c \
|
||||
algo/yescrypt/yescrypt.c \
|
||||
algo/yescrypt/sha256_Y.c \
|
||||
algo/yescrypt/yescrypt-simd.c
|
||||
algo/yescrypt/yescrypt-best.c
|
||||
|
||||
disable_flags =
|
||||
|
||||
|
78
README.md
78
README.md
@@ -7,16 +7,50 @@ All of the code is believed to be open and free. If anyone has a
|
||||
claim to any of it post your case in the cpuminer-opt Bitcoin Talk forum
|
||||
or by email.
|
||||
|
||||
Miner programs are often flagged as malware by antivirus programs. This is
|
||||
a false positive, they are flagged simply because they are cryptocurrency
|
||||
miners. The source code is open for anyone to inspect. If you don't trust
|
||||
the software, don't use it.
|
||||
|
||||
https://bitcointalk.org/index.php?topic=1326803.0
|
||||
|
||||
mailto://jayddee246@gmail.com
|
||||
|
||||
See file RELEASE_NOTES for change log and compile instructions.
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
|
||||
Intel Core2 and newer and AMD equivalents. In order to take advantage of AES_NI
|
||||
optimizations a CPU with AES_NI is required. This includes Intel Westbridge
|
||||
and newer and AMD equivalents. Further optimizations are available on some
|
||||
algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
|
||||
|
||||
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
|
||||
performance.
|
||||
|
||||
ARM CPUs are not supported.
|
||||
|
||||
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
|
||||
Centos, are known to work and have all dependencies in their repositories.
|
||||
Others may work but may require more effort. Older versions such as Centos 6
|
||||
don't work due to missing features.
|
||||
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
|
||||
|
||||
MacOS, OSx and Android are not supported.
|
||||
|
||||
3. Stratum pool. Some algos may work wallet mining using getwork or GBT. YMMV.
|
||||
|
||||
Supported Algorithms
|
||||
--------------------
|
||||
|
||||
argon2
|
||||
allium Garlicoin
|
||||
anime Animecoin
|
||||
argon2 Argon2 coin (AR2)
|
||||
argon2d250 argon2d-crds, Credits (CRDS)
|
||||
argon2d500 argon2d-dyn, Dynamic (DYN)
|
||||
argon2d4096 argon2d-uis, Unitus, (UIS)
|
||||
axiom Shabal-256 MemoHash
|
||||
bastion
|
||||
blake Blake-256 (SFR)
|
||||
@@ -74,43 +108,26 @@ Supported Algorithms
|
||||
x11 Dash
|
||||
x11evo Revolvercoin
|
||||
x11gost sib (SibCoin)
|
||||
x12 Galaxie Cash (GCH)
|
||||
x13 X13
|
||||
x13sm3 hsr (Hshare)
|
||||
x14 X14
|
||||
x15 X15
|
||||
x16r Ravencoin (RVN)
|
||||
x16s pigeoncoin (PGN)
|
||||
x17
|
||||
xevan Bitsend
|
||||
xevan Bitsend (BSD)
|
||||
yescrypt Globalboost-Y (BSTY)
|
||||
yescryptr8 BitZeny (ZNY)\n\
|
||||
yescryptr8 BitZeny (ZNY)
|
||||
yescryptr16 Yenten (YTN)
|
||||
yescryptr32 WAVI
|
||||
zr5 Ziftr
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
|
||||
Intel Core2 and newer and AMD equivalents. In order to take advantage of AES_NI
|
||||
optimizations a CPU with AES_NI is required. This includes Intel Westbridge
|
||||
and newer and AMD equivalents. Further optimizations are available on some
|
||||
algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
|
||||
|
||||
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
|
||||
performance.
|
||||
|
||||
ARM CPUs are not supported.
|
||||
|
||||
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
|
||||
Centos are known to work and have all dependencies in their repositories.
|
||||
Others may work but may require more effort.
|
||||
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
|
||||
|
||||
MacOS, OSx is not supported.
|
||||
|
||||
3. Stratum pool. Some algos may work wallet mining using getwork.
|
||||
|
||||
Errata
|
||||
------
|
||||
|
||||
Neoscrypt crashes on Windows, use legacy version.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
@@ -136,10 +153,13 @@ output from the miner showing the startup and any errors.
|
||||
Donations
|
||||
---------
|
||||
|
||||
I do not do this for money but I have a donation address if users
|
||||
are so inclined.
|
||||
cpuminer-opt has no fees of any kind but donations are accepted.
|
||||
|
||||
bitcoin:12tdvfF7KmAsihBXQXynT6E6th2c2pByTT?label=donations
|
||||
BTC: 12tdvfF7KmAsihBXQXynT6E6th2c2pByTT
|
||||
ETH: 0x72122edabcae9d3f57eab0729305a425f6fef6d0
|
||||
LTC: LdUwoHJnux9r9EKqFWNvAi45kQompHk6e8
|
||||
BCH: 1QKYkB6atn4P7RFozyziAXLEnurwnUM1cQ
|
||||
BTG: GVUyECtRHeC5D58z9F3nGGfVQndwnsPnHQ
|
||||
|
||||
Happy mining!
|
||||
|
||||
|
33
README.txt
33
README.txt
@@ -4,6 +4,11 @@ for Linux and Windows can be found in RELEASE_NOTES.
|
||||
cpuminer is a console program that is executed from a DOS command prompt.
|
||||
There is no GUI and no mouse support.
|
||||
|
||||
Miner programs are often flagged as malware by antivirus programs. This is
|
||||
a false positive, they are flagged simply because they are cryptocurrency
|
||||
miners. The source code is open for anyone to inspect. If you don't trust
|
||||
the software, don't use it.
|
||||
|
||||
Choose the exe that best matches you CPU's features or use trial and
|
||||
error to find the fastest one that doesn't crash. Pay attention to
|
||||
the features listed at cpuminer startup to ensure you are mining at
|
||||
@@ -16,22 +21,22 @@ AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
Changes in v3.8.4 may have improved compatibility with some of these CPUs.
|
||||
|
||||
Exe name Compile flags Arch name
|
||||
|
||||
cpuminer-sse2.exe "-march=core2" Core2
|
||||
cpuminer-sse42.exe "-march=corei7" Nehalem
|
||||
cpuminer-aes-sse42.exe "-maes -msse4.2" Westmere
|
||||
cpuminer-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
|
||||
cpuminer-avx2.exe "-march=core-avx2" Haswell...
|
||||
cpuminer-avx-sha "-march=corei7-avx -msha" Ryzen...
|
||||
cpuminer-4way.exe "-march=core-avx2 -DFOUR_WAY" same as avx2
|
||||
cpuminer-4way-sha.exe "-march=core-avx2 -msha -DFOUR_WAY" same as avx2-sha
|
||||
Exe name Compile flags Arch name
|
||||
|
||||
4way requires a CPU with AES and AVX2. It is still under development and
|
||||
only a few algos are supported. See change log in RELEASE_NOTES in source
|
||||
package for supported algos.
|
||||
cpuminer-sse2.exe "-msse2" Core2, Nehalem
|
||||
cpuminer-aes-sse42.exe "-march=westmere" Westmere, Sandy-Ivybridge
|
||||
cpuminer-avx2.exe "-march=core-avx2" Haswell, Sky-Kaby-Coffeelake
|
||||
cpuminer-avx2-sha.exe "-march=core-avx2 -msha" Ryzen
|
||||
|
||||
If you like this software feel free to donate:
|
||||
|
||||
BTC: 12tdvfF7KmAsihBXQXynT6E6th2c2pByTT
|
||||
ETH: 0x72122edabcae9d3f57eab0729305a425f6fef6d0
|
||||
LTC: LdUwoHJnux9r9EKqFWNvAi45kQompHk6e8
|
||||
BCH: 1QKYkB6atn4P7RFozyziAXLEnurwnUM1cQ
|
||||
BTG: GVUyECtRHeC5D58z9F3nGGfVQndwnsPnHQ
|
||||
|
||||
Ryzen CPus perform better with AVX than AVX2 therefore an avx-sha build
|
||||
is provided. Four way still uses AVX2.
|
||||
|
||||
|
150
RELEASE_NOTES
150
RELEASE_NOTES
@@ -1,4 +1,4 @@
|
||||
cpuminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
puminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
This feature requires recent SW including GCC version 5 or higher and
|
||||
openssl version 1.1 or higher. It may also require using "-march=znver1"
|
||||
compile flag.
|
||||
@@ -13,11 +13,11 @@ Security warning
|
||||
----------------
|
||||
|
||||
Miner programs are often flagged as malware by antivirus programs. This is
|
||||
a false positive, they are flagged simply because they are miners. The source
|
||||
code is open for anyone to inspect. If you don't trust the software, don't use
|
||||
it.
|
||||
a false positive, they are flagged simply because they are cryptocurrency
|
||||
miners. The source code is open for anyone to inspect. If you don't trust
|
||||
the software, don't use it.
|
||||
|
||||
The cryptographic code has been taken from trusted sources but has been
|
||||
The cryptographic hashing code has been taken from trusted sources but has been
|
||||
modified for speed at the expense of accepted security practices. This
|
||||
code should not be imported into applications where secure cryptography is
|
||||
required.
|
||||
@@ -81,7 +81,7 @@ cd cpuminer-opt-x.y.z
|
||||
Run ./build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
|
||||
make
|
||||
|
||||
Additional optional compile flags, add the following to CFLAGS to activate:
|
||||
@@ -90,22 +90,17 @@ Additional optional compile flags, add the following to CFLAGS to activate:
|
||||
|
||||
SPH may give slightly better performance on algos that use sha256 when using
|
||||
openssl 1.0.1 or older. Openssl 1.0.2 adds AVX2 and 1.1 adds SHA and perform
|
||||
better than SPH.
|
||||
better than SPH. This option is ignored when 4-way is used, even for CPUs
|
||||
with SHA.
|
||||
|
||||
-DFOUR_WAY
|
||||
|
||||
4 way will give much better performance on supported algos with CPUs
|
||||
that have AVX2 and should only be used on CPUs with AVX2. 4 way algo
|
||||
support will be added incrementally, see change log below for supported algos.
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo -o url -u username -p password
|
||||
|
||||
Windows
|
||||
|
||||
The following in how the Windows binary releases are built. It's old and
|
||||
not very good but it works, for me anyway.
|
||||
Precompiled Windows binaries are built on a Linux host using Mingw
|
||||
with a more recent compiler than the following Windows hosted procedure.
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
@@ -137,10 +132,10 @@ or similar Windows program.
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run winbuild.sh to build on Windows or execute the following commands.
|
||||
Run build.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
|
||||
CFLAGS="-O3 -march=native -Wall" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining
|
||||
@@ -149,9 +144,9 @@ cpuminer.exe -a algo -o url -u user -p password
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
AMD CPUs older than Steamroller, including Athlon x2 and Phenom II x4, are
|
||||
not supported by cpuminer-opt due to an incompatible implementation of SSE2
|
||||
on these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
@@ -165,6 +160,121 @@ Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.8.7.2
|
||||
|
||||
Fixed argon2d-dyn regression in v3.8.7.1.
|
||||
Changed compile options for aes-sse42 Windows build to -march=westmere
|
||||
|
||||
v3.8.7.1
|
||||
|
||||
Fixed argon2d-uis low difficulty rejects.
|
||||
Fixed argon2d aliases.
|
||||
|
||||
v3.8.7
|
||||
|
||||
Added argon2d4096 (alias argon2d-uis) for Unitus (UIS).
|
||||
argon2d-crds and argon2d-dyn renamed to argon2d250 and argon2d500 respectively.
|
||||
The old names are recognized as aliases.
|
||||
AVX512 is now supported for argon2d algos, Linux only.
|
||||
AVX is no longer a reported feature and an AVX Windows binary is no longer
|
||||
provided. Use AES-SSE42 build instead.
|
||||
|
||||
v3.8.6.1
|
||||
|
||||
Faster argon2d* AVX2.
|
||||
Untested AVX-512 for argon2d*, YMMV.
|
||||
|
||||
v3.8.6
|
||||
|
||||
Fixed argon2 regression in v3.8.5.
|
||||
Added x16s algo for Pigeoncoin.
|
||||
Some code cleanup.
|
||||
|
||||
v3.8.5
|
||||
|
||||
Added argon2d-crds and argon2d-dyn algos.
|
||||
sha256t 8 way AVX2 & 4 way SSE4.2 optimized.
|
||||
CPUs with SSE4.2 get optimizations previously reserved for AVX.
|
||||
|
||||
v3.8.4.1
|
||||
|
||||
Fixed sha256t low difficulty rejects.
|
||||
Fixed compile error on CPUs with AVX512.
|
||||
|
||||
v3.8.4
|
||||
|
||||
Added yescryptr32 algo for WAVI coin.
|
||||
Added URL to API data.
|
||||
Improved detection of __int128 support (linux only)
|
||||
Compile support for CPUs without SSSE3 (no binary support)
|
||||
|
||||
v3.8.3.3
|
||||
|
||||
Integrated getblocktemplate with algo_gate.
|
||||
Added support for hodl gbt (untested).
|
||||
Reworked some recent quick fixes.
|
||||
|
||||
v3.8.3.2
|
||||
|
||||
Reverted gbt changes from v3.8.0 that broke getwork.
|
||||
Reverted scaled hash rate for API, added HS term in addition to KHS.
|
||||
Added blocks solved to console display and API.
|
||||
|
||||
v3.8.3.1
|
||||
|
||||
Fixed regression in v3.8.3 that broke several algos.
|
||||
|
||||
v3.8.3
|
||||
|
||||
More restoration of lost lyra2 hash.
|
||||
8 way AVX2 and 4way AVX optimization for blakecoin, vanilla & blake2s.
|
||||
8 way AVX2 for lbry.
|
||||
Scaled hashrate for API output.
|
||||
A couple of GBT fixes.
|
||||
|
||||
v3.8.2.1
|
||||
|
||||
Fixed low difficulty rejects with allium.
|
||||
Fixed qubit AVX2.
|
||||
Restored lyra2z lost hash.
|
||||
Fixed build.sh
|
||||
|
||||
v3.8.2
|
||||
|
||||
Fixed and faster myr-gr.
|
||||
Added x12 algo (Galaxie Cash), allium algo (Garlicoin).
|
||||
Faster lyra2rev2, lbry, skein.
|
||||
Large reduction in compiler warnings.
|
||||
|
||||
v3.8.1.1
|
||||
|
||||
Fixed Windows AVX2 crash.
|
||||
|
||||
v3.8.1
|
||||
|
||||
Fixes x16r on CPUs with only SSE2.
|
||||
More Optimizations for X algos, qubit & deep.
|
||||
Corrected algo optimizations for scrypt and yescrypt, no new optimizations.
|
||||
|
||||
v3.8.0.1
|
||||
|
||||
Fixed x16r AVX2 low hash rate.
|
||||
|
||||
v3.8.0
|
||||
|
||||
4way no longer a seperate feature, included in AVX2.
|
||||
Added x16r algo for Ravencoin, anime algo for Animecoin.
|
||||
More 4way optimizations for X13 and up.
|
||||
Tweaked CPU affinity to better support more than 64 CPUs.
|
||||
Fixed compile problem on some old AMD CPUs.
|
||||
|
||||
v3.7.10
|
||||
|
||||
4way optimizations for lyra2rev2, lyra2h, quark, timetravel8, timetravel10
|
||||
x11evo, blakecoin.
|
||||
Faster x13sm3 (hsr).
|
||||
Added share difficulty to accepted message.
|
||||
|
||||
v3.7.9
|
||||
|
||||
Partial 4way optimizations for veltor, skunk, polytimos, lyra2z.
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#include <memory.h>
|
||||
#include <unistd.h>
|
||||
#include <openssl/sha.h>
|
||||
#include "miner.h"
|
||||
//#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
// Define null and standard functions.
|
||||
@@ -119,9 +119,11 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
|
||||
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
|
||||
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
|
||||
gate->malloc_txs_request = (void*)&std_malloc_txs_request;
|
||||
gate->set_target = (void*)&std_set_target;
|
||||
gate->work_decode = (void*)&std_le_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
|
||||
gate->build_block_header = (void*)&std_build_block_header;
|
||||
gate->build_extraheader = (void*)&std_build_extraheader;
|
||||
gate->set_work_data_endian = (void*)&do_nothing;
|
||||
gate->calc_network_diff = (void*)&std_calc_network_diff;
|
||||
@@ -155,7 +157,12 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
|
||||
switch (algo)
|
||||
{
|
||||
case ALGO_ALLIUM: register_allium_algo ( gate ); break;
|
||||
case ALGO_ANIME: register_anime_algo ( gate ); break;
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_ARGON2D250: register_argon2d_crds_algo( gate ); break;
|
||||
case ALGO_ARGON2D500: register_argon2d_dyn_algo ( gate ); break;
|
||||
case ALGO_ARGON2D4096: register_argon2d4096_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
@@ -212,15 +219,19 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
|
||||
case ALGO_X12: register_x12_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X16R: register_x16r_algo ( gate ); break;
|
||||
case ALGO_X16S: register_x16s_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
|
||||
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
default:
|
||||
applog(LOG_ERR,"FAIL: algo_gate registration failed, unknown algo %s.\n", algo_names[opt_algo] );
|
||||
@@ -278,6 +289,9 @@ void exec_hash_function( int algo, void *output, const void *pdata )
|
||||
const char* const algo_alias_map[][2] =
|
||||
{
|
||||
// alias proper
|
||||
{ "argon2d-crds", "argon2d250" },
|
||||
{ "argon2d-dyn", "argon2d500" },
|
||||
{ "argon2d-uis", "argon2d4096" },
|
||||
{ "bitcore", "timetravel10" },
|
||||
{ "bitzeny", "yescryptr8" },
|
||||
{ "blake256r8", "blakecoin" },
|
||||
@@ -296,6 +310,7 @@ const char* const algo_alias_map[][2] =
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myrgr", "myr-gr" },
|
||||
{ "myriad", "myr-gr" },
|
||||
{ "neo", "neoscrypt" },
|
||||
{ "phi", "phi1612" },
|
||||
|
@@ -1,8 +1,9 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "miner.h"
|
||||
#include "avxdefs.h"
|
||||
#include "interleave.h"
|
||||
|
||||
/////////////////////////////
|
||||
////
|
||||
@@ -88,10 +89,11 @@ typedef uint32_t set_t;
|
||||
#define EMPTY_SET 0
|
||||
#define SSE2_OPT 1
|
||||
#define AES_OPT 2
|
||||
#define AVX_OPT 4
|
||||
#define AVX2_OPT 8
|
||||
#define SHA_OPT 0x10
|
||||
#define FOUR_WAY_OPT 0x20
|
||||
#define SSE42_OPT 4
|
||||
#define AVX_OPT 8
|
||||
#define AVX2_OPT 0x10
|
||||
#define SHA_OPT 0x20
|
||||
#define AVX512_OPT 0x40
|
||||
|
||||
// return set containing all elements from sets a & b
|
||||
inline set_t set_union ( set_t a, set_t b ) { return a | b; }
|
||||
@@ -128,7 +130,10 @@ void ( *set_target) ( struct work*, double );
|
||||
bool ( *submit_getwork_result ) ( CURL*, struct work* );
|
||||
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
|
||||
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
|
||||
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
|
||||
uint32_t*, uint32_t, uint32_t );
|
||||
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
|
||||
char* ( *malloc_txs_request ) ( struct work* );
|
||||
void ( *set_work_data_endian ) ( struct work* );
|
||||
double ( *calc_network_diff ) ( struct work* );
|
||||
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
|
||||
@@ -213,7 +218,8 @@ int64_t get_max64_0x3fffffLL();
|
||||
int64_t get_max64_0x1ffff();
|
||||
int64_t get_max64_0xffffLL();
|
||||
|
||||
void std_set_target ( struct work *work, double job_diff );
|
||||
void std_set_target( struct work *work, double job_diff );
|
||||
void alt_set_target( struct work* work, double job_diff );
|
||||
void scrypt_set_target( struct work *work, double job_diff );
|
||||
|
||||
bool std_le_work_decode( const json_t *val, struct work *work );
|
||||
@@ -228,11 +234,17 @@ void std_le_build_stratum_request( char *req, struct work *work );
|
||||
void std_be_build_stratum_request( char *req, struct work *work );
|
||||
void jr2_build_stratum_request ( char *req, struct work *work );
|
||||
|
||||
char* std_malloc_txs_request( struct work *work );
|
||||
|
||||
// Default is do_nothing (assumed LE)
|
||||
void set_work_data_big_endian( struct work *work );
|
||||
|
||||
double std_calc_network_diff( struct work *work );
|
||||
|
||||
void std_build_block_header( struct work* g_work, uint32_t version,
|
||||
uint32_t *prevhash, uint32_t *merkle_root,
|
||||
uint32_t ntime, uint32_t nbits );
|
||||
|
||||
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );
|
||||
|
||||
json_t* std_longpoll_rpc_call( CURL *curl, int *err, char *lp_url );
|
||||
|
@@ -99,18 +99,18 @@ static const char *Argon2_ErrorMessage[] = {
|
||||
{ARGON2_MISSING_ARGS, */ "Missing arguments", /*},*/
|
||||
};
|
||||
|
||||
int argon2d(argon2_context *context) { return argon2_core(context, Argon2_d); }
|
||||
int argon2d(argon2_context *context) { return ar2_argon2_core(context, Argon2_d); }
|
||||
|
||||
int argon2i(argon2_context *context) { return argon2_core(context, Argon2_i); }
|
||||
int argon2i(argon2_context *context) { return ar2_argon2_core(context, Argon2_i); }
|
||||
|
||||
int verify_d(argon2_context *context, const char *hash)
|
||||
int ar2_verify_d(argon2_context *context, const char *hash)
|
||||
{
|
||||
int result;
|
||||
/*if (0 == context->outlen || NULL == hash) {
|
||||
return ARGON2_OUT_PTR_MISMATCH;
|
||||
}*/
|
||||
|
||||
result = argon2_core(context, Argon2_d);
|
||||
result = ar2_argon2_core(context, Argon2_d);
|
||||
|
||||
if (ARGON2_OK != result) {
|
||||
return result;
|
||||
@@ -223,7 +223,7 @@ static size_t to_base64(char *dst, size_t dst_len, const void *src)
|
||||
* The output length is always exactly 32 bytes.
|
||||
*/
|
||||
|
||||
int encode_string(char *dst, size_t dst_len, argon2_context *ctx)
|
||||
int ar2_encode_string(char *dst, size_t dst_len, argon2_context *ctx)
|
||||
{
|
||||
#define SS(str) \
|
||||
do { \
|
@@ -255,7 +255,7 @@ int argon2id(argon2_context *context);
|
||||
* specified by the context outlen member
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
int verify_d(argon2_context *context, const char *hash);
|
||||
int ar2_verify_d(argon2_context *context, const char *hash);
|
||||
|
||||
/*
|
||||
* Get the associated error message for given error code
|
||||
@@ -283,7 +283,7 @@ const char *error_message(int error_code);
|
||||
* The output length is always exactly 32 bytes.
|
||||
*/
|
||||
|
||||
int encode_string(char *dst, size_t dst_len, argon2_context *ctx);
|
||||
int ar2_encode_string(char *dst, size_t dst_len, argon2_context *ctx);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
@@ -52,22 +52,22 @@ enum {
|
||||
};
|
||||
|
||||
/* Streaming API */
|
||||
int blake2b_init(blake2b_state *S, size_t outlen);
|
||||
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
|
||||
int ar2_blake2b_init(blake2b_state *S, size_t outlen);
|
||||
int ar2_blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
|
||||
size_t keylen);
|
||||
int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
|
||||
int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
|
||||
int ar2_blake2b_init_param(blake2b_state *S, const blake2b_param *P);
|
||||
int ar2_blake2b_update(blake2b_state *S, const void *in, size_t inlen);
|
||||
void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen);
|
||||
int blake2b_final(blake2b_state *S, void *out, size_t outlen);
|
||||
int ar2_blake2b_final(blake2b_state *S, void *out, size_t outlen);
|
||||
|
||||
/* Simple API */
|
||||
int blake2b(void *out, const void *in, const void *key, size_t keylen);
|
||||
int ar2_blake2b(void *out, const void *in, const void *key, size_t keylen);
|
||||
|
||||
/* Argon2 Team - Begin Code */
|
||||
int blake2b_long(void *out, const void *in);
|
||||
int ar2_blake2b_long(void *out, const void *in);
|
||||
/* Argon2 Team - End Code */
|
||||
/* Miouyouyou */
|
||||
void blake2b_too(void *out, const void *in);
|
||||
void ar2_blake2b_too(void *out, const void *in);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
@@ -107,7 +107,7 @@ static const blake2b_state miou = {
|
||||
};
|
||||
|
||||
|
||||
int blake2b_init_param(blake2b_state *S, const blake2b_param *P)
|
||||
int ar2_blake2b_init_param(blake2b_state *S, const blake2b_param *P)
|
||||
{
|
||||
const unsigned char *p = (const unsigned char *)P;
|
||||
unsigned int i;
|
||||
@@ -133,7 +133,7 @@ void compare_buffs(uint64_t *h, size_t outlen)
|
||||
}
|
||||
|
||||
/* Sequential blake2b initialization */
|
||||
int blake2b_init(blake2b_state *S, size_t outlen)
|
||||
int ar2_blake2b_init(blake2b_state *S, size_t outlen)
|
||||
{
|
||||
memcpy(S, &miou, sizeof(*S));
|
||||
S->h[0] += outlen;
|
||||
@@ -147,7 +147,7 @@ void print64(const char *name, const uint64_t *array, uint16_t size)
|
||||
printf("};\n");
|
||||
}
|
||||
|
||||
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen)
|
||||
int ar2_blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
@@ -207,7 +207,7 @@ static void blake2b_compress(blake2b_state *S, const uint8_t *block)
|
||||
#undef ROUND
|
||||
}
|
||||
|
||||
int blake2b_update(blake2b_state *S, const void *in, size_t inlen)
|
||||
int ar2_blake2b_update(blake2b_state *S, const void *in, size_t inlen)
|
||||
{
|
||||
const uint8_t *pin = (const uint8_t *)in;
|
||||
/* Complete current block */
|
||||
@@ -235,7 +235,7 @@ void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen)
|
||||
S->buflen += (unsigned int)inlen;
|
||||
}
|
||||
|
||||
int blake2b_final(blake2b_state *S, void *out, size_t outlen)
|
||||
int ar2_blake2b_final(blake2b_state *S, void *out, size_t outlen)
|
||||
{
|
||||
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
|
||||
unsigned int i;
|
||||
@@ -257,48 +257,48 @@ int blake2b_final(blake2b_state *S, void *out, size_t outlen)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2b(void *out, const void *in, const void *key, size_t keylen)
|
||||
int ar2_blake2b(void *out, const void *in, const void *key, size_t keylen)
|
||||
{
|
||||
blake2b_state S;
|
||||
|
||||
blake2b_init(&S, 64);
|
||||
ar2_blake2b_init(&S, 64);
|
||||
my_blake2b_update(&S, in, 64);
|
||||
blake2b_final(&S, out, 64);
|
||||
ar2_blake2b_final(&S, out, 64);
|
||||
burn(&S, sizeof(S));
|
||||
return 0;
|
||||
}
|
||||
|
||||
void blake2b_too(void *pout, const void *in)
|
||||
void ar2_blake2b_too(void *pout, const void *in)
|
||||
{
|
||||
uint8_t *out = (uint8_t *)pout;
|
||||
uint8_t out_buffer[64];
|
||||
uint8_t in_buffer[64];
|
||||
|
||||
blake2b_state blake_state;
|
||||
blake2b_init(&blake_state, 64);
|
||||
ar2_blake2b_init(&blake_state, 64);
|
||||
blake_state.buflen = blake_state.buf[1] = 4;
|
||||
my_blake2b_update(&blake_state, in, 72);
|
||||
blake2b_final(&blake_state, out_buffer, 64);
|
||||
ar2_blake2b_final(&blake_state, out_buffer, 64);
|
||||
memcpy(out, out_buffer, 32);
|
||||
out += 32;
|
||||
|
||||
register uint8_t i = 29;
|
||||
while (i--) {
|
||||
memcpy(in_buffer, out_buffer, 64);
|
||||
blake2b(out_buffer, in_buffer, NULL, 0);
|
||||
ar2_blake2b(out_buffer, in_buffer, NULL, 0);
|
||||
memcpy(out, out_buffer, 32);
|
||||
out += 32;
|
||||
}
|
||||
|
||||
memcpy(in_buffer, out_buffer, 64);
|
||||
blake2b(out_buffer, in_buffer, NULL, 0);
|
||||
ar2_blake2b(out_buffer, in_buffer, NULL, 0);
|
||||
memcpy(out, out_buffer, 64);
|
||||
|
||||
burn(&blake_state, sizeof(blake_state));
|
||||
}
|
||||
|
||||
/* Argon2 Team - Begin Code */
|
||||
int blake2b_long(void *pout, const void *in)
|
||||
int ar2_blake2b_long(void *pout, const void *in)
|
||||
{
|
||||
uint8_t *out = (uint8_t *)pout;
|
||||
blake2b_state blake_state;
|
||||
@@ -306,10 +306,10 @@ int blake2b_long(void *pout, const void *in)
|
||||
|
||||
store32(outlen_bytes, 32);
|
||||
|
||||
blake2b_init(&blake_state, 32);
|
||||
ar2_blake2b_init(&blake_state, 32);
|
||||
my_blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes));
|
||||
blake2b_update(&blake_state, in, 1024);
|
||||
blake2b_final(&blake_state, out, 32);
|
||||
ar2_blake2b_update(&blake_state, in, 1024);
|
||||
ar2_blake2b_final(&blake_state, out, 32);
|
||||
burn(&blake_state, sizeof(blake_state));
|
||||
return 0;
|
||||
}
|
@@ -51,15 +51,15 @@
|
||||
#endif
|
||||
|
||||
/***************Instance and Position constructors**********/
|
||||
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
|
||||
void ar2_init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
|
||||
//inline void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
|
||||
|
||||
void copy_block(block *dst, const block *src) {
|
||||
void ar2_copy_block(block *dst, const block *src) {
|
||||
//inline void copy_block(block *dst, const block *src) {
|
||||
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_WORDS_IN_BLOCK);
|
||||
}
|
||||
|
||||
void xor_block(block *dst, const block *src) {
|
||||
void ar2_xor_block(block *dst, const block *src) {
|
||||
//inline void xor_block(block *dst, const block *src) {
|
||||
int i;
|
||||
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
|
||||
@@ -67,7 +67,7 @@ void xor_block(block *dst, const block *src) {
|
||||
}
|
||||
}
|
||||
|
||||
static void load_block(block *dst, const void *input) {
|
||||
static void ar2_load_block(block *dst, const void *input) {
|
||||
//static inline void load_block(block *dst, const void *input) {
|
||||
unsigned i;
|
||||
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
|
||||
@@ -75,7 +75,7 @@ static void load_block(block *dst, const void *input) {
|
||||
}
|
||||
}
|
||||
|
||||
static void store_block(void *output, const block *src) {
|
||||
static void ar2_store_block(void *output, const block *src) {
|
||||
//static inline void store_block(void *output, const block *src) {
|
||||
unsigned i;
|
||||
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
|
||||
@@ -84,7 +84,7 @@ static void store_block(void *output, const block *src) {
|
||||
}
|
||||
|
||||
/***************Memory allocators*****************/
|
||||
int allocate_memory(block **memory, uint32_t m_cost) {
|
||||
int ar2_allocate_memory(block **memory, uint32_t m_cost) {
|
||||
if (memory != NULL) {
|
||||
size_t memory_size = sizeof(block) * m_cost;
|
||||
if (m_cost != 0 &&
|
||||
@@ -105,34 +105,34 @@ int allocate_memory(block **memory, uint32_t m_cost) {
|
||||
}
|
||||
}
|
||||
|
||||
void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
|
||||
void ar2_secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
|
||||
//inline void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
|
||||
|
||||
/*********Memory functions*/
|
||||
|
||||
void clear_memory(argon2_instance_t *instance, int clear) {
|
||||
void ar2_clear_memory(argon2_instance_t *instance, int clear) {
|
||||
//inline void clear_memory(argon2_instance_t *instance, int clear) {
|
||||
if (instance->memory != NULL && clear) {
|
||||
secure_wipe_memory(instance->memory,
|
||||
ar2_secure_wipe_memory(instance->memory,
|
||||
sizeof(block) * /*instance->memory_blocks*/16);
|
||||
}
|
||||
}
|
||||
|
||||
void free_memory(block *memory) { free(memory); }
|
||||
void ar2_free_memory(block *memory) { free(memory); }
|
||||
//inline void free_memory(block *memory) { free(memory); }
|
||||
|
||||
void finalize(const argon2_context *context, argon2_instance_t *instance) {
|
||||
void ar2_finalize(const argon2_context *context, argon2_instance_t *instance) {
|
||||
if (context != NULL && instance != NULL) {
|
||||
block blockhash;
|
||||
copy_block(&blockhash, instance->memory + 15);
|
||||
ar2_copy_block(&blockhash, instance->memory + 15);
|
||||
|
||||
/* Hash the result */
|
||||
{
|
||||
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
||||
store_block(blockhash_bytes, &blockhash);
|
||||
blake2b_long(context->out, blockhash_bytes);
|
||||
secure_wipe_memory(blockhash.v, ARGON2_BLOCK_SIZE);
|
||||
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash_bytes */
|
||||
ar2_store_block(blockhash_bytes, &blockhash);
|
||||
ar2_blake2b_long(context->out, blockhash_bytes);
|
||||
ar2_secure_wipe_memory(blockhash.v, ARGON2_BLOCK_SIZE);
|
||||
ar2_secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash_bytes */
|
||||
}
|
||||
|
||||
#ifdef GENKAT
|
||||
@@ -142,11 +142,11 @@ void finalize(const argon2_context *context, argon2_instance_t *instance) {
|
||||
/* Clear memory */
|
||||
// clear_memory(instance, 1);
|
||||
|
||||
free_memory(instance->memory);
|
||||
ar2_free_memory(instance->memory);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
uint32_t ar2_index_alpha(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position, uint32_t pseudo_rand,
|
||||
int same_lane) {
|
||||
/*
|
||||
@@ -207,7 +207,7 @@ uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
return absolute_position;
|
||||
}
|
||||
|
||||
void fill_memory_blocks(argon2_instance_t *instance) {
|
||||
void ar2_fill_memory_blocks(argon2_instance_t *instance) {
|
||||
uint32_t r, s;
|
||||
|
||||
for (r = 0; r < 2; ++r) {
|
||||
@@ -218,7 +218,7 @@ void fill_memory_blocks(argon2_instance_t *instance) {
|
||||
position.lane = 0;
|
||||
position.slice = (uint8_t)s;
|
||||
position.index = 0;
|
||||
fill_segment(instance, position);
|
||||
ar2_fill_segment(instance, position);
|
||||
}
|
||||
|
||||
#ifdef GENKAT
|
||||
@@ -227,19 +227,19 @@ void fill_memory_blocks(argon2_instance_t *instance) {
|
||||
}
|
||||
}
|
||||
|
||||
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
|
||||
void ar2_fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
|
||||
/* Make the first and second block in each lane as G(H0||i||0) or
|
||||
G(H0||i||1) */
|
||||
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, 0);
|
||||
blake2b_too(blockhash_bytes, blockhash);
|
||||
load_block(&instance->memory[0], blockhash_bytes);
|
||||
ar2_blake2b_too(blockhash_bytes, blockhash);
|
||||
ar2_load_block(&instance->memory[0], blockhash_bytes);
|
||||
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
|
||||
blake2b_too(blockhash_bytes, blockhash);
|
||||
load_block(&instance->memory[1], blockhash_bytes);
|
||||
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
||||
ar2_blake2b_too(blockhash_bytes, blockhash);
|
||||
ar2_load_block(&instance->memory[1], blockhash_bytes);
|
||||
ar2_secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
|
||||
@@ -268,7 +268,7 @@ static const blake2b_state base_hash = {
|
||||
#define SALTLEN 32
|
||||
#define SECRETLEN 0
|
||||
#define ADLEN 0
|
||||
void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
void ar2_initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
argon2_type type) {
|
||||
|
||||
uint8_t value[sizeof(uint32_t)];
|
||||
@@ -280,7 +280,7 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
PWDLEN);
|
||||
|
||||
|
||||
secure_wipe_memory(context->pwd, PWDLEN);
|
||||
ar2_secure_wipe_memory(context->pwd, PWDLEN);
|
||||
context->pwdlen = 0;
|
||||
|
||||
store32(&value, SALTLEN);
|
||||
@@ -295,22 +295,22 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
store32(&value, ADLEN);
|
||||
my_blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
ar2_blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
int initialize(argon2_instance_t *instance, argon2_context *context) {
|
||||
int ar2_initialize(argon2_instance_t *instance, argon2_context *context) {
|
||||
/* 1. Memory allocation */
|
||||
|
||||
|
||||
allocate_memory(&(instance->memory), 16);
|
||||
ar2_allocate_memory(&(instance->memory), 16);
|
||||
|
||||
/* 2. Initial hashing */
|
||||
/* H_0 + 8 extra bytes to produce the first blocks */
|
||||
/* Hashing all inputs */
|
||||
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
|
||||
initial_hash(blockhash, context, instance->type);
|
||||
ar2_initial_hash(blockhash, context, instance->type);
|
||||
/* Zeroing 8 extra bytes */
|
||||
secure_wipe_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
|
||||
ar2_secure_wipe_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
|
||||
ARGON2_PREHASH_SEED_LENGTH -
|
||||
ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
|
||||
@@ -320,14 +320,14 @@ int initialize(argon2_instance_t *instance, argon2_context *context) {
|
||||
|
||||
/* 3. Creating first blocks, we always have at least two blocks in a slice
|
||||
*/
|
||||
fill_first_blocks(blockhash, instance);
|
||||
ar2_fill_first_blocks(blockhash, instance);
|
||||
/* Clearing the hash */
|
||||
secure_wipe_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
|
||||
ar2_secure_wipe_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
int argon2_core(argon2_context *context, argon2_type type) {
|
||||
int ar2_argon2_core(argon2_context *context, argon2_type type) {
|
||||
argon2_instance_t instance;
|
||||
instance.memory = NULL;
|
||||
instance.type = type;
|
||||
@@ -336,14 +336,14 @@ int argon2_core(argon2_context *context, argon2_type type) {
|
||||
* blocks
|
||||
*/
|
||||
|
||||
int result = initialize(&instance, context);
|
||||
int result = ar2_initialize(&instance, context);
|
||||
if (ARGON2_OK != result) return result;
|
||||
|
||||
/* 4. Filling memory */
|
||||
fill_memory_blocks(&instance);
|
||||
ar2_fill_memory_blocks(&instance);
|
||||
|
||||
/* 5. Finalization */
|
||||
finalize(context, &instance);
|
||||
ar2_finalize(context, &instance);
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
@@ -62,13 +62,13 @@ typedef struct _block { uint64_t v[ARGON2_WORDS_IN_BLOCK]; } ALIGN(16) block;
|
||||
/*****************Functions that work with the block******************/
|
||||
|
||||
/* Initialize each byte of the block with @in */
|
||||
void init_block_value(block *b, uint8_t in);
|
||||
void ar2_init_block_value(block *b, uint8_t in);
|
||||
|
||||
/* Copy block @src to block @dst */
|
||||
void copy_block(block *dst, const block *src);
|
||||
void ar2_copy_block(block *dst, const block *src);
|
||||
|
||||
/* XOR @src onto @dst bytewise */
|
||||
void xor_block(block *dst, const block *src);
|
||||
void ar2_xor_block(block *dst, const block *src);
|
||||
|
||||
/*
|
||||
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
|
||||
@@ -101,24 +101,24 @@ typedef struct Argon2_position_t {
|
||||
* @param m_cost number of blocks to allocate in the memory
|
||||
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
|
||||
*/
|
||||
int allocate_memory(block **memory, uint32_t m_cost);
|
||||
int ar2_allocate_memory(block **memory, uint32_t m_cost);
|
||||
|
||||
/* Function that securely cleans the memory
|
||||
* @param mem Pointer to the memory
|
||||
* @param s Memory size in bytes
|
||||
*/
|
||||
void secure_wipe_memory(void *v, size_t n);
|
||||
void ar2_secure_wipe_memory(void *v, size_t n);
|
||||
|
||||
/* Clears memory
|
||||
* @param instance pointer to the current instance
|
||||
* @param clear_memory indicates if we clear the memory with zeros.
|
||||
*/
|
||||
void clear_memory(argon2_instance_t *instance, int clear);
|
||||
void ar2_clear_memory(argon2_instance_t *instance, int clear);
|
||||
|
||||
/* Deallocates memory
|
||||
* @param memory pointer to the blocks
|
||||
*/
|
||||
void free_memory(block *memory);
|
||||
void ar2_free_memory(block *memory);
|
||||
|
||||
/*
|
||||
* Computes absolute position of reference block in the lane following a skewed
|
||||
@@ -130,7 +130,7 @@ void free_memory(block *memory);
|
||||
* If so we can reference the current segment
|
||||
* @pre All pointers must be valid
|
||||
*/
|
||||
uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
uint32_t ar2_index_alpha(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position, uint32_t pseudo_rand,
|
||||
int same_lane);
|
||||
|
||||
@@ -141,7 +141,7 @@ uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
* @return ARGON2_OK if everything is all right, otherwise one of error codes
|
||||
* (all defined in <argon2.h>
|
||||
*/
|
||||
int validate_inputs(const argon2_context *context);
|
||||
int ar2_validate_inputs(const argon2_context *context);
|
||||
|
||||
/*
|
||||
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
|
||||
@@ -153,7 +153,7 @@ int validate_inputs(const argon2_context *context);
|
||||
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
|
||||
* allocated
|
||||
*/
|
||||
void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
void ar2_initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
argon2_type type);
|
||||
|
||||
/*
|
||||
@@ -162,7 +162,7 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
* @param blockhash Pointer to the pre-hashing digest
|
||||
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
|
||||
*/
|
||||
void fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
|
||||
void ar2_fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
|
||||
|
||||
/*
|
||||
* Function allocates memory, hashes the inputs with Blake, and creates first
|
||||
@@ -174,7 +174,7 @@ void fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
|
||||
* @return Zero if successful, -1 if memory failed to allocate. @context->state
|
||||
* will be modified if successful.
|
||||
*/
|
||||
int initialize(argon2_instance_t *instance, argon2_context *context);
|
||||
int ar2_initialize(argon2_instance_t *instance, argon2_context *context);
|
||||
|
||||
/*
|
||||
* XORing the last block of each lane, hashing it, making the tag. Deallocates
|
||||
@@ -187,7 +187,7 @@ int initialize(argon2_instance_t *instance, argon2_context *context);
|
||||
* @pre if context->free_cbk is not NULL, it should point to a function that
|
||||
* deallocates memory
|
||||
*/
|
||||
void finalize(const argon2_context *context, argon2_instance_t *instance);
|
||||
void ar2_finalize(const argon2_context *context, argon2_instance_t *instance);
|
||||
|
||||
/*
|
||||
* Function that fills the segment using previous segments also from other
|
||||
@@ -196,7 +196,7 @@ void finalize(const argon2_context *context, argon2_instance_t *instance);
|
||||
* @param position Current position
|
||||
* @pre all block pointers must be valid
|
||||
*/
|
||||
void fill_segment(const argon2_instance_t *instance,
|
||||
void ar2_fill_segment(const argon2_instance_t *instance,
|
||||
argon2_position_t position);
|
||||
|
||||
/*
|
||||
@@ -204,13 +204,13 @@ void fill_segment(const argon2_instance_t *instance,
|
||||
* blocks in each lane
|
||||
* @param instance Pointer to the current instance
|
||||
*/
|
||||
void fill_memory_blocks(argon2_instance_t *instance);
|
||||
void ar2_fill_memory_blocks(argon2_instance_t *instance);
|
||||
|
||||
/*
|
||||
* Function that performs memory-hard hashing with certain degree of parallelism
|
||||
* @param context Pointer to the Argon2 internal structure
|
||||
* @return Error code if smth is wrong, ARGON2_OK otherwise
|
||||
*/
|
||||
int argon2_core(argon2_context *context, argon2_type type);
|
||||
int ar2_argon2_core(argon2_context *context, argon2_type type);
|
||||
|
||||
#endif
|
@@ -26,7 +26,7 @@
|
||||
#include "blake2/blake2.h"
|
||||
#include "blake2/blamka-round-opt.h"
|
||||
|
||||
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block)
|
||||
void ar2_fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block)
|
||||
{
|
||||
__m128i ALIGN(16) block_XY[ARGON2_QWORDS_IN_BLOCK];
|
||||
uint32_t i;
|
||||
@@ -95,7 +95,7 @@ static const uint64_t bad_rands[32] = {
|
||||
UINT64_C(8548260058287621283), UINT64_C(8641748798041936364)
|
||||
};
|
||||
|
||||
void generate_addresses(const argon2_instance_t *instance,
|
||||
void ar2_generate_addresses(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position,
|
||||
uint64_t *pseudo_rands)
|
||||
{
|
||||
@@ -113,7 +113,7 @@ void generate_addresses(const argon2_instance_t *instance,
|
||||
#define LANE_LENGTH 16
|
||||
#define POS_LANE 0
|
||||
|
||||
void fill_segment(const argon2_instance_t *instance,
|
||||
void ar2_fill_segment(const argon2_instance_t *instance,
|
||||
argon2_position_t position)
|
||||
{
|
||||
block *ref_block = NULL, *curr_block = NULL;
|
||||
@@ -129,7 +129,7 @@ void fill_segment(const argon2_instance_t *instance,
|
||||
pseudo_rands = (uint64_t *)malloc(/*sizeof(uint64_t) * 4*/32);
|
||||
|
||||
if (data_independent_addressing) {
|
||||
generate_addresses(instance, &position, pseudo_rands);
|
||||
ar2_generate_addresses(instance, &position, pseudo_rands);
|
||||
}
|
||||
|
||||
i = 0;
|
||||
@@ -173,12 +173,12 @@ void fill_segment(const argon2_instance_t *instance,
|
||||
* lane.
|
||||
*/
|
||||
position.index = i;
|
||||
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,1);
|
||||
ref_index = ar2_index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,1);
|
||||
|
||||
/* 2 Creating a new block */
|
||||
ref_block = instance->memory + ref_index;
|
||||
curr_block = instance->memory + curr_offset;
|
||||
fill_block(state, (__m128i const *)ref_block->v, (__m128i *)curr_block->v);
|
||||
ar2_fill_block(state, (__m128i const *)ref_block->v, (__m128i *)curr_block->v);
|
||||
}
|
||||
|
||||
free(pseudo_rands);
|
@@ -21,7 +21,7 @@
|
||||
* @param next_block Pointer to the block to be constructed
|
||||
* @pre all block pointers must be valid
|
||||
*/
|
||||
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
|
||||
void ar2_fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
|
||||
|
||||
/*
|
||||
* Generate pseudo-random values to reference blocks in the segment and puts
|
||||
@@ -31,7 +31,7 @@ void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
|
||||
* @param pseudo_rands Pointer to the array of 64-bit values
|
||||
* @pre pseudo_rands must point to @a instance->segment_length allocated values
|
||||
*/
|
||||
void generate_addresses(const argon2_instance_t *instance,
|
||||
void ar2_generate_addresses(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position,
|
||||
uint64_t *pseudo_rands);
|
||||
|
||||
@@ -43,7 +43,7 @@ void generate_addresses(const argon2_instance_t *instance,
|
||||
* @param position Current position
|
||||
* @pre all block pointers must be valid
|
||||
*/
|
||||
void fill_segment(const argon2_instance_t *instance,
|
||||
void ar2_fill_segment(const argon2_instance_t *instance,
|
||||
argon2_position_t position);
|
||||
|
||||
#endif /* ARGON2_OPT_H */
|
@@ -24,7 +24,7 @@ inline void argon_call(void *out, void *in, void *salt, int type)
|
||||
context.allocate_cbk = NULL;
|
||||
context.free_cbk = NULL;
|
||||
|
||||
argon2_core(&context, type);
|
||||
ar2_argon2_core(&context, type);
|
||||
}
|
||||
|
||||
void argon2hash(void *output, const void *input)
|
||||
@@ -79,7 +79,7 @@ int64_t argon2_get_max64 ()
|
||||
|
||||
bool register_argon2_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_argon2;
|
||||
gate->hash = (void*)&argon2hash;
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
198
algo/argon2/argon2d/argon2d-gate.c
Normal file
198
algo/argon2/argon2d/argon2d-gate.c
Normal file
@@ -0,0 +1,198 @@
|
||||
#include "argon2d-gate.h"
|
||||
#include "argon2d/argon2.h"
|
||||
|
||||
static const size_t INPUT_BYTES = 80; // Lenth of a block header in bytes. Input Length = Salt Length (salt = input)
|
||||
static const size_t OUTPUT_BYTES = 32; // Length of output needed for a 256-bit hash
|
||||
static const unsigned int DEFAULT_ARGON2_FLAG = 2; //Same as ARGON2_DEFAULT_FLAGS
|
||||
|
||||
// Credits
|
||||
|
||||
void argon2d_crds_hash( void *output, const void *input )
|
||||
{
|
||||
argon2_context context;
|
||||
context.out = (uint8_t *)output;
|
||||
context.outlen = (uint32_t)OUTPUT_BYTES;
|
||||
context.pwd = (uint8_t *)input;
|
||||
context.pwdlen = (uint32_t)INPUT_BYTES;
|
||||
context.salt = (uint8_t *)input; //salt = input
|
||||
context.saltlen = (uint32_t)INPUT_BYTES;
|
||||
context.secret = NULL;
|
||||
context.secretlen = 0;
|
||||
context.ad = NULL;
|
||||
context.adlen = 0;
|
||||
context.allocate_cbk = NULL;
|
||||
context.free_cbk = NULL;
|
||||
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
|
||||
// main configurable Argon2 hash parameters
|
||||
context.m_cost = 250; // Memory in KiB (~256KB)
|
||||
context.lanes = 4; // Degree of Parallelism
|
||||
context.threads = 1; // Threads
|
||||
context.t_cost = 1; // Iterations
|
||||
context.version = ARGON2_VERSION_10;
|
||||
|
||||
argon2_ctx( &context, Argon2_d );
|
||||
}
|
||||
|
||||
int scanhash_argon2d_crds( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t _ALIGN(64) hash[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
argon2d_crds_hash( hash, endiandata );
|
||||
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
work_set_target_ratio(work, hash);
|
||||
return 1;
|
||||
}
|
||||
nonce++;
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool register_argon2d_crds_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_argon2d_crds;
|
||||
gate->hash = (void*)&argon2d_crds_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Dynamic
|
||||
|
||||
void argon2d_dyn_hash( void *output, const void *input )
|
||||
{
|
||||
argon2_context context;
|
||||
context.out = (uint8_t *)output;
|
||||
context.outlen = (uint32_t)OUTPUT_BYTES;
|
||||
context.pwd = (uint8_t *)input;
|
||||
context.pwdlen = (uint32_t)INPUT_BYTES;
|
||||
context.salt = (uint8_t *)input; //salt = input
|
||||
context.saltlen = (uint32_t)INPUT_BYTES;
|
||||
context.secret = NULL;
|
||||
context.secretlen = 0;
|
||||
context.ad = NULL;
|
||||
context.adlen = 0;
|
||||
context.allocate_cbk = NULL;
|
||||
context.free_cbk = NULL;
|
||||
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
|
||||
// main configurable Argon2 hash parameters
|
||||
context.m_cost = 500; // Memory in KiB (512KB)
|
||||
context.lanes = 8; // Degree of Parallelism
|
||||
context.threads = 1; // Threads
|
||||
context.t_cost = 2; // Iterations
|
||||
context.version = ARGON2_VERSION_10;
|
||||
|
||||
argon2_ctx( &context, Argon2_d );
|
||||
}
|
||||
|
||||
int scanhash_argon2d_dyn( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t _ALIGN(64) hash[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
argon2d_dyn_hash( hash, endiandata );
|
||||
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
work_set_target_ratio(work, hash);
|
||||
return 1;
|
||||
}
|
||||
nonce++;
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool register_argon2d_dyn_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_argon2d_dyn;
|
||||
gate->hash = (void*)&argon2d_dyn_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Unitus
|
||||
|
||||
int scanhash_argon2d4096( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t _ALIGN(64) vhash[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
|
||||
uint32_t t_cost = 1; // 1 iteration
|
||||
uint32_t m_cost = 4096; // use 4MB
|
||||
uint32_t parallelism = 1; // 1 thread, 2 lanes
|
||||
|
||||
for ( int i = 0; i < 19; i++ )
|
||||
be32enc( &endiandata[i], pdata[i] );
|
||||
|
||||
do {
|
||||
be32enc( &endiandata[19], n );
|
||||
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) endiandata, 80,
|
||||
(char*) endiandata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
|
||||
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) )
|
||||
{
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return true;
|
||||
}
|
||||
n++;
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int64_t get_max64_0x1ff() { return 0x1ff; }
|
||||
|
||||
bool register_argon2d4096_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_argon2d4096;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0x1ff;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
|
||||
return true;
|
||||
}
|
||||
|
31
algo/argon2/argon2d/argon2d-gate.h
Normal file
31
algo/argon2/argon2d/argon2d-gate.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#ifndef ARGON2D_GATE_H__
|
||||
#define ARGON2D_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
// Credits: version = 0x10, m_cost = 250.
|
||||
bool register_argon2d_crds_algo( algo_gate_t* gate );
|
||||
|
||||
void argon2d_crds_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_argon2d_crds( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
// Dynamic: version = 0x10, m_cost = 500.
|
||||
bool register_argon2d_dyn_algo( algo_gate_t* gate );
|
||||
|
||||
void argon2d_dyn_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_argon2d_dyn( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
|
||||
// Unitus: version = 0x13, m_cost = 4096.
|
||||
bool register_argon2d4096_algo( algo_gate_t* gate );
|
||||
|
||||
int scanhash_argon2d4096( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
||||
|
458
algo/argon2/argon2d/argon2d/argon2.c
Normal file
458
algo/argon2/argon2d/argon2d/argon2.c
Normal file
@@ -0,0 +1,458 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "argon2.h"
|
||||
#include "encoding.h"
|
||||
#include "core.h"
|
||||
|
||||
const char *argon2_type2string(argon2_type type, int uppercase) {
|
||||
switch (type) {
|
||||
case Argon2_d:
|
||||
return uppercase ? "Argon2d" : "argon2d";
|
||||
case Argon2_i:
|
||||
return uppercase ? "Argon2i" : "argon2i";
|
||||
case Argon2_id:
|
||||
return uppercase ? "Argon2id" : "argon2id";
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int argon2_ctx(argon2_context *context, argon2_type type) {
|
||||
/* 1. Validate all inputs */
|
||||
int result = validate_inputs(context);
|
||||
uint32_t memory_blocks, segment_length;
|
||||
argon2_instance_t instance;
|
||||
|
||||
if (ARGON2_OK != result) {
|
||||
return result;
|
||||
}
|
||||
|
||||
if (Argon2_d != type && Argon2_i != type && Argon2_id != type) {
|
||||
return ARGON2_INCORRECT_TYPE;
|
||||
}
|
||||
|
||||
/* 2. Align memory size */
|
||||
/* Minimum memory_blocks = 8L blocks, where L is the number of lanes */
|
||||
memory_blocks = context->m_cost;
|
||||
|
||||
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * context->lanes) {
|
||||
memory_blocks = 2 * ARGON2_SYNC_POINTS * context->lanes;
|
||||
}
|
||||
|
||||
segment_length = memory_blocks / (context->lanes * ARGON2_SYNC_POINTS);
|
||||
/* Ensure that all segments have equal length */
|
||||
memory_blocks = segment_length * (context->lanes * ARGON2_SYNC_POINTS);
|
||||
|
||||
instance.version = context->version;
|
||||
instance.memory = NULL;
|
||||
instance.passes = context->t_cost;
|
||||
instance.memory_blocks = memory_blocks;
|
||||
instance.segment_length = segment_length;
|
||||
instance.lane_length = segment_length * ARGON2_SYNC_POINTS;
|
||||
instance.lanes = context->lanes;
|
||||
instance.threads = context->threads;
|
||||
instance.type = type;
|
||||
|
||||
if (instance.threads > instance.lanes) {
|
||||
instance.threads = instance.lanes;
|
||||
}
|
||||
|
||||
/* 3. Initialization: Hashing inputs, allocating memory, filling first
|
||||
* blocks
|
||||
*/
|
||||
result = initialize(&instance, context);
|
||||
|
||||
if (ARGON2_OK != result) {
|
||||
return result;
|
||||
}
|
||||
|
||||
/* 4. Filling memory */
|
||||
result = fill_memory_blocks(&instance);
|
||||
|
||||
if (ARGON2_OK != result) {
|
||||
return result;
|
||||
}
|
||||
/* 5. Finalization */
|
||||
finalize(context, &instance);
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt, const size_t saltlen,
|
||||
void *hash, const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen, argon2_type type,
|
||||
const uint32_t version){
|
||||
|
||||
argon2_context context;
|
||||
int result;
|
||||
uint8_t *out;
|
||||
|
||||
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
|
||||
return ARGON2_PWD_TOO_LONG;
|
||||
}
|
||||
|
||||
if (saltlen > ARGON2_MAX_SALT_LENGTH) {
|
||||
return ARGON2_SALT_TOO_LONG;
|
||||
}
|
||||
|
||||
if (hashlen > ARGON2_MAX_OUTLEN) {
|
||||
return ARGON2_OUTPUT_TOO_LONG;
|
||||
}
|
||||
|
||||
if (hashlen < ARGON2_MIN_OUTLEN) {
|
||||
return ARGON2_OUTPUT_TOO_SHORT;
|
||||
}
|
||||
|
||||
out = malloc(hashlen);
|
||||
if (!out) {
|
||||
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
}
|
||||
|
||||
context.out = (uint8_t *)out;
|
||||
context.outlen = (uint32_t)hashlen;
|
||||
context.pwd = CONST_CAST(uint8_t *)pwd;
|
||||
context.pwdlen = (uint32_t)pwdlen;
|
||||
context.salt = CONST_CAST(uint8_t *)salt;
|
||||
context.saltlen = (uint32_t)saltlen;
|
||||
context.secret = NULL;
|
||||
context.secretlen = 0;
|
||||
context.ad = NULL;
|
||||
context.adlen = 0;
|
||||
context.t_cost = t_cost;
|
||||
context.m_cost = m_cost;
|
||||
context.lanes = parallelism;
|
||||
context.threads = parallelism;
|
||||
context.allocate_cbk = NULL;
|
||||
context.free_cbk = NULL;
|
||||
context.flags = ARGON2_DEFAULT_FLAGS;
|
||||
context.version = version;
|
||||
|
||||
result = argon2_ctx(&context, type);
|
||||
|
||||
if (result != ARGON2_OK) {
|
||||
clear_internal_memory(out, hashlen);
|
||||
free(out);
|
||||
return result;
|
||||
}
|
||||
|
||||
/* if raw hash requested, write it */
|
||||
if (hash) {
|
||||
memcpy(hash, out, hashlen);
|
||||
}
|
||||
|
||||
/* if encoding requested, write it */
|
||||
if (encoded && encodedlen) {
|
||||
if (encode_string(encoded, encodedlen, &context, type) != ARGON2_OK) {
|
||||
clear_internal_memory(out, hashlen); /* wipe buffers if error */
|
||||
clear_internal_memory(encoded, encodedlen);
|
||||
free(out);
|
||||
return ARGON2_ENCODING_FAIL;
|
||||
}
|
||||
}
|
||||
clear_internal_memory(out, hashlen);
|
||||
free(out);
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_i,
|
||||
version );
|
||||
}
|
||||
|
||||
int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_i, version );
|
||||
}
|
||||
|
||||
int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_d,
|
||||
version );
|
||||
}
|
||||
|
||||
int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_d, version );
|
||||
}
|
||||
|
||||
int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, const size_t hashlen,
|
||||
char *encoded, const size_t encodedlen,
|
||||
const uint32_t version ) {
|
||||
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
NULL, hashlen, encoded, encodedlen, Argon2_id,
|
||||
version);
|
||||
}
|
||||
|
||||
int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash, const size_t hashlen,
|
||||
const uint32_t version ) {
|
||||
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
|
||||
hash, hashlen, NULL, 0, Argon2_id, version );
|
||||
}
|
||||
|
||||
static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) {
|
||||
size_t i;
|
||||
uint8_t d = 0U;
|
||||
|
||||
for (i = 0U; i < len; i++) {
|
||||
d |= b1[i] ^ b2[i];
|
||||
}
|
||||
return (int)((1 & ((d - 1) >> 8)) - 1);
|
||||
}
|
||||
|
||||
int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen,
|
||||
argon2_type type) {
|
||||
|
||||
argon2_context ctx;
|
||||
uint8_t *desired_result = NULL;
|
||||
|
||||
int ret = ARGON2_OK;
|
||||
|
||||
size_t encoded_len;
|
||||
uint32_t max_field_len;
|
||||
|
||||
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
|
||||
return ARGON2_PWD_TOO_LONG;
|
||||
}
|
||||
|
||||
if (encoded == NULL) {
|
||||
return ARGON2_DECODING_FAIL;
|
||||
}
|
||||
|
||||
encoded_len = strlen(encoded);
|
||||
if (encoded_len > UINT32_MAX) {
|
||||
return ARGON2_DECODING_FAIL;
|
||||
}
|
||||
|
||||
/* No field can be longer than the encoded length */
|
||||
max_field_len = (uint32_t)encoded_len;
|
||||
|
||||
ctx.saltlen = max_field_len;
|
||||
ctx.outlen = max_field_len;
|
||||
|
||||
ctx.salt = malloc(ctx.saltlen);
|
||||
ctx.out = malloc(ctx.outlen);
|
||||
if (!ctx.salt || !ctx.out) {
|
||||
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
ctx.pwd = (uint8_t *)pwd;
|
||||
ctx.pwdlen = (uint32_t)pwdlen;
|
||||
|
||||
ret = decode_string(&ctx, encoded, type);
|
||||
if (ret != ARGON2_OK) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/* Set aside the desired result, and get a new buffer. */
|
||||
desired_result = ctx.out;
|
||||
ctx.out = malloc(ctx.outlen);
|
||||
if (!ctx.out) {
|
||||
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
ret = argon2_verify_ctx(&ctx, (char *)desired_result, type);
|
||||
if (ret != ARGON2_OK) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
fail:
|
||||
free(ctx.salt);
|
||||
free(ctx.out);
|
||||
free(desired_result);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int argon2i_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
|
||||
|
||||
return argon2_verify(encoded, pwd, pwdlen, Argon2_i);
|
||||
}
|
||||
|
||||
int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
|
||||
|
||||
return argon2_verify(encoded, pwd, pwdlen, Argon2_d);
|
||||
}
|
||||
|
||||
int argon2id_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
|
||||
|
||||
return argon2_verify(encoded, pwd, pwdlen, Argon2_id);
|
||||
}
|
||||
|
||||
int argon2d_ctx(argon2_context *context) {
|
||||
return argon2_ctx(context, Argon2_d);
|
||||
}
|
||||
|
||||
int argon2i_ctx(argon2_context *context) {
|
||||
return argon2_ctx(context, Argon2_i);
|
||||
}
|
||||
|
||||
int argon2id_ctx(argon2_context *context) {
|
||||
return argon2_ctx(context, Argon2_id);
|
||||
}
|
||||
|
||||
int argon2_verify_ctx(argon2_context *context, const char *hash,
|
||||
argon2_type type) {
|
||||
int ret = argon2_ctx(context, type);
|
||||
if (ret != ARGON2_OK) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (argon2_compare((uint8_t *)hash, context->out, context->outlen)) {
|
||||
return ARGON2_VERIFY_MISMATCH;
|
||||
}
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
int argon2d_verify_ctx(argon2_context *context, const char *hash) {
|
||||
return argon2_verify_ctx(context, hash, Argon2_d);
|
||||
}
|
||||
|
||||
int argon2i_verify_ctx(argon2_context *context, const char *hash) {
|
||||
return argon2_verify_ctx(context, hash, Argon2_i);
|
||||
}
|
||||
|
||||
int argon2id_verify_ctx(argon2_context *context, const char *hash) {
|
||||
return argon2_verify_ctx(context, hash, Argon2_id);
|
||||
}
|
||||
|
||||
const char *argon2_error_message(int error_code) {
|
||||
switch (error_code) {
|
||||
case ARGON2_OK:
|
||||
return "OK";
|
||||
case ARGON2_OUTPUT_PTR_NULL:
|
||||
return "Output pointer is NULL";
|
||||
case ARGON2_OUTPUT_TOO_SHORT:
|
||||
return "Output is too short";
|
||||
case ARGON2_OUTPUT_TOO_LONG:
|
||||
return "Output is too long";
|
||||
case ARGON2_PWD_TOO_SHORT:
|
||||
return "Password is too short";
|
||||
case ARGON2_PWD_TOO_LONG:
|
||||
return "Password is too long";
|
||||
case ARGON2_SALT_TOO_SHORT:
|
||||
return "Salt is too short";
|
||||
case ARGON2_SALT_TOO_LONG:
|
||||
return "Salt is too long";
|
||||
case ARGON2_AD_TOO_SHORT:
|
||||
return "Associated data is too short";
|
||||
case ARGON2_AD_TOO_LONG:
|
||||
return "Associated data is too long";
|
||||
case ARGON2_SECRET_TOO_SHORT:
|
||||
return "Secret is too short";
|
||||
case ARGON2_SECRET_TOO_LONG:
|
||||
return "Secret is too long";
|
||||
case ARGON2_TIME_TOO_SMALL:
|
||||
return "Time cost is too small";
|
||||
case ARGON2_TIME_TOO_LARGE:
|
||||
return "Time cost is too large";
|
||||
case ARGON2_MEMORY_TOO_LITTLE:
|
||||
return "Memory cost is too small";
|
||||
case ARGON2_MEMORY_TOO_MUCH:
|
||||
return "Memory cost is too large";
|
||||
case ARGON2_LANES_TOO_FEW:
|
||||
return "Too few lanes";
|
||||
case ARGON2_LANES_TOO_MANY:
|
||||
return "Too many lanes";
|
||||
case ARGON2_PWD_PTR_MISMATCH:
|
||||
return "Password pointer is NULL, but password length is not 0";
|
||||
case ARGON2_SALT_PTR_MISMATCH:
|
||||
return "Salt pointer is NULL, but salt length is not 0";
|
||||
case ARGON2_SECRET_PTR_MISMATCH:
|
||||
return "Secret pointer is NULL, but secret length is not 0";
|
||||
case ARGON2_AD_PTR_MISMATCH:
|
||||
return "Associated data pointer is NULL, but ad length is not 0";
|
||||
case ARGON2_MEMORY_ALLOCATION_ERROR:
|
||||
return "Memory allocation error";
|
||||
case ARGON2_FREE_MEMORY_CBK_NULL:
|
||||
return "The free memory callback is NULL";
|
||||
case ARGON2_ALLOCATE_MEMORY_CBK_NULL:
|
||||
return "The allocate memory callback is NULL";
|
||||
case ARGON2_INCORRECT_PARAMETER:
|
||||
return "Argon2_Context context is NULL";
|
||||
case ARGON2_INCORRECT_TYPE:
|
||||
return "There is no such version of Argon2";
|
||||
case ARGON2_OUT_PTR_MISMATCH:
|
||||
return "Output pointer mismatch";
|
||||
case ARGON2_THREADS_TOO_FEW:
|
||||
return "Not enough threads";
|
||||
case ARGON2_THREADS_TOO_MANY:
|
||||
return "Too many threads";
|
||||
case ARGON2_MISSING_ARGS:
|
||||
return "Missing arguments";
|
||||
case ARGON2_ENCODING_FAIL:
|
||||
return "Encoding failed";
|
||||
case ARGON2_DECODING_FAIL:
|
||||
return "Decoding failed";
|
||||
case ARGON2_THREAD_FAIL:
|
||||
return "Threading failure";
|
||||
case ARGON2_DECODING_LENGTH_FAIL:
|
||||
return "Some of encoded parameters are too long or too short";
|
||||
case ARGON2_VERIFY_MISMATCH:
|
||||
return "The password does not match the supplied hash";
|
||||
default:
|
||||
return "Unknown error code";
|
||||
}
|
||||
}
|
||||
/*
|
||||
size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism,
|
||||
uint32_t saltlen, uint32_t hashlen, argon2_type type) {
|
||||
return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) +
|
||||
numlen(t_cost) + numlen(m_cost) + numlen(parallelism) +
|
||||
b64len(saltlen) + b64len(hashlen) + numlen(ARGON2_VERSION_NUMBER) + 1;
|
||||
}
|
||||
*/
|
440
algo/argon2/argon2d/argon2d/argon2.h
Normal file
440
algo/argon2/argon2d/argon2d/argon2.h
Normal file
@@ -0,0 +1,440 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef ARGON2_H
|
||||
#define ARGON2_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <limits.h>
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Symbols visibility control */
|
||||
#ifdef A2_VISCTL
|
||||
#define ARGON2_PUBLIC __attribute__((visibility("default")))
|
||||
#define ARGON2_LOCAL __attribute__ ((visibility ("hidden")))
|
||||
#elif _MSC_VER
|
||||
#define ARGON2_PUBLIC __declspec(dllexport)
|
||||
#define ARGON2_LOCAL
|
||||
#else
|
||||
#define ARGON2_PUBLIC
|
||||
#define ARGON2_LOCAL
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Argon2 input parameter restrictions
|
||||
*/
|
||||
|
||||
/* Minimum and maximum number of lanes (degree of parallelism) */
|
||||
#define ARGON2_MIN_LANES UINT32_C(1)
|
||||
#define ARGON2_MAX_LANES UINT32_C(0xFFFFFF)
|
||||
|
||||
/* Minimum and maximum number of threads */
|
||||
#define ARGON2_MIN_THREADS UINT32_C(1)
|
||||
#define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF)
|
||||
|
||||
/* Number of synchronization points between lanes per pass */
|
||||
#define ARGON2_SYNC_POINTS UINT32_C(4)
|
||||
|
||||
/* Minimum and maximum digest size in bytes */
|
||||
#define ARGON2_MIN_OUTLEN UINT32_C(4)
|
||||
#define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */
|
||||
#define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */
|
||||
|
||||
#define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
/* Max memory size is addressing-space/2, topping at 2^32 blocks (4 TB) */
|
||||
#define ARGON2_MAX_MEMORY_BITS \
|
||||
ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1))
|
||||
#define ARGON2_MAX_MEMORY \
|
||||
ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS)
|
||||
|
||||
/* Minimum and maximum number of passes */
|
||||
#define ARGON2_MIN_TIME UINT32_C(1)
|
||||
#define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Minimum and maximum password length in bytes */
|
||||
#define ARGON2_MIN_PWD_LENGTH UINT32_C(0)
|
||||
#define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Minimum and maximum associated data length in bytes */
|
||||
#define ARGON2_MIN_AD_LENGTH UINT32_C(0)
|
||||
#define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Minimum and maximum salt length in bytes */
|
||||
#define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
|
||||
#define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Minimum and maximum key length in bytes */
|
||||
#define ARGON2_MIN_SECRET UINT32_C(0)
|
||||
#define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF)
|
||||
|
||||
/* Flags to determine which fields are securely wiped (default = no wipe). */
|
||||
#define ARGON2_DEFAULT_FLAGS UINT32_C(0)
|
||||
#define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0)
|
||||
#define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1)
|
||||
|
||||
/* Global flag to determine if we are wiping internal memory buffers. This flag
|
||||
* is defined in core.c and deafults to 1 (wipe internal memory). */
|
||||
extern int FLAG_clear_internal_memory;
|
||||
|
||||
/* Error codes */
|
||||
typedef enum Argon2_ErrorCodes {
|
||||
ARGON2_OK = 0,
|
||||
|
||||
ARGON2_OUTPUT_PTR_NULL = -1,
|
||||
|
||||
ARGON2_OUTPUT_TOO_SHORT = -2,
|
||||
ARGON2_OUTPUT_TOO_LONG = -3,
|
||||
|
||||
ARGON2_PWD_TOO_SHORT = -4,
|
||||
ARGON2_PWD_TOO_LONG = -5,
|
||||
|
||||
ARGON2_SALT_TOO_SHORT = -6,
|
||||
ARGON2_SALT_TOO_LONG = -7,
|
||||
|
||||
ARGON2_AD_TOO_SHORT = -8,
|
||||
ARGON2_AD_TOO_LONG = -9,
|
||||
|
||||
ARGON2_SECRET_TOO_SHORT = -10,
|
||||
ARGON2_SECRET_TOO_LONG = -11,
|
||||
|
||||
ARGON2_TIME_TOO_SMALL = -12,
|
||||
ARGON2_TIME_TOO_LARGE = -13,
|
||||
|
||||
ARGON2_MEMORY_TOO_LITTLE = -14,
|
||||
ARGON2_MEMORY_TOO_MUCH = -15,
|
||||
|
||||
ARGON2_LANES_TOO_FEW = -16,
|
||||
ARGON2_LANES_TOO_MANY = -17,
|
||||
|
||||
ARGON2_PWD_PTR_MISMATCH = -18, /* NULL ptr with non-zero length */
|
||||
ARGON2_SALT_PTR_MISMATCH = -19, /* NULL ptr with non-zero length */
|
||||
ARGON2_SECRET_PTR_MISMATCH = -20, /* NULL ptr with non-zero length */
|
||||
ARGON2_AD_PTR_MISMATCH = -21, /* NULL ptr with non-zero length */
|
||||
|
||||
ARGON2_MEMORY_ALLOCATION_ERROR = -22,
|
||||
|
||||
ARGON2_FREE_MEMORY_CBK_NULL = -23,
|
||||
ARGON2_ALLOCATE_MEMORY_CBK_NULL = -24,
|
||||
|
||||
ARGON2_INCORRECT_PARAMETER = -25,
|
||||
ARGON2_INCORRECT_TYPE = -26,
|
||||
|
||||
ARGON2_OUT_PTR_MISMATCH = -27,
|
||||
|
||||
ARGON2_THREADS_TOO_FEW = -28,
|
||||
ARGON2_THREADS_TOO_MANY = -29,
|
||||
|
||||
ARGON2_MISSING_ARGS = -30,
|
||||
|
||||
ARGON2_ENCODING_FAIL = -31,
|
||||
|
||||
ARGON2_DECODING_FAIL = -32,
|
||||
|
||||
ARGON2_THREAD_FAIL = -33,
|
||||
|
||||
ARGON2_DECODING_LENGTH_FAIL = -34,
|
||||
|
||||
ARGON2_VERIFY_MISMATCH = -35
|
||||
} argon2_error_codes;
|
||||
|
||||
/* Memory allocator types --- for external allocation */
|
||||
typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate);
|
||||
typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate);
|
||||
|
||||
/* Argon2 external data structures */
|
||||
|
||||
/*
|
||||
*****
|
||||
* Context: structure to hold Argon2 inputs:
|
||||
* output array and its length,
|
||||
* password and its length,
|
||||
* salt and its length,
|
||||
* secret and its length,
|
||||
* associated data and its length,
|
||||
* number of passes, amount of used memory (in KBytes, can be rounded up a bit)
|
||||
* number of parallel threads that will be run.
|
||||
* All the parameters above affect the output hash value.
|
||||
* Additionally, two function pointers can be provided to allocate and
|
||||
* deallocate the memory (if NULL, memory will be allocated internally).
|
||||
* Also, three flags indicate whether to erase password, secret as soon as they
|
||||
* are pre-hashed (and thus not needed anymore), and the entire memory
|
||||
*****
|
||||
* Simplest situation: you have output array out[8], password is stored in
|
||||
* pwd[32], salt is stored in salt[16], you do not have keys nor associated
|
||||
* data. You need to spend 1 GB of RAM and you run 5 passes of Argon2d with
|
||||
* 4 parallel lanes.
|
||||
* You want to erase the password, but you're OK with last pass not being
|
||||
* erased. You want to use the default memory allocator.
|
||||
* Then you initialize:
|
||||
Argon2_Context(out,8,pwd,32,salt,16,NULL,0,NULL,0,5,1<<20,4,4,NULL,NULL,true,false,false,false)
|
||||
*/
|
||||
typedef struct Argon2_Context {
|
||||
uint8_t *out; /* output array */
|
||||
uint32_t outlen; /* digest length */
|
||||
|
||||
uint8_t *pwd; /* password array */
|
||||
uint32_t pwdlen; /* password length */
|
||||
|
||||
uint8_t *salt; /* salt array */
|
||||
uint32_t saltlen; /* salt length */
|
||||
|
||||
uint8_t *secret; /* key array */
|
||||
uint32_t secretlen; /* key length */
|
||||
|
||||
uint8_t *ad; /* associated data array */
|
||||
uint32_t adlen; /* associated data length */
|
||||
|
||||
uint32_t t_cost; /* number of passes */
|
||||
uint32_t m_cost; /* amount of memory requested (KB) */
|
||||
uint32_t lanes; /* number of lanes */
|
||||
uint32_t threads; /* maximum number of threads */
|
||||
|
||||
uint32_t version; /* version number */
|
||||
|
||||
allocate_fptr allocate_cbk; /* pointer to memory allocator */
|
||||
deallocate_fptr free_cbk; /* pointer to memory deallocator */
|
||||
|
||||
uint32_t flags; /* array of bool options */
|
||||
} argon2_context;
|
||||
|
||||
/* Argon2 primitive type */
|
||||
typedef enum Argon2_type {
|
||||
Argon2_d = 0,
|
||||
Argon2_i = 1,
|
||||
Argon2_id = 2
|
||||
} argon2_type;
|
||||
|
||||
/* Version of the algorithm */
|
||||
#define ARGON2_VERSION_10 0x10
|
||||
#define ARGON2_VERSION_13 0x13
|
||||
|
||||
/*
|
||||
* Function that gives the string representation of an argon2_type.
|
||||
* @param type The argon2_type that we want the string for
|
||||
* @param uppercase Whether the string should have the first letter uppercase
|
||||
* @return NULL if invalid type, otherwise the string representation.
|
||||
*/
|
||||
ARGON2_PUBLIC const char *argon2_type2string(argon2_type type, int uppercase);
|
||||
|
||||
/*
|
||||
* Function that performs memory-hard hashing with certain degree of parallelism
|
||||
* @param context Pointer to the Argon2 internal structure
|
||||
* @return Error code if smth is wrong, ARGON2_OK otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2_ctx(argon2_context *context, argon2_type type);
|
||||
|
||||
/**
|
||||
* Hashes a password with Argon2i, producing an encoded hash
|
||||
* @param t_cost Number of iterations
|
||||
* @param m_cost Sets memory usage to m_cost kibibytes
|
||||
* @param parallelism Number of threads and compute lanes
|
||||
* @param pwd Pointer to password
|
||||
* @param pwdlen Password size in bytes
|
||||
* @param salt Pointer to salt
|
||||
* @param saltlen Salt size in bytes
|
||||
* @param hashlen Desired length of the hash in bytes
|
||||
* @param encoded Buffer where to write the encoded hash
|
||||
* @param encodedlen Size of the buffer (thus max size of the encoded hash)
|
||||
* @pre Different parallelism levels will give different results
|
||||
* @pre Returns ARGON2_OK if successful
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2i_hash_encoded(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
const uint32_t parallelism,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
/**
|
||||
* Hashes a password with Argon2i, producing a raw hash at @hash
|
||||
* @param t_cost Number of iterations
|
||||
* @param m_cost Sets memory usage to m_cost kibibytes
|
||||
* @param parallelism Number of threads and compute lanes
|
||||
* @param pwd Pointer to password
|
||||
* @param pwdlen Password size in bytes
|
||||
* @param salt Pointer to salt
|
||||
* @param saltlen Salt size in bytes
|
||||
* @param hash Buffer where to write the raw hash - updated by the function
|
||||
* @param hashlen Desired length of the hash in bytes
|
||||
* @pre Different parallelism levels will give different results
|
||||
* @pre Returns ARGON2_OK if successful
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
const uint32_t parallelism,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
const uint32_t parallelism,
|
||||
const void *pwd, const size_t pwdlen,
|
||||
const void *salt, const size_t saltlen,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen,
|
||||
const uint32_t version );
|
||||
|
||||
ARGON2_PUBLIC int argon2id_hash_raw(const uint32_t t_cost,
|
||||
const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen,
|
||||
const uint32_t version );
|
||||
|
||||
/* generic function underlying the above ones */
|
||||
ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
|
||||
const uint32_t parallelism, const void *pwd,
|
||||
const size_t pwdlen, const void *salt,
|
||||
const size_t saltlen, void *hash,
|
||||
const size_t hashlen, char *encoded,
|
||||
const size_t encodedlen, argon2_type type,
|
||||
const uint32_t version );
|
||||
|
||||
/**
|
||||
* Verifies a password against an encoded string
|
||||
* Encoded string is restricted as in validate_inputs()
|
||||
* @param encoded String encoding parameters, salt, hash
|
||||
* @param pwd Pointer to password
|
||||
* @pre Returns ARGON2_OK if successful
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2i_verify(const char *encoded, const void *pwd,
|
||||
const size_t pwdlen);
|
||||
|
||||
ARGON2_PUBLIC int argon2d_verify(const char *encoded, const void *pwd,
|
||||
const size_t pwdlen);
|
||||
|
||||
ARGON2_PUBLIC int argon2id_verify(const char *encoded, const void *pwd,
|
||||
const size_t pwdlen);
|
||||
|
||||
/* generic function underlying the above ones */
|
||||
ARGON2_PUBLIC int argon2_verify(const char *encoded, const void *pwd,
|
||||
const size_t pwdlen, argon2_type type);
|
||||
|
||||
/**
|
||||
* Argon2d: Version of Argon2 that picks memory blocks depending
|
||||
* on the password and salt. Only for side-channel-free
|
||||
* environment!!
|
||||
*****
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2d_ctx(argon2_context *context);
|
||||
|
||||
/**
|
||||
* Argon2i: Version of Argon2 that picks memory blocks
|
||||
* independent on the password and salt. Good for side-channels,
|
||||
* but worse w.r.t. tradeoff attacks if only one pass is used.
|
||||
*****
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2i_ctx(argon2_context *context);
|
||||
|
||||
/**
|
||||
* Argon2id: Version of Argon2 where the first half-pass over memory is
|
||||
* password-independent, the rest are password-dependent (on the password and
|
||||
* salt). OK against side channels (they reduce to 1/2-pass Argon2i), and
|
||||
* better with w.r.t. tradeoff attacks (similar to Argon2d).
|
||||
*****
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2id_ctx(argon2_context *context);
|
||||
|
||||
/**
|
||||
* Verify if a given password is correct for Argon2d hashing
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @param hash The password hash to verify. The length of the hash is
|
||||
* specified by the context outlen member
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2d_verify_ctx(argon2_context *context, const char *hash);
|
||||
|
||||
/**
|
||||
* Verify if a given password is correct for Argon2i hashing
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @param hash The password hash to verify. The length of the hash is
|
||||
* specified by the context outlen member
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2i_verify_ctx(argon2_context *context, const char *hash);
|
||||
|
||||
/**
|
||||
* Verify if a given password is correct for Argon2id hashing
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @param hash The password hash to verify. The length of the hash is
|
||||
* specified by the context outlen member
|
||||
* @return Zero if successful, a non zero error code otherwise
|
||||
*/
|
||||
ARGON2_PUBLIC int argon2id_verify_ctx(argon2_context *context,
|
||||
const char *hash);
|
||||
|
||||
/* generic function underlying the above ones */
|
||||
ARGON2_PUBLIC int argon2_verify_ctx(argon2_context *context, const char *hash,
|
||||
argon2_type type);
|
||||
|
||||
/**
|
||||
* Get the associated error message for given error code
|
||||
* @return The error message associated with the given error code
|
||||
*/
|
||||
ARGON2_PUBLIC const char *argon2_error_message(int error_code);
|
||||
|
||||
/**
|
||||
* Returns the encoded hash length for the given input parameters
|
||||
* @param t_cost Number of iterations
|
||||
* @param m_cost Memory usage in kibibytes
|
||||
* @param parallelism Number of threads; used to compute lanes
|
||||
* @param saltlen Salt size in bytes
|
||||
* @param hashlen Hash size in bytes
|
||||
* @param type The argon2_type that we want the encoded length for
|
||||
* @return The encoded hash length in bytes
|
||||
*/
|
||||
ARGON2_PUBLIC size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost,
|
||||
uint32_t parallelism, uint32_t saltlen,
|
||||
uint32_t hashlen, argon2_type type);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
635
algo/argon2/argon2d/argon2d/core.c
Normal file
635
algo/argon2/argon2d/argon2d/core.c
Normal file
@@ -0,0 +1,635 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
/*For memory wiping*/
|
||||
#ifdef _MSC_VER
|
||||
#include <windows.h>
|
||||
#include <winbase.h> /* For SecureZeroMemory */
|
||||
#endif
|
||||
#if defined __STDC_LIB_EXT1__
|
||||
#define __STDC_WANT_LIB_EXT1__ 1
|
||||
#endif
|
||||
#define VC_GE_2005(version) (version >= 1400)
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "core.h"
|
||||
#include "thread.h"
|
||||
#include "../blake2/blake2.h"
|
||||
#include "../blake2/blake2-impl.h"
|
||||
|
||||
#ifdef GENKAT
|
||||
#include "genkat.h"
|
||||
#endif
|
||||
|
||||
#if defined(__clang__)
|
||||
#if __has_attribute(optnone)
|
||||
#define NOT_OPTIMIZED __attribute__((optnone))
|
||||
#endif
|
||||
#elif defined(__GNUC__)
|
||||
#define GCC_VERSION \
|
||||
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
|
||||
#if GCC_VERSION >= 40400
|
||||
#define NOT_OPTIMIZED __attribute__((optimize("O0")))
|
||||
#endif
|
||||
#endif
|
||||
#ifndef NOT_OPTIMIZED
|
||||
#define NOT_OPTIMIZED
|
||||
#endif
|
||||
|
||||
/***************Instance and Position constructors**********/
|
||||
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
|
||||
|
||||
void copy_block(block *dst, const block *src) {
|
||||
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
|
||||
}
|
||||
|
||||
void xor_block(block *dst, const block *src) {
|
||||
int i;
|
||||
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
||||
dst->v[i] ^= src->v[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void load_block(block *dst, const void *input) {
|
||||
unsigned i;
|
||||
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
||||
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
|
||||
}
|
||||
}
|
||||
|
||||
static void store_block(void *output, const block *src) {
|
||||
unsigned i;
|
||||
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
|
||||
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/***************Memory functions*****************/
|
||||
|
||||
int allocate_memory(const argon2_context *context, uint8_t **memory,
|
||||
size_t num, size_t size) {
|
||||
size_t memory_size = num*size;
|
||||
if (memory == NULL) {
|
||||
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
}
|
||||
|
||||
/* 1. Check for multiplication overflow */
|
||||
if (size != 0 && memory_size / size != num) {
|
||||
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
}
|
||||
|
||||
/* 2. Try to allocate with appropriate allocator */
|
||||
if (context->allocate_cbk) {
|
||||
(context->allocate_cbk)(memory, memory_size);
|
||||
} else {
|
||||
*memory = malloc(memory_size);
|
||||
}
|
||||
|
||||
if (*memory == NULL) {
|
||||
return ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
}
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
void free_memory(const argon2_context *context, uint8_t *memory,
|
||||
size_t num, size_t size) {
|
||||
size_t memory_size = num*size;
|
||||
clear_internal_memory(memory, memory_size);
|
||||
if (context->free_cbk) {
|
||||
(context->free_cbk)(memory, memory_size);
|
||||
} else {
|
||||
free(memory);
|
||||
}
|
||||
}
|
||||
|
||||
void NOT_OPTIMIZED secure_wipe_memory(void *v, size_t n) {
|
||||
#if defined(_MSC_VER) && VC_GE_2005(_MSC_VER)
|
||||
SecureZeroMemory(v, n);
|
||||
#elif defined memset_s
|
||||
memset_s(v, n, 0, n);
|
||||
#elif defined(__OpenBSD__)
|
||||
explicit_bzero(v, n);
|
||||
#else
|
||||
static void *(*const volatile memset_sec)(void *, int, size_t) = &memset;
|
||||
memset_sec(v, 0, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Memory clear flag defaults to true. */
|
||||
int FLAG_clear_internal_memory = 0;
|
||||
void clear_internal_memory(void *v, size_t n) {
|
||||
if (FLAG_clear_internal_memory && v) {
|
||||
secure_wipe_memory(v, n);
|
||||
}
|
||||
}
|
||||
|
||||
void finalize(const argon2_context *context, argon2_instance_t *instance) {
|
||||
if (context != NULL && instance != NULL) {
|
||||
block blockhash;
|
||||
uint32_t l;
|
||||
|
||||
copy_block(&blockhash, instance->memory + instance->lane_length - 1);
|
||||
|
||||
/* XOR the last blocks */
|
||||
for (l = 1; l < instance->lanes; ++l) {
|
||||
uint32_t last_block_in_lane =
|
||||
l * instance->lane_length + (instance->lane_length - 1);
|
||||
xor_block(&blockhash, instance->memory + last_block_in_lane);
|
||||
}
|
||||
|
||||
/* Hash the result */
|
||||
{
|
||||
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
||||
store_block(blockhash_bytes, &blockhash);
|
||||
blake2b_long(context->out, context->outlen, blockhash_bytes,
|
||||
ARGON2_BLOCK_SIZE);
|
||||
/* clear blockhash and blockhash_bytes */
|
||||
clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE);
|
||||
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
#ifdef GENKAT
|
||||
print_tag(context->out, context->outlen);
|
||||
#endif
|
||||
|
||||
free_memory(context, (uint8_t *)instance->memory,
|
||||
instance->memory_blocks, sizeof(block));
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position, uint32_t pseudo_rand,
|
||||
int same_lane) {
|
||||
/*
|
||||
* Pass 0:
|
||||
* This lane : all already finished segments plus already constructed
|
||||
* blocks in this segment
|
||||
* Other lanes : all already finished segments
|
||||
* Pass 1+:
|
||||
* This lane : (SYNC_POINTS - 1) last segments plus already constructed
|
||||
* blocks in this segment
|
||||
* Other lanes : (SYNC_POINTS - 1) last segments
|
||||
*/
|
||||
uint32_t reference_area_size;
|
||||
uint64_t relative_position;
|
||||
uint32_t start_position, absolute_position;
|
||||
|
||||
if (0 == position->pass) {
|
||||
/* First pass */
|
||||
if (0 == position->slice) {
|
||||
/* First slice */
|
||||
reference_area_size =
|
||||
position->index - 1; /* all but the previous */
|
||||
} else {
|
||||
if (same_lane) {
|
||||
/* The same lane => add current segment */
|
||||
reference_area_size =
|
||||
position->slice * instance->segment_length +
|
||||
position->index - 1;
|
||||
} else {
|
||||
reference_area_size =
|
||||
position->slice * instance->segment_length +
|
||||
((position->index == 0) ? (-1) : 0);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* Second pass */
|
||||
if (same_lane) {
|
||||
reference_area_size = instance->lane_length -
|
||||
instance->segment_length + position->index -
|
||||
1;
|
||||
} else {
|
||||
reference_area_size = instance->lane_length -
|
||||
instance->segment_length +
|
||||
((position->index == 0) ? (-1) : 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
|
||||
* relative position */
|
||||
relative_position = pseudo_rand;
|
||||
relative_position = relative_position * relative_position >> 32;
|
||||
relative_position = reference_area_size - 1 -
|
||||
(reference_area_size * relative_position >> 32);
|
||||
|
||||
/* 1.2.5 Computing starting position */
|
||||
start_position = 0;
|
||||
|
||||
if (0 != position->pass) {
|
||||
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
|
||||
? 0
|
||||
: (position->slice + 1) * instance->segment_length;
|
||||
}
|
||||
|
||||
/* 1.2.6. Computing absolute position */
|
||||
absolute_position = (start_position + relative_position) %
|
||||
instance->lane_length; /* absolute position */
|
||||
return absolute_position;
|
||||
}
|
||||
|
||||
/* Single-threaded version for p=1 case */
|
||||
static int fill_memory_blocks_st(argon2_instance_t *instance) {
|
||||
uint32_t r, s, l;
|
||||
|
||||
for (r = 0; r < instance->passes; ++r) {
|
||||
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
|
||||
for (l = 0; l < instance->lanes; ++l) {
|
||||
argon2_position_t position = {r, l, (uint8_t)s, 0};
|
||||
fill_segment(instance, position);
|
||||
}
|
||||
}
|
||||
#ifdef GENKAT
|
||||
internal_kat(instance, r); /* Print all memory blocks */
|
||||
#endif
|
||||
}
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
#if !defined(ARGON2_NO_THREADS)
|
||||
|
||||
#ifdef _WIN32
|
||||
static unsigned __stdcall fill_segment_thr(void *thread_data)
|
||||
#else
|
||||
static void *fill_segment_thr(void *thread_data)
|
||||
#endif
|
||||
{
|
||||
argon2_thread_data *my_data = thread_data;
|
||||
fill_segment(my_data->instance_ptr, my_data->pos);
|
||||
argon2_thread_exit();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Multi-threaded version for p > 1 case */
|
||||
static int fill_memory_blocks_mt(argon2_instance_t *instance) {
|
||||
uint32_t r, s;
|
||||
argon2_thread_handle_t *thread = NULL;
|
||||
argon2_thread_data *thr_data = NULL;
|
||||
int rc = ARGON2_OK;
|
||||
|
||||
/* 1. Allocating space for threads */
|
||||
thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t));
|
||||
if (thread == NULL) {
|
||||
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
thr_data = calloc(instance->lanes, sizeof(argon2_thread_data));
|
||||
if (thr_data == NULL) {
|
||||
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
for (r = 0; r < instance->passes; ++r) {
|
||||
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
|
||||
uint32_t l;
|
||||
|
||||
/* 2. Calling threads */
|
||||
for (l = 0; l < instance->lanes; ++l) {
|
||||
argon2_position_t position;
|
||||
|
||||
/* 2.1 Join a thread if limit is exceeded */
|
||||
if (l >= instance->threads) {
|
||||
if (argon2_thread_join(thread[l - instance->threads])) {
|
||||
rc = ARGON2_THREAD_FAIL;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
|
||||
/* 2.2 Create thread */
|
||||
position.pass = r;
|
||||
position.lane = l;
|
||||
position.slice = (uint8_t)s;
|
||||
position.index = 0;
|
||||
thr_data[l].instance_ptr =
|
||||
instance; /* preparing the thread input */
|
||||
memcpy(&(thr_data[l].pos), &position,
|
||||
sizeof(argon2_position_t));
|
||||
if (argon2_thread_create(&thread[l], &fill_segment_thr,
|
||||
(void *)&thr_data[l])) {
|
||||
rc = ARGON2_THREAD_FAIL;
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/* fill_segment(instance, position); */
|
||||
/*Non-thread equivalent of the lines above */
|
||||
}
|
||||
|
||||
/* 3. Joining remaining threads */
|
||||
for (l = instance->lanes - instance->threads; l < instance->lanes;
|
||||
++l) {
|
||||
if (argon2_thread_join(thread[l])) {
|
||||
rc = ARGON2_THREAD_FAIL;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GENKAT
|
||||
internal_kat(instance, r); /* Print all memory blocks */
|
||||
#endif
|
||||
}
|
||||
|
||||
fail:
|
||||
if (thread != NULL) {
|
||||
free(thread);
|
||||
}
|
||||
if (thr_data != NULL) {
|
||||
free(thr_data);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
#endif /* ARGON2_NO_THREADS */
|
||||
|
||||
int fill_memory_blocks(argon2_instance_t *instance) {
|
||||
if (instance == NULL || instance->lanes == 0) {
|
||||
return ARGON2_INCORRECT_PARAMETER;
|
||||
}
|
||||
#if defined(ARGON2_NO_THREADS)
|
||||
return fill_memory_blocks_st(instance);
|
||||
#else
|
||||
return instance->threads == 1 ?
|
||||
fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance);
|
||||
#endif
|
||||
}
|
||||
|
||||
int validate_inputs(const argon2_context *context) {
|
||||
if (NULL == context) {
|
||||
return ARGON2_INCORRECT_PARAMETER;
|
||||
}
|
||||
|
||||
if (NULL == context->out) {
|
||||
return ARGON2_OUTPUT_PTR_NULL;
|
||||
}
|
||||
|
||||
/* Validate output length */
|
||||
if (ARGON2_MIN_OUTLEN > context->outlen) {
|
||||
return ARGON2_OUTPUT_TOO_SHORT;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_OUTLEN < context->outlen) {
|
||||
return ARGON2_OUTPUT_TOO_LONG;
|
||||
}
|
||||
|
||||
/* Validate password (required param) */
|
||||
if (NULL == context->pwd) {
|
||||
if (0 != context->pwdlen) {
|
||||
return ARGON2_PWD_PTR_MISMATCH;
|
||||
}
|
||||
}
|
||||
|
||||
if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) {
|
||||
return ARGON2_PWD_TOO_SHORT;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) {
|
||||
return ARGON2_PWD_TOO_LONG;
|
||||
}
|
||||
|
||||
/* Validate salt (required param) */
|
||||
if (NULL == context->salt) {
|
||||
if (0 != context->saltlen) {
|
||||
return ARGON2_SALT_PTR_MISMATCH;
|
||||
}
|
||||
}
|
||||
|
||||
if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {
|
||||
return ARGON2_SALT_TOO_SHORT;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {
|
||||
return ARGON2_SALT_TOO_LONG;
|
||||
}
|
||||
|
||||
/* Validate secret (optional param) */
|
||||
if (NULL == context->secret) {
|
||||
if (0 != context->secretlen) {
|
||||
return ARGON2_SECRET_PTR_MISMATCH;
|
||||
}
|
||||
} else {
|
||||
if (ARGON2_MIN_SECRET > context->secretlen) {
|
||||
return ARGON2_SECRET_TOO_SHORT;
|
||||
}
|
||||
if (ARGON2_MAX_SECRET < context->secretlen) {
|
||||
return ARGON2_SECRET_TOO_LONG;
|
||||
}
|
||||
}
|
||||
|
||||
/* Validate associated data (optional param) */
|
||||
if (NULL == context->ad) {
|
||||
if (0 != context->adlen) {
|
||||
return ARGON2_AD_PTR_MISMATCH;
|
||||
}
|
||||
} else {
|
||||
if (ARGON2_MIN_AD_LENGTH > context->adlen) {
|
||||
return ARGON2_AD_TOO_SHORT;
|
||||
}
|
||||
if (ARGON2_MAX_AD_LENGTH < context->adlen) {
|
||||
return ARGON2_AD_TOO_LONG;
|
||||
}
|
||||
}
|
||||
|
||||
/* Validate memory cost */
|
||||
if (ARGON2_MIN_MEMORY > context->m_cost) {
|
||||
return ARGON2_MEMORY_TOO_LITTLE;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_MEMORY < context->m_cost) {
|
||||
return ARGON2_MEMORY_TOO_MUCH;
|
||||
}
|
||||
|
||||
if (context->m_cost < 8 * context->lanes) {
|
||||
return ARGON2_MEMORY_TOO_LITTLE;
|
||||
}
|
||||
|
||||
/* Validate time cost */
|
||||
if (ARGON2_MIN_TIME > context->t_cost) {
|
||||
return ARGON2_TIME_TOO_SMALL;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_TIME < context->t_cost) {
|
||||
return ARGON2_TIME_TOO_LARGE;
|
||||
}
|
||||
|
||||
/* Validate lanes */
|
||||
if (ARGON2_MIN_LANES > context->lanes) {
|
||||
return ARGON2_LANES_TOO_FEW;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_LANES < context->lanes) {
|
||||
return ARGON2_LANES_TOO_MANY;
|
||||
}
|
||||
|
||||
/* Validate threads */
|
||||
if (ARGON2_MIN_THREADS > context->threads) {
|
||||
return ARGON2_THREADS_TOO_FEW;
|
||||
}
|
||||
|
||||
if (ARGON2_MAX_THREADS < context->threads) {
|
||||
return ARGON2_THREADS_TOO_MANY;
|
||||
}
|
||||
|
||||
if (NULL != context->allocate_cbk && NULL == context->free_cbk) {
|
||||
return ARGON2_FREE_MEMORY_CBK_NULL;
|
||||
}
|
||||
|
||||
if (NULL == context->allocate_cbk && NULL != context->free_cbk) {
|
||||
return ARGON2_ALLOCATE_MEMORY_CBK_NULL;
|
||||
}
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
||||
|
||||
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
|
||||
uint32_t l;
|
||||
/* Make the first and second block in each lane as G(H0||0||i) or
|
||||
G(H0||1||i) */
|
||||
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
|
||||
for (l = 0; l < instance->lanes; ++l) {
|
||||
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
|
||||
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
|
||||
ARGON2_PREHASH_SEED_LENGTH);
|
||||
load_block(&instance->memory[l * instance->lane_length + 0],
|
||||
blockhash_bytes);
|
||||
|
||||
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
|
||||
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
|
||||
ARGON2_PREHASH_SEED_LENGTH);
|
||||
load_block(&instance->memory[l * instance->lane_length + 1],
|
||||
blockhash_bytes);
|
||||
}
|
||||
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
argon2_type type) {
|
||||
blake2b_state BlakeHash;
|
||||
uint8_t value[sizeof(uint32_t)];
|
||||
|
||||
if (NULL == context || NULL == blockhash) {
|
||||
return;
|
||||
}
|
||||
|
||||
blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
|
||||
store32(&value, context->lanes);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, context->outlen);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, context->m_cost);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, context->t_cost);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
// store32(&value, ARGON2_VERSION_NUMBER);
|
||||
store32(&value, context->version);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, (uint32_t)type);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
store32(&value, context->pwdlen);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
if (context->pwd != NULL) {
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
|
||||
context->pwdlen);
|
||||
|
||||
if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) {
|
||||
secure_wipe_memory(context->pwd, context->pwdlen);
|
||||
context->pwdlen = 0;
|
||||
}
|
||||
}
|
||||
|
||||
store32(&value, context->saltlen);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
if (context->salt != NULL) {
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)context->salt,
|
||||
context->saltlen);
|
||||
}
|
||||
|
||||
store32(&value, context->secretlen);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
if (context->secret != NULL) {
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)context->secret,
|
||||
context->secretlen);
|
||||
|
||||
if (context->flags & ARGON2_FLAG_CLEAR_SECRET) {
|
||||
secure_wipe_memory(context->secret, context->secretlen);
|
||||
context->secretlen = 0;
|
||||
}
|
||||
}
|
||||
|
||||
store32(&value, context->adlen);
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
if (context->ad != NULL) {
|
||||
blake2b_update(&BlakeHash, (const uint8_t *)context->ad,
|
||||
context->adlen);
|
||||
}
|
||||
|
||||
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
int initialize(argon2_instance_t *instance, argon2_context *context) {
|
||||
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
|
||||
int result = ARGON2_OK;
|
||||
|
||||
if (instance == NULL || context == NULL)
|
||||
return ARGON2_INCORRECT_PARAMETER;
|
||||
instance->context_ptr = context;
|
||||
|
||||
/* 1. Memory allocation */
|
||||
result = allocate_memory(context, (uint8_t **)&(instance->memory),
|
||||
instance->memory_blocks, sizeof(block));
|
||||
if (result != ARGON2_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
/* 2. Initial hashing */
|
||||
/* H_0 + 8 extra bytes to produce the first blocks */
|
||||
/* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */
|
||||
/* Hashing all inputs */
|
||||
initial_hash(blockhash, context, instance->type);
|
||||
/* Zeroing 8 extra bytes */
|
||||
clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
|
||||
ARGON2_PREHASH_SEED_LENGTH -
|
||||
ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
|
||||
#ifdef GENKAT
|
||||
initial_kat(blockhash, context, instance->type);
|
||||
#endif
|
||||
|
||||
/* 3. Creating first blocks, we always have at least two blocks in a slice
|
||||
*/
|
||||
fill_first_blocks(blockhash, instance);
|
||||
/* Clearing the hash */
|
||||
clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
|
||||
|
||||
return ARGON2_OK;
|
||||
}
|
228
algo/argon2/argon2d/argon2d/core.h
Normal file
228
algo/argon2/argon2d/argon2d/core.h
Normal file
@@ -0,0 +1,228 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef ARGON2_CORE_H
|
||||
#define ARGON2_CORE_H
|
||||
|
||||
#include "argon2.h"
|
||||
|
||||
#define CONST_CAST(x) (x)(uintptr_t)
|
||||
|
||||
/**********************Argon2 internal constants*******************************/
|
||||
|
||||
enum argon2_core_constants {
|
||||
/* Memory block size in bytes */
|
||||
ARGON2_BLOCK_SIZE = 1024,
|
||||
ARGON2_QWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 8,
|
||||
ARGON2_OWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 16,
|
||||
ARGON2_HWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 32,
|
||||
ARGON2_512BIT_WORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 64,
|
||||
|
||||
/* Number of pseudo-random values generated by one call to Blake in Argon2i
|
||||
to
|
||||
generate reference block positions */
|
||||
ARGON2_ADDRESSES_IN_BLOCK = 128,
|
||||
|
||||
/* Pre-hashing digest length and its extension*/
|
||||
ARGON2_PREHASH_DIGEST_LENGTH = 64,
|
||||
ARGON2_PREHASH_SEED_LENGTH = 72
|
||||
};
|
||||
|
||||
/*************************Argon2 internal data types***********************/
|
||||
|
||||
/*
|
||||
* Structure for the (1KB) memory block implemented as 128 64-bit words.
|
||||
* Memory blocks can be copied, XORed. Internal words can be accessed by [] (no
|
||||
* bounds checking).
|
||||
*/
|
||||
typedef struct block_ { uint64_t v[ARGON2_QWORDS_IN_BLOCK]; } block;
|
||||
|
||||
/*****************Functions that work with the block******************/
|
||||
|
||||
/* Initialize each byte of the block with @in */
|
||||
void init_block_value(block *b, uint8_t in);
|
||||
|
||||
/* Copy block @src to block @dst */
|
||||
void copy_block(block *dst, const block *src);
|
||||
|
||||
/* XOR @src onto @dst bytewise */
|
||||
void xor_block(block *dst, const block *src);
|
||||
|
||||
/*
|
||||
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
|
||||
* and derived values.
|
||||
* Used to evaluate the number and location of blocks to construct in each
|
||||
* thread
|
||||
*/
|
||||
typedef struct Argon2_instance_t {
|
||||
block *memory; /* Memory pointer */
|
||||
uint32_t version;
|
||||
uint32_t passes; /* Number of passes */
|
||||
uint32_t memory_blocks; /* Number of blocks in memory */
|
||||
uint32_t segment_length;
|
||||
uint32_t lane_length;
|
||||
uint32_t lanes;
|
||||
uint32_t threads;
|
||||
argon2_type type;
|
||||
int print_internals; /* whether to print the memory blocks */
|
||||
argon2_context *context_ptr; /* points back to original context */
|
||||
} argon2_instance_t;
|
||||
|
||||
/*
|
||||
* Argon2 position: where we construct the block right now. Used to distribute
|
||||
* work between threads.
|
||||
*/
|
||||
typedef struct Argon2_position_t {
|
||||
uint32_t pass;
|
||||
uint32_t lane;
|
||||
uint8_t slice;
|
||||
uint32_t index;
|
||||
} argon2_position_t;
|
||||
|
||||
/*Struct that holds the inputs for thread handling FillSegment*/
|
||||
typedef struct Argon2_thread_data {
|
||||
argon2_instance_t *instance_ptr;
|
||||
argon2_position_t pos;
|
||||
} argon2_thread_data;
|
||||
|
||||
/*************************Argon2 core functions********************************/
|
||||
|
||||
/* Allocates memory to the given pointer, uses the appropriate allocator as
|
||||
* specified in the context. Total allocated memory is num*size.
|
||||
* @param context argon2_context which specifies the allocator
|
||||
* @param memory pointer to the pointer to the memory
|
||||
* @param size the size in bytes for each element to be allocated
|
||||
* @param num the number of elements to be allocated
|
||||
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
|
||||
*/
|
||||
int allocate_memory(const argon2_context *context, uint8_t **memory,
|
||||
size_t num, size_t size);
|
||||
|
||||
/*
|
||||
* Frees memory at the given pointer, uses the appropriate deallocator as
|
||||
* specified in the context. Also cleans the memory using clear_internal_memory.
|
||||
* @param context argon2_context which specifies the deallocator
|
||||
* @param memory pointer to buffer to be freed
|
||||
* @param size the size in bytes for each element to be deallocated
|
||||
* @param num the number of elements to be deallocated
|
||||
*/
|
||||
void free_memory(const argon2_context *context, uint8_t *memory,
|
||||
size_t num, size_t size);
|
||||
|
||||
/* Function that securely cleans the memory. This ignores any flags set
|
||||
* regarding clearing memory. Usually one just calls clear_internal_memory.
|
||||
* @param mem Pointer to the memory
|
||||
* @param s Memory size in bytes
|
||||
*/
|
||||
void secure_wipe_memory(void *v, size_t n);
|
||||
|
||||
/* Function that securely clears the memory if FLAG_clear_internal_memory is
|
||||
* set. If the flag isn't set, this function does nothing.
|
||||
* @param mem Pointer to the memory
|
||||
* @param s Memory size in bytes
|
||||
*/
|
||||
void clear_internal_memory(void *v, size_t n);
|
||||
|
||||
/*
|
||||
* Computes absolute position of reference block in the lane following a skewed
|
||||
* distribution and using a pseudo-random value as input
|
||||
* @param instance Pointer to the current instance
|
||||
* @param position Pointer to the current position
|
||||
* @param pseudo_rand 32-bit pseudo-random value used to determine the position
|
||||
* @param same_lane Indicates if the block will be taken from the current lane.
|
||||
* If so we can reference the current segment
|
||||
* @pre All pointers must be valid
|
||||
*/
|
||||
uint32_t index_alpha(const argon2_instance_t *instance,
|
||||
const argon2_position_t *position, uint32_t pseudo_rand,
|
||||
int same_lane);
|
||||
|
||||
/*
|
||||
* Function that validates all inputs against predefined restrictions and return
|
||||
* an error code
|
||||
* @param context Pointer to current Argon2 context
|
||||
* @return ARGON2_OK if everything is all right, otherwise one of error codes
|
||||
* (all defined in <argon2.h>
|
||||
*/
|
||||
int validate_inputs(const argon2_context *context);
|
||||
|
||||
/*
|
||||
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
|
||||
* password and secret if needed
|
||||
* @param context Pointer to the Argon2 internal structure containing memory
|
||||
* pointer, and parameters for time and space requirements.
|
||||
* @param blockhash Buffer for pre-hashing digest
|
||||
* @param type Argon2 type
|
||||
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
|
||||
* allocated
|
||||
*/
|
||||
void initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
argon2_type type);
|
||||
|
||||
/*
|
||||
* Function creates first 2 blocks per lane
|
||||
* @param instance Pointer to the current instance
|
||||
* @param blockhash Pointer to the pre-hashing digest
|
||||
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
|
||||
*/
|
||||
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
|
||||
|
||||
/*
|
||||
* Function allocates memory, hashes the inputs with Blake, and creates first
|
||||
* two blocks. Returns the pointer to the main memory with 2 blocks per lane
|
||||
* initialized
|
||||
* @param context Pointer to the Argon2 internal structure containing memory
|
||||
* pointer, and parameters for time and space requirements.
|
||||
* @param instance Current Argon2 instance
|
||||
* @return Zero if successful, -1 if memory failed to allocate. @context->state
|
||||
* will be modified if successful.
|
||||
*/
|
||||
int initialize(argon2_instance_t *instance, argon2_context *context);
|
||||
|
||||
/*
|
||||
* XORing the last block of each lane, hashing it, making the tag. Deallocates
|
||||
* the memory.
|
||||
* @param context Pointer to current Argon2 context (use only the out parameters
|
||||
* from it)
|
||||
* @param instance Pointer to current instance of Argon2
|
||||
* @pre instance->state must point to necessary amount of memory
|
||||
* @pre context->out must point to outlen bytes of memory
|
||||
* @pre if context->free_cbk is not NULL, it should point to a function that
|
||||
* deallocates memory
|
||||
*/
|
||||
void finalize(const argon2_context *context, argon2_instance_t *instance);
|
||||
|
||||
/*
|
||||
* Function that fills the segment using previous segments also from other
|
||||
* threads
|
||||
* @param context current context
|
||||
* @param instance Pointer to the current instance
|
||||
* @param position Current position
|
||||
* @pre all block pointers must be valid
|
||||
*/
|
||||
void fill_segment(const argon2_instance_t *instance,
|
||||
argon2_position_t position);
|
||||
|
||||
/*
|
||||
* Function that fills the entire memory t_cost times based on the first two
|
||||
* blocks in each lane
|
||||
* @param instance Pointer to the current instance
|
||||
* @return ARGON2_OK if successful, @context->state
|
||||
*/
|
||||
int fill_memory_blocks(argon2_instance_t *instance);
|
||||
|
||||
#endif
|
463
algo/argon2/argon2d/argon2d/encoding.c
Normal file
463
algo/argon2/argon2d/argon2d/encoding.c
Normal file
@@ -0,0 +1,463 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include "encoding.h"
|
||||
#include "core.h"
|
||||
|
||||
/*
|
||||
* Example code for a decoder and encoder of "hash strings", with Argon2
|
||||
* parameters.
|
||||
*
|
||||
* This code comprises three sections:
|
||||
*
|
||||
* -- The first section contains generic Base64 encoding and decoding
|
||||
* functions. It is conceptually applicable to any hash function
|
||||
* implementation that uses Base64 to encode and decode parameters,
|
||||
* salts and outputs. It could be made into a library, provided that
|
||||
* the relevant functions are made public (non-static) and be given
|
||||
* reasonable names to avoid collisions with other functions.
|
||||
*
|
||||
* -- The second section is specific to Argon2. It encodes and decodes
|
||||
* the parameters, salts and outputs. It does not compute the hash
|
||||
* itself.
|
||||
*
|
||||
* The code was originally written by Thomas Pornin <pornin@bolet.org>,
|
||||
* to whom comments and remarks may be sent. It is released under what
|
||||
* should amount to Public Domain or its closest equivalent; the
|
||||
* following mantra is supposed to incarnate that fact with all the
|
||||
* proper legal rituals:
|
||||
*
|
||||
* ---------------------------------------------------------------------
|
||||
* This file is provided under the terms of Creative Commons CC0 1.0
|
||||
* Public Domain Dedication. To the extent possible under law, the
|
||||
* author (Thomas Pornin) has waived all copyright and related or
|
||||
* neighboring rights to this file. This work is published from: Canada.
|
||||
* ---------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (c) 2015 Thomas Pornin
|
||||
*/
|
||||
|
||||
/* ==================================================================== */
|
||||
/*
|
||||
* Common code; could be shared between different hash functions.
|
||||
*
|
||||
* Note: the Base64 functions below assume that uppercase letters (resp.
|
||||
* lowercase letters) have consecutive numerical codes, that fit on 8
|
||||
* bits. All modern systems use ASCII-compatible charsets, where these
|
||||
* properties are true. If you are stuck with a dinosaur of a system
|
||||
* that still defaults to EBCDIC then you already have much bigger
|
||||
* interoperability issues to deal with.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Some macros for constant-time comparisons. These work over values in
|
||||
* the 0..255 range. Returned value is 0x00 on "false", 0xFF on "true".
|
||||
*/
|
||||
#define EQ(x, y) ((((0U - ((unsigned)(x) ^ (unsigned)(y))) >> 8) & 0xFF) ^ 0xFF)
|
||||
#define GT(x, y) ((((unsigned)(y) - (unsigned)(x)) >> 8) & 0xFF)
|
||||
#define GE(x, y) (GT(y, x) ^ 0xFF)
|
||||
#define LT(x, y) GT(y, x)
|
||||
#define LE(x, y) GE(y, x)
|
||||
|
||||
/*
|
||||
* Convert value x (0..63) to corresponding Base64 character.
|
||||
*/
|
||||
static int b64_byte_to_char(unsigned x) {
|
||||
return (LT(x, 26) & (x + 'A')) |
|
||||
(GE(x, 26) & LT(x, 52) & (x + ('a' - 26))) |
|
||||
(GE(x, 52) & LT(x, 62) & (x + ('0' - 52))) | (EQ(x, 62) & '+') |
|
||||
(EQ(x, 63) & '/');
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert character c to the corresponding 6-bit value. If character c
|
||||
* is not a Base64 character, then 0xFF (255) is returned.
|
||||
*/
|
||||
static unsigned b64_char_to_byte(int c) {
|
||||
unsigned x;
|
||||
|
||||
x = (GE(c, 'A') & LE(c, 'Z') & (c - 'A')) |
|
||||
(GE(c, 'a') & LE(c, 'z') & (c - ('a' - 26))) |
|
||||
(GE(c, '0') & LE(c, '9') & (c - ('0' - 52))) | (EQ(c, '+') & 62) |
|
||||
(EQ(c, '/') & 63);
|
||||
return x | (EQ(x, 0) & (EQ(c, 'A') ^ 0xFF));
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert some bytes to Base64. 'dst_len' is the length (in characters)
|
||||
* of the output buffer 'dst'; if that buffer is not large enough to
|
||||
* receive the result (including the terminating 0), then (size_t)-1
|
||||
* is returned. Otherwise, the zero-terminated Base64 string is written
|
||||
* in the buffer, and the output length (counted WITHOUT the terminating
|
||||
* zero) is returned.
|
||||
*/
|
||||
static size_t to_base64(char *dst, size_t dst_len, const void *src,
|
||||
size_t src_len) {
|
||||
size_t olen;
|
||||
const unsigned char *buf;
|
||||
unsigned acc, acc_len;
|
||||
|
||||
olen = (src_len / 3) << 2;
|
||||
switch (src_len % 3) {
|
||||
case 2:
|
||||
olen++;
|
||||
/* fall through */
|
||||
case 1:
|
||||
olen += 2;
|
||||
break;
|
||||
}
|
||||
if (dst_len <= olen) {
|
||||
return (size_t)-1;
|
||||
}
|
||||
acc = 0;
|
||||
acc_len = 0;
|
||||
buf = (const unsigned char *)src;
|
||||
while (src_len-- > 0) {
|
||||
acc = (acc << 8) + (*buf++);
|
||||
acc_len += 8;
|
||||
while (acc_len >= 6) {
|
||||
acc_len -= 6;
|
||||
*dst++ = (char)b64_byte_to_char((acc >> acc_len) & 0x3F);
|
||||
}
|
||||
}
|
||||
if (acc_len > 0) {
|
||||
*dst++ = (char)b64_byte_to_char((acc << (6 - acc_len)) & 0x3F);
|
||||
}
|
||||
*dst++ = 0;
|
||||
return olen;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode Base64 chars into bytes. The '*dst_len' value must initially
|
||||
* contain the length of the output buffer '*dst'; when the decoding
|
||||
* ends, the actual number of decoded bytes is written back in
|
||||
* '*dst_len'.
|
||||
*
|
||||
* Decoding stops when a non-Base64 character is encountered, or when
|
||||
* the output buffer capacity is exceeded. If an error occurred (output
|
||||
* buffer is too small, invalid last characters leading to unprocessed
|
||||
* buffered bits), then NULL is returned; otherwise, the returned value
|
||||
* points to the first non-Base64 character in the source stream, which
|
||||
* may be the terminating zero.
|
||||
*/
|
||||
static const char *from_base64(void *dst, size_t *dst_len, const char *src) {
|
||||
size_t len;
|
||||
unsigned char *buf;
|
||||
unsigned acc, acc_len;
|
||||
|
||||
buf = (unsigned char *)dst;
|
||||
len = 0;
|
||||
acc = 0;
|
||||
acc_len = 0;
|
||||
for (;;) {
|
||||
unsigned d;
|
||||
|
||||
d = b64_char_to_byte(*src);
|
||||
if (d == 0xFF) {
|
||||
break;
|
||||
}
|
||||
src++;
|
||||
acc = (acc << 6) + d;
|
||||
acc_len += 6;
|
||||
if (acc_len >= 8) {
|
||||
acc_len -= 8;
|
||||
if ((len++) >= *dst_len) {
|
||||
return NULL;
|
||||
}
|
||||
*buf++ = (acc >> acc_len) & 0xFF;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If the input length is equal to 1 modulo 4 (which is
|
||||
* invalid), then there will remain 6 unprocessed bits;
|
||||
* otherwise, only 0, 2 or 4 bits are buffered. The buffered
|
||||
* bits must also all be zero.
|
||||
*/
|
||||
if (acc_len > 4 || (acc & (((unsigned)1 << acc_len) - 1)) != 0) {
|
||||
return NULL;
|
||||
}
|
||||
*dst_len = len;
|
||||
return src;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode decimal integer from 'str'; the value is written in '*v'.
|
||||
* Returned value is a pointer to the next non-decimal character in the
|
||||
* string. If there is no digit at all, or the value encoding is not
|
||||
* minimal (extra leading zeros), or the value does not fit in an
|
||||
* 'unsigned long', then NULL is returned.
|
||||
*/
|
||||
static const char *decode_decimal(const char *str, unsigned long *v) {
|
||||
const char *orig;
|
||||
unsigned long acc;
|
||||
|
||||
acc = 0;
|
||||
for (orig = str;; str++) {
|
||||
int c;
|
||||
|
||||
c = *str;
|
||||
if (c < '0' || c > '9') {
|
||||
break;
|
||||
}
|
||||
c -= '0';
|
||||
if (acc > (ULONG_MAX / 10)) {
|
||||
return NULL;
|
||||
}
|
||||
acc *= 10;
|
||||
if ((unsigned long)c > (ULONG_MAX - acc)) {
|
||||
return NULL;
|
||||
}
|
||||
acc += (unsigned long)c;
|
||||
}
|
||||
if (str == orig || (*orig == '0' && str != (orig + 1))) {
|
||||
return NULL;
|
||||
}
|
||||
*v = acc;
|
||||
return str;
|
||||
}
|
||||
|
||||
/* ==================================================================== */
|
||||
/*
|
||||
* Code specific to Argon2.
|
||||
*
|
||||
* The code below applies the following format:
|
||||
*
|
||||
* $argon2<T>[$v=<num>]$m=<num>,t=<num>,p=<num>$<bin>$<bin>
|
||||
*
|
||||
* where <T> is either 'd', 'id', or 'i', <num> is a decimal integer (positive,
|
||||
* fits in an 'unsigned long'), and <bin> is Base64-encoded data (no '=' padding
|
||||
* characters, no newline or whitespace).
|
||||
*
|
||||
* The last two binary chunks (encoded in Base64) are, in that order,
|
||||
* the salt and the output. Both are required. The binary salt length and the
|
||||
* output length must be in the allowed ranges defined in argon2.h.
|
||||
*
|
||||
* The ctx struct must contain buffers large enough to hold the salt and pwd
|
||||
* when it is fed into decode_string.
|
||||
*/
|
||||
|
||||
int decode_string(argon2_context *ctx, const char *str, argon2_type type) {
|
||||
|
||||
/* check for prefix */
|
||||
#define CC(prefix) \
|
||||
do { \
|
||||
size_t cc_len = strlen(prefix); \
|
||||
if (strncmp(str, prefix, cc_len) != 0) { \
|
||||
return ARGON2_DECODING_FAIL; \
|
||||
} \
|
||||
str += cc_len; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
/* optional prefix checking with supplied code */
|
||||
#define CC_opt(prefix, code) \
|
||||
do { \
|
||||
size_t cc_len = strlen(prefix); \
|
||||
if (strncmp(str, prefix, cc_len) == 0) { \
|
||||
str += cc_len; \
|
||||
{ code; } \
|
||||
} \
|
||||
} while ((void)0, 0)
|
||||
|
||||
/* Decoding prefix into decimal */
|
||||
#define DECIMAL(x) \
|
||||
do { \
|
||||
unsigned long dec_x; \
|
||||
str = decode_decimal(str, &dec_x); \
|
||||
if (str == NULL) { \
|
||||
return ARGON2_DECODING_FAIL; \
|
||||
} \
|
||||
(x) = dec_x; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
|
||||
/* Decoding prefix into uint32_t decimal */
|
||||
#define DECIMAL_U32(x) \
|
||||
do { \
|
||||
unsigned long dec_x; \
|
||||
str = decode_decimal(str, &dec_x); \
|
||||
if (str == NULL || dec_x > UINT32_MAX) { \
|
||||
return ARGON2_DECODING_FAIL; \
|
||||
} \
|
||||
(x) = (uint32_t)dec_x; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
|
||||
/* Decoding base64 into a binary buffer */
|
||||
#define BIN(buf, max_len, len) \
|
||||
do { \
|
||||
size_t bin_len = (max_len); \
|
||||
str = from_base64(buf, &bin_len, str); \
|
||||
if (str == NULL || bin_len > UINT32_MAX) { \
|
||||
return ARGON2_DECODING_FAIL; \
|
||||
} \
|
||||
(len) = (uint32_t)bin_len; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
size_t maxsaltlen = ctx->saltlen;
|
||||
size_t maxoutlen = ctx->outlen;
|
||||
int validation_result;
|
||||
const char* type_string;
|
||||
|
||||
/* We should start with the argon2_type we are using */
|
||||
type_string = argon2_type2string(type, 0);
|
||||
if (!type_string) {
|
||||
return ARGON2_INCORRECT_TYPE;
|
||||
}
|
||||
|
||||
CC("$");
|
||||
CC(type_string);
|
||||
|
||||
/* Reading the version number if the default is suppressed */
|
||||
ctx->version = ARGON2_VERSION_10;
|
||||
CC_opt("$v=", DECIMAL_U32(ctx->version));
|
||||
|
||||
CC("$m=");
|
||||
DECIMAL_U32(ctx->m_cost);
|
||||
CC(",t=");
|
||||
DECIMAL_U32(ctx->t_cost);
|
||||
CC(",p=");
|
||||
DECIMAL_U32(ctx->lanes);
|
||||
ctx->threads = ctx->lanes;
|
||||
|
||||
CC("$");
|
||||
BIN(ctx->salt, maxsaltlen, ctx->saltlen);
|
||||
CC("$");
|
||||
BIN(ctx->out, maxoutlen, ctx->outlen);
|
||||
|
||||
/* The rest of the fields get the default values */
|
||||
ctx->secret = NULL;
|
||||
ctx->secretlen = 0;
|
||||
ctx->ad = NULL;
|
||||
ctx->adlen = 0;
|
||||
ctx->allocate_cbk = NULL;
|
||||
ctx->free_cbk = NULL;
|
||||
ctx->flags = ARGON2_DEFAULT_FLAGS;
|
||||
|
||||
/* On return, must have valid context */
|
||||
validation_result = validate_inputs(ctx);
|
||||
if (validation_result != ARGON2_OK) {
|
||||
return validation_result;
|
||||
}
|
||||
|
||||
/* Can't have any additional characters */
|
||||
if (*str == 0) {
|
||||
return ARGON2_OK;
|
||||
} else {
|
||||
return ARGON2_DECODING_FAIL;
|
||||
}
|
||||
#undef CC
|
||||
#undef CC_opt
|
||||
#undef DECIMAL
|
||||
#undef BIN
|
||||
}
|
||||
|
||||
int encode_string(char *dst, size_t dst_len, argon2_context *ctx,
|
||||
argon2_type type) {
|
||||
#define SS(str) \
|
||||
do { \
|
||||
size_t pp_len = strlen(str); \
|
||||
if (pp_len >= dst_len) { \
|
||||
return ARGON2_ENCODING_FAIL; \
|
||||
} \
|
||||
memcpy(dst, str, pp_len + 1); \
|
||||
dst += pp_len; \
|
||||
dst_len -= pp_len; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define SX(x) \
|
||||
do { \
|
||||
char tmp[30]; \
|
||||
sprintf(tmp, "%lu", (unsigned long)(x)); \
|
||||
SS(tmp); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define SB(buf, len) \
|
||||
do { \
|
||||
size_t sb_len = to_base64(dst, dst_len, buf, len); \
|
||||
if (sb_len == (size_t)-1) { \
|
||||
return ARGON2_ENCODING_FAIL; \
|
||||
} \
|
||||
dst += sb_len; \
|
||||
dst_len -= sb_len; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
const char* type_string = argon2_type2string(type, 0);
|
||||
int validation_result = validate_inputs(ctx);
|
||||
|
||||
if (!type_string) {
|
||||
return ARGON2_ENCODING_FAIL;
|
||||
}
|
||||
|
||||
if (validation_result != ARGON2_OK) {
|
||||
return validation_result;
|
||||
}
|
||||
|
||||
|
||||
SS("$");
|
||||
SS(type_string);
|
||||
|
||||
SS("$v=");
|
||||
SX(ctx->version);
|
||||
|
||||
SS("$m=");
|
||||
SX(ctx->m_cost);
|
||||
SS(",t=");
|
||||
SX(ctx->t_cost);
|
||||
SS(",p=");
|
||||
SX(ctx->lanes);
|
||||
|
||||
SS("$");
|
||||
SB(ctx->salt, ctx->saltlen);
|
||||
|
||||
SS("$");
|
||||
SB(ctx->out, ctx->outlen);
|
||||
return ARGON2_OK;
|
||||
|
||||
#undef SS
|
||||
#undef SX
|
||||
#undef SB
|
||||
}
|
||||
|
||||
size_t b64len(uint32_t len) {
|
||||
size_t olen = ((size_t)len / 3) << 2;
|
||||
|
||||
switch (len % 3) {
|
||||
case 2:
|
||||
olen++;
|
||||
/* fall through */
|
||||
case 1:
|
||||
olen += 2;
|
||||
break;
|
||||
}
|
||||
|
||||
return olen;
|
||||
}
|
||||
|
||||
size_t numlen(uint32_t num) {
|
||||
size_t len = 1;
|
||||
while (num >= 10) {
|
||||
++len;
|
||||
num = num / 10;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
57
algo/argon2/argon2d/argon2d/encoding.h
Normal file
57
algo/argon2/argon2d/argon2d/encoding.h
Normal file
@@ -0,0 +1,57 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef ENCODING_H
|
||||
#define ENCODING_H
|
||||
#include "argon2.h"
|
||||
|
||||
#define ARGON2_MAX_DECODED_LANES UINT32_C(255)
|
||||
#define ARGON2_MIN_DECODED_SALT_LEN UINT32_C(8)
|
||||
#define ARGON2_MIN_DECODED_OUT_LEN UINT32_C(12)
|
||||
|
||||
/*
|
||||
* encode an Argon2 hash string into the provided buffer. 'dst_len'
|
||||
* contains the size, in characters, of the 'dst' buffer; if 'dst_len'
|
||||
* is less than the number of required characters (including the
|
||||
* terminating 0), then this function returns ARGON2_ENCODING_ERROR.
|
||||
*
|
||||
* on success, ARGON2_OK is returned.
|
||||
*/
|
||||
int encode_string(char *dst, size_t dst_len, argon2_context *ctx,
|
||||
argon2_type type);
|
||||
|
||||
/*
|
||||
* Decodes an Argon2 hash string into the provided structure 'ctx'.
|
||||
* The only fields that must be set prior to this call are ctx.saltlen and
|
||||
* ctx.outlen (which must be the maximal salt and out length values that are
|
||||
* allowed), ctx.salt and ctx.out (which must be buffers of the specified
|
||||
* length), and ctx.pwd and ctx.pwdlen which must hold a valid password.
|
||||
*
|
||||
* Invalid input string causes an error. On success, the ctx is valid and all
|
||||
* fields have been initialized.
|
||||
*
|
||||
* Returned value is ARGON2_OK on success, other ARGON2_ codes on error.
|
||||
*/
|
||||
int decode_string(argon2_context *ctx, const char *str, argon2_type type);
|
||||
|
||||
/* Returns the length of the encoded byte stream with length len */
|
||||
size_t b64len(uint32_t len);
|
||||
|
||||
/* Returns the length of the encoded number num */
|
||||
size_t numlen(uint32_t num);
|
||||
|
||||
#endif
|
359
algo/argon2/argon2d/argon2d/opt.c
Normal file
359
algo/argon2/argon2d/argon2d/opt.c
Normal file
@@ -0,0 +1,359 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "argon2.h"
|
||||
#include "core.h"
|
||||
|
||||
#include "../blake2/blake2.h"
|
||||
#include "../blake2/blamka-round-opt.h"
|
||||
|
||||
/*
|
||||
* Function fills a new memory block and optionally XORs the old block over the new one.
|
||||
* Memory must be initialized.
|
||||
* @param state Pointer to the just produced block. Content will be updated(!)
|
||||
* @param ref_block Pointer to the reference block
|
||||
* @param next_block Pointer to the block to be XORed over. May coincide with @ref_block
|
||||
* @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
|
||||
* @pre all block pointers must be valid
|
||||
*/
|
||||
|
||||
#if defined(__AVX512F__)
|
||||
|
||||
static void fill_block(__m512i *state, const block *ref_block,
|
||||
block *next_block, int with_xor) {
|
||||
__m512i block_XY[ARGON2_512BIT_WORDS_IN_BLOCK];
|
||||
unsigned int i;
|
||||
|
||||
if (with_xor) {
|
||||
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm512_xor_si512(
|
||||
state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
|
||||
block_XY[i] = _mm512_xor_si512(
|
||||
state[i], _mm512_loadu_si512((const __m512i *)next_block->v + i));
|
||||
}
|
||||
} else {
|
||||
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
||||
block_XY[i] = state[i] = _mm512_xor_si512(
|
||||
state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
|
||||
}
|
||||
}
|
||||
|
||||
BLAKE2_ROUND_1( state[ 0], state[ 1], state[ 2], state[ 3],
|
||||
state[ 4], state[ 5], state[ 6], state[ 7] );
|
||||
BLAKE2_ROUND_1( state[ 8], state[ 9], state[10], state[11],
|
||||
state[12], state[13], state[14], state[15] );
|
||||
|
||||
BLAKE2_ROUND_2( state[ 0], state[ 2], state[ 4], state[ 6],
|
||||
state[ 8], state[10], state[12], state[14] );
|
||||
BLAKE2_ROUND_2( state[ 1], state[ 3], state[ 5], state[ 7],
|
||||
state[ 9], state[11], state[13], state[15] );
|
||||
|
||||
/*
|
||||
for (i = 0; i < 2; ++i) {
|
||||
BLAKE2_ROUND_1(
|
||||
state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3],
|
||||
state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]);
|
||||
}
|
||||
|
||||
for (i = 0; i < 2; ++i) {
|
||||
BLAKE2_ROUND_2(
|
||||
state[2 * 0 + i], state[2 * 1 + i], state[2 * 2 + i], state[2 * 3 + i],
|
||||
state[2 * 4 + i], state[2 * 5 + i], state[2 * 6 + i], state[2 * 7 + i]);
|
||||
}
|
||||
*/
|
||||
|
||||
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm512_xor_si512(state[i], block_XY[i]);
|
||||
_mm512_storeu_si512((__m512i *)next_block->v + i, state[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined(__AVX2__)
|
||||
|
||||
static void fill_block(__m256i *state, const block *ref_block,
|
||||
block *next_block, int with_xor) {
|
||||
__m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
|
||||
unsigned int i;
|
||||
|
||||
if (with_xor) {
|
||||
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm256_xor_si256(
|
||||
state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
|
||||
block_XY[i] = _mm256_xor_si256(
|
||||
state[i], _mm256_loadu_si256((const __m256i *)next_block->v + i));
|
||||
}
|
||||
} else {
|
||||
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
||||
block_XY[i] = state[i] = _mm256_xor_si256(
|
||||
state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
|
||||
}
|
||||
}
|
||||
|
||||
BLAKE2_ROUND_1( state[ 0], state[ 4], state[ 1], state[ 5],
|
||||
state[ 2], state[ 6], state[ 3], state[ 7] );
|
||||
BLAKE2_ROUND_1( state[ 8], state[12], state[ 9], state[13],
|
||||
state[10], state[14], state[11], state[15] );
|
||||
BLAKE2_ROUND_1( state[16], state[20], state[17], state[21],
|
||||
state[18], state[22], state[19], state[23] );
|
||||
BLAKE2_ROUND_1( state[24], state[28], state[25], state[29],
|
||||
state[26], state[30], state[27], state[31] );
|
||||
|
||||
BLAKE2_ROUND_2( state[ 0], state[ 4], state[ 8], state[12],
|
||||
state[16], state[20], state[24], state[28] );
|
||||
BLAKE2_ROUND_2( state[ 1], state[ 5], state[ 9], state[13],
|
||||
state[17], state[21], state[25], state[29] );
|
||||
BLAKE2_ROUND_2( state[ 2], state[ 6], state[10], state[14],
|
||||
state[18], state[22], state[26], state[30] );
|
||||
BLAKE2_ROUND_2( state[ 3], state[ 7], state[11], state[15],
|
||||
state[19], state[23], state[27], state[31] );
|
||||
|
||||
/*
|
||||
for (i = 0; i < 4; ++i) {
|
||||
BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
|
||||
state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
|
||||
}
|
||||
|
||||
for (i = 0; i < 4; ++i) {
|
||||
BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
|
||||
state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
|
||||
}
|
||||
*/
|
||||
|
||||
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm256_xor_si256(state[i], block_XY[i]);
|
||||
_mm256_storeu_si256((__m256i *)next_block->v + i, state[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#else // SSE2
|
||||
|
||||
static void fill_block(__m128i *state, const block *ref_block,
|
||||
block *next_block, int with_xor) {
|
||||
__m128i block_XY[ARGON2_OWORDS_IN_BLOCK];
|
||||
unsigned int i;
|
||||
|
||||
if (with_xor) {
|
||||
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm_xor_si128(
|
||||
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
|
||||
block_XY[i] = _mm_xor_si128(
|
||||
state[i], _mm_loadu_si128((const __m128i *)next_block->v + i));
|
||||
}
|
||||
} else {
|
||||
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
||||
block_XY[i] = state[i] = _mm_xor_si128(
|
||||
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
|
||||
}
|
||||
}
|
||||
|
||||
BLAKE2_ROUND( state[ 0], state[ 1], state[ 2], state[ 3],
|
||||
state[ 4], state[ 5], state[ 6], state[ 7] );
|
||||
BLAKE2_ROUND( state[ 8], state[ 9], state[10], state[11],
|
||||
state[12], state[13], state[14], state[15] );
|
||||
BLAKE2_ROUND( state[16], state[17], state[18], state[19],
|
||||
state[20], state[21], state[22], state[23] );
|
||||
BLAKE2_ROUND( state[24], state[25], state[26], state[27],
|
||||
state[28], state[29], state[30], state[31] );
|
||||
BLAKE2_ROUND( state[32], state[33], state[34], state[35],
|
||||
state[36], state[37], state[38], state[39] );
|
||||
BLAKE2_ROUND( state[40], state[41], state[42], state[43],
|
||||
state[44], state[45], state[46], state[47] );
|
||||
BLAKE2_ROUND( state[48], state[49], state[50], state[51],
|
||||
state[52], state[53], state[54], state[55] );
|
||||
BLAKE2_ROUND( state[56], state[57], state[58], state[59],
|
||||
state[60], state[61], state[62], state[63] );
|
||||
|
||||
BLAKE2_ROUND( state[ 0], state[ 8], state[16], state[24],
|
||||
state[32], state[40], state[48], state[56] );
|
||||
BLAKE2_ROUND( state[ 1], state[ 9], state[17], state[25],
|
||||
state[33], state[41], state[49], state[57] );
|
||||
BLAKE2_ROUND( state[ 2], state[10], state[18], state[26],
|
||||
state[34], state[42], state[50], state[58] );
|
||||
BLAKE2_ROUND( state[ 3], state[11], state[19], state[27],
|
||||
state[35], state[43], state[51], state[59] );
|
||||
BLAKE2_ROUND( state[ 4], state[12], state[20], state[28],
|
||||
state[36], state[44], state[52], state[60] );
|
||||
BLAKE2_ROUND( state[ 5], state[13], state[21], state[29],
|
||||
state[37], state[45], state[53], state[61] );
|
||||
BLAKE2_ROUND( state[ 6], state[14], state[22], state[30],
|
||||
state[38], state[46], state[54], state[62] );
|
||||
BLAKE2_ROUND( state[ 7], state[15], state[23], state[31],
|
||||
state[39], state[47], state[55], state[63] );
|
||||
|
||||
/*
|
||||
for (i = 0; i < 8; ++i) {
|
||||
BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
|
||||
state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
|
||||
state[8 * i + 6], state[8 * i + 7]);
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
|
||||
state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
|
||||
state[8 * 6 + i], state[8 * 7 + i]);
|
||||
}
|
||||
*/
|
||||
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
||||
state[i] = _mm_xor_si128(state[i], block_XY[i]);
|
||||
_mm_storeu_si128((__m128i *)next_block->v + i, state[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
static void next_addresses(block *address_block, block *input_block) {
|
||||
/*Temporary zero-initialized blocks*/
|
||||
#if defined(__AVX512F__)
|
||||
__m512i zero_block[ARGON2_512BIT_WORDS_IN_BLOCK];
|
||||
__m512i zero2_block[ARGON2_512BIT_WORDS_IN_BLOCK];
|
||||
#elif defined(__AVX2__)
|
||||
__m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
|
||||
__m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
|
||||
#else
|
||||
__m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
|
||||
__m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
|
||||
#endif
|
||||
|
||||
memset(zero_block, 0, sizeof(zero_block));
|
||||
memset(zero2_block, 0, sizeof(zero2_block));
|
||||
|
||||
/*Increasing index counter*/
|
||||
input_block->v[6]++;
|
||||
|
||||
/*First iteration of G*/
|
||||
fill_block(zero_block, input_block, address_block, 0);
|
||||
|
||||
/*Second iteration of G*/
|
||||
fill_block(zero2_block, address_block, address_block, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
void fill_segment(const argon2_instance_t *instance,
|
||||
argon2_position_t position) {
|
||||
block *ref_block = NULL, *curr_block = NULL;
|
||||
// block address_block, input_block;
|
||||
uint64_t pseudo_rand, ref_index, ref_lane;
|
||||
uint32_t prev_offset, curr_offset;
|
||||
uint32_t starting_index, i;
|
||||
#if defined(__AVX512F__)
|
||||
__m512i state[ARGON2_512BIT_WORDS_IN_BLOCK];
|
||||
#elif defined(__AVX2__)
|
||||
__m256i state[ARGON2_HWORDS_IN_BLOCK];
|
||||
#else
|
||||
__m128i state[ARGON2_OWORDS_IN_BLOCK];
|
||||
#endif
|
||||
// int data_independent_addressing;
|
||||
|
||||
if (instance == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// data_independent_addressing =
|
||||
// (instance->type == Argon2_i) ||
|
||||
// (instance->type == Argon2_id && (position.pass == 0) &&
|
||||
// (position.slice < ARGON2_SYNC_POINTS / 2));
|
||||
|
||||
// if (data_independent_addressing) {
|
||||
// init_block_value(&input_block, 0);
|
||||
|
||||
// input_block.v[0] = position.pass;
|
||||
// input_block.v[1] = position.lane;
|
||||
// input_block.v[2] = position.slice;
|
||||
// input_block.v[3] = instance->memory_blocks;
|
||||
// input_block.v[4] = instance->passes;
|
||||
// input_block.v[5] = instance->type;
|
||||
// }
|
||||
|
||||
starting_index = 0;
|
||||
|
||||
if ((0 == position.pass) && (0 == position.slice)) {
|
||||
starting_index = 2; /* we have already generated the first two blocks */
|
||||
|
||||
/* Don't forget to generate the first block of addresses: */
|
||||
// if (data_independent_addressing) {
|
||||
// next_addresses(&address_block, &input_block);
|
||||
// }
|
||||
}
|
||||
|
||||
/* Offset of the current block */
|
||||
curr_offset = position.lane * instance->lane_length +
|
||||
position.slice * instance->segment_length + starting_index;
|
||||
|
||||
if (0 == curr_offset % instance->lane_length) {
|
||||
/* Last block in this lane */
|
||||
prev_offset = curr_offset + instance->lane_length - 1;
|
||||
} else {
|
||||
/* Previous block */
|
||||
prev_offset = curr_offset - 1;
|
||||
}
|
||||
|
||||
memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);
|
||||
|
||||
for (i = starting_index; i < instance->segment_length;
|
||||
++i, ++curr_offset, ++prev_offset) {
|
||||
/*1.1 Rotating prev_offset if needed */
|
||||
if (curr_offset % instance->lane_length == 1) {
|
||||
prev_offset = curr_offset - 1;
|
||||
}
|
||||
|
||||
/* 1.2 Computing the index of the reference block */
|
||||
/* 1.2.1 Taking pseudo-random value from the previous block */
|
||||
// if (data_independent_addressing) {
|
||||
// if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
|
||||
// next_addresses(&address_block, &input_block);
|
||||
// }
|
||||
// pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
|
||||
// } else {
|
||||
pseudo_rand = instance->memory[prev_offset].v[0];
|
||||
// }
|
||||
|
||||
/* 1.2.2 Computing the lane of the reference block */
|
||||
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
|
||||
|
||||
if ((position.pass == 0) && (position.slice == 0)) {
|
||||
/* Can not reference other lanes yet */
|
||||
ref_lane = position.lane;
|
||||
}
|
||||
|
||||
/* 1.2.3 Computing the number of possible reference block within the
|
||||
* lane.
|
||||
*/
|
||||
position.index = i;
|
||||
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
|
||||
ref_lane == position.lane);
|
||||
|
||||
/* 2 Creating a new block */
|
||||
ref_block =
|
||||
instance->memory + instance->lane_length * ref_lane + ref_index;
|
||||
curr_block = instance->memory + curr_offset;
|
||||
if (ARGON2_VERSION_10 == instance->version) {
|
||||
/* version 1.2.1 and earlier: overwrite, not XOR */
|
||||
fill_block(state, ref_block, curr_block, 0);
|
||||
} else {
|
||||
if(0 == position.pass) {
|
||||
fill_block(state, ref_block, curr_block, 0);
|
||||
} else {
|
||||
fill_block(state, ref_block, curr_block, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
57
algo/argon2/argon2d/argon2d/thread.c
Normal file
57
algo/argon2/argon2d/argon2d/thread.c
Normal file
@@ -0,0 +1,57 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#if !defined(ARGON2_NO_THREADS)
|
||||
|
||||
#include "thread.h"
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
int argon2_thread_create(argon2_thread_handle_t *handle,
|
||||
argon2_thread_func_t func, void *args) {
|
||||
if (NULL == handle || func == NULL) {
|
||||
return -1;
|
||||
}
|
||||
#if defined(_WIN32)
|
||||
*handle = _beginthreadex(NULL, 0, func, args, 0, NULL);
|
||||
return *handle != 0 ? 0 : -1;
|
||||
#else
|
||||
return pthread_create(handle, NULL, func, args);
|
||||
#endif
|
||||
}
|
||||
|
||||
int argon2_thread_join(argon2_thread_handle_t handle) {
|
||||
#if defined(_WIN32)
|
||||
if (WaitForSingleObject((HANDLE)handle, INFINITE) == WAIT_OBJECT_0) {
|
||||
return CloseHandle((HANDLE)handle) != 0 ? 0 : -1;
|
||||
}
|
||||
return -1;
|
||||
#else
|
||||
return pthread_join(handle, NULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
void argon2_thread_exit(void) {
|
||||
#if defined(_WIN32)
|
||||
_endthreadex(0);
|
||||
#else
|
||||
pthread_exit(NULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* ARGON2_NO_THREADS */
|
67
algo/argon2/argon2d/argon2d/thread.h
Normal file
67
algo/argon2/argon2d/argon2d/thread.h
Normal file
@@ -0,0 +1,67 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef ARGON2_THREAD_H
|
||||
#define ARGON2_THREAD_H
|
||||
|
||||
#if !defined(ARGON2_NO_THREADS)
|
||||
|
||||
/*
|
||||
Here we implement an abstraction layer for the simpĺe requirements
|
||||
of the Argon2 code. We only require 3 primitives---thread creation,
|
||||
joining, and termination---so full emulation of the pthreads API
|
||||
is unwarranted. Currently we wrap pthreads and Win32 threads.
|
||||
|
||||
The API defines 2 types: the function pointer type,
|
||||
argon2_thread_func_t,
|
||||
and the type of the thread handle---argon2_thread_handle_t.
|
||||
*/
|
||||
#if defined(_WIN32)
|
||||
#include <process.h>
|
||||
typedef unsigned(__stdcall *argon2_thread_func_t)(void *);
|
||||
typedef uintptr_t argon2_thread_handle_t;
|
||||
#else
|
||||
#include <pthread.h>
|
||||
typedef void *(*argon2_thread_func_t)(void *);
|
||||
typedef pthread_t argon2_thread_handle_t;
|
||||
#endif
|
||||
|
||||
/* Creates a thread
|
||||
* @param handle pointer to a thread handle, which is the output of this
|
||||
* function. Must not be NULL.
|
||||
* @param func A function pointer for the thread's entry point. Must not be
|
||||
* NULL.
|
||||
* @param args Pointer that is passed as an argument to @func. May be NULL.
|
||||
* @return 0 if @handle and @func are valid pointers and a thread is successfully
|
||||
* created.
|
||||
*/
|
||||
int argon2_thread_create(argon2_thread_handle_t *handle,
|
||||
argon2_thread_func_t func, void *args);
|
||||
|
||||
/* Waits for a thread to terminate
|
||||
* @param handle Handle to a thread created with argon2_thread_create.
|
||||
* @return 0 if @handle is a valid handle, and joining completed successfully.
|
||||
*/
|
||||
int argon2_thread_join(argon2_thread_handle_t handle);
|
||||
|
||||
/* Terminate the current thread. Must be run inside a thread created by
|
||||
* argon2_thread_create.
|
||||
*/
|
||||
void argon2_thread_exit(void);
|
||||
|
||||
#endif /* ARGON2_NO_THREADS */
|
||||
#endif
|
156
algo/argon2/argon2d/blake2/blake2-impl.h
Normal file
156
algo/argon2/argon2d/blake2/blake2-impl.h
Normal file
@@ -0,0 +1,156 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef PORTABLE_BLAKE2_IMPL_H
|
||||
#define PORTABLE_BLAKE2_IMPL_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define BLAKE2_INLINE __inline
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
#define BLAKE2_INLINE __inline__
|
||||
#else
|
||||
#define BLAKE2_INLINE
|
||||
#endif
|
||||
|
||||
/* Argon2 Team - Begin Code */
|
||||
/*
|
||||
Not an exhaustive list, but should cover the majority of modern platforms
|
||||
Additionally, the code will always be correct---this is only a performance
|
||||
tweak.
|
||||
*/
|
||||
#if (defined(__BYTE_ORDER__) && \
|
||||
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \
|
||||
defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || defined(__MIPSEL__) || \
|
||||
defined(__AARCH64EL__) || defined(__amd64__) || defined(__i386__) || \
|
||||
defined(_M_IX86) || defined(_M_X64) || defined(_M_AMD64) || \
|
||||
defined(_M_ARM)
|
||||
#define NATIVE_LITTLE_ENDIAN
|
||||
#endif
|
||||
/* Argon2 Team - End Code */
|
||||
|
||||
static BLAKE2_INLINE uint32_t load32(const void *src) {
|
||||
#if defined(NATIVE_LITTLE_ENDIAN)
|
||||
uint32_t w;
|
||||
memcpy(&w, src, sizeof w);
|
||||
return w;
|
||||
#else
|
||||
const uint8_t *p = (const uint8_t *)src;
|
||||
uint32_t w = *p++;
|
||||
w |= (uint32_t)(*p++) << 8;
|
||||
w |= (uint32_t)(*p++) << 16;
|
||||
w |= (uint32_t)(*p++) << 24;
|
||||
return w;
|
||||
#endif
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE uint64_t load64(const void *src) {
|
||||
#if defined(NATIVE_LITTLE_ENDIAN)
|
||||
uint64_t w;
|
||||
memcpy(&w, src, sizeof w);
|
||||
return w;
|
||||
#else
|
||||
const uint8_t *p = (const uint8_t *)src;
|
||||
uint64_t w = *p++;
|
||||
w |= (uint64_t)(*p++) << 8;
|
||||
w |= (uint64_t)(*p++) << 16;
|
||||
w |= (uint64_t)(*p++) << 24;
|
||||
w |= (uint64_t)(*p++) << 32;
|
||||
w |= (uint64_t)(*p++) << 40;
|
||||
w |= (uint64_t)(*p++) << 48;
|
||||
w |= (uint64_t)(*p++) << 56;
|
||||
return w;
|
||||
#endif
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void store32(void *dst, uint32_t w) {
|
||||
#if defined(NATIVE_LITTLE_ENDIAN)
|
||||
memcpy(dst, &w, sizeof w);
|
||||
#else
|
||||
uint8_t *p = (uint8_t *)dst;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
#endif
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void store64(void *dst, uint64_t w) {
|
||||
#if defined(NATIVE_LITTLE_ENDIAN)
|
||||
memcpy(dst, &w, sizeof w);
|
||||
#else
|
||||
uint8_t *p = (uint8_t *)dst;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
#endif
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE uint64_t load48(const void *src) {
|
||||
const uint8_t *p = (const uint8_t *)src;
|
||||
uint64_t w = *p++;
|
||||
w |= (uint64_t)(*p++) << 8;
|
||||
w |= (uint64_t)(*p++) << 16;
|
||||
w |= (uint64_t)(*p++) << 24;
|
||||
w |= (uint64_t)(*p++) << 32;
|
||||
w |= (uint64_t)(*p++) << 40;
|
||||
return w;
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void store48(void *dst, uint64_t w) {
|
||||
uint8_t *p = (uint8_t *)dst;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
w >>= 8;
|
||||
*p++ = (uint8_t)w;
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE uint32_t rotr32(const uint32_t w, const unsigned c) {
|
||||
return (w >> c) | (w << (32 - c));
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE uint64_t rotr64(const uint64_t w, const unsigned c) {
|
||||
return (w >> c) | (w << (64 - c));
|
||||
}
|
||||
|
||||
void clear_internal_memory(void *v, size_t n);
|
||||
|
||||
#endif
|
91
algo/argon2/argon2d/blake2/blake2.h
Normal file
91
algo/argon2/argon2d/blake2/blake2.h
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef PORTABLE_BLAKE2_H
|
||||
#define PORTABLE_BLAKE2_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <limits.h>
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum blake2b_constant {
|
||||
BLAKE2B_BLOCKBYTES = 128,
|
||||
BLAKE2B_OUTBYTES = 64,
|
||||
BLAKE2B_KEYBYTES = 64,
|
||||
BLAKE2B_SALTBYTES = 16,
|
||||
BLAKE2B_PERSONALBYTES = 16
|
||||
};
|
||||
|
||||
#pragma pack(push, 1)
|
||||
typedef struct __blake2b_param {
|
||||
uint8_t digest_length; /* 1 */
|
||||
uint8_t key_length; /* 2 */
|
||||
uint8_t fanout; /* 3 */
|
||||
uint8_t depth; /* 4 */
|
||||
uint32_t leaf_length; /* 8 */
|
||||
uint64_t node_offset; /* 16 */
|
||||
uint8_t node_depth; /* 17 */
|
||||
uint8_t inner_length; /* 18 */
|
||||
uint8_t reserved[14]; /* 32 */
|
||||
uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */
|
||||
uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */
|
||||
} blake2b_param;
|
||||
#pragma pack(pop)
|
||||
|
||||
typedef struct __blake2b_state {
|
||||
uint64_t h[8];
|
||||
uint64_t t[2];
|
||||
uint64_t f[2];
|
||||
uint8_t buf[BLAKE2B_BLOCKBYTES];
|
||||
unsigned buflen;
|
||||
unsigned outlen;
|
||||
uint8_t last_node;
|
||||
} blake2b_state;
|
||||
|
||||
/* Ensure param structs have not been wrongly padded */
|
||||
/* Poor man's static_assert */
|
||||
enum {
|
||||
blake2_size_check_0 = 1 / !!(CHAR_BIT == 8),
|
||||
blake2_size_check_2 =
|
||||
1 / !!(sizeof(blake2b_param) == sizeof(uint64_t) * CHAR_BIT)
|
||||
};
|
||||
|
||||
/* Streaming API */
|
||||
int blake2b_init(blake2b_state *S, size_t outlen);
|
||||
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
|
||||
size_t keylen);
|
||||
int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
|
||||
int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
|
||||
int blake2b_final(blake2b_state *S, void *out, size_t outlen);
|
||||
|
||||
/* Simple API */
|
||||
int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
|
||||
const void *key, size_t keylen);
|
||||
|
||||
/* Argon2 Team - Begin Code */
|
||||
int blake2b_long(void *out, size_t outlen, const void *in, size_t inlen);
|
||||
/* Argon2 Team - End Code */
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
390
algo/argon2/argon2d/blake2/blake2b.c
Normal file
390
algo/argon2/argon2d/blake2/blake2b.c
Normal file
@@ -0,0 +1,390 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "blake2.h"
|
||||
#include "blake2-impl.h"
|
||||
|
||||
static const uint64_t blake2b_IV[8] = {
|
||||
UINT64_C(0x6a09e667f3bcc908), UINT64_C(0xbb67ae8584caa73b),
|
||||
UINT64_C(0x3c6ef372fe94f82b), UINT64_C(0xa54ff53a5f1d36f1),
|
||||
UINT64_C(0x510e527fade682d1), UINT64_C(0x9b05688c2b3e6c1f),
|
||||
UINT64_C(0x1f83d9abfb41bd6b), UINT64_C(0x5be0cd19137e2179)};
|
||||
|
||||
static const unsigned int blake2b_sigma[12][16] = {
|
||||
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
|
||||
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
|
||||
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
|
||||
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
|
||||
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
|
||||
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
|
||||
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
|
||||
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
|
||||
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
|
||||
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
|
||||
};
|
||||
|
||||
static BLAKE2_INLINE void blake2b_set_lastnode(blake2b_state *S) {
|
||||
S->f[1] = (uint64_t)-1;
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void blake2b_set_lastblock(blake2b_state *S) {
|
||||
if (S->last_node) {
|
||||
blake2b_set_lastnode(S);
|
||||
}
|
||||
S->f[0] = (uint64_t)-1;
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void blake2b_increment_counter(blake2b_state *S,
|
||||
uint64_t inc) {
|
||||
S->t[0] += inc;
|
||||
S->t[1] += (S->t[0] < inc);
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void blake2b_invalidate_state(blake2b_state *S) {
|
||||
clear_internal_memory(S, sizeof(*S)); /* wipe */
|
||||
blake2b_set_lastblock(S); /* invalidate for further use */
|
||||
}
|
||||
|
||||
static BLAKE2_INLINE void blake2b_init0(blake2b_state *S) {
|
||||
memset(S, 0, sizeof(*S));
|
||||
memcpy(S->h, blake2b_IV, sizeof(S->h));
|
||||
}
|
||||
|
||||
int blake2b_init_param(blake2b_state *S, const blake2b_param *P) {
|
||||
const unsigned char *p = (const unsigned char *)P;
|
||||
unsigned int i;
|
||||
|
||||
if (NULL == P || NULL == S) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
blake2b_init0(S);
|
||||
/* IV XOR Parameter Block */
|
||||
for (i = 0; i < 8; ++i) {
|
||||
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
|
||||
}
|
||||
S->outlen = P->digest_length;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Sequential blake2b initialization */
|
||||
int blake2b_init(blake2b_state *S, size_t outlen) {
|
||||
blake2b_param P;
|
||||
|
||||
if (S == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
|
||||
blake2b_invalidate_state(S);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Setup Parameter Block for unkeyed BLAKE2 */
|
||||
P.digest_length = (uint8_t)outlen;
|
||||
P.key_length = 0;
|
||||
P.fanout = 1;
|
||||
P.depth = 1;
|
||||
P.leaf_length = 0;
|
||||
P.node_offset = 0;
|
||||
P.node_depth = 0;
|
||||
P.inner_length = 0;
|
||||
memset(P.reserved, 0, sizeof(P.reserved));
|
||||
memset(P.salt, 0, sizeof(P.salt));
|
||||
memset(P.personal, 0, sizeof(P.personal));
|
||||
|
||||
return blake2b_init_param(S, &P);
|
||||
}
|
||||
|
||||
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
|
||||
size_t keylen) {
|
||||
blake2b_param P;
|
||||
|
||||
if (S == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
|
||||
blake2b_invalidate_state(S);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((key == 0) || (keylen == 0) || (keylen > BLAKE2B_KEYBYTES)) {
|
||||
blake2b_invalidate_state(S);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Setup Parameter Block for keyed BLAKE2 */
|
||||
P.digest_length = (uint8_t)outlen;
|
||||
P.key_length = (uint8_t)keylen;
|
||||
P.fanout = 1;
|
||||
P.depth = 1;
|
||||
P.leaf_length = 0;
|
||||
P.node_offset = 0;
|
||||
P.node_depth = 0;
|
||||
P.inner_length = 0;
|
||||
memset(P.reserved, 0, sizeof(P.reserved));
|
||||
memset(P.salt, 0, sizeof(P.salt));
|
||||
memset(P.personal, 0, sizeof(P.personal));
|
||||
|
||||
if (blake2b_init_param(S, &P) < 0) {
|
||||
blake2b_invalidate_state(S);
|
||||
return -1;
|
||||
}
|
||||
|
||||
{
|
||||
uint8_t block[BLAKE2B_BLOCKBYTES];
|
||||
memset(block, 0, BLAKE2B_BLOCKBYTES);
|
||||
memcpy(block, key, keylen);
|
||||
blake2b_update(S, block, BLAKE2B_BLOCKBYTES);
|
||||
/* Burn the key from stack */
|
||||
clear_internal_memory(block, BLAKE2B_BLOCKBYTES);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void blake2b_compress(blake2b_state *S, const uint8_t *block) {
|
||||
uint64_t m[16];
|
||||
uint64_t v[16];
|
||||
unsigned int i, r;
|
||||
|
||||
for (i = 0; i < 16; ++i) {
|
||||
m[i] = load64(block + i * sizeof(m[i]));
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
v[i] = S->h[i];
|
||||
}
|
||||
|
||||
v[8] = blake2b_IV[0];
|
||||
v[9] = blake2b_IV[1];
|
||||
v[10] = blake2b_IV[2];
|
||||
v[11] = blake2b_IV[3];
|
||||
v[12] = blake2b_IV[4] ^ S->t[0];
|
||||
v[13] = blake2b_IV[5] ^ S->t[1];
|
||||
v[14] = blake2b_IV[6] ^ S->f[0];
|
||||
v[15] = blake2b_IV[7] ^ S->f[1];
|
||||
|
||||
#define G(r, i, a, b, c, d) \
|
||||
do { \
|
||||
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
|
||||
d = rotr64(d ^ a, 32); \
|
||||
c = c + d; \
|
||||
b = rotr64(b ^ c, 24); \
|
||||
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
|
||||
d = rotr64(d ^ a, 16); \
|
||||
c = c + d; \
|
||||
b = rotr64(b ^ c, 63); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define ROUND(r) \
|
||||
do { \
|
||||
G(r, 0, v[0], v[4], v[8], v[12]); \
|
||||
G(r, 1, v[1], v[5], v[9], v[13]); \
|
||||
G(r, 2, v[2], v[6], v[10], v[14]); \
|
||||
G(r, 3, v[3], v[7], v[11], v[15]); \
|
||||
G(r, 4, v[0], v[5], v[10], v[15]); \
|
||||
G(r, 5, v[1], v[6], v[11], v[12]); \
|
||||
G(r, 6, v[2], v[7], v[8], v[13]); \
|
||||
G(r, 7, v[3], v[4], v[9], v[14]); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
for (r = 0; r < 12; ++r) {
|
||||
ROUND(r);
|
||||
}
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
|
||||
}
|
||||
|
||||
#undef G
|
||||
#undef ROUND
|
||||
}
|
||||
|
||||
int blake2b_update(blake2b_state *S, const void *in, size_t inlen) {
|
||||
const uint8_t *pin = (const uint8_t *)in;
|
||||
|
||||
if (inlen == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Sanity check */
|
||||
if (S == NULL || in == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Is this a reused state? */
|
||||
if (S->f[0] != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (S->buflen + inlen > BLAKE2B_BLOCKBYTES) {
|
||||
/* Complete current block */
|
||||
size_t left = S->buflen;
|
||||
size_t fill = BLAKE2B_BLOCKBYTES - left;
|
||||
memcpy(&S->buf[left], pin, fill);
|
||||
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
|
||||
blake2b_compress(S, S->buf);
|
||||
S->buflen = 0;
|
||||
inlen -= fill;
|
||||
pin += fill;
|
||||
/* Avoid buffer copies when possible */
|
||||
while (inlen > BLAKE2B_BLOCKBYTES) {
|
||||
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
|
||||
blake2b_compress(S, pin);
|
||||
inlen -= BLAKE2B_BLOCKBYTES;
|
||||
pin += BLAKE2B_BLOCKBYTES;
|
||||
}
|
||||
}
|
||||
memcpy(&S->buf[S->buflen], pin, inlen);
|
||||
S->buflen += (unsigned int)inlen;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2b_final(blake2b_state *S, void *out, size_t outlen) {
|
||||
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
|
||||
unsigned int i;
|
||||
|
||||
/* Sanity checks */
|
||||
if (S == NULL || out == NULL || outlen < S->outlen) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Is this a reused state? */
|
||||
if (S->f[0] != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
blake2b_increment_counter(S, S->buflen);
|
||||
blake2b_set_lastblock(S);
|
||||
memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */
|
||||
blake2b_compress(S, S->buf);
|
||||
|
||||
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
|
||||
store64(buffer + sizeof(S->h[i]) * i, S->h[i]);
|
||||
}
|
||||
|
||||
memcpy(out, buffer, S->outlen);
|
||||
clear_internal_memory(buffer, sizeof(buffer));
|
||||
clear_internal_memory(S->buf, sizeof(S->buf));
|
||||
clear_internal_memory(S->h, sizeof(S->h));
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
|
||||
const void *key, size_t keylen) {
|
||||
blake2b_state S;
|
||||
int ret = -1;
|
||||
|
||||
/* Verify parameters */
|
||||
if (NULL == in && inlen > 0) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
if (NULL == out || outlen == 0 || outlen > BLAKE2B_OUTBYTES) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
if ((NULL == key && keylen > 0) || keylen > BLAKE2B_KEYBYTES) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
if (keylen > 0) {
|
||||
if (blake2b_init_key(&S, outlen, key, keylen) < 0) {
|
||||
goto fail;
|
||||
}
|
||||
} else {
|
||||
if (blake2b_init(&S, outlen) < 0) {
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
|
||||
if (blake2b_update(&S, in, inlen) < 0) {
|
||||
goto fail;
|
||||
}
|
||||
ret = blake2b_final(&S, out, outlen);
|
||||
|
||||
fail:
|
||||
clear_internal_memory(&S, sizeof(S));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Argon2 Team - Begin Code */
|
||||
int blake2b_long(void *pout, size_t outlen, const void *in, size_t inlen) {
|
||||
uint8_t *out = (uint8_t *)pout;
|
||||
blake2b_state blake_state;
|
||||
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
|
||||
int ret = -1;
|
||||
|
||||
if (outlen > UINT32_MAX) {
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/* Ensure little-endian byte order! */
|
||||
store32(outlen_bytes, (uint32_t)outlen);
|
||||
|
||||
#define TRY(statement) \
|
||||
do { \
|
||||
ret = statement; \
|
||||
if (ret < 0) { \
|
||||
goto fail; \
|
||||
} \
|
||||
} while ((void)0, 0)
|
||||
|
||||
if (outlen <= BLAKE2B_OUTBYTES) {
|
||||
TRY(blake2b_init(&blake_state, outlen));
|
||||
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
|
||||
TRY(blake2b_update(&blake_state, in, inlen));
|
||||
TRY(blake2b_final(&blake_state, out, outlen));
|
||||
} else {
|
||||
uint32_t toproduce;
|
||||
uint8_t out_buffer[BLAKE2B_OUTBYTES];
|
||||
uint8_t in_buffer[BLAKE2B_OUTBYTES];
|
||||
TRY(blake2b_init(&blake_state, BLAKE2B_OUTBYTES));
|
||||
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
|
||||
TRY(blake2b_update(&blake_state, in, inlen));
|
||||
TRY(blake2b_final(&blake_state, out_buffer, BLAKE2B_OUTBYTES));
|
||||
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
|
||||
out += BLAKE2B_OUTBYTES / 2;
|
||||
toproduce = (uint32_t)outlen - BLAKE2B_OUTBYTES / 2;
|
||||
|
||||
while (toproduce > BLAKE2B_OUTBYTES) {
|
||||
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
|
||||
TRY(blake2b(out_buffer, BLAKE2B_OUTBYTES, in_buffer,
|
||||
BLAKE2B_OUTBYTES, NULL, 0));
|
||||
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
|
||||
out += BLAKE2B_OUTBYTES / 2;
|
||||
toproduce -= BLAKE2B_OUTBYTES / 2;
|
||||
}
|
||||
|
||||
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
|
||||
TRY(blake2b(out_buffer, toproduce, in_buffer, BLAKE2B_OUTBYTES, NULL,
|
||||
0));
|
||||
memcpy(out, out_buffer, toproduce);
|
||||
}
|
||||
fail:
|
||||
clear_internal_memory(&blake_state, sizeof(blake_state));
|
||||
return ret;
|
||||
#undef TRY
|
||||
}
|
||||
/* Argon2 Team - End Code */
|
471
algo/argon2/argon2d/blake2/blamka-round-opt.h
Normal file
471
algo/argon2/argon2d/blake2/blamka-round-opt.h
Normal file
@@ -0,0 +1,471 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef BLAKE_ROUND_MKA_OPT_H
|
||||
#define BLAKE_ROUND_MKA_OPT_H
|
||||
|
||||
#include "blake2-impl.h"
|
||||
|
||||
#include <emmintrin.h>
|
||||
#if defined(__SSSE3__)
|
||||
#include <tmmintrin.h> /* for _mm_shuffle_epi8 and _mm_alignr_epi8 */
|
||||
#endif
|
||||
|
||||
#if defined(__XOP__) && (defined(__GNUC__) || defined(__clang__))
|
||||
#include <x86intrin.h>
|
||||
#endif
|
||||
|
||||
#if !defined(__AVX512F__)
|
||||
#if !defined(__AVX2__)
|
||||
#if !defined(__XOP__)
|
||||
#if defined(__SSSE3__)
|
||||
#define r16 \
|
||||
(_mm_setr_epi8(2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9))
|
||||
#define r24 \
|
||||
(_mm_setr_epi8(3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10))
|
||||
#define _mm_roti_epi64(x, c) \
|
||||
(-(c) == 32) \
|
||||
? _mm_shuffle_epi32((x), _MM_SHUFFLE(2, 3, 0, 1)) \
|
||||
: (-(c) == 24) \
|
||||
? _mm_shuffle_epi8((x), r24) \
|
||||
: (-(c) == 16) \
|
||||
? _mm_shuffle_epi8((x), r16) \
|
||||
: (-(c) == 63) \
|
||||
? _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
|
||||
_mm_add_epi64((x), (x))) \
|
||||
: _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
|
||||
_mm_slli_epi64((x), 64 - (-(c))))
|
||||
#else /* defined(__SSE2__) */
|
||||
#define _mm_roti_epi64(r, c) \
|
||||
_mm_xor_si128(_mm_srli_epi64((r), -(c)), _mm_slli_epi64((r), 64 - (-(c))))
|
||||
#endif
|
||||
#else
|
||||
#endif
|
||||
|
||||
static BLAKE2_INLINE __m128i fBlaMka(__m128i x, __m128i y) {
|
||||
const __m128i z = _mm_mul_epu32(x, y);
|
||||
return _mm_add_epi64(_mm_add_epi64(x, y), _mm_add_epi64(z, z));
|
||||
}
|
||||
|
||||
#define G1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
A0 = fBlaMka(A0, B0); \
|
||||
A1 = fBlaMka(A1, B1); \
|
||||
\
|
||||
D0 = _mm_xor_si128(D0, A0); \
|
||||
D1 = _mm_xor_si128(D1, A1); \
|
||||
\
|
||||
D0 = _mm_roti_epi64(D0, -32); \
|
||||
D1 = _mm_roti_epi64(D1, -32); \
|
||||
\
|
||||
C0 = fBlaMka(C0, D0); \
|
||||
C1 = fBlaMka(C1, D1); \
|
||||
\
|
||||
B0 = _mm_xor_si128(B0, C0); \
|
||||
B1 = _mm_xor_si128(B1, C1); \
|
||||
\
|
||||
B0 = _mm_roti_epi64(B0, -24); \
|
||||
B1 = _mm_roti_epi64(B1, -24); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define G2(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
A0 = fBlaMka(A0, B0); \
|
||||
A1 = fBlaMka(A1, B1); \
|
||||
\
|
||||
D0 = _mm_xor_si128(D0, A0); \
|
||||
D1 = _mm_xor_si128(D1, A1); \
|
||||
\
|
||||
D0 = _mm_roti_epi64(D0, -16); \
|
||||
D1 = _mm_roti_epi64(D1, -16); \
|
||||
\
|
||||
C0 = fBlaMka(C0, D0); \
|
||||
C1 = fBlaMka(C1, D1); \
|
||||
\
|
||||
B0 = _mm_xor_si128(B0, C0); \
|
||||
B1 = _mm_xor_si128(B1, C1); \
|
||||
\
|
||||
B0 = _mm_roti_epi64(B0, -63); \
|
||||
B1 = _mm_roti_epi64(B1, -63); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#if defined(__SSSE3__)
|
||||
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
__m128i t0 = _mm_alignr_epi8(B1, B0, 8); \
|
||||
__m128i t1 = _mm_alignr_epi8(B0, B1, 8); \
|
||||
B0 = t0; \
|
||||
B1 = t1; \
|
||||
\
|
||||
t0 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = t0; \
|
||||
\
|
||||
t0 = _mm_alignr_epi8(D1, D0, 8); \
|
||||
t1 = _mm_alignr_epi8(D0, D1, 8); \
|
||||
D0 = t1; \
|
||||
D1 = t0; \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
__m128i t0 = _mm_alignr_epi8(B0, B1, 8); \
|
||||
__m128i t1 = _mm_alignr_epi8(B1, B0, 8); \
|
||||
B0 = t0; \
|
||||
B1 = t1; \
|
||||
\
|
||||
t0 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = t0; \
|
||||
\
|
||||
t0 = _mm_alignr_epi8(D0, D1, 8); \
|
||||
t1 = _mm_alignr_epi8(D1, D0, 8); \
|
||||
D0 = t1; \
|
||||
D1 = t0; \
|
||||
} while ((void)0, 0)
|
||||
#else /* SSE2 */
|
||||
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
__m128i t0 = D0; \
|
||||
__m128i t1 = B0; \
|
||||
D0 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = D0; \
|
||||
D0 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t0, t0)); \
|
||||
D1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(D1, D1)); \
|
||||
B0 = _mm_unpackhi_epi64(B0, _mm_unpacklo_epi64(B1, B1)); \
|
||||
B1 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(t1, t1)); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
__m128i t0, t1; \
|
||||
t0 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = t0; \
|
||||
t0 = B0; \
|
||||
t1 = D0; \
|
||||
B0 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(B0, B0)); \
|
||||
B1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(B1, B1)); \
|
||||
D0 = _mm_unpackhi_epi64(D0, _mm_unpacklo_epi64(D1, D1)); \
|
||||
D1 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t1, t1)); \
|
||||
} while ((void)0, 0)
|
||||
#endif
|
||||
|
||||
#define BLAKE2_ROUND(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
} while ((void)0, 0)
|
||||
#else /* __AVX2__ */
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#define rotr32(x) _mm256_shuffle_epi32(x, _MM_SHUFFLE(2, 3, 0, 1))
|
||||
#define rotr24(x) _mm256_shuffle_epi8(x, _mm256_setr_epi8(3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10, 3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10))
|
||||
#define rotr16(x) _mm256_shuffle_epi8(x, _mm256_setr_epi8(2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9, 2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9))
|
||||
#define rotr63(x) _mm256_xor_si256(_mm256_srli_epi64((x), 63), _mm256_add_epi64((x), (x)))
|
||||
|
||||
#define G1_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
__m256i ml = _mm256_mul_epu32(A0, B0); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
A0 = _mm256_add_epi64(A0, _mm256_add_epi64(B0, ml)); \
|
||||
D0 = _mm256_xor_si256(D0, A0); \
|
||||
D0 = rotr32(D0); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(C0, D0); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
C0 = _mm256_add_epi64(C0, _mm256_add_epi64(D0, ml)); \
|
||||
\
|
||||
B0 = _mm256_xor_si256(B0, C0); \
|
||||
B0 = rotr24(B0); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(A1, B1); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
A1 = _mm256_add_epi64(A1, _mm256_add_epi64(B1, ml)); \
|
||||
D1 = _mm256_xor_si256(D1, A1); \
|
||||
D1 = rotr32(D1); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(C1, D1); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
C1 = _mm256_add_epi64(C1, _mm256_add_epi64(D1, ml)); \
|
||||
\
|
||||
B1 = _mm256_xor_si256(B1, C1); \
|
||||
B1 = rotr24(B1); \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define G2_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
__m256i ml = _mm256_mul_epu32(A0, B0); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
A0 = _mm256_add_epi64(A0, _mm256_add_epi64(B0, ml)); \
|
||||
D0 = _mm256_xor_si256(D0, A0); \
|
||||
D0 = rotr16(D0); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(C0, D0); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
C0 = _mm256_add_epi64(C0, _mm256_add_epi64(D0, ml)); \
|
||||
B0 = _mm256_xor_si256(B0, C0); \
|
||||
B0 = rotr63(B0); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(A1, B1); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
A1 = _mm256_add_epi64(A1, _mm256_add_epi64(B1, ml)); \
|
||||
D1 = _mm256_xor_si256(D1, A1); \
|
||||
D1 = rotr16(D1); \
|
||||
\
|
||||
ml = _mm256_mul_epu32(C1, D1); \
|
||||
ml = _mm256_add_epi64(ml, ml); \
|
||||
C1 = _mm256_add_epi64(C1, _mm256_add_epi64(D1, ml)); \
|
||||
B1 = _mm256_xor_si256(B1, C1); \
|
||||
B1 = rotr63(B1); \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define DIAGONALIZE_1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
B0 = _mm256_permute4x64_epi64(B0, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
C0 = _mm256_permute4x64_epi64(C0, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
D0 = _mm256_permute4x64_epi64(D0, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
\
|
||||
B1 = _mm256_permute4x64_epi64(B1, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
C1 = _mm256_permute4x64_epi64(C1, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
D1 = _mm256_permute4x64_epi64(D1, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define DIAGONALIZE_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
__m256i tmp1 = _mm256_blend_epi32(B0, B1, 0xCC); \
|
||||
__m256i tmp2 = _mm256_blend_epi32(B0, B1, 0x33); \
|
||||
B1 = _mm256_permute4x64_epi64(tmp1, _MM_SHUFFLE(2,3,0,1)); \
|
||||
B0 = _mm256_permute4x64_epi64(tmp2, _MM_SHUFFLE(2,3,0,1)); \
|
||||
\
|
||||
tmp1 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = tmp1; \
|
||||
\
|
||||
tmp1 = _mm256_blend_epi32(D0, D1, 0xCC); \
|
||||
tmp2 = _mm256_blend_epi32(D0, D1, 0x33); \
|
||||
D0 = _mm256_permute4x64_epi64(tmp1, _MM_SHUFFLE(2,3,0,1)); \
|
||||
D1 = _mm256_permute4x64_epi64(tmp2, _MM_SHUFFLE(2,3,0,1)); \
|
||||
} while(0);
|
||||
|
||||
#define UNDIAGONALIZE_1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
B0 = _mm256_permute4x64_epi64(B0, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
C0 = _mm256_permute4x64_epi64(C0, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
D0 = _mm256_permute4x64_epi64(D0, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
\
|
||||
B1 = _mm256_permute4x64_epi64(B1, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
C1 = _mm256_permute4x64_epi64(C1, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
D1 = _mm256_permute4x64_epi64(D1, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define UNDIAGONALIZE_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
__m256i tmp1 = _mm256_blend_epi32(B0, B1, 0xCC); \
|
||||
__m256i tmp2 = _mm256_blend_epi32(B0, B1, 0x33); \
|
||||
B0 = _mm256_permute4x64_epi64(tmp1, _MM_SHUFFLE(2,3,0,1)); \
|
||||
B1 = _mm256_permute4x64_epi64(tmp2, _MM_SHUFFLE(2,3,0,1)); \
|
||||
\
|
||||
tmp1 = C0; \
|
||||
C0 = C1; \
|
||||
C1 = tmp1; \
|
||||
\
|
||||
tmp1 = _mm256_blend_epi32(D0, D1, 0x33); \
|
||||
tmp2 = _mm256_blend_epi32(D0, D1, 0xCC); \
|
||||
D0 = _mm256_permute4x64_epi64(tmp1, _MM_SHUFFLE(2,3,0,1)); \
|
||||
D1 = _mm256_permute4x64_epi64(tmp2, _MM_SHUFFLE(2,3,0,1)); \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define BLAKE2_ROUND_1(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do{ \
|
||||
G1_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
G2_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
\
|
||||
DIAGONALIZE_1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
\
|
||||
G1_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
G2_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
\
|
||||
UNDIAGONALIZE_1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
} while((void)0, 0);
|
||||
|
||||
#define BLAKE2_ROUND_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do{ \
|
||||
G1_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
G2_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
\
|
||||
DIAGONALIZE_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
\
|
||||
G1_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
G2_AVX2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
\
|
||||
UNDIAGONALIZE_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
} while((void)0, 0);
|
||||
|
||||
#endif /* __AVX2__ */
|
||||
|
||||
#else /* __AVX512F__ */
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#define ror64(x, n) _mm512_ror_epi64((x), (n))
|
||||
|
||||
static __m512i muladd(__m512i x, __m512i y)
|
||||
{
|
||||
__m512i z = _mm512_mul_epu32(x, y);
|
||||
return _mm512_add_epi64(_mm512_add_epi64(x, y), _mm512_add_epi64(z, z));
|
||||
}
|
||||
|
||||
#define G1(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
A0 = muladd(A0, B0); \
|
||||
A1 = muladd(A1, B1); \
|
||||
\
|
||||
D0 = _mm512_xor_si512(D0, A0); \
|
||||
D1 = _mm512_xor_si512(D1, A1); \
|
||||
\
|
||||
D0 = ror64(D0, 32); \
|
||||
D1 = ror64(D1, 32); \
|
||||
\
|
||||
C0 = muladd(C0, D0); \
|
||||
C1 = muladd(C1, D1); \
|
||||
\
|
||||
B0 = _mm512_xor_si512(B0, C0); \
|
||||
B1 = _mm512_xor_si512(B1, C1); \
|
||||
\
|
||||
B0 = ror64(B0, 24); \
|
||||
B1 = ror64(B1, 24); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define G2(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
A0 = muladd(A0, B0); \
|
||||
A1 = muladd(A1, B1); \
|
||||
\
|
||||
D0 = _mm512_xor_si512(D0, A0); \
|
||||
D1 = _mm512_xor_si512(D1, A1); \
|
||||
\
|
||||
D0 = ror64(D0, 16); \
|
||||
D1 = ror64(D1, 16); \
|
||||
\
|
||||
C0 = muladd(C0, D0); \
|
||||
C1 = muladd(C1, D1); \
|
||||
\
|
||||
B0 = _mm512_xor_si512(B0, C0); \
|
||||
B1 = _mm512_xor_si512(B1, C1); \
|
||||
\
|
||||
B0 = ror64(B0, 63); \
|
||||
B1 = ror64(B1, 63); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
B0 = _mm512_permutex_epi64(B0, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
B1 = _mm512_permutex_epi64(B1, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
\
|
||||
C0 = _mm512_permutex_epi64(C0, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
C1 = _mm512_permutex_epi64(C1, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
\
|
||||
D0 = _mm512_permutex_epi64(D0, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
D1 = _mm512_permutex_epi64(D1, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
B0 = _mm512_permutex_epi64(B0, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
B1 = _mm512_permutex_epi64(B1, _MM_SHUFFLE(2, 1, 0, 3)); \
|
||||
\
|
||||
C0 = _mm512_permutex_epi64(C0, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
C1 = _mm512_permutex_epi64(C1, _MM_SHUFFLE(1, 0, 3, 2)); \
|
||||
\
|
||||
D0 = _mm512_permutex_epi64(D0, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
D1 = _mm512_permutex_epi64(D1, _MM_SHUFFLE(0, 3, 2, 1)); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define BLAKE2_ROUND(A0, B0, C0, D0, A1, B1, C1, D1) \
|
||||
do { \
|
||||
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
\
|
||||
UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define SWAP_HALVES(A0, A1) \
|
||||
do { \
|
||||
__m512i t0, t1; \
|
||||
t0 = _mm512_shuffle_i64x2(A0, A1, _MM_SHUFFLE(1, 0, 1, 0)); \
|
||||
t1 = _mm512_shuffle_i64x2(A0, A1, _MM_SHUFFLE(3, 2, 3, 2)); \
|
||||
A0 = t0; \
|
||||
A1 = t1; \
|
||||
} while((void)0, 0)
|
||||
|
||||
#define SWAP_QUARTERS(A0, A1) \
|
||||
do { \
|
||||
SWAP_HALVES(A0, A1); \
|
||||
A0 = _mm512_permutexvar_epi64(_mm512_setr_epi64(0, 1, 4, 5, 2, 3, 6, 7), A0); \
|
||||
A1 = _mm512_permutexvar_epi64(_mm512_setr_epi64(0, 1, 4, 5, 2, 3, 6, 7), A1); \
|
||||
} while((void)0, 0)
|
||||
|
||||
#define UNSWAP_QUARTERS(A0, A1) \
|
||||
do { \
|
||||
A0 = _mm512_permutexvar_epi64(_mm512_setr_epi64(0, 1, 4, 5, 2, 3, 6, 7), A0); \
|
||||
A1 = _mm512_permutexvar_epi64(_mm512_setr_epi64(0, 1, 4, 5, 2, 3, 6, 7), A1); \
|
||||
SWAP_HALVES(A0, A1); \
|
||||
} while((void)0, 0)
|
||||
|
||||
#define BLAKE2_ROUND_1(A0, C0, B0, D0, A1, C1, B1, D1) \
|
||||
do { \
|
||||
SWAP_HALVES(A0, B0); \
|
||||
SWAP_HALVES(C0, D0); \
|
||||
SWAP_HALVES(A1, B1); \
|
||||
SWAP_HALVES(C1, D1); \
|
||||
BLAKE2_ROUND(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
SWAP_HALVES(A0, B0); \
|
||||
SWAP_HALVES(C0, D0); \
|
||||
SWAP_HALVES(A1, B1); \
|
||||
SWAP_HALVES(C1, D1); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define BLAKE2_ROUND_2(A0, A1, B0, B1, C0, C1, D0, D1) \
|
||||
do { \
|
||||
SWAP_QUARTERS(A0, A1); \
|
||||
SWAP_QUARTERS(B0, B1); \
|
||||
SWAP_QUARTERS(C0, C1); \
|
||||
SWAP_QUARTERS(D0, D1); \
|
||||
BLAKE2_ROUND(A0, B0, C0, D0, A1, B1, C1, D1); \
|
||||
UNSWAP_QUARTERS(A0, A1); \
|
||||
UNSWAP_QUARTERS(B0, B1); \
|
||||
UNSWAP_QUARTERS(C0, C1); \
|
||||
UNSWAP_QUARTERS(D0, D1); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#endif /* __AVX512F__ */
|
||||
#endif /* BLAKE_ROUND_MKA_OPT_H */
|
56
algo/argon2/argon2d/blake2/blamka-round-ref.h
Normal file
56
algo/argon2/argon2d/blake2/blamka-round-ref.h
Normal file
@@ -0,0 +1,56 @@
|
||||
/*
|
||||
* Argon2 reference source code package - reference C implementations
|
||||
*
|
||||
* Copyright 2015
|
||||
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
||||
*
|
||||
* You may use this work under the terms of a Creative Commons CC0 1.0
|
||||
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
||||
* these licenses can be found at:
|
||||
*
|
||||
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
|
||||
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* You should have received a copy of both of these licenses along with this
|
||||
* software. If not, they may be obtained at the above URLs.
|
||||
*/
|
||||
|
||||
#ifndef BLAKE_ROUND_MKA_H
|
||||
#define BLAKE_ROUND_MKA_H
|
||||
|
||||
#include "blake2.h"
|
||||
#include "blake2-impl.h"
|
||||
|
||||
/* designed by the Lyra PHC team */
|
||||
static BLAKE2_INLINE uint64_t fBlaMka(uint64_t x, uint64_t y) {
|
||||
const uint64_t m = UINT64_C(0xFFFFFFFF);
|
||||
const uint64_t xy = (x & m) * (y & m);
|
||||
return x + y + 2 * xy;
|
||||
}
|
||||
|
||||
#define G(a, b, c, d) \
|
||||
do { \
|
||||
a = fBlaMka(a, b); \
|
||||
d = rotr64(d ^ a, 32); \
|
||||
c = fBlaMka(c, d); \
|
||||
b = rotr64(b ^ c, 24); \
|
||||
a = fBlaMka(a, b); \
|
||||
d = rotr64(d ^ a, 16); \
|
||||
c = fBlaMka(c, d); \
|
||||
b = rotr64(b ^ c, 63); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#define BLAKE2_ROUND_NOMSG(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
|
||||
v12, v13, v14, v15) \
|
||||
do { \
|
||||
G(v0, v4, v8, v12); \
|
||||
G(v1, v5, v9, v13); \
|
||||
G(v2, v6, v10, v14); \
|
||||
G(v3, v7, v11, v15); \
|
||||
G(v0, v5, v10, v15); \
|
||||
G(v1, v6, v11, v12); \
|
||||
G(v2, v7, v8, v13); \
|
||||
G(v3, v4, v9, v14); \
|
||||
} while ((void)0, 0)
|
||||
|
||||
#endif
|
@@ -1,5 +1,4 @@
|
||||
#include "blake-gate.h"
|
||||
#include "sph_blake.h"
|
||||
#include "blake-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
@@ -7,25 +6,16 @@
|
||||
|
||||
#if defined (BLAKE_4WAY)
|
||||
|
||||
blake256r14_4way_context blake_4w_ctx;
|
||||
|
||||
void blakehash_4way(void *state, const void *input)
|
||||
{
|
||||
uint32_t vhash[4*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash1[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[4] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[4] __attribute__ ((aligned (32)));
|
||||
blake256_4way_context ctx;
|
||||
|
||||
blake256_4way_init( &ctx );
|
||||
blake256_4way( &ctx, input, 16 );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
memcpy( state, hash0, 32 );
|
||||
memcpy( state+32, hash1, 32 );
|
||||
memcpy( state+64, hash1, 32 );
|
||||
memcpy( state+96, hash1, 32 );
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
blake256r14_4way_context ctx;
|
||||
memcpy( &ctx, &blake_4w_ctx, sizeof ctx );
|
||||
blake256r14_4way( &ctx, input + (64<<2), 16 );
|
||||
blake256r14_4way_close( &ctx, vhash );
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -36,24 +26,23 @@ int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
// uint32_t HTarget = ptarget[7];
|
||||
uint32_t HTarget = ptarget[7];
|
||||
uint32_t _ALIGN(32) edata[20];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
|
||||
// if (opt_benchmark)
|
||||
// HTarget = 0x7f;
|
||||
if (opt_benchmark)
|
||||
HTarget = 0x7f;
|
||||
|
||||
// we need big endian data...
|
||||
swab32_array( edata, pdata, 20 );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256r14_4way_init( &blake_4w_ctx );
|
||||
blake256r14_4way( &blake_4w_ctx, vdata, 64 );
|
||||
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
@@ -61,45 +50,14 @@ int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
blakehash_4way( hash, vdata );
|
||||
|
||||
if ( hash[7] == 0 )
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= HTarget && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
if ( fulltest( hash, ptarget ) )
|
||||
{
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[19] = n;
|
||||
}
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
if ( (hash+8)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n+1;
|
||||
}
|
||||
}
|
||||
if ( (hash+16)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n+2;
|
||||
}
|
||||
}
|
||||
if ( (hash+24)[7] == 0 )
|
||||
{
|
||||
if ( fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n+3;
|
||||
}
|
||||
}
|
||||
n += 4;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
n += 4;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
@@ -110,3 +68,77 @@ int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(BLAKE_8WAY)
|
||||
|
||||
blake256r14_8way_context blake_8w_ctx;
|
||||
|
||||
void blakehash_8way( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
|
||||
blake256r14_8way_context ctx;
|
||||
memcpy( &ctx, &blake_8w_ctx, sizeof ctx );
|
||||
blake256r14_8way( &ctx, input + (64<<3), 16 );
|
||||
blake256r14_8way_close( &ctx, vhash );
|
||||
mm256_deinterleave_8x32( state, state+ 32, state+ 64, state+ 96,
|
||||
state+128, state+160, state+192, state+224,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*8] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t HTarget = ptarget[7];
|
||||
uint32_t _ALIGN(32) edata[20];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
|
||||
if (opt_benchmark)
|
||||
HTarget = 0x7f;
|
||||
|
||||
// we need big endian data...
|
||||
swab32_array( edata, pdata, 20 );
|
||||
|
||||
mm256_interleave_8x32( vdata, edata, edata, edata, edata,
|
||||
edata, edata, edata, edata, 640 );
|
||||
|
||||
blake256r14_8way_init( &blake_8w_ctx );
|
||||
blake256r14_8way( &blake_8w_ctx, vdata, 64 );
|
||||
|
||||
uint32_t *noncep = vdata + 152; // 19*8
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
be32enc( noncep +4, n+4 );
|
||||
be32enc( noncep +5, n+5 );
|
||||
be32enc( noncep +6, n+6 );
|
||||
be32enc( noncep +7, n+7 );
|
||||
pdata[19] = n;
|
||||
|
||||
blakehash_8way( hash, vdata );
|
||||
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
if ( (hash+i)[7] <= HTarget && fulltest( hash+i, ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
num_found++;
|
||||
nonces[i] = n+i;
|
||||
work_set_target_ratio( work, hash+1 );
|
||||
}
|
||||
n += 8;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -7,14 +7,14 @@ int64_t blake_get_max64 ()
|
||||
|
||||
bool register_blake_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = AVX2_OPT;
|
||||
gate->get_max64 = (void*)&blake_get_max64;
|
||||
//#if defined (__AVX2__) && defined (FOUR_WAY)
|
||||
// gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
// gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
// gate->scanhash = (void*)&scanhash_blake_8way;
|
||||
// gate->hash = (void*)&blakehash_8way;
|
||||
#if defined(BLAKE_4WAY)
|
||||
four_way_not_tested();
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->scanhash = (void*)&scanhash_blake_4way;
|
||||
gate->hash = (void*)&blakehash_4way;
|
||||
#else
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#if defined(__AVX2__)
|
||||
#define BLAKE_4WAY
|
||||
#endif
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -35,7 +35,9 @@
|
||||
*/
|
||||
|
||||
#ifndef __BLAKE_HASH_4WAY__
|
||||
#define __BLAKE_HASH_4WAY___
|
||||
#define __BLAKE_HASH_4WAY__ 1
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
@@ -45,47 +47,81 @@ extern "C"{
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-256.
|
||||
*/
|
||||
#define SPH_SIZE_blake256 256
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-512.
|
||||
*/
|
||||
#define SPH_SIZE_blake512 512
|
||||
|
||||
#endif
|
||||
// With SSE4.2 only Blake-256 4 way is available.
|
||||
// With AVX2 Blake-256 8way & Blake-512 4 way are also available.
|
||||
|
||||
// Blake-256 4 way
|
||||
|
||||
#ifdef __AVX__
|
||||
typedef struct {
|
||||
__m128i buf[16] __attribute__ ((aligned (64)));
|
||||
__m128i H[8];
|
||||
__m128i S[4];
|
||||
size_t ptr;
|
||||
sph_u32 T0, T1;
|
||||
__m128i buf[16] __attribute__ ((aligned (64)));
|
||||
__m128i H[8];
|
||||
__m128i S[4];
|
||||
size_t ptr;
|
||||
sph_u32 T0, T1;
|
||||
int rounds; // 14 for blake, 8 for blakecoin & vanilla
|
||||
} blake_4way_small_context;
|
||||
|
||||
// Default 14 rounds
|
||||
typedef blake_4way_small_context blake256_4way_context;
|
||||
|
||||
void blake256_4way_init(void *cc);
|
||||
void blake256_4way(void *cc, const void *data, size_t len);
|
||||
void blake256_4way_close(void *cc, void *dst);
|
||||
void blake256_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#endif
|
||||
// 14 rounds, blake, decred
|
||||
typedef blake_4way_small_context blake256r14_4way_context;
|
||||
void blake256r14_4way_init(void *cc);
|
||||
void blake256r14_4way(void *cc, const void *data, size_t len);
|
||||
void blake256r14_4way_close(void *cc, void *dst);
|
||||
|
||||
// 8 rounds, blakecoin, vanilla
|
||||
typedef blake_4way_small_context blake256r8_4way_context;
|
||||
void blake256r8_4way_init(void *cc);
|
||||
void blake256r8_4way(void *cc, const void *data, size_t len);
|
||||
void blake256r8_4way_close(void *cc, void *dst);
|
||||
|
||||
#ifdef __AVX2__
|
||||
|
||||
// Blake-256 8 way
|
||||
|
||||
typedef struct {
|
||||
__m256i buf[16] __attribute__ ((aligned (64)));
|
||||
__m256i H[8];
|
||||
__m256i S[4];
|
||||
size_t ptr;
|
||||
sph_u64 T0, T1;
|
||||
__m256i buf[16] __attribute__ ((aligned (64)));
|
||||
__m256i H[8];
|
||||
__m256i S[4];
|
||||
size_t ptr;
|
||||
sph_u32 T0, T1;
|
||||
int rounds; // 14 for blake, 8 for blakecoin & vanilla
|
||||
} blake_8way_small_context;
|
||||
|
||||
// Default 14 rounds
|
||||
typedef blake_8way_small_context blake256_8way_context;
|
||||
void blake256_8way_init(void *cc);
|
||||
void blake256_8way(void *cc, const void *data, size_t len);
|
||||
void blake256_8way_close(void *cc, void *dst);
|
||||
|
||||
// 14 rounds, blake, decred
|
||||
typedef blake_8way_small_context blake256r14_8way_context;
|
||||
void blake256r14_8way_init(void *cc);
|
||||
void blake256r14_8way(void *cc, const void *data, size_t len);
|
||||
void blake256r14_8way_close(void *cc, void *dst);
|
||||
|
||||
// 8 rounds, blakecoin, vanilla
|
||||
typedef blake_8way_small_context blake256r8_8way_context;
|
||||
void blake256r8_8way_init(void *cc);
|
||||
void blake256r8_8way(void *cc, const void *data, size_t len);
|
||||
void blake256r8_8way_close(void *cc, void *dst);
|
||||
|
||||
// Blake-512 4 way
|
||||
|
||||
typedef struct {
|
||||
__m256i buf[16] __attribute__ ((aligned (64)));
|
||||
__m256i H[8];
|
||||
__m256i S[4];
|
||||
size_t ptr;
|
||||
sph_u64 T0, T1;
|
||||
} blake_4way_big_context;
|
||||
|
||||
typedef blake_4way_big_context blake512_4way_context;
|
||||
@@ -103,3 +139,5 @@ void blake512_4way_addbits_and_close(
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
136
algo/blake/blake2s-4way.c
Normal file
136
algo/blake/blake2s-4way.c
Normal file
@@ -0,0 +1,136 @@
|
||||
#include "blake2s-gate.h"
|
||||
#include "blake2s-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(BLAKE2S_8WAY)
|
||||
|
||||
static __thread blake2s_8way_state blake2s_8w_ctx;
|
||||
|
||||
void blake2s_8way_hash( void *output, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
|
||||
blake2s_8way_state ctx;
|
||||
memcpy( &ctx, &blake2s_8w_ctx, sizeof ctx );
|
||||
|
||||
blake2s_8way_update( &ctx, input + (64<<3), 16 );
|
||||
blake2s_8way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
|
||||
|
||||
mm256_deinterleave_8x32( output, output+ 32, output+ 64, output+ 96,
|
||||
output+128, output+160, output+192, output+224,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake2s_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*8] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) edata[20];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 152; // 19*8
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm256_interleave_8x32( vdata, edata, edata, edata, edata,
|
||||
edata, edata, edata, edata, 640 );
|
||||
blake2s_8way_init( &blake2s_8w_ctx, BLAKE2S_OUTBYTES );
|
||||
blake2s_8way_update( &blake2s_8w_ctx, vdata, 64 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
be32enc( noncep +4, n+4 );
|
||||
be32enc( noncep +5, n+5 );
|
||||
be32enc( noncep +6, n+6 );
|
||||
be32enc( noncep +7, n+7 );
|
||||
pdata[19] = n;
|
||||
|
||||
blake2s_8way_hash( hash, vdata );
|
||||
|
||||
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 8;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#elif defined(BLAKE2S_4WAY)
|
||||
|
||||
static __thread blake2s_4way_state blake2s_4w_ctx;
|
||||
|
||||
void blake2s_4way_hash( void *output, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
blake2s_4way_state ctx;
|
||||
memcpy( &ctx, &blake2s_4w_ctx, sizeof ctx );
|
||||
|
||||
blake2s_4way_update( &ctx, input + (64<<2), 16 );
|
||||
blake2s_4way_final( &ctx, vhash, BLAKE2S_OUTBYTES );
|
||||
|
||||
mm_deinterleave_4x32( output, output+32, output+64, output+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blake2s_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) edata[20];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake2s_4way_init( &blake2s_4w_ctx, BLAKE2S_OUTBYTES );
|
||||
blake2s_4way_update( &blake2s_4w_ctx, vdata, 64 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
pdata[19] = n;
|
||||
|
||||
blake2s_4way_hash( hash, vdata );
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 4;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
27
algo/blake/blake2s-gate.c
Normal file
27
algo/blake/blake2s-gate.c
Normal file
@@ -0,0 +1,27 @@
|
||||
#include "blake2s-gate.h"
|
||||
|
||||
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blake2s_get_max64 ()
|
||||
{
|
||||
return 0x7ffffLL;
|
||||
}
|
||||
|
||||
bool register_blake2s_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(BLAKE2S_8WAY)
|
||||
gate->scanhash = (void*)&scanhash_blake2s_8way;
|
||||
gate->hash = (void*)&blake2s_8way_hash;
|
||||
#elif defined(BLAKE2S_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_blake2s_4way;
|
||||
gate->hash = (void*)&blake2s_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_blake2s;
|
||||
gate->hash = (void*)&blake2s_hash;
|
||||
#endif
|
||||
gate->get_max64 = (void*)&blake2s_get_max64;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
35
algo/blake/blake2s-gate.h
Normal file
35
algo/blake/blake2s-gate.h
Normal file
@@ -0,0 +1,35 @@
|
||||
#ifndef __BLAKE2S_GATE_H__
|
||||
#define __BLAKE2S_GATE_H__ 1
|
||||
|
||||
#include <stdint.h>
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
#define BLAKE2S_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
#define BLAKE2S_8WAY
|
||||
#endif
|
||||
|
||||
bool register_blake2s_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(BLAKE2S_8WAY)
|
||||
|
||||
void blake2s_8way_hash( void *state, const void *input );
|
||||
int scanhash_blake2s_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#elif defined (BLAKE2S_4WAY)
|
||||
|
||||
void blake2s_4way_hash( void *state, const void *input );
|
||||
int scanhash_blake2s_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#else
|
||||
|
||||
void blake2s_hash( void *state, const void *input );
|
||||
int scanhash_blake2s( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
362
algo/blake/blake2s-hash-4way.c
Normal file
362
algo/blake/blake2s-hash-4way.c
Normal file
@@ -0,0 +1,362 @@
|
||||
/**
|
||||
* BLAKE2 reference source code package - reference C implementations
|
||||
*
|
||||
* Written in 2012 by Samuel Neves <sneves@dei.uc.pt>
|
||||
*
|
||||
* To the extent possible under law, the author(s) have dedicated all copyright
|
||||
* and related and neighboring rights to this software to the public domain
|
||||
* worldwide. This software is distributed without any warranty.
|
||||
*
|
||||
* You should have received a copy of the CC0 Public Domain Dedication along with
|
||||
* this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
*/
|
||||
|
||||
#include "blake2s-hash-4way.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
|
||||
static const uint32_t blake2s_IV[8] =
|
||||
{
|
||||
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
|
||||
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
|
||||
};
|
||||
|
||||
static const uint8_t blake2s_sigma[10][16] =
|
||||
{
|
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
|
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
|
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
|
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
|
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
|
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
|
||||
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
|
||||
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
|
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
|
||||
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
|
||||
};
|
||||
|
||||
// define a constant for initial param.
|
||||
|
||||
int blake2s_4way_init( blake2s_4way_state *S, const uint8_t outlen )
|
||||
{
|
||||
blake2s_nway_param P[1];
|
||||
|
||||
P->digest_length = outlen;
|
||||
P->key_length = 0;
|
||||
P->fanout = 1;
|
||||
P->depth = 1;
|
||||
P->leaf_length = 0;
|
||||
*((uint64_t*)(P->node_offset)) = 0;
|
||||
P->node_depth = 0;
|
||||
P->inner_length = 0;
|
||||
memset( P->salt, 0, sizeof( P->salt ) );
|
||||
memset( P->personal, 0, sizeof( P->personal ) );
|
||||
|
||||
memset( S, 0, sizeof( blake2s_4way_state ) );
|
||||
for( int i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm_set1_epi32( blake2s_IV[i] );
|
||||
|
||||
uint32_t *p = ( uint32_t * )( P );
|
||||
|
||||
/* IV XOR ParamBlock */
|
||||
for ( size_t i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm_xor_si128( S->h[i], _mm_set1_epi32( p[i] ) );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_4way_compress( blake2s_4way_state *S, const __m128i* block )
|
||||
{
|
||||
__m128i m[16];
|
||||
__m128i v[16];
|
||||
|
||||
memcpy_128( m, block, 16 );
|
||||
memcpy_128( v, S->h, 8 );
|
||||
|
||||
v[ 8] = _mm_set1_epi32( blake2s_IV[0] );
|
||||
v[ 9] = _mm_set1_epi32( blake2s_IV[1] );
|
||||
v[10] = _mm_set1_epi32( blake2s_IV[2] );
|
||||
v[11] = _mm_set1_epi32( blake2s_IV[3] );
|
||||
v[12] = _mm_xor_si128( _mm_set1_epi32( S->t[0] ),
|
||||
_mm_set1_epi32( blake2s_IV[4] ) );
|
||||
v[13] = _mm_xor_si128( _mm_set1_epi32( S->t[1] ),
|
||||
_mm_set1_epi32( blake2s_IV[5] ) );
|
||||
v[14] = _mm_xor_si128( _mm_set1_epi32( S->f[0] ),
|
||||
_mm_set1_epi32( blake2s_IV[6] ) );
|
||||
v[15] = _mm_xor_si128( _mm_set1_epi32( S->f[1] ),
|
||||
_mm_set1_epi32( blake2s_IV[7] ) );
|
||||
|
||||
#define G4W(r,i,a,b,c,d) \
|
||||
do { \
|
||||
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+0] ] ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 12 ); \
|
||||
a = _mm_add_epi32( _mm_add_epi32( a, b ), m[ blake2s_sigma[r][2*i+1] ] ); \
|
||||
d = mm_ror_32( _mm_xor_si128( d, a ), 8 ); \
|
||||
c = _mm_add_epi32( c, d ); \
|
||||
b = mm_ror_32( _mm_xor_si128( b, c ), 7 ); \
|
||||
} while(0)
|
||||
|
||||
#define ROUND4W(r) \
|
||||
do { \
|
||||
G4W( r, 0, v[ 0], v[ 4], v[ 8], v[12] ); \
|
||||
G4W( r, 1, v[ 1], v[ 5], v[ 9], v[13] ); \
|
||||
G4W( r, 2, v[ 2], v[ 6], v[10], v[14] ); \
|
||||
G4W( r, 3, v[ 3], v[ 7], v[11], v[15] ); \
|
||||
G4W( r, 4, v[ 0], v[ 5], v[10], v[15] ); \
|
||||
G4W( r, 5, v[ 1], v[ 6], v[11], v[12] ); \
|
||||
G4W( r, 6, v[ 2], v[ 7], v[ 8], v[13] ); \
|
||||
G4W( r, 7, v[ 3], v[ 4], v[ 9], v[14] ); \
|
||||
} while(0)
|
||||
|
||||
ROUND4W( 0 );
|
||||
ROUND4W( 1 );
|
||||
ROUND4W( 2 );
|
||||
ROUND4W( 3 );
|
||||
ROUND4W( 4 );
|
||||
ROUND4W( 5 );
|
||||
ROUND4W( 6 );
|
||||
ROUND4W( 7 );
|
||||
ROUND4W( 8 );
|
||||
ROUND4W( 9 );
|
||||
|
||||
for( size_t i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm_xor_si128( _mm_xor_si128( S->h[i], v[i] ), v[i + 8] );
|
||||
|
||||
#undef G4W
|
||||
#undef ROUND4W
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_4way_update( blake2s_4way_state *S, const void *in,
|
||||
uint64_t inlen )
|
||||
{
|
||||
__m128i *input = (__m128i*)in;
|
||||
__m128i *buf = (__m128i*)S->buf;
|
||||
const int bsize = BLAKE2S_BLOCKBYTES;
|
||||
|
||||
while( inlen > 0 )
|
||||
{
|
||||
size_t left = S->buflen;
|
||||
if( inlen >= bsize - left )
|
||||
{
|
||||
memcpy_128( buf + (left>>2), input, (bsize - left) >> 2 );
|
||||
S->buflen += bsize - left;
|
||||
S->t[0] += BLAKE2S_BLOCKBYTES;
|
||||
S->t[1] += ( S->t[0] < BLAKE2S_BLOCKBYTES );
|
||||
blake2s_4way_compress( S, buf );
|
||||
S->buflen = 0;
|
||||
input += ( bsize >> 2 );
|
||||
inlen -= bsize;
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy_128( buf + ( left>>2 ), input, inlen>>2 );
|
||||
S->buflen += (size_t) inlen;
|
||||
input += ( inlen>>2 );
|
||||
inlen -= inlen;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_4way_final( blake2s_4way_state *S, void *out, uint8_t outlen )
|
||||
{
|
||||
__m128i *buf = (__m128i*)S->buf;
|
||||
|
||||
S->t[0] += S->buflen;
|
||||
S->t[1] += ( S->t[0] < S->buflen );
|
||||
if ( S->last_node )
|
||||
S->f[1] = ~0U;
|
||||
S->f[0] = ~0U;
|
||||
|
||||
memset_zero_128( buf + ( S->buflen>>2 ),
|
||||
( BLAKE2S_BLOCKBYTES - S->buflen ) >> 2 );
|
||||
blake2s_4way_compress( S, buf );
|
||||
|
||||
for ( int i = 0; i < 8; ++i )
|
||||
casti_m128i( out, i ) = S->h[ i ];
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
int blake2s_8way_compress( blake2s_8way_state *S, const __m256i *block )
|
||||
{
|
||||
__m256i m[16];
|
||||
__m256i v[16];
|
||||
|
||||
memcpy_256( m, block, 16 );
|
||||
memcpy_256( v, S->h, 8 );
|
||||
|
||||
v[ 8] = _mm256_set1_epi32( blake2s_IV[0] );
|
||||
v[ 9] = _mm256_set1_epi32( blake2s_IV[1] );
|
||||
v[10] = _mm256_set1_epi32( blake2s_IV[2] );
|
||||
v[11] = _mm256_set1_epi32( blake2s_IV[3] );
|
||||
v[12] = _mm256_xor_si256( _mm256_set1_epi32( S->t[0] ),
|
||||
_mm256_set1_epi32( blake2s_IV[4] ) );
|
||||
v[13] = _mm256_xor_si256( _mm256_set1_epi32( S->t[1] ),
|
||||
_mm256_set1_epi32( blake2s_IV[5] ) );
|
||||
v[14] = _mm256_xor_si256( _mm256_set1_epi32( S->f[0] ),
|
||||
_mm256_set1_epi32( blake2s_IV[6] ) );
|
||||
v[15] = _mm256_xor_si256( _mm256_set1_epi32( S->f[1] ),
|
||||
_mm256_set1_epi32( blake2s_IV[7] ) );
|
||||
|
||||
#define G8W(r,i,a,b,c,d) \
|
||||
do { \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
|
||||
m[ blake2s_sigma[r][2*i+0] ] ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
|
||||
a = _mm256_add_epi32( _mm256_add_epi32( a, b ), \
|
||||
m[ blake2s_sigma[r][2*i+1] ] ); \
|
||||
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
|
||||
c = _mm256_add_epi32( c, d ); \
|
||||
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
|
||||
} while(0)
|
||||
|
||||
#define ROUND8W(r) \
|
||||
do { \
|
||||
G8W( r, 0, v[ 0], v[ 4], v[ 8], v[12] ); \
|
||||
G8W( r, 1, v[ 1], v[ 5], v[ 9], v[13] ); \
|
||||
G8W( r, 2, v[ 2], v[ 6], v[10], v[14] ); \
|
||||
G8W( r, 3, v[ 3], v[ 7], v[11], v[15] ); \
|
||||
G8W( r, 4, v[ 0], v[ 5], v[10], v[15] ); \
|
||||
G8W( r, 5, v[ 1], v[ 6], v[11], v[12] ); \
|
||||
G8W( r, 6, v[ 2], v[ 7], v[ 8], v[13] ); \
|
||||
G8W( r, 7, v[ 3], v[ 4], v[ 9], v[14] ); \
|
||||
} while(0)
|
||||
|
||||
ROUND8W( 0 );
|
||||
ROUND8W( 1 );
|
||||
ROUND8W( 2 );
|
||||
ROUND8W( 3 );
|
||||
ROUND8W( 4 );
|
||||
ROUND8W( 5 );
|
||||
ROUND8W( 6 );
|
||||
ROUND8W( 7 );
|
||||
ROUND8W( 8 );
|
||||
ROUND8W( 9 );
|
||||
|
||||
for( size_t i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm256_xor_si256( _mm256_xor_si256( S->h[i], v[i] ), v[i + 8] );
|
||||
|
||||
#undef G8W
|
||||
#undef ROUND8W
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_8way_init( blake2s_8way_state *S, const uint8_t outlen )
|
||||
{
|
||||
blake2s_nway_param P[1];
|
||||
|
||||
P->digest_length = outlen;
|
||||
P->key_length = 0;
|
||||
P->fanout = 1;
|
||||
P->depth = 1;
|
||||
P->leaf_length = 0;
|
||||
*((uint64_t*)(P->node_offset)) = 0;
|
||||
P->node_depth = 0;
|
||||
P->inner_length = 0;
|
||||
memset( P->salt, 0, sizeof( P->salt ) );
|
||||
memset( P->personal, 0, sizeof( P->personal ) );
|
||||
|
||||
memset( S, 0, sizeof( blake2s_8way_state ) );
|
||||
for( int i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm256_set1_epi32( blake2s_IV[i] );
|
||||
|
||||
uint32_t *p = ( uint32_t * )( P );
|
||||
|
||||
/* IV XOR ParamBlock */
|
||||
for ( size_t i = 0; i < 8; ++i )
|
||||
S->h[i] = _mm256_xor_si256( S->h[i], _mm256_set1_epi32( p[i] ) );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_8way_update( blake2s_8way_state *S, const void *in,
|
||||
uint64_t inlen )
|
||||
{
|
||||
__m256i *input = (__m256i*)in;
|
||||
__m256i *buf = (__m256i*)S->buf;
|
||||
const int bsize = BLAKE2S_BLOCKBYTES;
|
||||
|
||||
while( inlen > 0 )
|
||||
{
|
||||
size_t left = S->buflen;
|
||||
if( inlen >= bsize - left )
|
||||
{
|
||||
memcpy_256( buf + (left>>2), input, (bsize - left) >> 2 );
|
||||
S->buflen += bsize - left;
|
||||
S->t[0] += BLAKE2S_BLOCKBYTES;
|
||||
S->t[1] += ( S->t[0] < BLAKE2S_BLOCKBYTES );
|
||||
blake2s_8way_compress( S, buf );
|
||||
S->buflen = 0;
|
||||
input += ( bsize >> 2 );
|
||||
inlen -= bsize;
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy_256( buf + ( left>>2 ), input, inlen>>2 );
|
||||
S->buflen += (size_t) inlen;
|
||||
input += ( inlen>>2 );
|
||||
inlen -= inlen;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int blake2s_8way_final( blake2s_8way_state *S, void *out, uint8_t outlen )
|
||||
{
|
||||
__m256i *buf = (__m256i*)S->buf;
|
||||
|
||||
S->t[0] += S->buflen;
|
||||
S->t[1] += ( S->t[0] < S->buflen );
|
||||
if ( S->last_node )
|
||||
S->f[1] = ~0U;
|
||||
S->f[0] = ~0U;
|
||||
|
||||
memset_zero_256( buf + ( S->buflen>>2 ),
|
||||
( BLAKE2S_BLOCKBYTES - S->buflen ) >> 2 );
|
||||
blake2s_8way_compress( S, buf );
|
||||
|
||||
for ( int i = 0; i < 8; ++i )
|
||||
casti_m256i( out, i ) = S->h[ i ];
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#endif // __AVX2__
|
||||
|
||||
#if 0
|
||||
int blake2s( uint8_t *out, const void *in, const void *key, const uint8_t outlen, const uint64_t inlen, uint8_t keylen )
|
||||
{
|
||||
blake2s_state S[1];
|
||||
|
||||
/* Verify parameters */
|
||||
if ( NULL == in ) return -1;
|
||||
|
||||
if ( NULL == out ) return -1;
|
||||
|
||||
if ( NULL == key ) keylen = 0; /* Fail here instead if keylen != 0 and key == NULL? */
|
||||
|
||||
if( keylen > 0 )
|
||||
{
|
||||
if( blake2s_init_key( S, outlen, key, keylen ) < 0 ) return -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( blake2s_init( S, outlen ) < 0 ) return -1;
|
||||
}
|
||||
|
||||
blake2s_update( S, ( uint8_t * )in, inlen );
|
||||
blake2s_final( S, out, outlen );
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // __SSE4_2__
|
112
algo/blake/blake2s-hash-4way.h
Normal file
112
algo/blake/blake2s-hash-4way.h
Normal file
@@ -0,0 +1,112 @@
|
||||
/**
|
||||
* BLAKE2 reference source code package - reference C implementations
|
||||
*
|
||||
* Written in 2012 by Samuel Neves <sneves@dei.uc.pt>
|
||||
*
|
||||
* To the extent possible under law, the author(s) have dedicated all copyright
|
||||
* and related and neighboring rights to this software to the public domain
|
||||
* worldwide. This software is distributed without any warranty.
|
||||
*
|
||||
* You should have received a copy of the CC0 Public Domain Dedication along with
|
||||
* this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
*/
|
||||
//#pragma once
|
||||
#ifndef __BLAKE2S_HASH_4WAY_H__
|
||||
#define __BLAKE2S_HASH_4WAY_H__ 1
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
|
||||
#include "avxdefs.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#include <inttypes.h>
|
||||
#define inline __inline
|
||||
#define ALIGN(x) __declspec(align(x))
|
||||
#else
|
||||
#define ALIGN(x) __attribute__((aligned(x)))
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
enum blake2s_constant
|
||||
{
|
||||
BLAKE2S_BLOCKBYTES = 64,
|
||||
BLAKE2S_OUTBYTES = 32,
|
||||
BLAKE2S_KEYBYTES = 32,
|
||||
BLAKE2S_SALTBYTES = 8,
|
||||
BLAKE2S_PERSONALBYTES = 8
|
||||
};
|
||||
|
||||
#pragma pack(push, 1)
|
||||
typedef struct __blake2s_nway_param
|
||||
{
|
||||
uint8_t digest_length; // 1
|
||||
uint8_t key_length; // 2
|
||||
uint8_t fanout; // 3
|
||||
uint8_t depth; // 4
|
||||
uint32_t leaf_length; // 8
|
||||
uint8_t node_offset[6];// 14
|
||||
uint8_t node_depth; // 15
|
||||
uint8_t inner_length; // 16
|
||||
// uint8_t reserved[0];
|
||||
uint8_t salt[BLAKE2S_SALTBYTES]; // 24
|
||||
uint8_t personal[BLAKE2S_PERSONALBYTES]; // 32
|
||||
} blake2s_nway_param;
|
||||
#pragma pack(pop)
|
||||
|
||||
ALIGN( 64 ) typedef struct __blake2s_4way_state
|
||||
{
|
||||
__m128i h[8];
|
||||
uint8_t buf[ BLAKE2S_BLOCKBYTES * 4 ];
|
||||
uint32_t t[2];
|
||||
uint32_t f[2];
|
||||
size_t buflen;
|
||||
uint8_t last_node;
|
||||
} blake2s_4way_state ;
|
||||
|
||||
int blake2s_4way_init( blake2s_4way_state *S, const uint8_t outlen );
|
||||
int blake2s_4way_update( blake2s_4way_state *S, const void *in,
|
||||
uint64_t inlen );
|
||||
int blake2s_4way_final( blake2s_4way_state *S, void *out, uint8_t outlen );
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
ALIGN( 64 ) typedef struct __blake2s_8way_state
|
||||
{
|
||||
__m256i h[8];
|
||||
uint8_t buf[ BLAKE2S_BLOCKBYTES * 8 ];
|
||||
uint32_t t[2];
|
||||
uint32_t f[2];
|
||||
size_t buflen;
|
||||
uint8_t last_node;
|
||||
} blake2s_8way_state ;
|
||||
|
||||
int blake2s_8way_init( blake2s_8way_state *S, const uint8_t outlen );
|
||||
int blake2s_8way_update( blake2s_8way_state *S, const void *in,
|
||||
uint64_t inlen );
|
||||
int blake2s_8way_final( blake2s_8way_state *S, void *out, uint8_t outlen );
|
||||
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
// Simple API
|
||||
// int blake2s( uint8_t *out, const void *in, const void *key, const uint8_t outlen, const uint64_t inlen, uint8_t keylen );
|
||||
|
||||
// Direct Hash Mining Helpers
|
||||
#define blake2s_salt32(out, in, inlen, key32) blake2s(out, in, key32, 32, inlen, 32) /* neoscrypt */
|
||||
#define blake2s_simple(out, in, inlen) blake2s(out, in, NULL, 32, inlen, 0)
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // __SSE4_2__
|
||||
|
||||
#endif
|
@@ -1,26 +1,29 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include "blake2s-gate.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "crypto/blake2s.h"
|
||||
#include "sph-blake2s.h"
|
||||
|
||||
static __thread blake2s_state s_midstate;
|
||||
static __thread blake2s_state s_ctx;
|
||||
static __thread blake2s_state blake2s_ctx;
|
||||
//static __thread blake2s_state s_ctx;
|
||||
#define MIDLEN 76
|
||||
|
||||
void blake2s_hash(void *output, const void *input)
|
||||
void blake2s_hash( void *output, const void *input )
|
||||
{
|
||||
unsigned char _ALIGN(64) hash[BLAKE2S_OUTBYTES];
|
||||
blake2s_state blake2_ctx __attribute__ ((aligned (64)));
|
||||
|
||||
blake2s_init(&blake2_ctx, BLAKE2S_OUTBYTES);
|
||||
blake2s_update(&blake2_ctx, input, 80);
|
||||
blake2s_final(&blake2_ctx, hash, BLAKE2S_OUTBYTES);
|
||||
unsigned char _ALIGN(64) hash[BLAKE2S_OUTBYTES];
|
||||
blake2s_state ctx __attribute__ ((aligned (64)));
|
||||
|
||||
memcpy( &ctx, &blake2s_ctx, sizeof ctx );
|
||||
blake2s_update( &ctx, input+64, 16 );
|
||||
|
||||
// blake2s_init(&ctx, BLAKE2S_OUTBYTES);
|
||||
// blake2s_update(&ctx, input, 80);
|
||||
blake2s_final( &ctx, hash, BLAKE2S_OUTBYTES );
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
/*
|
||||
static void blake2s_hash_end(uint32_t *output, const uint32_t *input)
|
||||
{
|
||||
s_ctx.buflen = MIDLEN;
|
||||
@@ -28,7 +31,7 @@ static void blake2s_hash_end(uint32_t *output, const uint32_t *input)
|
||||
blake2s_update(&s_ctx, (uint8_t*) &input[MIDLEN/4], 80 - MIDLEN);
|
||||
blake2s_final(&s_ctx, (uint8_t*) output, BLAKE2S_OUTBYTES);
|
||||
}
|
||||
|
||||
*/
|
||||
int scanhash_blake2s(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
@@ -46,13 +49,12 @@ int scanhash_blake2s(int thr_id, struct work *work,
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
// midstate
|
||||
blake2s_init(&s_midstate, BLAKE2S_OUTBYTES);
|
||||
blake2s_update(&s_midstate, (uint8_t*) endiandata, MIDLEN);
|
||||
memcpy(&s_ctx, &s_midstate, sizeof(blake2s_state));
|
||||
blake2s_init( &blake2s_ctx, BLAKE2S_OUTBYTES );
|
||||
blake2s_update( &blake2s_ctx, (uint8_t*) endiandata, 64 );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], n);
|
||||
blake2s_hash_end(hash64, endiandata);
|
||||
blake2s_hash( hash64, endiandata );
|
||||
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
@@ -67,7 +69,7 @@ int scanhash_blake2s(int thr_id, struct work *work,
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blake2s_get_max64 ()
|
||||
{
|
||||
@@ -81,4 +83,4 @@ bool register_blake2s_algo( algo_gate_t* gate )
|
||||
gate->get_max64 = (void*)&blake2s_get_max64;
|
||||
return true;
|
||||
};
|
||||
|
||||
*/
|
||||
|
141
algo/blake/blakecoin-4way.c
Normal file
141
algo/blake/blakecoin-4way.c
Normal file
@@ -0,0 +1,141 @@
|
||||
#include "blakecoin-gate.h"
|
||||
#include "blake-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (BLAKECOIN_4WAY)
|
||||
|
||||
blake256r8_4way_context blakecoin_4w_ctx;
|
||||
|
||||
void blakecoin_4way_hash(void *state, const void *input)
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
blake256r8_4way_context ctx;
|
||||
|
||||
memcpy( &ctx, &blakecoin_4w_ctx, sizeof ctx );
|
||||
blake256r8_4way( &ctx, input + (64<<2), 16 );
|
||||
blake256r8_4way_close( &ctx, vhash );
|
||||
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t HTarget = ptarget[7];
|
||||
uint32_t _ALIGN(32) edata[20];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
if ( opt_benchmark )
|
||||
HTarget = 0x7f;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256r8_4way_init( &blakecoin_4w_ctx );
|
||||
blake256r8_4way( &blakecoin_4w_ctx, vdata, 64 );
|
||||
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
pdata[19] = n;
|
||||
blakecoin_4way_hash( hash, vdata );
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= HTarget && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 4;
|
||||
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(BLAKECOIN_8WAY)
|
||||
|
||||
blake256r8_8way_context blakecoin_8w_ctx;
|
||||
|
||||
void blakecoin_8way_hash( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
|
||||
blake256r8_8way_context ctx;
|
||||
|
||||
memcpy( &ctx, &blakecoin_8w_ctx, sizeof ctx );
|
||||
blake256r8_8way( &ctx, input + (64<<3), 16 );
|
||||
blake256r8_8way_close( &ctx, vhash );
|
||||
|
||||
mm256_deinterleave_8x32( state, state+ 32, state+ 64, state+ 96,
|
||||
state+128, state+160, state+192, state+224,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_blakecoin_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*8] __attribute__ ((aligned (32)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t HTarget = ptarget[7];
|
||||
uint32_t _ALIGN(32) edata[20];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
uint32_t *noncep = vdata + 152; // 19*8
|
||||
int num_found = 0;
|
||||
if ( opt_benchmark )
|
||||
HTarget = 0x7f;
|
||||
|
||||
// we need big endian data...
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm256_interleave_8x32( vdata, edata, edata, edata, edata,
|
||||
edata, edata, edata, edata, 640 );
|
||||
blake256r8_8way_init( &blakecoin_8w_ctx );
|
||||
blake256r8_8way( &blakecoin_8w_ctx, vdata, 64 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep +1, n+1 );
|
||||
be32enc( noncep +2, n+2 );
|
||||
be32enc( noncep +3, n+3 );
|
||||
be32enc( noncep +4, n+4 );
|
||||
be32enc( noncep +5, n+5 );
|
||||
be32enc( noncep +6, n+6 );
|
||||
be32enc( noncep +7, n+7 );
|
||||
pdata[19] = n;
|
||||
blakecoin_8way_hash( hash, vdata );
|
||||
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
if ( (hash+(i<<3))[7] <= HTarget && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 8;
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
36
algo/blake/blakecoin-gate.c
Normal file
36
algo/blake/blakecoin-gate.c
Normal file
@@ -0,0 +1,36 @@
|
||||
#include "blakecoin-gate.h"
|
||||
#include <memory.h>
|
||||
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blakecoin_get_max64 ()
|
||||
{
|
||||
return 0x7ffffLL;
|
||||
// return 0x3fffffLL;
|
||||
}
|
||||
|
||||
// vanilla uses default gen merkle root, otherwise identical to blakecoin
|
||||
bool register_vanilla_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(BLAKECOIN_8WAY)
|
||||
gate->scanhash = (void*)&scanhash_blakecoin_8way;
|
||||
gate->hash = (void*)&blakecoin_8way_hash;
|
||||
|
||||
#elif defined(BLAKECOIN_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_blakecoin_4way;
|
||||
gate->hash = (void*)&blakecoin_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_blakecoin;
|
||||
gate->hash = (void*)&blakecoinhash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&blakecoin_get_max64;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool register_blakecoin_algo( algo_gate_t* gate )
|
||||
{
|
||||
register_vanilla_algo( gate );
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
||||
return true;
|
||||
}
|
||||
|
30
algo/blake/blakecoin-gate.h
Normal file
30
algo/blake/blakecoin-gate.h
Normal file
@@ -0,0 +1,30 @@
|
||||
#ifndef __BLAKECOIN_GATE_H__
|
||||
#define __BLAKECOIN_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
#define BLAKECOIN_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
#define BLAKECOIN_8WAY
|
||||
#endif
|
||||
|
||||
#if defined (BLAKECOIN_8WAY)
|
||||
void blakecoin_8way_hash(void *state, const void *input);
|
||||
int scanhash_blakecoin_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
#if defined (BLAKECOIN_4WAY)
|
||||
void blakecoin_4way_hash(void *state, const void *input);
|
||||
int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
void blakecoinhash( void *state, const void *input );
|
||||
int scanhash_blakecoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
#endif
|
@@ -1,4 +1,4 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include "blakecoin-gate.h"
|
||||
#define BLAKE32_ROUNDS 8
|
||||
#include "sph_blake.h"
|
||||
|
||||
@@ -98,7 +98,7 @@ void blakecoin_gen_merkle_root ( char* merkle_root, struct stratum_ctx* sctx )
|
||||
SHA256( sctx->job.coinbase, (int)sctx->job.coinbase_size, merkle_root );
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blakecoin_get_max64 ()
|
||||
{
|
||||
@@ -121,4 +121,4 @@ bool register_blakecoin_algo( algo_gate_t* gate )
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
||||
return true;
|
||||
}
|
||||
|
||||
*/
|
||||
|
@@ -1,5 +1,4 @@
|
||||
#include "decred-gate.h"
|
||||
#include "sph_blake.h"
|
||||
#include "blake-hash-4way.h"
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
@@ -9,59 +8,22 @@
|
||||
#if defined (DECRED_4WAY)
|
||||
|
||||
static __thread blake256_4way_context blake_mid;
|
||||
static __thread bool ctx_midstate_done = false;
|
||||
|
||||
void decred_hash_4way( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash1[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[8] __attribute__ ((aligned (32)));
|
||||
blake256_4way_context ctx __attribute__ ((aligned (64)));
|
||||
|
||||
sph_blake256_context ctx2 __attribute__ ((aligned (64)));
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
uint32_t sin0[45], sin1[45], sin2[45], sin3[45];
|
||||
|
||||
mm_deinterleave_4x32x( sin0, sin1, sin2, sin3, input, 180*8 );
|
||||
|
||||
void *tail = input + ( DECRED_MIDSTATE_LEN << 2 );
|
||||
// uint32_t hash0[8] __attribute__ ((aligned (32)));
|
||||
// uint32_t hash1[8] __attribute__ ((aligned (32)));
|
||||
// uint32_t hash2[8] __attribute__ ((aligned (32)));
|
||||
// uint32_t hash3[8] __attribute__ ((aligned (32)));
|
||||
const void *tail = input + ( DECRED_MIDSTATE_LEN << 2 );
|
||||
int tail_len = 180 - DECRED_MIDSTATE_LEN;
|
||||
blake256_4way_context ctx __attribute__ ((aligned (64)));
|
||||
|
||||
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
|
||||
blake256_4way( &ctx, tail, tail_len );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
/*
|
||||
sph_blake256_init( &ctx2 );
|
||||
sph_blake256( &ctx2, sin0, 180 );
|
||||
sph_blake256_close( &ctx2, hash );
|
||||
*/
|
||||
/*
|
||||
blake256_4way_init( &ctx );
|
||||
blake256_4way( &ctx, input, 180 );
|
||||
blake256_4way_close( &ctx, vhash );
|
||||
*/
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
/*
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
if ( hash[i] != hash0[i] )
|
||||
printf(" hash mismatch, i = %u\n",i);
|
||||
|
||||
printf("hash: %08lx %08lx %08lx %08lx\n", *hash, *(hash+1),
|
||||
*(hash+2), *(hash+3) );
|
||||
printf("hash0: %08lx %08lx %08lx %08lx\n", *hash0, *(hash0+1),
|
||||
*(hash0+2), *(hash0+3) );
|
||||
printf("\n");
|
||||
*/
|
||||
|
||||
memcpy( state, hash0, 32 );
|
||||
memcpy( state+32, hash1, 32 );
|
||||
memcpy( state+64, hash2, 32 );
|
||||
memcpy( state+96, hash3, 32 );
|
||||
|
||||
// memcpy( state, hash, 32 );
|
||||
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -69,28 +31,26 @@ int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
{
|
||||
uint32_t vdata[48*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (32)));
|
||||
uint32_t _ALIGN(64) edata[48];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
|
||||
uint32_t _ALIGN(64) edata[48];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
|
||||
ctx_midstate_done = false;
|
||||
memcpy( edata, pdata, 180 );
|
||||
// copy to buffer guaranteed to be aligned.
|
||||
memcpy( edata, pdata, 180 );
|
||||
|
||||
// use the old way until new way updated for size.
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 180*8 );
|
||||
mm_interleave_4x32x( vdata, edata, edata, edata, edata, 180*8 );
|
||||
|
||||
blake256_4way_init( &blake_mid );
|
||||
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
|
||||
|
||||
uint32_t *noncep = vdata + DECRED_NONCE_INDEX * 4;
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
* noncep = n;
|
||||
*(noncep+1) = n+1;
|
||||
*(noncep+2) = n+2;
|
||||
@@ -98,55 +58,14 @@ int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
decred_hash_4way( hash, vdata );
|
||||
|
||||
if ( hash[7] <= HTarget && fulltest( hash, ptarget ) )
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= HTarget && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
work_set_target_ratio( work, hash );
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[DECRED_NONCE_INDEX] = n;
|
||||
pdata[DECRED_NONCE_INDEX] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
/*
|
||||
if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
printf("found 1\n");
|
||||
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[8], hash[9], hash[10],hash[11] );
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[12], hash[13], hash[14],hash[15] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n", shash[0], shash[1], shash[2],shash[3] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n\n", shash[4], shash[5], shash[6],shash[7] );
|
||||
|
||||
work_set_target_ratio( work, hash+8 );
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n+1;
|
||||
}
|
||||
*/
|
||||
if ( (hash+16)[7] <= HTarget && fulltest( hash+16, ptarget ) )
|
||||
{
|
||||
work_set_target_ratio( work, hash+16 );
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n+2;
|
||||
}
|
||||
/*
|
||||
if ( (hash+24)[7] <= HTarget && fulltest( hash+24, ptarget ) )
|
||||
{
|
||||
printf("found 3\n");
|
||||
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[0], hash[1], hash[2],hash[3] );
|
||||
printf("vhash: %08lx %08lx %08lx %08lx\n", hash[4], hash[5], hash[6],hash[7] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n", shash[0], shash[1], shash[2],shash[3] );
|
||||
printf("shash: %08lx %08lx %08lx %08lx\n\n", shash[4], shash[5], shash[6],shash[7] );
|
||||
|
||||
work_set_target_ratio( work, hash+24 );
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n+3;
|
||||
}
|
||||
*/
|
||||
n += 2;
|
||||
// n += 4;
|
||||
n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce)
|
||||
&& !work_restart[thr_id].restart );
|
||||
|
||||
|
@@ -145,15 +145,13 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(DECRED_4WAY)
|
||||
four_way_not_tested();
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred_4way;
|
||||
gate->hash = (void*)&decred_hash_4way;
|
||||
#else
|
||||
gate->optimizations = SSE2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred;
|
||||
gate->hash = (void*)&decred_hash;
|
||||
#endif
|
||||
|
||||
gate->optimizations = AVX2_OPT;
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
|
@@ -18,7 +18,7 @@
|
||||
// uint64_t *hashes_done );
|
||||
#endif
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#if defined(__SSE4_2__)
|
||||
#define DECRED_4WAY
|
||||
#endif
|
||||
|
||||
|
@@ -1,4 +1,7 @@
|
||||
#include "pentablake-gate.h"
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
@@ -9,8 +12,6 @@
|
||||
|
||||
//#define DEBUG_ALGO
|
||||
|
||||
#ifdef PENTABLAKE_4WAY
|
||||
|
||||
extern void pentablakehash_4way( void *output, const void *input )
|
||||
{
|
||||
unsigned char _ALIGN(32) hash[128];
|
||||
@@ -110,12 +111,8 @@ int scanhash_pentablake_4way( int thr_id, struct work *work,
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
bool *found = work->nfound;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
|
||||
uint32_t *noncep1 = vdata + 75;
|
||||
uint32_t *noncep2 = vdata + 77;
|
||||
uint32_t *noncep3 = vdata + 79;
|
||||
uint32_t *noncep = vdata + 73; // 9*8 + 1
|
||||
|
||||
// uint32_t _ALIGN(32) hash64[8];
|
||||
// uint32_t _ALIGN(32) endiandata[32];
|
||||
@@ -149,47 +146,19 @@ int scanhash_pentablake_4way( int thr_id, struct work *work,
|
||||
{
|
||||
uint32_t mask = masks[m];
|
||||
do {
|
||||
found[0] = found[1] = found[2] = found[3] = false;
|
||||
be32enc( noncep0, n );
|
||||
be32enc( noncep1, n+1 );
|
||||
be32enc( noncep2, n+2 );
|
||||
be32enc( noncep3, n+3 );
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+2, n+1 );
|
||||
be32enc( noncep+4, n+2 );
|
||||
be32enc( noncep+6, n+3 );
|
||||
|
||||
pentablakehash_4way( hash, vdata );
|
||||
|
||||
// return immediately on nonce found, only one submit
|
||||
if ( ( !(hash[7] & mask) ) && fulltest( hash, ptarget ) )
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( !( (hash+(i<<3))[7] & mask )
|
||||
&& fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
found[0] = true;
|
||||
num_found++;
|
||||
nonces[0] = n;
|
||||
pdata[19] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( (! ((hash+8)[7] & mask) ) && fulltest( hash+8, ptarget ) )
|
||||
{
|
||||
found[1] = true;
|
||||
num_found++;
|
||||
nonces[1] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( ( !((hash+16)[7] & mask) ) && fulltest( hash+16, ptarget ) )
|
||||
{
|
||||
found[2] = true;
|
||||
num_found++;
|
||||
nonces[2] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
}
|
||||
if ( ( !((hash+24)[7] & mask) ) && fulltest( hash+24, ptarget ) )
|
||||
{
|
||||
found[3] = true;
|
||||
num_found++;
|
||||
nonces[3] = n;
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 1;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 4;
|
||||
|
||||
|
@@ -9,7 +9,7 @@ bool register_pentablake_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_pentablake;
|
||||
gate->hash = (void*)&pentablakehash;
|
||||
#endif
|
||||
gate->optimizations = FOUR_WAY_OPT;
|
||||
gate->optimizations = AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -4,7 +4,7 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(FOUR_WAY) && defined(__AVX__)
|
||||
#if defined(__AVX2__)
|
||||
#define PENTABLAKE_4WAY
|
||||
#endif
|
||||
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#include <stdio.h>
|
||||
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "crypto/blake2s.h"
|
||||
#include "sph-blake2s.h"
|
||||
|
||||
static const uint32_t blake2s_IV[8] =
|
||||
{
|
File diff suppressed because it is too large
Load Diff
@@ -46,94 +46,37 @@ extern "C"{
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-224.
|
||||
*/
|
||||
#define SPH_SIZE_bmw224 224
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-256.
|
||||
*/
|
||||
#define SPH_SIZE_bmw256 256
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-384.
|
||||
*/
|
||||
#define SPH_SIZE_bmw384 384
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-512.
|
||||
*/
|
||||
#define SPH_SIZE_bmw512 512
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* This structure is a context for BMW-224 and BMW-256 computations:
|
||||
* it contains the intermediate values and some data from the last
|
||||
* entered block. Once a BMW computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running BMW
|
||||
* computation can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
unsigned char buf[64]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
sph_u32 H[16];
|
||||
#if SPH_64
|
||||
sph_u64 bit_count;
|
||||
#else
|
||||
sph_u32 bit_count_high, bit_count_low;
|
||||
#endif
|
||||
#endif
|
||||
__m128i buf[64];
|
||||
__m128i H[16];
|
||||
size_t ptr;
|
||||
sph_u32 bit_count; // assume bit_count fits in 32 bits
|
||||
} bmw_4way_small_context;
|
||||
|
||||
typedef bmw_4way_small_context bmw256_4way_context;
|
||||
|
||||
#if SPH_64
|
||||
|
||||
/**
|
||||
* This structure is a context for BMW-384 and BMW-512 computations:
|
||||
* it contains the intermediate values and some data from the last
|
||||
* entered block. Once a BMW computation has been performed, the
|
||||
* context can be reused for another computation.
|
||||
*
|
||||
* The contents of this structure are private. A running BMW
|
||||
* computation can be cloned by copying the context (e.g. with a simple
|
||||
* <code>memcpy()</code>).
|
||||
*/
|
||||
typedef struct {
|
||||
#ifndef DOXYGEN_IGNORE
|
||||
__m256i buf[16];
|
||||
__m256i H[16];
|
||||
|
||||
// unsigned char buf[128]; /* first field, for alignment */
|
||||
size_t ptr;
|
||||
// sph_u64 H[16];
|
||||
sph_u64 bit_count;
|
||||
#endif
|
||||
size_t ptr;
|
||||
sph_u64 bit_count;
|
||||
} bmw_4way_big_context;
|
||||
|
||||
typedef bmw_4way_big_context bmw512_4way_context;
|
||||
|
||||
#endif
|
||||
|
||||
void bmw256_4way_init(void *cc);
|
||||
|
||||
void bmw256_4way(void *cc, const void *data, size_t len);
|
||||
|
||||
void bmw256_4way_close(void *cc, void *dst);
|
||||
|
||||
void bmw256_addbits_and_close(
|
||||
void bmw256_4way_addbits_and_close(
|
||||
void *cc, unsigned ub, unsigned n, void *dst);
|
||||
|
||||
#if SPH_64
|
||||
|
||||
void bmw512_4way_init(void *cc);
|
||||
|
||||
void bmw512_4way(void *cc, const void *data, size_t len);
|
||||
@@ -150,5 +93,3 @@ void bmw512_4way_addbits_and_close(
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@@ -477,7 +477,7 @@ do { \
|
||||
for (u = 0; u < 16; u ++) \
|
||||
sph_enc64le_aligned(data + 8 * u, h2[u]); \
|
||||
dh = h1; \
|
||||
h = final_b; \
|
||||
h = (sph_u64*)final_b; \
|
||||
} \
|
||||
/* end wrapped for break loop */ \
|
||||
out = dst; \
|
||||
|
@@ -3,7 +3,8 @@
|
||||
#include "cryptonight.h"
|
||||
#include "miner.h"
|
||||
#include "crypto/c_keccak.h"
|
||||
#include "avxdefs.h"
|
||||
#include <immintrin.h>
|
||||
//#include "avxdefs.h"
|
||||
|
||||
void aesni_parallel_noxor(uint8_t *long_state, uint8_t *text, uint8_t *ExpandedKey);
|
||||
void aesni_parallel_xor(uint8_t *text, uint8_t *ExpandedKey, uint8_t *long_state);
|
||||
|
205
algo/cubehash/cube-hash-2way.c
Normal file
205
algo/cubehash/cube-hash-2way.c
Normal file
@@ -0,0 +1,205 @@
|
||||
#if defined(__AVX2__)
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <unistd.h>
|
||||
#include <memory.h>
|
||||
#include "cube-hash-2way.h"
|
||||
|
||||
// 2x128
|
||||
|
||||
static void transform_2way( cube_2way_context *sp )
|
||||
{
|
||||
int r;
|
||||
const int rounds = sp->rounds;
|
||||
|
||||
__m256i x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3;
|
||||
|
||||
x0 = _mm256_load_si256( (__m256i*)sp->h );
|
||||
x1 = _mm256_load_si256( (__m256i*)sp->h + 1 );
|
||||
x2 = _mm256_load_si256( (__m256i*)sp->h + 2 );
|
||||
x3 = _mm256_load_si256( (__m256i*)sp->h + 3 );
|
||||
x4 = _mm256_load_si256( (__m256i*)sp->h + 4 );
|
||||
x5 = _mm256_load_si256( (__m256i*)sp->h + 5 );
|
||||
x6 = _mm256_load_si256( (__m256i*)sp->h + 6 );
|
||||
x7 = _mm256_load_si256( (__m256i*)sp->h + 7 );
|
||||
|
||||
for ( r = 0; r < rounds; ++r )
|
||||
{
|
||||
x4 = _mm256_add_epi32( x0, x4 );
|
||||
x5 = _mm256_add_epi32( x1, x5 );
|
||||
x6 = _mm256_add_epi32( x2, x6 );
|
||||
x7 = _mm256_add_epi32( x3, x7 );
|
||||
y0 = x2;
|
||||
y1 = x3;
|
||||
y2 = x0;
|
||||
y3 = x1;
|
||||
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
|
||||
_mm256_srli_epi32( y0, 25 ) );
|
||||
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
|
||||
_mm256_srli_epi32( y1, 25 ) );
|
||||
x2 = _mm256_xor_si256( _mm256_slli_epi32( y2, 7 ),
|
||||
_mm256_srli_epi32( y2, 25 ) );
|
||||
x3 = _mm256_xor_si256( _mm256_slli_epi32( y3, 7 ),
|
||||
_mm256_srli_epi32( y3, 25 ) );
|
||||
x0 = _mm256_xor_si256( x0, x4 );
|
||||
x1 = _mm256_xor_si256( x1, x5 );
|
||||
x2 = _mm256_xor_si256( x2, x6 );
|
||||
x3 = _mm256_xor_si256( x3, x7 );
|
||||
x4 = mm256_swap128_64( x4 );
|
||||
x5 = mm256_swap128_64( x5 );
|
||||
x6 = mm256_swap128_64( x6 );
|
||||
x7 = mm256_swap128_64( x7 );
|
||||
x4 = _mm256_add_epi32( x0, x4 );
|
||||
x5 = _mm256_add_epi32( x1, x5 );
|
||||
x6 = _mm256_add_epi32( x2, x6 );
|
||||
x7 = _mm256_add_epi32( x3, x7 );
|
||||
y0 = x1;
|
||||
y1 = x0;
|
||||
y2 = x3;
|
||||
y3 = x2;
|
||||
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
|
||||
_mm256_srli_epi32( y0, 21 ) );
|
||||
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
|
||||
_mm256_srli_epi32( y1, 21 ) );
|
||||
x2 = _mm256_xor_si256( _mm256_slli_epi32( y2, 11 ),
|
||||
_mm256_srli_epi32( y2, 21 ) );
|
||||
x3 = _mm256_xor_si256( _mm256_slli_epi32( y3, 11 ),
|
||||
_mm256_srli_epi32( y3, 21 ) );
|
||||
x0 = _mm256_xor_si256( x0, x4 );
|
||||
x1 = _mm256_xor_si256( x1, x5 );
|
||||
x2 = _mm256_xor_si256( x2, x6 );
|
||||
x3 = _mm256_xor_si256( x3, x7 );
|
||||
x4 = mm256_swap64_32( x4 );
|
||||
x5 = mm256_swap64_32( x5 );
|
||||
x6 = mm256_swap64_32( x6 );
|
||||
x7 = mm256_swap64_32( x7 );
|
||||
}
|
||||
|
||||
_mm256_store_si256( (__m256i*)sp->h, x0 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 1, x1 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 2, x2 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 3, x3 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 4, x4 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 5, x5 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 6, x6 );
|
||||
_mm256_store_si256( (__m256i*)sp->h + 7, x7 );
|
||||
|
||||
}
|
||||
|
||||
cube_2way_context cube_2way_ctx_cache __attribute__ ((aligned (64)));
|
||||
|
||||
int cube_2way_reinit( cube_2way_context *sp )
|
||||
{
|
||||
memcpy( sp, &cube_2way_ctx_cache, sizeof(cube_2way_context) );
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
int cube_2way_init( cube_2way_context *sp, int hashbitlen, int rounds,
|
||||
int blockbytes )
|
||||
{
|
||||
int i;
|
||||
|
||||
// all sizes of __m128i
|
||||
cube_2way_ctx_cache.hashlen = hashbitlen/128;
|
||||
cube_2way_ctx_cache.blocksize = blockbytes/16;
|
||||
cube_2way_ctx_cache.rounds = rounds;
|
||||
cube_2way_ctx_cache.pos = 0;
|
||||
|
||||
for ( i = 0; i < 8; ++i )
|
||||
cube_2way_ctx_cache.h[i] = m256_zero;
|
||||
|
||||
cube_2way_ctx_cache.h[0] = _mm256_set_epi32(
|
||||
0, rounds, blockbytes, hashbitlen / 8,
|
||||
0, rounds, blockbytes, hashbitlen / 8 );
|
||||
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
|
||||
memcpy( sp, &cube_2way_ctx_cache, sizeof(cube_2way_context) );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int cube_2way_update( cube_2way_context *sp, const void *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const __m256i *in = (__m256i*)data;
|
||||
int i;
|
||||
|
||||
// It is assumed data is aligned to 256 bits and is a multiple of 128 bits.
|
||||
// Current usage sata is either 64 or 80 bytes.
|
||||
|
||||
for ( i = 0; i < len; i++ )
|
||||
{
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
{
|
||||
transform_2way( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cube_2way_close( cube_2way_context *sp, void *output )
|
||||
{
|
||||
__m256i *hash = (__m256i*)output;
|
||||
int i;
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
|
||||
_mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80,
|
||||
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
|
||||
transform_2way( sp );
|
||||
|
||||
sp->h[7] = _mm256_xor_si256( sp->h[7], _mm256_set_epi32( 1,0,0,0,
|
||||
1,0,0,0 ) );
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->h[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int cube_2way_update_close( cube_2way_context *sp, void *output,
|
||||
const void *data, size_t size )
|
||||
{
|
||||
const int len = size / 16;
|
||||
const __m256i *in = (__m256i*)data;
|
||||
__m256i *hash = (__m256i*)output;
|
||||
int i;
|
||||
|
||||
for ( i = 0; i < len; i++ )
|
||||
{
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
{
|
||||
transform_2way( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
|
||||
_mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80,
|
||||
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
|
||||
transform_2way( sp );
|
||||
|
||||
sp->h[7] = _mm256_xor_si256( sp->h[7], _mm256_set_epi32( 1,0,0,0,
|
||||
1,0,0,0 ) );
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform_2way( &cube_2way_ctx_cache );
|
||||
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->h[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
36
algo/cubehash/cube-hash-2way.h
Normal file
36
algo/cubehash/cube-hash-2way.h
Normal file
@@ -0,0 +1,36 @@
|
||||
#ifndef CUBE_HASH_2WAY_H__
|
||||
#define CUBE_HASH_2WAY_H__
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
#include <stdint.h>
|
||||
#include "avxdefs.h"
|
||||
|
||||
// 2x128, 2 way parallel SSE2
|
||||
|
||||
struct _cube_2way_context
|
||||
{
|
||||
int hashlen; // __m128i
|
||||
int rounds;
|
||||
int blocksize; // __m128i
|
||||
int pos; // number of __m128i read into x from current block
|
||||
__m256i h[8] __attribute__ ((aligned (64)));
|
||||
};
|
||||
|
||||
typedef struct _cube_2way_context cube_2way_context;
|
||||
|
||||
int cube_2way_init( cube_2way_context* sp, int hashbitlen, int rounds,
|
||||
int blockbytes );
|
||||
// reinitialize context with same parameters, much faster.
|
||||
int cube_2way_reinit( cube_2way_context *sp );
|
||||
|
||||
int cube_2way_update( cube_2way_context *sp, const void *data, size_t size );
|
||||
|
||||
int cube_2way_close( cube_2way_context *sp, void *output );
|
||||
|
||||
int cube_2way_update_close( cube_2way_context *sp, void *output,
|
||||
const void *data, size_t size );
|
||||
|
||||
|
||||
#endif
|
||||
#endif
|
@@ -10,6 +10,10 @@
|
||||
#endif
|
||||
#include "cubehash_sse2.h"
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
#include <stdbool.h>
|
||||
#include <unistd.h>
|
||||
#include <memory.h>
|
||||
#include "avxdefs.h"
|
||||
|
||||
static void transform( cubehashParam *sp )
|
||||
{
|
||||
@@ -18,7 +22,7 @@ static void transform( cubehashParam *sp )
|
||||
|
||||
#ifdef __AVX2__
|
||||
|
||||
__m256i x0, x1, x2, x3, y0, y1;
|
||||
register __m256i x0, x1, x2, x3, y0, y1;
|
||||
|
||||
x0 = _mm256_load_si256( (__m256i*)sp->x );
|
||||
x1 = _mm256_load_si256( (__m256i*)sp->x + 1 );
|
||||
@@ -29,20 +33,19 @@ static void transform( cubehashParam *sp )
|
||||
{
|
||||
x2 = _mm256_add_epi32( x0, x2 );
|
||||
x3 = _mm256_add_epi32( x1, x3 );
|
||||
y0 = x1;
|
||||
y1 = x0;
|
||||
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
|
||||
y0 = x0;
|
||||
x0 = _mm256_xor_si256( _mm256_slli_epi32( x1, 7 ),
|
||||
_mm256_srli_epi32( x1, 25 ) );
|
||||
x1 = _mm256_xor_si256( _mm256_slli_epi32( y0, 7 ),
|
||||
_mm256_srli_epi32( y0, 25 ) );
|
||||
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 7 ),
|
||||
_mm256_srli_epi32( y1, 25 ) );
|
||||
x0 = _mm256_xor_si256( x0, x2 );
|
||||
x1 = _mm256_xor_si256( x1, x3 );
|
||||
x2 = _mm256_shuffle_epi32( x2, 0x4e );
|
||||
x3 = _mm256_shuffle_epi32( x3, 0x4e );
|
||||
x2 = _mm256_add_epi32( x0, x2 );
|
||||
x3 = _mm256_add_epi32( x1, x3 );
|
||||
y0 = _mm256_permute2f128_si256( x0, x0, 1 );
|
||||
y1 = _mm256_permute2f128_si256( x1, x1, 1 );
|
||||
y0 = _mm256_permute4x64_epi64( x0, 0x4e );
|
||||
y1 = _mm256_permute4x64_epi64( x1, 0x4e );
|
||||
x0 = _mm256_xor_si256( _mm256_slli_epi32( y0, 11 ),
|
||||
_mm256_srli_epi32( y0, 21 ) );
|
||||
x1 = _mm256_xor_si256( _mm256_slli_epi32( y1, 11 ),
|
||||
@@ -125,6 +128,18 @@ static void transform( cubehashParam *sp )
|
||||
#endif
|
||||
} // transform
|
||||
|
||||
// Cubehash context initializing is very expensive.
|
||||
// Cache the intial value for faster reinitializing.
|
||||
cubehashParam cube_ctx_cache __attribute__ ((aligned (64)));
|
||||
|
||||
int cubehashReinit( cubehashParam *sp )
|
||||
{
|
||||
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
|
||||
return SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
// Initialize the cache then copy to sp.
|
||||
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
|
||||
{
|
||||
int i;
|
||||
@@ -135,24 +150,26 @@ int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
|
||||
|
||||
/* Sanity checks */
|
||||
if ( rounds <= 0 || rounds > 32 )
|
||||
rounds = CUBEHASH_ROUNDS;
|
||||
rounds = CUBEHASH_ROUNDS;
|
||||
if ( blockbytes <= 0 || blockbytes >= 256)
|
||||
blockbytes = CUBEHASH_BLOCKBYTES;
|
||||
blockbytes = CUBEHASH_BLOCKBYTES;
|
||||
|
||||
// all sizes of __m128i
|
||||
sp->hashlen = hashbitlen/128;
|
||||
sp->blocksize = blockbytes/16;
|
||||
sp->rounds = rounds;
|
||||
sp->pos = 0;
|
||||
cube_ctx_cache.hashlen = hashbitlen/128;
|
||||
cube_ctx_cache.blocksize = blockbytes/16;
|
||||
cube_ctx_cache.rounds = rounds;
|
||||
cube_ctx_cache.pos = 0;
|
||||
|
||||
for ( i = 0; i < 8; ++i )
|
||||
sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
|
||||
cube_ctx_cache.x[i] = _mm_setzero_si128();;
|
||||
|
||||
sp->x[0] = _mm_set_epi32( 0, rounds, blockbytes, hashbitlen / 8 );
|
||||
cube_ctx_cache.x[0] = _mm_set_epi32( 0, rounds, blockbytes,
|
||||
hashbitlen / 8 );
|
||||
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform(sp);
|
||||
// sp->pos = 0;
|
||||
transform( &cube_ctx_cache );
|
||||
|
||||
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
|
@@ -29,6 +29,8 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
int cubehashInit(cubehashParam* sp, int hashbitlen, int rounds, int blockbytes);
|
||||
// reinitialize context with same parameters, much faster.
|
||||
int cubehashReinit( cubehashParam* sp );
|
||||
|
||||
int cubehashUpdate(cubehashParam* sp, const byte *data, size_t size);
|
||||
|
||||
|
@@ -1,2 +0,0 @@
|
||||
amd64
|
||||
x86
|
@@ -14,18 +14,20 @@
|
||||
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
|
||||
*
|
||||
*/
|
||||
#if defined(__AES__)
|
||||
|
||||
#include <memory.h>
|
||||
#include "miner.h"
|
||||
#include "hash_api.h"
|
||||
#include "vperm.h"
|
||||
|
||||
//#include "vperm.h"
|
||||
#include <immintrin.h>
|
||||
/*
|
||||
#ifndef NO_AES_NI
|
||||
#include <wmmintrin.h>
|
||||
#else
|
||||
#include <tmmintrin.h>
|
||||
#endif
|
||||
|
||||
*/
|
||||
|
||||
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
|
||||
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
|
||||
@@ -246,7 +248,8 @@ void DumpState(__m128i *ps)
|
||||
void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
|
||||
{
|
||||
unsigned int r, b, i, j;
|
||||
__m128i t1, t2, t3, t4, s1, s2, s3, k1, ktemp;
|
||||
// __m128i t1, t2, t3, t4, s1, s2, s3, k1, ktemp;
|
||||
__m128i t1, t2, s2, k1;
|
||||
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
|
||||
|
||||
|
||||
@@ -396,7 +399,7 @@ HashReturn init_echo(hashState_echo *ctx, int nHashSize)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
ctx->k = _mm_xor_si128(ctx->k, ctx->k);
|
||||
ctx->k = _mm_setzero_si128();
|
||||
ctx->processed_bits = 0;
|
||||
ctx->uBufferBytes = 0;
|
||||
|
||||
@@ -742,4 +745,4 @@ HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databit
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
@@ -1 +0,0 @@
|
||||
Çağdaş Çalık
|
@@ -1,120 +0,0 @@
|
||||
/*
|
||||
* file : vperm.h
|
||||
* version : 1.0.208
|
||||
* date : 14.12.2010
|
||||
*
|
||||
* vperm implementation of AES s-box
|
||||
*
|
||||
* Credits: Adapted from Mike Hamburg's AES implementation, http://crypto.stanford.edu/vpaes/
|
||||
*
|
||||
* Cagdas Calik
|
||||
* ccalik@metu.edu.tr
|
||||
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef VPERM_H
|
||||
#define VPERM_H
|
||||
|
||||
#include "algo/sha/sha3_common.h"
|
||||
#include <tmmintrin.h>
|
||||
|
||||
/*
|
||||
extern const unsigned int _k_s0F[];
|
||||
extern const unsigned int _k_ipt[];
|
||||
extern const unsigned int _k_opt[];
|
||||
extern const unsigned int _k_inv[];
|
||||
extern const unsigned int _k_sb1[];
|
||||
extern const unsigned int _k_sb2[];
|
||||
extern const unsigned int _k_sb3[];
|
||||
extern const unsigned int _k_sb4[];
|
||||
extern const unsigned int _k_sb5[];
|
||||
extern const unsigned int _k_sb7[];
|
||||
extern const unsigned int _k_sbo[];
|
||||
extern const unsigned int _k_h63[];
|
||||
extern const unsigned int _k_hc6[];
|
||||
extern const unsigned int _k_h5b[];
|
||||
extern const unsigned int _k_h4e[];
|
||||
extern const unsigned int _k_h0e[];
|
||||
extern const unsigned int _k_h15[];
|
||||
extern const unsigned int _k_aesmix1[];
|
||||
extern const unsigned int _k_aesmix2[];
|
||||
extern const unsigned int _k_aesmix3[];
|
||||
extern const unsigned int _k_aesmix4[];
|
||||
*/
|
||||
|
||||
// input: x, table
|
||||
// output: x
|
||||
#define TRANSFORM(x, table, t1, t2)\
|
||||
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
|
||||
t1 = _mm_srli_epi32(t1, 4);\
|
||||
x = _mm_and_si128(x, M128(_k_s0F));\
|
||||
t1 = _mm_shuffle_epi8(*((__m128i*)table + 1), t1);\
|
||||
x = _mm_shuffle_epi8(*((__m128i*)table + 0), x);\
|
||||
x = _mm_xor_si128(x, t1)
|
||||
|
||||
#if 0
|
||||
// compiled erroneously with 32-bit msc compiler
|
||||
t2 = _mm_shuffle_epi8(table[0], x);\
|
||||
x = _mm_shuffle_epi8(table[1], t1);\
|
||||
x = _mm_xor_si128(x, t2)
|
||||
#endif
|
||||
|
||||
// input: x
|
||||
// output: t2, t3
|
||||
#define SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4)\
|
||||
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
|
||||
t1 = _mm_srli_epi32(t1, 4);\
|
||||
x = _mm_and_si128(x, M128(_k_s0F));\
|
||||
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 1), x);\
|
||||
x = _mm_xor_si128(x, t1);\
|
||||
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t1);\
|
||||
t3 = _mm_xor_si128(t3, t2);\
|
||||
t4 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), x);\
|
||||
t4 = _mm_xor_si128(t4, t2);\
|
||||
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t3);\
|
||||
t2 = _mm_xor_si128(t2, x);\
|
||||
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t4);\
|
||||
t3 = _mm_xor_si128(t3, t1);\
|
||||
|
||||
|
||||
// input: x1, x2, table
|
||||
// output: y
|
||||
#define VPERM_LOOKUP(x1, x2, table, y, t)\
|
||||
t = _mm_shuffle_epi8(*((__m128i*)table + 0), x1);\
|
||||
y = _mm_shuffle_epi8(*((__m128i*)table + 1), x2);\
|
||||
y = _mm_xor_si128(y, t)
|
||||
|
||||
|
||||
// input: x
|
||||
// output: x
|
||||
#define SUBSTITUTE_VPERM(x, t1, t2, t3, t4) \
|
||||
TRANSFORM(x, _k_ipt, t1, t2);\
|
||||
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
|
||||
VPERM_LOOKUP(t2, t3, _k_sbo, x, t1);\
|
||||
x = _mm_xor_si128(x, M128(_k_h63))
|
||||
|
||||
|
||||
// input: x
|
||||
// output: x
|
||||
#define AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3) \
|
||||
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
|
||||
VPERM_LOOKUP(t2, t3, _k_sb1, s1, t1);\
|
||||
VPERM_LOOKUP(t2, t3, _k_sb2, s2, t1);\
|
||||
s3 = _mm_xor_si128(s1, s2);\
|
||||
x = _mm_shuffle_epi8(s2, M128(_k_aesmix1));\
|
||||
x = _mm_xor_si128(x, _mm_shuffle_epi8(s3, M128(_k_aesmix2)));\
|
||||
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix3)));\
|
||||
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix4)));\
|
||||
x = _mm_xor_si128(x, M128(_k_h5b))
|
||||
|
||||
|
||||
// input: x
|
||||
// output: x
|
||||
#define AES_ROUND_VPERM(x, t1, t2, t3, t4, s1, s2, s3) \
|
||||
TRANSFORM(x, _k_ipt, t1, t2);\
|
||||
AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3);\
|
||||
TRANSFORM(x, _k_opt, t1, t2)
|
||||
|
||||
#endif // VPERM_H
|
||||
|
@@ -1,4 +1,4 @@
|
||||
#include "algo-gate-api.h"
|
||||
#include "myrgr-gate.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
@@ -10,8 +10,6 @@
|
||||
#else
|
||||
#include "aes_ni/hash-groestl.h"
|
||||
#endif
|
||||
|
||||
#include <openssl/sha.h>
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
|
||||
typedef struct {
|
||||
@@ -20,11 +18,7 @@ typedef struct {
|
||||
#else
|
||||
hashState_groestl groestl;
|
||||
#endif
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX sha;
|
||||
#else
|
||||
sph_sha256_context sha;
|
||||
#endif
|
||||
sph_sha256_context sha;
|
||||
} myrgr_ctx_holder;
|
||||
|
||||
myrgr_ctx_holder myrgr_ctx;
|
||||
@@ -36,44 +30,37 @@ void init_myrgr_ctx()
|
||||
#else
|
||||
init_groestl (&myrgr_ctx.groestl, 64 );
|
||||
#endif
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &myrgr_ctx.sha );
|
||||
#else
|
||||
sph_sha256_init( &myrgr_ctx.sha );
|
||||
#endif
|
||||
sph_sha256_init(&myrgr_ctx.sha);
|
||||
}
|
||||
|
||||
void myriadhash( void *output, const void *input )
|
||||
void myriad_hash(void *output, const void *input)
|
||||
{
|
||||
myrgr_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
myrgr_ctx_holder ctx;
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
|
||||
uint32_t _ALIGN(32) hash[16];
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
#else
|
||||
update_and_final_groestl( &ctx.groestl, (char*)input,
|
||||
(const char*)input, 640 );
|
||||
update_groestl( &ctx.groestl, (char*)input, 640 );
|
||||
final_groestl( &ctx.groestl, (char*)hash);
|
||||
#endif
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Update( &ctx.sha, hash, 64 );
|
||||
SHA256_Final( (unsigned char*) hash, &ctx.sha );
|
||||
#else
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
#endif
|
||||
memcpy(output, hash, 32);
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
int scanhash_myriad(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
@@ -84,9 +71,9 @@ int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
do {
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8];
|
||||
be32enc(&endiandata[19], nonce);
|
||||
myriadhash(hash, endiandata);
|
||||
myriad_hash(hash, endiandata);
|
||||
|
||||
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
|
||||
pdata[19] = nonce;
|
||||
@@ -101,14 +88,15 @@ int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
bool register_myriad_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
init_myrgr_ctx();
|
||||
gate->scanhash = (void*)&scanhash_myriad;
|
||||
gate->hash = (void*)&myriadhash;
|
||||
// gate->hash_alt = (void*)&myriadhash;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
||||
*/
|
||||
|
108
algo/groestl/myrgr-4way.c
Normal file
108
algo/groestl/myrgr-4way.c
Normal file
@@ -0,0 +1,108 @@
|
||||
#include "myrgr-gate.h"
|
||||
|
||||
#if defined(MYRGR_4WAY)
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "aes_ni/hash-groestl.h"
|
||||
#include "algo/sha/sha2-hash-4way.h"
|
||||
|
||||
typedef struct {
|
||||
hashState_groestl groestl;
|
||||
sha256_4way_context sha;
|
||||
} myrgr_4way_ctx_holder;
|
||||
|
||||
myrgr_4way_ctx_holder myrgr_4way_ctx;
|
||||
|
||||
void init_myrgr_4way_ctx()
|
||||
{
|
||||
init_groestl (&myrgr_4way_ctx.groestl, 64 );
|
||||
sha256_4way_init( &myrgr_4way_ctx.sha );
|
||||
}
|
||||
|
||||
void myriad_4way_hash( void *output, const void *input )
|
||||
{
|
||||
uint32_t hash0[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash1[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash2[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash3[20] __attribute__ ((aligned (64)));
|
||||
uint32_t vhash[16*4] __attribute__ ((aligned (64)));
|
||||
myrgr_4way_ctx_holder ctx;
|
||||
memcpy( &ctx, &myrgr_4way_ctx, sizeof(myrgr_4way_ctx) );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, input, 640 );
|
||||
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 640 );
|
||||
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 640 );
|
||||
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 640 );
|
||||
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 640 );
|
||||
|
||||
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
|
||||
|
||||
sha256_4way( &ctx.sha, vhash, 64 );
|
||||
sha256_4way_close( &ctx.sha, vhash );
|
||||
|
||||
mm_deinterleave_4x32( output, output+32, output+64, output+96,
|
||||
vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_myriad_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) edata[20];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
|
||||
/*
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
*/
|
||||
if ( opt_benchmark )
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+1, n+1 );
|
||||
be32enc( noncep+2, n+2 );
|
||||
be32enc( noncep+3, n+3 );
|
||||
|
||||
myriad_4way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce-4)
|
||||
&& !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
18
algo/groestl/myrgr-gate.c
Normal file
18
algo/groestl/myrgr-gate.c
Normal file
@@ -0,0 +1,18 @@
|
||||
#include "myrgr-gate.h"
|
||||
|
||||
bool register_myriad_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (MYRGR_4WAY)
|
||||
init_myrgr_4way_ctx();
|
||||
gate->scanhash = (void*)&scanhash_myriad_4way;
|
||||
gate->hash = (void*)&myriad_4way_hash;
|
||||
#else
|
||||
init_myrgr_ctx();
|
||||
gate->scanhash = (void*)&scanhash_myriad;
|
||||
gate->hash = (void*)&myriad_hash;
|
||||
#endif
|
||||
gate->optimizations = AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
30
algo/groestl/myrgr-gate.h
Normal file
30
algo/groestl/myrgr-gate.h
Normal file
@@ -0,0 +1,30 @@
|
||||
#ifndef MYRGR_GATE_H__
|
||||
#define MYRGR_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__AVX2__) && defined(__AES__)
|
||||
#define MYRGR_4WAY
|
||||
#endif
|
||||
|
||||
#if defined(MYRGR_4WAY)
|
||||
|
||||
void myriad_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_myriad_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
void init_myrgr_4way_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
void myriad_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
void init_myrgr_ctx();
|
||||
|
||||
#endif
|
||||
|
935
algo/hamsi/hamsi-hash-4way.c
Normal file
935
algo/hamsi/hamsi-hash-4way.c
Normal file
@@ -0,0 +1,935 @@
|
||||
/* $Id: hamsi.c 251 2010-10-19 14:31:51Z tp $ */
|
||||
/*
|
||||
* Hamsi implementation.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
//#include "miner.h"
|
||||
#include "hamsi-hash-4way.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The SPH_HAMSI_EXPAND_* define how many input bits we handle in one
|
||||
* table lookup during message expansion (1 to 8, inclusive). If we note
|
||||
* w the number of bits per message word (w=32 for Hamsi-224/256, w=64
|
||||
* for Hamsi-384/512), r the size of a "row" in 32-bit words (r=8 for
|
||||
* Hamsi-224/256, r=16 for Hamsi-384/512), and n the expansion level,
|
||||
* then we will get t tables (where t=ceil(w/n)) of individual size
|
||||
* 2^n*r*4 (in bytes). The last table may be shorter (e.g. with w=32 and
|
||||
* n=5, there are 7 tables, but the last one uses only two bits on
|
||||
* input, not five).
|
||||
*
|
||||
* Also, we read t rows of r words from RAM. Words in a given row are
|
||||
* concatenated in RAM in that order, so most of the cost is about
|
||||
* reading the first row word; comparatively, cache misses are thus
|
||||
* less expensive with Hamsi-512 (r=16) than with Hamsi-256 (r=8).
|
||||
*
|
||||
* When n=1, tables are "special" in that we omit the first entry of
|
||||
* each table (which always contains 0), so that total table size is
|
||||
* halved.
|
||||
*
|
||||
* We thus have the following (size1 is the cumulative table size of
|
||||
* Hamsi-224/256; size2 is for Hamsi-384/512; similarly, t1 and t2
|
||||
* are for Hamsi-224/256 and Hamsi-384/512, respectively).
|
||||
*
|
||||
* n size1 size2 t1 t2
|
||||
* ---------------------------------------
|
||||
* 1 1024 4096 32 64
|
||||
* 2 2048 8192 16 32
|
||||
* 3 2688 10880 11 22
|
||||
* 4 4096 16384 8 16
|
||||
* 5 6272 25600 7 13
|
||||
* 6 10368 41984 6 11
|
||||
* 7 16896 73856 5 10
|
||||
* 8 32768 131072 4 8
|
||||
*
|
||||
* So there is a trade-off: a lower n makes the tables fit better in
|
||||
* L1 cache, but increases the number of memory accesses. The optimal
|
||||
* value depends on the amount of available L1 cache and the relative
|
||||
* impact of a cache miss.
|
||||
*
|
||||
* Experimentally, in ideal benchmark conditions (which are not necessarily
|
||||
* realistic with regards to L1 cache contention), it seems that n=8 is
|
||||
* the best value on "big" architectures (those with 32 kB or more of L1
|
||||
* cache), while n=4 is better on "small" architectures. This was tested
|
||||
* on an Intel Core2 Q6600 (both 32-bit and 64-bit mode), a PowerPC G3
|
||||
* (32 kB L1 cache, hence "big"), and a MIPS-compatible Broadcom BCM3302
|
||||
* (8 kB L1 cache).
|
||||
*
|
||||
* Note: with n=1, the 32 tables (actually implemented as one big table)
|
||||
* are read entirely and sequentially, regardless of the input data,
|
||||
* thus avoiding any data-dependent table access pattern.
|
||||
*/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning (disable: 4146)
|
||||
#endif
|
||||
|
||||
//#include "hamsi-helper-4way.c"
|
||||
|
||||
static const sph_u32 IV512[] = {
|
||||
SPH_C32(0x73746565), SPH_C32(0x6c706172), SPH_C32(0x6b204172),
|
||||
SPH_C32(0x656e6265), SPH_C32(0x72672031), SPH_C32(0x302c2062),
|
||||
SPH_C32(0x75732032), SPH_C32(0x3434362c), SPH_C32(0x20422d33),
|
||||
SPH_C32(0x30303120), SPH_C32(0x4c657576), SPH_C32(0x656e2d48),
|
||||
SPH_C32(0x65766572), SPH_C32(0x6c65652c), SPH_C32(0x2042656c),
|
||||
SPH_C32(0x6769756d)
|
||||
};
|
||||
|
||||
static const sph_u32 alpha_n[] = {
|
||||
SPH_C32(0xff00f0f0), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0cccc),
|
||||
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00),
|
||||
SPH_C32(0xaaaacccc), SPH_C32(0xf0f0ff00), SPH_C32(0xf0f0cccc),
|
||||
SPH_C32(0xaaaaff00), SPH_C32(0xccccff00), SPH_C32(0xaaaaf0f0),
|
||||
SPH_C32(0xaaaaf0f0), SPH_C32(0xff00cccc), SPH_C32(0xccccf0f0),
|
||||
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xff00f0f0),
|
||||
SPH_C32(0xff00aaaa), SPH_C32(0xf0f0cccc), SPH_C32(0xf0f0ff00),
|
||||
SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00), SPH_C32(0xaaaacccc),
|
||||
SPH_C32(0xaaaaff00), SPH_C32(0xf0f0cccc), SPH_C32(0xaaaaf0f0),
|
||||
SPH_C32(0xccccff00), SPH_C32(0xff00cccc), SPH_C32(0xaaaaf0f0),
|
||||
SPH_C32(0xff00aaaa), SPH_C32(0xccccf0f0)
|
||||
};
|
||||
|
||||
static const sph_u32 alpha_f[] = {
|
||||
SPH_C32(0xcaf9639c), SPH_C32(0x0ff0f9c0), SPH_C32(0x639c0ff0),
|
||||
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9),
|
||||
SPH_C32(0xf9c00ff0), SPH_C32(0x639ccaf9), SPH_C32(0x639c0ff0),
|
||||
SPH_C32(0xf9c0caf9), SPH_C32(0x0ff0caf9), SPH_C32(0xf9c0639c),
|
||||
SPH_C32(0xf9c0639c), SPH_C32(0xcaf90ff0), SPH_C32(0x0ff0639c),
|
||||
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0xcaf9639c),
|
||||
SPH_C32(0xcaf9f9c0), SPH_C32(0x639c0ff0), SPH_C32(0x639ccaf9),
|
||||
SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9), SPH_C32(0xf9c00ff0),
|
||||
SPH_C32(0xf9c0caf9), SPH_C32(0x639c0ff0), SPH_C32(0xf9c0639c),
|
||||
SPH_C32(0x0ff0caf9), SPH_C32(0xcaf90ff0), SPH_C32(0xf9c0639c),
|
||||
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0639c)
|
||||
};
|
||||
|
||||
// imported from hamsi helper
|
||||
|
||||
/* Note: this table lists bits within each byte from least
|
||||
siginificant to most significant. */
|
||||
static const sph_u32 T512[64][16] = {
|
||||
{ SPH_C32(0xef0b0270), SPH_C32(0x3afd0000), SPH_C32(0x5dae0000),
|
||||
SPH_C32(0x69490000), SPH_C32(0x9b0f3c06), SPH_C32(0x4405b5f9),
|
||||
SPH_C32(0x66140a51), SPH_C32(0x924f5d0a), SPH_C32(0xc96b0030),
|
||||
SPH_C32(0xe7250000), SPH_C32(0x2f840000), SPH_C32(0x264f0000),
|
||||
SPH_C32(0x08695bf9), SPH_C32(0x6dfcf137), SPH_C32(0x509f6984),
|
||||
SPH_C32(0x9e69af68) },
|
||||
{ SPH_C32(0xc96b0030), SPH_C32(0xe7250000), SPH_C32(0x2f840000),
|
||||
SPH_C32(0x264f0000), SPH_C32(0x08695bf9), SPH_C32(0x6dfcf137),
|
||||
SPH_C32(0x509f6984), SPH_C32(0x9e69af68), SPH_C32(0x26600240),
|
||||
SPH_C32(0xddd80000), SPH_C32(0x722a0000), SPH_C32(0x4f060000),
|
||||
SPH_C32(0x936667ff), SPH_C32(0x29f944ce), SPH_C32(0x368b63d5),
|
||||
SPH_C32(0x0c26f262) },
|
||||
{ SPH_C32(0x145a3c00), SPH_C32(0xb9e90000), SPH_C32(0x61270000),
|
||||
SPH_C32(0xf1610000), SPH_C32(0xce613d6c), SPH_C32(0xb0493d78),
|
||||
SPH_C32(0x47a96720), SPH_C32(0xe18e24c5), SPH_C32(0x23671400),
|
||||
SPH_C32(0xc8b90000), SPH_C32(0xf4c70000), SPH_C32(0xfb750000),
|
||||
SPH_C32(0x73cd2465), SPH_C32(0xf8a6a549), SPH_C32(0x02c40a3f),
|
||||
SPH_C32(0xdc24e61f) },
|
||||
{ SPH_C32(0x23671400), SPH_C32(0xc8b90000), SPH_C32(0xf4c70000),
|
||||
SPH_C32(0xfb750000), SPH_C32(0x73cd2465), SPH_C32(0xf8a6a549),
|
||||
SPH_C32(0x02c40a3f), SPH_C32(0xdc24e61f), SPH_C32(0x373d2800),
|
||||
SPH_C32(0x71500000), SPH_C32(0x95e00000), SPH_C32(0x0a140000),
|
||||
SPH_C32(0xbdac1909), SPH_C32(0x48ef9831), SPH_C32(0x456d6d1f),
|
||||
SPH_C32(0x3daac2da) },
|
||||
{ SPH_C32(0x54285c00), SPH_C32(0xeaed0000), SPH_C32(0xc5d60000),
|
||||
SPH_C32(0xa1c50000), SPH_C32(0xb3a26770), SPH_C32(0x94a5c4e1),
|
||||
SPH_C32(0x6bb0419d), SPH_C32(0x551b3782), SPH_C32(0x9cbb1800),
|
||||
SPH_C32(0xb0d30000), SPH_C32(0x92510000), SPH_C32(0xed930000),
|
||||
SPH_C32(0x593a4345), SPH_C32(0xe114d5f4), SPH_C32(0x430633da),
|
||||
SPH_C32(0x78cace29) },
|
||||
{ SPH_C32(0x9cbb1800), SPH_C32(0xb0d30000), SPH_C32(0x92510000),
|
||||
SPH_C32(0xed930000), SPH_C32(0x593a4345), SPH_C32(0xe114d5f4),
|
||||
SPH_C32(0x430633da), SPH_C32(0x78cace29), SPH_C32(0xc8934400),
|
||||
SPH_C32(0x5a3e0000), SPH_C32(0x57870000), SPH_C32(0x4c560000),
|
||||
SPH_C32(0xea982435), SPH_C32(0x75b11115), SPH_C32(0x28b67247),
|
||||
SPH_C32(0x2dd1f9ab) },
|
||||
{ SPH_C32(0x29449c00), SPH_C32(0x64e70000), SPH_C32(0xf24b0000),
|
||||
SPH_C32(0xc2f30000), SPH_C32(0x0ede4e8f), SPH_C32(0x56c23745),
|
||||
SPH_C32(0xf3e04259), SPH_C32(0x8d0d9ec4), SPH_C32(0x466d0c00),
|
||||
SPH_C32(0x08620000), SPH_C32(0xdd5d0000), SPH_C32(0xbadd0000),
|
||||
SPH_C32(0x6a927942), SPH_C32(0x441f2b93), SPH_C32(0x218ace6f),
|
||||
SPH_C32(0xbf2c0be2) },
|
||||
{ SPH_C32(0x466d0c00), SPH_C32(0x08620000), SPH_C32(0xdd5d0000),
|
||||
SPH_C32(0xbadd0000), SPH_C32(0x6a927942), SPH_C32(0x441f2b93),
|
||||
SPH_C32(0x218ace6f), SPH_C32(0xbf2c0be2), SPH_C32(0x6f299000),
|
||||
SPH_C32(0x6c850000), SPH_C32(0x2f160000), SPH_C32(0x782e0000),
|
||||
SPH_C32(0x644c37cd), SPH_C32(0x12dd1cd6), SPH_C32(0xd26a8c36),
|
||||
SPH_C32(0x32219526) },
|
||||
{ SPH_C32(0xf6800005), SPH_C32(0x3443c000), SPH_C32(0x24070000),
|
||||
SPH_C32(0x8f3d0000), SPH_C32(0x21373bfb), SPH_C32(0x0ab8d5ae),
|
||||
SPH_C32(0xcdc58b19), SPH_C32(0xd795ba31), SPH_C32(0xa67f0001),
|
||||
SPH_C32(0x71378000), SPH_C32(0x19fc0000), SPH_C32(0x96db0000),
|
||||
SPH_C32(0x3a8b6dfd), SPH_C32(0xebcaaef3), SPH_C32(0x2c6d478f),
|
||||
SPH_C32(0xac8e6c88) },
|
||||
{ SPH_C32(0xa67f0001), SPH_C32(0x71378000), SPH_C32(0x19fc0000),
|
||||
SPH_C32(0x96db0000), SPH_C32(0x3a8b6dfd), SPH_C32(0xebcaaef3),
|
||||
SPH_C32(0x2c6d478f), SPH_C32(0xac8e6c88), SPH_C32(0x50ff0004),
|
||||
SPH_C32(0x45744000), SPH_C32(0x3dfb0000), SPH_C32(0x19e60000),
|
||||
SPH_C32(0x1bbc5606), SPH_C32(0xe1727b5d), SPH_C32(0xe1a8cc96),
|
||||
SPH_C32(0x7b1bd6b9) },
|
||||
{ SPH_C32(0xf7750009), SPH_C32(0xcf3cc000), SPH_C32(0xc3d60000),
|
||||
SPH_C32(0x04920000), SPH_C32(0x029519a9), SPH_C32(0xf8e836ba),
|
||||
SPH_C32(0x7a87f14e), SPH_C32(0x9e16981a), SPH_C32(0xd46a0000),
|
||||
SPH_C32(0x8dc8c000), SPH_C32(0xa5af0000), SPH_C32(0x4a290000),
|
||||
SPH_C32(0xfc4e427a), SPH_C32(0xc9b4866c), SPH_C32(0x98369604),
|
||||
SPH_C32(0xf746c320) },
|
||||
{ SPH_C32(0xd46a0000), SPH_C32(0x8dc8c000), SPH_C32(0xa5af0000),
|
||||
SPH_C32(0x4a290000), SPH_C32(0xfc4e427a), SPH_C32(0xc9b4866c),
|
||||
SPH_C32(0x98369604), SPH_C32(0xf746c320), SPH_C32(0x231f0009),
|
||||
SPH_C32(0x42f40000), SPH_C32(0x66790000), SPH_C32(0x4ebb0000),
|
||||
SPH_C32(0xfedb5bd3), SPH_C32(0x315cb0d6), SPH_C32(0xe2b1674a),
|
||||
SPH_C32(0x69505b3a) },
|
||||
{ SPH_C32(0x774400f0), SPH_C32(0xf15a0000), SPH_C32(0xf5b20000),
|
||||
SPH_C32(0x34140000), SPH_C32(0x89377e8c), SPH_C32(0x5a8bec25),
|
||||
SPH_C32(0x0bc3cd1e), SPH_C32(0xcf3775cb), SPH_C32(0xf46c0050),
|
||||
SPH_C32(0x96180000), SPH_C32(0x14a50000), SPH_C32(0x031f0000),
|
||||
SPH_C32(0x42947eb8), SPH_C32(0x66bf7e19), SPH_C32(0x9ca470d2),
|
||||
SPH_C32(0x8a341574) },
|
||||
{ SPH_C32(0xf46c0050), SPH_C32(0x96180000), SPH_C32(0x14a50000),
|
||||
SPH_C32(0x031f0000), SPH_C32(0x42947eb8), SPH_C32(0x66bf7e19),
|
||||
SPH_C32(0x9ca470d2), SPH_C32(0x8a341574), SPH_C32(0x832800a0),
|
||||
SPH_C32(0x67420000), SPH_C32(0xe1170000), SPH_C32(0x370b0000),
|
||||
SPH_C32(0xcba30034), SPH_C32(0x3c34923c), SPH_C32(0x9767bdcc),
|
||||
SPH_C32(0x450360bf) },
|
||||
{ SPH_C32(0xe8870170), SPH_C32(0x9d720000), SPH_C32(0x12db0000),
|
||||
SPH_C32(0xd4220000), SPH_C32(0xf2886b27), SPH_C32(0xa921e543),
|
||||
SPH_C32(0x4ef8b518), SPH_C32(0x618813b1), SPH_C32(0xb4370060),
|
||||
SPH_C32(0x0c4c0000), SPH_C32(0x56c20000), SPH_C32(0x5cae0000),
|
||||
SPH_C32(0x94541f3f), SPH_C32(0x3b3ef825), SPH_C32(0x1b365f3d),
|
||||
SPH_C32(0xf3d45758) },
|
||||
{ SPH_C32(0xb4370060), SPH_C32(0x0c4c0000), SPH_C32(0x56c20000),
|
||||
SPH_C32(0x5cae0000), SPH_C32(0x94541f3f), SPH_C32(0x3b3ef825),
|
||||
SPH_C32(0x1b365f3d), SPH_C32(0xf3d45758), SPH_C32(0x5cb00110),
|
||||
SPH_C32(0x913e0000), SPH_C32(0x44190000), SPH_C32(0x888c0000),
|
||||
SPH_C32(0x66dc7418), SPH_C32(0x921f1d66), SPH_C32(0x55ceea25),
|
||||
SPH_C32(0x925c44e9) },
|
||||
{ SPH_C32(0x0c720000), SPH_C32(0x49e50f00), SPH_C32(0x42790000),
|
||||
SPH_C32(0x5cea0000), SPH_C32(0x33aa301a), SPH_C32(0x15822514),
|
||||
SPH_C32(0x95a34b7b), SPH_C32(0xb44b0090), SPH_C32(0xfe220000),
|
||||
SPH_C32(0xa7580500), SPH_C32(0x25d10000), SPH_C32(0xf7600000),
|
||||
SPH_C32(0x893178da), SPH_C32(0x1fd4f860), SPH_C32(0x4ed0a315),
|
||||
SPH_C32(0xa123ff9f) },
|
||||
{ SPH_C32(0xfe220000), SPH_C32(0xa7580500), SPH_C32(0x25d10000),
|
||||
SPH_C32(0xf7600000), SPH_C32(0x893178da), SPH_C32(0x1fd4f860),
|
||||
SPH_C32(0x4ed0a315), SPH_C32(0xa123ff9f), SPH_C32(0xf2500000),
|
||||
SPH_C32(0xeebd0a00), SPH_C32(0x67a80000), SPH_C32(0xab8a0000),
|
||||
SPH_C32(0xba9b48c0), SPH_C32(0x0a56dd74), SPH_C32(0xdb73e86e),
|
||||
SPH_C32(0x1568ff0f) },
|
||||
{ SPH_C32(0x45180000), SPH_C32(0xa5b51700), SPH_C32(0xf96a0000),
|
||||
SPH_C32(0x3b480000), SPH_C32(0x1ecc142c), SPH_C32(0x231395d6),
|
||||
SPH_C32(0x16bca6b0), SPH_C32(0xdf33f4df), SPH_C32(0xb83d0000),
|
||||
SPH_C32(0x16710600), SPH_C32(0x379a0000), SPH_C32(0xf5b10000),
|
||||
SPH_C32(0x228161ac), SPH_C32(0xae48f145), SPH_C32(0x66241616),
|
||||
SPH_C32(0xc5c1eb3e) },
|
||||
{ SPH_C32(0xb83d0000), SPH_C32(0x16710600), SPH_C32(0x379a0000),
|
||||
SPH_C32(0xf5b10000), SPH_C32(0x228161ac), SPH_C32(0xae48f145),
|
||||
SPH_C32(0x66241616), SPH_C32(0xc5c1eb3e), SPH_C32(0xfd250000),
|
||||
SPH_C32(0xb3c41100), SPH_C32(0xcef00000), SPH_C32(0xcef90000),
|
||||
SPH_C32(0x3c4d7580), SPH_C32(0x8d5b6493), SPH_C32(0x7098b0a6),
|
||||
SPH_C32(0x1af21fe1) },
|
||||
{ SPH_C32(0x75a40000), SPH_C32(0xc28b2700), SPH_C32(0x94a40000),
|
||||
SPH_C32(0x90f50000), SPH_C32(0xfb7857e0), SPH_C32(0x49ce0bae),
|
||||
SPH_C32(0x1767c483), SPH_C32(0xaedf667e), SPH_C32(0xd1660000),
|
||||
SPH_C32(0x1bbc0300), SPH_C32(0x9eec0000), SPH_C32(0xf6940000),
|
||||
SPH_C32(0x03024527), SPH_C32(0xcf70fcf2), SPH_C32(0xb4431b17),
|
||||
SPH_C32(0x857f3c2b) },
|
||||
{ SPH_C32(0xd1660000), SPH_C32(0x1bbc0300), SPH_C32(0x9eec0000),
|
||||
SPH_C32(0xf6940000), SPH_C32(0x03024527), SPH_C32(0xcf70fcf2),
|
||||
SPH_C32(0xb4431b17), SPH_C32(0x857f3c2b), SPH_C32(0xa4c20000),
|
||||
SPH_C32(0xd9372400), SPH_C32(0x0a480000), SPH_C32(0x66610000),
|
||||
SPH_C32(0xf87a12c7), SPH_C32(0x86bef75c), SPH_C32(0xa324df94),
|
||||
SPH_C32(0x2ba05a55) },
|
||||
{ SPH_C32(0x75c90003), SPH_C32(0x0e10c000), SPH_C32(0xd1200000),
|
||||
SPH_C32(0xbaea0000), SPH_C32(0x8bc42f3e), SPH_C32(0x8758b757),
|
||||
SPH_C32(0xbb28761d), SPH_C32(0x00b72e2b), SPH_C32(0xeecf0001),
|
||||
SPH_C32(0x6f564000), SPH_C32(0xf33e0000), SPH_C32(0xa79e0000),
|
||||
SPH_C32(0xbdb57219), SPH_C32(0xb711ebc5), SPH_C32(0x4a3b40ba),
|
||||
SPH_C32(0xfeabf254) },
|
||||
{ SPH_C32(0xeecf0001), SPH_C32(0x6f564000), SPH_C32(0xf33e0000),
|
||||
SPH_C32(0xa79e0000), SPH_C32(0xbdb57219), SPH_C32(0xb711ebc5),
|
||||
SPH_C32(0x4a3b40ba), SPH_C32(0xfeabf254), SPH_C32(0x9b060002),
|
||||
SPH_C32(0x61468000), SPH_C32(0x221e0000), SPH_C32(0x1d740000),
|
||||
SPH_C32(0x36715d27), SPH_C32(0x30495c92), SPH_C32(0xf11336a7),
|
||||
SPH_C32(0xfe1cdc7f) },
|
||||
{ SPH_C32(0x86790000), SPH_C32(0x3f390002), SPH_C32(0xe19ae000),
|
||||
SPH_C32(0x98560000), SPH_C32(0x9565670e), SPH_C32(0x4e88c8ea),
|
||||
SPH_C32(0xd3dd4944), SPH_C32(0x161ddab9), SPH_C32(0x30b70000),
|
||||
SPH_C32(0xe5d00000), SPH_C32(0xf4f46000), SPH_C32(0x42c40000),
|
||||
SPH_C32(0x63b83d6a), SPH_C32(0x78ba9460), SPH_C32(0x21afa1ea),
|
||||
SPH_C32(0xb0a51834) },
|
||||
{ SPH_C32(0x30b70000), SPH_C32(0xe5d00000), SPH_C32(0xf4f46000),
|
||||
SPH_C32(0x42c40000), SPH_C32(0x63b83d6a), SPH_C32(0x78ba9460),
|
||||
SPH_C32(0x21afa1ea), SPH_C32(0xb0a51834), SPH_C32(0xb6ce0000),
|
||||
SPH_C32(0xdae90002), SPH_C32(0x156e8000), SPH_C32(0xda920000),
|
||||
SPH_C32(0xf6dd5a64), SPH_C32(0x36325c8a), SPH_C32(0xf272e8ae),
|
||||
SPH_C32(0xa6b8c28d) },
|
||||
{ SPH_C32(0x14190000), SPH_C32(0x23ca003c), SPH_C32(0x50df0000),
|
||||
SPH_C32(0x44b60000), SPH_C32(0x1b6c67b0), SPH_C32(0x3cf3ac75),
|
||||
SPH_C32(0x61e610b0), SPH_C32(0xdbcadb80), SPH_C32(0xe3430000),
|
||||
SPH_C32(0x3a4e0014), SPH_C32(0xf2c60000), SPH_C32(0xaa4e0000),
|
||||
SPH_C32(0xdb1e42a6), SPH_C32(0x256bbe15), SPH_C32(0x123db156),
|
||||
SPH_C32(0x3a4e99d7) },
|
||||
{ SPH_C32(0xe3430000), SPH_C32(0x3a4e0014), SPH_C32(0xf2c60000),
|
||||
SPH_C32(0xaa4e0000), SPH_C32(0xdb1e42a6), SPH_C32(0x256bbe15),
|
||||
SPH_C32(0x123db156), SPH_C32(0x3a4e99d7), SPH_C32(0xf75a0000),
|
||||
SPH_C32(0x19840028), SPH_C32(0xa2190000), SPH_C32(0xeef80000),
|
||||
SPH_C32(0xc0722516), SPH_C32(0x19981260), SPH_C32(0x73dba1e6),
|
||||
SPH_C32(0xe1844257) },
|
||||
{ SPH_C32(0x54500000), SPH_C32(0x0671005c), SPH_C32(0x25ae0000),
|
||||
SPH_C32(0x6a1e0000), SPH_C32(0x2ea54edf), SPH_C32(0x664e8512),
|
||||
SPH_C32(0xbfba18c3), SPH_C32(0x7e715d17), SPH_C32(0xbc8d0000),
|
||||
SPH_C32(0xfc3b0018), SPH_C32(0x19830000), SPH_C32(0xd10b0000),
|
||||
SPH_C32(0xae1878c4), SPH_C32(0x42a69856), SPH_C32(0x0012da37),
|
||||
SPH_C32(0x2c3b504e) },
|
||||
{ SPH_C32(0xbc8d0000), SPH_C32(0xfc3b0018), SPH_C32(0x19830000),
|
||||
SPH_C32(0xd10b0000), SPH_C32(0xae1878c4), SPH_C32(0x42a69856),
|
||||
SPH_C32(0x0012da37), SPH_C32(0x2c3b504e), SPH_C32(0xe8dd0000),
|
||||
SPH_C32(0xfa4a0044), SPH_C32(0x3c2d0000), SPH_C32(0xbb150000),
|
||||
SPH_C32(0x80bd361b), SPH_C32(0x24e81d44), SPH_C32(0xbfa8c2f4),
|
||||
SPH_C32(0x524a0d59) },
|
||||
{ SPH_C32(0x69510000), SPH_C32(0xd4e1009c), SPH_C32(0xc3230000),
|
||||
SPH_C32(0xac2f0000), SPH_C32(0xe4950bae), SPH_C32(0xcea415dc),
|
||||
SPH_C32(0x87ec287c), SPH_C32(0xbce1a3ce), SPH_C32(0xc6730000),
|
||||
SPH_C32(0xaf8d000c), SPH_C32(0xa4c10000), SPH_C32(0x218d0000),
|
||||
SPH_C32(0x23111587), SPH_C32(0x7913512f), SPH_C32(0x1d28ac88),
|
||||
SPH_C32(0x378dd173) },
|
||||
{ SPH_C32(0xc6730000), SPH_C32(0xaf8d000c), SPH_C32(0xa4c10000),
|
||||
SPH_C32(0x218d0000), SPH_C32(0x23111587), SPH_C32(0x7913512f),
|
||||
SPH_C32(0x1d28ac88), SPH_C32(0x378dd173), SPH_C32(0xaf220000),
|
||||
SPH_C32(0x7b6c0090), SPH_C32(0x67e20000), SPH_C32(0x8da20000),
|
||||
SPH_C32(0xc7841e29), SPH_C32(0xb7b744f3), SPH_C32(0x9ac484f4),
|
||||
SPH_C32(0x8b6c72bd) },
|
||||
{ SPH_C32(0xcc140000), SPH_C32(0xa5630000), SPH_C32(0x5ab90780),
|
||||
SPH_C32(0x3b500000), SPH_C32(0x4bd013ff), SPH_C32(0x879b3418),
|
||||
SPH_C32(0x694348c1), SPH_C32(0xca5a87fe), SPH_C32(0x819e0000),
|
||||
SPH_C32(0xec570000), SPH_C32(0x66320280), SPH_C32(0x95f30000),
|
||||
SPH_C32(0x5da92802), SPH_C32(0x48f43cbc), SPH_C32(0xe65aa22d),
|
||||
SPH_C32(0x8e67b7fa) },
|
||||
{ SPH_C32(0x819e0000), SPH_C32(0xec570000), SPH_C32(0x66320280),
|
||||
SPH_C32(0x95f30000), SPH_C32(0x5da92802), SPH_C32(0x48f43cbc),
|
||||
SPH_C32(0xe65aa22d), SPH_C32(0x8e67b7fa), SPH_C32(0x4d8a0000),
|
||||
SPH_C32(0x49340000), SPH_C32(0x3c8b0500), SPH_C32(0xaea30000),
|
||||
SPH_C32(0x16793bfd), SPH_C32(0xcf6f08a4), SPH_C32(0x8f19eaec),
|
||||
SPH_C32(0x443d3004) },
|
||||
{ SPH_C32(0x78230000), SPH_C32(0x12fc0000), SPH_C32(0xa93a0b80),
|
||||
SPH_C32(0x90a50000), SPH_C32(0x713e2879), SPH_C32(0x7ee98924),
|
||||
SPH_C32(0xf08ca062), SPH_C32(0x636f8bab), SPH_C32(0x02af0000),
|
||||
SPH_C32(0xb7280000), SPH_C32(0xba1c0300), SPH_C32(0x56980000),
|
||||
SPH_C32(0xba8d45d3), SPH_C32(0x8048c667), SPH_C32(0xa95c149a),
|
||||
SPH_C32(0xf4f6ea7b) },
|
||||
{ SPH_C32(0x02af0000), SPH_C32(0xb7280000), SPH_C32(0xba1c0300),
|
||||
SPH_C32(0x56980000), SPH_C32(0xba8d45d3), SPH_C32(0x8048c667),
|
||||
SPH_C32(0xa95c149a), SPH_C32(0xf4f6ea7b), SPH_C32(0x7a8c0000),
|
||||
SPH_C32(0xa5d40000), SPH_C32(0x13260880), SPH_C32(0xc63d0000),
|
||||
SPH_C32(0xcbb36daa), SPH_C32(0xfea14f43), SPH_C32(0x59d0b4f8),
|
||||
SPH_C32(0x979961d0) },
|
||||
{ SPH_C32(0xac480000), SPH_C32(0x1ba60000), SPH_C32(0x45fb1380),
|
||||
SPH_C32(0x03430000), SPH_C32(0x5a85316a), SPH_C32(0x1fb250b6),
|
||||
SPH_C32(0xfe72c7fe), SPH_C32(0x91e478f6), SPH_C32(0x1e4e0000),
|
||||
SPH_C32(0xdecf0000), SPH_C32(0x6df80180), SPH_C32(0x77240000),
|
||||
SPH_C32(0xec47079e), SPH_C32(0xf4a0694e), SPH_C32(0xcda31812),
|
||||
SPH_C32(0x98aa496e) },
|
||||
{ SPH_C32(0x1e4e0000), SPH_C32(0xdecf0000), SPH_C32(0x6df80180),
|
||||
SPH_C32(0x77240000), SPH_C32(0xec47079e), SPH_C32(0xf4a0694e),
|
||||
SPH_C32(0xcda31812), SPH_C32(0x98aa496e), SPH_C32(0xb2060000),
|
||||
SPH_C32(0xc5690000), SPH_C32(0x28031200), SPH_C32(0x74670000),
|
||||
SPH_C32(0xb6c236f4), SPH_C32(0xeb1239f8), SPH_C32(0x33d1dfec),
|
||||
SPH_C32(0x094e3198) },
|
||||
{ SPH_C32(0xaec30000), SPH_C32(0x9c4f0001), SPH_C32(0x79d1e000),
|
||||
SPH_C32(0x2c150000), SPH_C32(0x45cc75b3), SPH_C32(0x6650b736),
|
||||
SPH_C32(0xab92f78f), SPH_C32(0xa312567b), SPH_C32(0xdb250000),
|
||||
SPH_C32(0x09290000), SPH_C32(0x49aac000), SPH_C32(0x81e10000),
|
||||
SPH_C32(0xcafe6b59), SPH_C32(0x42793431), SPH_C32(0x43566b76),
|
||||
SPH_C32(0xe86cba2e) },
|
||||
{ SPH_C32(0xdb250000), SPH_C32(0x09290000), SPH_C32(0x49aac000),
|
||||
SPH_C32(0x81e10000), SPH_C32(0xcafe6b59), SPH_C32(0x42793431),
|
||||
SPH_C32(0x43566b76), SPH_C32(0xe86cba2e), SPH_C32(0x75e60000),
|
||||
SPH_C32(0x95660001), SPH_C32(0x307b2000), SPH_C32(0xadf40000),
|
||||
SPH_C32(0x8f321eea), SPH_C32(0x24298307), SPH_C32(0xe8c49cf9),
|
||||
SPH_C32(0x4b7eec55) },
|
||||
{ SPH_C32(0x58430000), SPH_C32(0x807e0000), SPH_C32(0x78330001),
|
||||
SPH_C32(0xc66b3800), SPH_C32(0xe7375cdc), SPH_C32(0x79ad3fdd),
|
||||
SPH_C32(0xac73fe6f), SPH_C32(0x3a4479b1), SPH_C32(0x1d5a0000),
|
||||
SPH_C32(0x2b720000), SPH_C32(0x488d0000), SPH_C32(0xaf611800),
|
||||
SPH_C32(0x25cb2ec5), SPH_C32(0xc879bfd0), SPH_C32(0x81a20429),
|
||||
SPH_C32(0x1e7536a6) },
|
||||
{ SPH_C32(0x1d5a0000), SPH_C32(0x2b720000), SPH_C32(0x488d0000),
|
||||
SPH_C32(0xaf611800), SPH_C32(0x25cb2ec5), SPH_C32(0xc879bfd0),
|
||||
SPH_C32(0x81a20429), SPH_C32(0x1e7536a6), SPH_C32(0x45190000),
|
||||
SPH_C32(0xab0c0000), SPH_C32(0x30be0001), SPH_C32(0x690a2000),
|
||||
SPH_C32(0xc2fc7219), SPH_C32(0xb1d4800d), SPH_C32(0x2dd1fa46),
|
||||
SPH_C32(0x24314f17) },
|
||||
{ SPH_C32(0xa53b0000), SPH_C32(0x14260000), SPH_C32(0x4e30001e),
|
||||
SPH_C32(0x7cae0000), SPH_C32(0x8f9e0dd5), SPH_C32(0x78dfaa3d),
|
||||
SPH_C32(0xf73168d8), SPH_C32(0x0b1b4946), SPH_C32(0x07ed0000),
|
||||
SPH_C32(0xb2500000), SPH_C32(0x8774000a), SPH_C32(0x970d0000),
|
||||
SPH_C32(0x437223ae), SPH_C32(0x48c76ea4), SPH_C32(0xf4786222),
|
||||
SPH_C32(0x9075b1ce) },
|
||||
{ SPH_C32(0x07ed0000), SPH_C32(0xb2500000), SPH_C32(0x8774000a),
|
||||
SPH_C32(0x970d0000), SPH_C32(0x437223ae), SPH_C32(0x48c76ea4),
|
||||
SPH_C32(0xf4786222), SPH_C32(0x9075b1ce), SPH_C32(0xa2d60000),
|
||||
SPH_C32(0xa6760000), SPH_C32(0xc9440014), SPH_C32(0xeba30000),
|
||||
SPH_C32(0xccec2e7b), SPH_C32(0x3018c499), SPH_C32(0x03490afa),
|
||||
SPH_C32(0x9b6ef888) },
|
||||
{ SPH_C32(0x88980000), SPH_C32(0x1f940000), SPH_C32(0x7fcf002e),
|
||||
SPH_C32(0xfb4e0000), SPH_C32(0xf158079a), SPH_C32(0x61ae9167),
|
||||
SPH_C32(0xa895706c), SPH_C32(0xe6107494), SPH_C32(0x0bc20000),
|
||||
SPH_C32(0xdb630000), SPH_C32(0x7e88000c), SPH_C32(0x15860000),
|
||||
SPH_C32(0x91fd48f3), SPH_C32(0x7581bb43), SPH_C32(0xf460449e),
|
||||
SPH_C32(0xd8b61463) },
|
||||
{ SPH_C32(0x0bc20000), SPH_C32(0xdb630000), SPH_C32(0x7e88000c),
|
||||
SPH_C32(0x15860000), SPH_C32(0x91fd48f3), SPH_C32(0x7581bb43),
|
||||
SPH_C32(0xf460449e), SPH_C32(0xd8b61463), SPH_C32(0x835a0000),
|
||||
SPH_C32(0xc4f70000), SPH_C32(0x01470022), SPH_C32(0xeec80000),
|
||||
SPH_C32(0x60a54f69), SPH_C32(0x142f2a24), SPH_C32(0x5cf534f2),
|
||||
SPH_C32(0x3ea660f7) },
|
||||
{ SPH_C32(0x52500000), SPH_C32(0x29540000), SPH_C32(0x6a61004e),
|
||||
SPH_C32(0xf0ff0000), SPH_C32(0x9a317eec), SPH_C32(0x452341ce),
|
||||
SPH_C32(0xcf568fe5), SPH_C32(0x5303130f), SPH_C32(0x538d0000),
|
||||
SPH_C32(0xa9fc0000), SPH_C32(0x9ef70006), SPH_C32(0x56ff0000),
|
||||
SPH_C32(0x0ae4004e), SPH_C32(0x92c5cdf9), SPH_C32(0xa9444018),
|
||||
SPH_C32(0x7f975691) },
|
||||
{ SPH_C32(0x538d0000), SPH_C32(0xa9fc0000), SPH_C32(0x9ef70006),
|
||||
SPH_C32(0x56ff0000), SPH_C32(0x0ae4004e), SPH_C32(0x92c5cdf9),
|
||||
SPH_C32(0xa9444018), SPH_C32(0x7f975691), SPH_C32(0x01dd0000),
|
||||
SPH_C32(0x80a80000), SPH_C32(0xf4960048), SPH_C32(0xa6000000),
|
||||
SPH_C32(0x90d57ea2), SPH_C32(0xd7e68c37), SPH_C32(0x6612cffd),
|
||||
SPH_C32(0x2c94459e) },
|
||||
{ SPH_C32(0xe6280000), SPH_C32(0x4c4b0000), SPH_C32(0xa8550000),
|
||||
SPH_C32(0xd3d002e0), SPH_C32(0xd86130b8), SPH_C32(0x98a7b0da),
|
||||
SPH_C32(0x289506b4), SPH_C32(0xd75a4897), SPH_C32(0xf0c50000),
|
||||
SPH_C32(0x59230000), SPH_C32(0x45820000), SPH_C32(0xe18d00c0),
|
||||
SPH_C32(0x3b6d0631), SPH_C32(0xc2ed5699), SPH_C32(0xcbe0fe1c),
|
||||
SPH_C32(0x56a7b19f) },
|
||||
{ SPH_C32(0xf0c50000), SPH_C32(0x59230000), SPH_C32(0x45820000),
|
||||
SPH_C32(0xe18d00c0), SPH_C32(0x3b6d0631), SPH_C32(0xc2ed5699),
|
||||
SPH_C32(0xcbe0fe1c), SPH_C32(0x56a7b19f), SPH_C32(0x16ed0000),
|
||||
SPH_C32(0x15680000), SPH_C32(0xedd70000), SPH_C32(0x325d0220),
|
||||
SPH_C32(0xe30c3689), SPH_C32(0x5a4ae643), SPH_C32(0xe375f8a8),
|
||||
SPH_C32(0x81fdf908) },
|
||||
{ SPH_C32(0xb4310000), SPH_C32(0x77330000), SPH_C32(0xb15d0000),
|
||||
SPH_C32(0x7fd004e0), SPH_C32(0x78a26138), SPH_C32(0xd116c35d),
|
||||
SPH_C32(0xd256d489), SPH_C32(0x4e6f74de), SPH_C32(0xe3060000),
|
||||
SPH_C32(0xbdc10000), SPH_C32(0x87130000), SPH_C32(0xbff20060),
|
||||
SPH_C32(0x2eba0a1a), SPH_C32(0x8db53751), SPH_C32(0x73c5ab06),
|
||||
SPH_C32(0x5bd61539) },
|
||||
{ SPH_C32(0xe3060000), SPH_C32(0xbdc10000), SPH_C32(0x87130000),
|
||||
SPH_C32(0xbff20060), SPH_C32(0x2eba0a1a), SPH_C32(0x8db53751),
|
||||
SPH_C32(0x73c5ab06), SPH_C32(0x5bd61539), SPH_C32(0x57370000),
|
||||
SPH_C32(0xcaf20000), SPH_C32(0x364e0000), SPH_C32(0xc0220480),
|
||||
SPH_C32(0x56186b22), SPH_C32(0x5ca3f40c), SPH_C32(0xa1937f8f),
|
||||
SPH_C32(0x15b961e7) },
|
||||
{ SPH_C32(0x02f20000), SPH_C32(0xa2810000), SPH_C32(0x873f0000),
|
||||
SPH_C32(0xe36c7800), SPH_C32(0x1e1d74ef), SPH_C32(0x073d2bd6),
|
||||
SPH_C32(0xc4c23237), SPH_C32(0x7f32259e), SPH_C32(0xbadd0000),
|
||||
SPH_C32(0x13ad0000), SPH_C32(0xb7e70000), SPH_C32(0xf7282800),
|
||||
SPH_C32(0xdf45144d), SPH_C32(0x361ac33a), SPH_C32(0xea5a8d14),
|
||||
SPH_C32(0x2a2c18f0) },
|
||||
{ SPH_C32(0xbadd0000), SPH_C32(0x13ad0000), SPH_C32(0xb7e70000),
|
||||
SPH_C32(0xf7282800), SPH_C32(0xdf45144d), SPH_C32(0x361ac33a),
|
||||
SPH_C32(0xea5a8d14), SPH_C32(0x2a2c18f0), SPH_C32(0xb82f0000),
|
||||
SPH_C32(0xb12c0000), SPH_C32(0x30d80000), SPH_C32(0x14445000),
|
||||
SPH_C32(0xc15860a2), SPH_C32(0x3127e8ec), SPH_C32(0x2e98bf23),
|
||||
SPH_C32(0x551e3d6e) },
|
||||
{ SPH_C32(0x1e6c0000), SPH_C32(0xc4420000), SPH_C32(0x8a2e0000),
|
||||
SPH_C32(0xbcb6b800), SPH_C32(0x2c4413b6), SPH_C32(0x8bfdd3da),
|
||||
SPH_C32(0x6a0c1bc8), SPH_C32(0xb99dc2eb), SPH_C32(0x92560000),
|
||||
SPH_C32(0x1eda0000), SPH_C32(0xea510000), SPH_C32(0xe8b13000),
|
||||
SPH_C32(0xa93556a5), SPH_C32(0xebfb6199), SPH_C32(0xb15c2254),
|
||||
SPH_C32(0x33c5244f) },
|
||||
{ SPH_C32(0x92560000), SPH_C32(0x1eda0000), SPH_C32(0xea510000),
|
||||
SPH_C32(0xe8b13000), SPH_C32(0xa93556a5), SPH_C32(0xebfb6199),
|
||||
SPH_C32(0xb15c2254), SPH_C32(0x33c5244f), SPH_C32(0x8c3a0000),
|
||||
SPH_C32(0xda980000), SPH_C32(0x607f0000), SPH_C32(0x54078800),
|
||||
SPH_C32(0x85714513), SPH_C32(0x6006b243), SPH_C32(0xdb50399c),
|
||||
SPH_C32(0x8a58e6a4) },
|
||||
{ SPH_C32(0x033d0000), SPH_C32(0x08b30000), SPH_C32(0xf33a0000),
|
||||
SPH_C32(0x3ac20007), SPH_C32(0x51298a50), SPH_C32(0x6b6e661f),
|
||||
SPH_C32(0x0ea5cfe3), SPH_C32(0xe6da7ffe), SPH_C32(0xa8da0000),
|
||||
SPH_C32(0x96be0000), SPH_C32(0x5c1d0000), SPH_C32(0x07da0002),
|
||||
SPH_C32(0x7d669583), SPH_C32(0x1f98708a), SPH_C32(0xbb668808),
|
||||
SPH_C32(0xda878000) },
|
||||
{ SPH_C32(0xa8da0000), SPH_C32(0x96be0000), SPH_C32(0x5c1d0000),
|
||||
SPH_C32(0x07da0002), SPH_C32(0x7d669583), SPH_C32(0x1f98708a),
|
||||
SPH_C32(0xbb668808), SPH_C32(0xda878000), SPH_C32(0xabe70000),
|
||||
SPH_C32(0x9e0d0000), SPH_C32(0xaf270000), SPH_C32(0x3d180005),
|
||||
SPH_C32(0x2c4f1fd3), SPH_C32(0x74f61695), SPH_C32(0xb5c347eb),
|
||||
SPH_C32(0x3c5dfffe) },
|
||||
{ SPH_C32(0x01930000), SPH_C32(0xe7820000), SPH_C32(0xedfb0000),
|
||||
SPH_C32(0xcf0c000b), SPH_C32(0x8dd08d58), SPH_C32(0xbca3b42e),
|
||||
SPH_C32(0x063661e1), SPH_C32(0x536f9e7b), SPH_C32(0x92280000),
|
||||
SPH_C32(0xdc850000), SPH_C32(0x57fa0000), SPH_C32(0x56dc0003),
|
||||
SPH_C32(0xbae92316), SPH_C32(0x5aefa30c), SPH_C32(0x90cef752),
|
||||
SPH_C32(0x7b1675d7) },
|
||||
{ SPH_C32(0x92280000), SPH_C32(0xdc850000), SPH_C32(0x57fa0000),
|
||||
SPH_C32(0x56dc0003), SPH_C32(0xbae92316), SPH_C32(0x5aefa30c),
|
||||
SPH_C32(0x90cef752), SPH_C32(0x7b1675d7), SPH_C32(0x93bb0000),
|
||||
SPH_C32(0x3b070000), SPH_C32(0xba010000), SPH_C32(0x99d00008),
|
||||
SPH_C32(0x3739ae4e), SPH_C32(0xe64c1722), SPH_C32(0x96f896b3),
|
||||
SPH_C32(0x2879ebac) },
|
||||
{ SPH_C32(0x5fa80000), SPH_C32(0x56030000), SPH_C32(0x43ae0000),
|
||||
SPH_C32(0x64f30013), SPH_C32(0x257e86bf), SPH_C32(0x1311944e),
|
||||
SPH_C32(0x541e95bf), SPH_C32(0x8ea4db69), SPH_C32(0x00440000),
|
||||
SPH_C32(0x7f480000), SPH_C32(0xda7c0000), SPH_C32(0x2a230001),
|
||||
SPH_C32(0x3badc9cc), SPH_C32(0xa9b69c87), SPH_C32(0x030a9e60),
|
||||
SPH_C32(0xbe0a679e) },
|
||||
{ SPH_C32(0x00440000), SPH_C32(0x7f480000), SPH_C32(0xda7c0000),
|
||||
SPH_C32(0x2a230001), SPH_C32(0x3badc9cc), SPH_C32(0xa9b69c87),
|
||||
SPH_C32(0x030a9e60), SPH_C32(0xbe0a679e), SPH_C32(0x5fec0000),
|
||||
SPH_C32(0x294b0000), SPH_C32(0x99d20000), SPH_C32(0x4ed00012),
|
||||
SPH_C32(0x1ed34f73), SPH_C32(0xbaa708c9), SPH_C32(0x57140bdf),
|
||||
SPH_C32(0x30aebcf7) },
|
||||
{ SPH_C32(0xee930000), SPH_C32(0xd6070000), SPH_C32(0x92c10000),
|
||||
SPH_C32(0x2b9801e0), SPH_C32(0x9451287c), SPH_C32(0x3b6cfb57),
|
||||
SPH_C32(0x45312374), SPH_C32(0x201f6a64), SPH_C32(0x7b280000),
|
||||
SPH_C32(0x57420000), SPH_C32(0xa9e50000), SPH_C32(0x634300a0),
|
||||
SPH_C32(0x9edb442f), SPH_C32(0x6d9995bb), SPH_C32(0x27f83b03),
|
||||
SPH_C32(0xc7ff60f0) },
|
||||
{ SPH_C32(0x7b280000), SPH_C32(0x57420000), SPH_C32(0xa9e50000),
|
||||
SPH_C32(0x634300a0), SPH_C32(0x9edb442f), SPH_C32(0x6d9995bb),
|
||||
SPH_C32(0x27f83b03), SPH_C32(0xc7ff60f0), SPH_C32(0x95bb0000),
|
||||
SPH_C32(0x81450000), SPH_C32(0x3b240000), SPH_C32(0x48db0140),
|
||||
SPH_C32(0x0a8a6c53), SPH_C32(0x56f56eec), SPH_C32(0x62c91877),
|
||||
SPH_C32(0xe7e00a94) }
|
||||
};
|
||||
|
||||
#define INPUT_BIG \
|
||||
do { \
|
||||
__m256i db = *buf; \
|
||||
const sph_u32 *tp = &T512[0][0]; \
|
||||
m0 = m256_zero; \
|
||||
m1 = m256_zero; \
|
||||
m2 = m256_zero; \
|
||||
m3 = m256_zero; \
|
||||
m4 = m256_zero; \
|
||||
m5 = m256_zero; \
|
||||
m6 = m256_zero; \
|
||||
m7 = m256_zero; \
|
||||
for ( int u = 0; u < 64; u++ ) \
|
||||
{ \
|
||||
__m256i dm = _mm256_and_si256( db, m256_one_64 ) ; \
|
||||
dm = mm256_negate_32( _mm256_or_si256( dm, \
|
||||
_mm256_slli_epi64( dm, 32 ) ) ); \
|
||||
m0 = _mm256_xor_si256( m0, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0x1], tp[0x0], tp[0x1], tp[0x0], \
|
||||
tp[0x1], tp[0x0], tp[0x1], tp[0x0] ) ) ); \
|
||||
m1 = _mm256_xor_si256( m1, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0x3], tp[0x2], tp[0x3], tp[0x2], \
|
||||
tp[0x3], tp[0x2], tp[0x3], tp[0x2] ) ) ); \
|
||||
m2 = _mm256_xor_si256( m2, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0x5], tp[0x4], tp[0x5], tp[0x4], \
|
||||
tp[0x5], tp[0x4], tp[0x5], tp[0x4] ) ) ); \
|
||||
m3 = _mm256_xor_si256( m3, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0x7], tp[0x6], tp[0x7], tp[0x6], \
|
||||
tp[0x7], tp[0x6], tp[0x7], tp[0x6] ) ) ); \
|
||||
m4 = _mm256_xor_si256( m4, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0x9], tp[0x8], tp[0x9], tp[0x8], \
|
||||
tp[0x9], tp[0x8], tp[0x9], tp[0x8] ) ) ); \
|
||||
m5 = _mm256_xor_si256( m5, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0xB], tp[0xA], tp[0xB], tp[0xA], \
|
||||
tp[0xB], tp[0xA], tp[0xB], tp[0xA] ) ) ); \
|
||||
m6 = _mm256_xor_si256( m6, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0xD], tp[0xC], tp[0xD], tp[0xC], \
|
||||
tp[0xD], tp[0xC], tp[0xD], tp[0xC] ) ) ); \
|
||||
m7 = _mm256_xor_si256( m7, _mm256_and_si256( dm, \
|
||||
_mm256_set_epi32( tp[0xF], tp[0xE], tp[0xF], tp[0xE], \
|
||||
tp[0xF], tp[0xE], tp[0xF], tp[0xE] ) ) ); \
|
||||
tp += 0x10; \
|
||||
db = _mm256_srli_epi64( db, 1 ); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define SBOX( a, b, c, d ) \
|
||||
do { \
|
||||
__m256i t; \
|
||||
t = a; \
|
||||
a = _mm256_and_si256( a, c ); \
|
||||
a = _mm256_xor_si256( a, d ); \
|
||||
c = _mm256_xor_si256( c, b ); \
|
||||
c = _mm256_xor_si256( c, a ); \
|
||||
d = _mm256_or_si256( d, t ); \
|
||||
d = _mm256_xor_si256( d, b ); \
|
||||
t = _mm256_xor_si256( t, c ); \
|
||||
b = d; \
|
||||
d = _mm256_or_si256( d, t ); \
|
||||
d = _mm256_xor_si256( d, a ); \
|
||||
a = _mm256_and_si256( a, b ); \
|
||||
t = _mm256_xor_si256( t, a ); \
|
||||
b = _mm256_xor_si256( b, d ); \
|
||||
b = _mm256_xor_si256( b, t ); \
|
||||
a = c; \
|
||||
c = b; \
|
||||
b = d; \
|
||||
d = mm256_not( t ); \
|
||||
} while (0)
|
||||
|
||||
#define L( a, b, c, d ) \
|
||||
do { \
|
||||
a = mm256_rol_32( a, 13 ); \
|
||||
c = mm256_rol_32( c, 3 ); \
|
||||
b = _mm256_xor_si256( b, _mm256_xor_si256( a, c ) ); \
|
||||
d = _mm256_xor_si256( d, _mm256_xor_si256( c, \
|
||||
_mm256_slli_epi32( a, 3 ) ) ); \
|
||||
b = mm256_rol_32( b, 1 ); \
|
||||
d = mm256_rol_32( d, 7 ); \
|
||||
a = _mm256_xor_si256( a, _mm256_xor_si256( b, d ) ); \
|
||||
c = _mm256_xor_si256( c, _mm256_xor_si256( d, \
|
||||
_mm256_slli_epi32( b, 7 ) ) ); \
|
||||
a = mm256_rol_32( a, 5 ); \
|
||||
c = mm256_rol_32( c, 22 ); \
|
||||
} while (0)
|
||||
|
||||
#define DECL_STATE_BIG \
|
||||
__m256i c0, c1, c2, c3, c4, c5, c6, c7; \
|
||||
|
||||
#define READ_STATE_BIG(sc) \
|
||||
do { \
|
||||
c0 = sc->h[0x0]; \
|
||||
c1 = sc->h[0x1]; \
|
||||
c2 = sc->h[0x2]; \
|
||||
c3 = sc->h[0x3]; \
|
||||
c4 = sc->h[0x4]; \
|
||||
c5 = sc->h[0x5]; \
|
||||
c6 = sc->h[0x6]; \
|
||||
c7 = sc->h[0x7]; \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_STATE_BIG(sc) \
|
||||
do { \
|
||||
sc->h[0x0] = c0; \
|
||||
sc->h[0x1] = c1; \
|
||||
sc->h[0x2] = c2; \
|
||||
sc->h[0x3] = c3; \
|
||||
sc->h[0x4] = c4; \
|
||||
sc->h[0x5] = c5; \
|
||||
sc->h[0x6] = c6; \
|
||||
sc->h[0x7] = c7; \
|
||||
} while (0)
|
||||
|
||||
#define s0 m0
|
||||
#define s1 c0
|
||||
#define s2 m1
|
||||
#define s3 c1
|
||||
#define s4 c2
|
||||
#define s5 m2
|
||||
#define s6 c3
|
||||
#define s7 m3
|
||||
#define s8 m4
|
||||
#define s9 c4
|
||||
#define sA m5
|
||||
#define sB c5
|
||||
#define sC c6
|
||||
#define sD m6
|
||||
#define sE c7
|
||||
#define sF m7
|
||||
|
||||
#define ROUND_BIG(rc, alpha) \
|
||||
do { \
|
||||
__m256i t0, t1, t2, t3; \
|
||||
s0 = _mm256_xor_si256( s0, _mm256_set_epi32( \
|
||||
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00], \
|
||||
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00] ) ); \
|
||||
s1 = _mm256_xor_si256( s1, _mm256_set_epi32( \
|
||||
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02], \
|
||||
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02] ) ); \
|
||||
s2 = _mm256_xor_si256( s2, _mm256_set_epi32( \
|
||||
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04], \
|
||||
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04] ) ); \
|
||||
s3 = _mm256_xor_si256( s3, _mm256_set_epi32( \
|
||||
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06], \
|
||||
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06] ) ); \
|
||||
s4 = _mm256_xor_si256( s4, _mm256_set_epi32( \
|
||||
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08], \
|
||||
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08] ) ); \
|
||||
s5 = _mm256_xor_si256( s5, _mm256_set_epi32( \
|
||||
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A], \
|
||||
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A] ) ); \
|
||||
s6 = _mm256_xor_si256( s6, _mm256_set_epi32( \
|
||||
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C], \
|
||||
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C] ) ); \
|
||||
s7 = _mm256_xor_si256( s7, _mm256_set_epi32( \
|
||||
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E], \
|
||||
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E] ) ); \
|
||||
s8 = _mm256_xor_si256( s8, _mm256_set_epi32( \
|
||||
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10], \
|
||||
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10] ) ); \
|
||||
s9 = _mm256_xor_si256( s9, _mm256_set_epi32( \
|
||||
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12], \
|
||||
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12] ) ); \
|
||||
sA = _mm256_xor_si256( sA, _mm256_set_epi32( \
|
||||
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14], \
|
||||
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14] ) ); \
|
||||
sB = _mm256_xor_si256( sB, _mm256_set_epi32( \
|
||||
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16], \
|
||||
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16] ) ); \
|
||||
sC = _mm256_xor_si256( sC, _mm256_set_epi32( \
|
||||
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18], \
|
||||
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18] ) ); \
|
||||
sD = _mm256_xor_si256( sD, _mm256_set_epi32( \
|
||||
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A], \
|
||||
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A] ) ); \
|
||||
sE = _mm256_xor_si256( sE, _mm256_set_epi32( \
|
||||
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C], \
|
||||
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C] ) ); \
|
||||
sF = _mm256_xor_si256( sF, _mm256_set_epi32( \
|
||||
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E], \
|
||||
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E] ) ); \
|
||||
\
|
||||
SBOX( s0, s4, s8, sC ); \
|
||||
SBOX( s1, s5, s9, sD ); \
|
||||
SBOX( s2, s6, sA, sE ); \
|
||||
SBOX( s3, s7, sB, sF ); \
|
||||
\
|
||||
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s4, 4 ), \
|
||||
_mm256_bslli_epi128( s5, 4 ), 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sD, 4 ), \
|
||||
_mm256_bslli_epi128( sE, 4 ), 0xAA ); \
|
||||
L( s0, t1, s9, t3 ); \
|
||||
s4 = _mm256_blend_epi32( s4, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
|
||||
s5 = _mm256_blend_epi32( s5, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
|
||||
sD = _mm256_blend_epi32( sD, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
|
||||
sE = _mm256_blend_epi32( sE, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
|
||||
\
|
||||
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s5, 4 ), \
|
||||
_mm256_bslli_epi128( s6, 4 ), 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sE, 4 ), \
|
||||
_mm256_bslli_epi128( sF, 4 ), 0xAA ); \
|
||||
L( s1, t1, sA, t3 ); \
|
||||
s5 = _mm256_blend_epi32( s5, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
|
||||
s6 = _mm256_blend_epi32( s6, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
|
||||
sE = _mm256_blend_epi32( sE, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
|
||||
sF = _mm256_blend_epi32( sF, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
|
||||
\
|
||||
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s6, 4 ), \
|
||||
_mm256_bslli_epi128( s7, 4 ), 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sF, 4 ), \
|
||||
_mm256_bslli_epi128( sC, 4 ), 0xAA ); \
|
||||
L( s2, t1, sB, t3 ); \
|
||||
s6 = _mm256_blend_epi32( s6, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
|
||||
s7 = _mm256_blend_epi32( s7, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
|
||||
sF = _mm256_blend_epi32( sF, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
|
||||
sC = _mm256_blend_epi32( sC, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
|
||||
\
|
||||
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s7, 4 ), \
|
||||
_mm256_bslli_epi128( s4, 4 ), 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sC, 4 ), \
|
||||
_mm256_bslli_epi128( sD, 4 ), 0xAA ); \
|
||||
L( s3, t1, s8, t3 ); \
|
||||
s7 = _mm256_blend_epi32( s7, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
|
||||
s4 = _mm256_blend_epi32( s4, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
|
||||
sC = _mm256_blend_epi32( sC, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
|
||||
sD = _mm256_blend_epi32( sD, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
|
||||
\
|
||||
t0 = _mm256_blend_epi32( s0, _mm256_bslli_epi128( s8, 4 ), 0xAA ); \
|
||||
t1 = _mm256_blend_epi32( s1, s9, 0xAA ); \
|
||||
t2 = _mm256_blend_epi32( _mm256_bsrli_epi128( s2, 4 ), sA, 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( s3, 4 ), \
|
||||
_mm256_bslli_epi128( sB, 4 ), 0xAA ); \
|
||||
L( t0, t1, t2, t3 ); \
|
||||
s0 = _mm256_blend_epi32( s0, t0, 0x55 ); \
|
||||
s8 = _mm256_blend_epi32( s8, _mm256_bsrli_epi128( t0, 4 ), 0x55 ); \
|
||||
s1 = _mm256_blend_epi32( s1, t1, 0x55 ); \
|
||||
s9 = _mm256_blend_epi32( s9, t1, 0xAA ); \
|
||||
s2 = _mm256_blend_epi32( s2, _mm256_bslli_epi128( t2, 4 ), 0xAA ); \
|
||||
sA = _mm256_blend_epi32( sA, t2, 0xAA ); \
|
||||
s3 = _mm256_blend_epi32( s3, _mm256_bslli_epi128( t3, 4 ), 0xAA ); \
|
||||
sB = _mm256_blend_epi32( sB, _mm256_bsrli_epi128( t3, 4 ), 0x55 ); \
|
||||
\
|
||||
t0 = _mm256_blend_epi32( _mm256_bsrli_epi128( s4, 4 ), sC, 0xAA ); \
|
||||
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s5, 4 ), \
|
||||
_mm256_bslli_epi128( sD, 4 ), 0xAA ); \
|
||||
t2 = _mm256_blend_epi32( s6, _mm256_bslli_epi128( sE, 4 ), 0xAA ); \
|
||||
t3 = _mm256_blend_epi32( s7, sF, 0xAA ); \
|
||||
L( t0, t1, t2, t3 ); \
|
||||
s4 = _mm256_blend_epi32( s4, _mm256_bslli_epi128( t0, 4 ), 0xAA ); \
|
||||
sC = _mm256_blend_epi32( sC, t0, 0xAA ); \
|
||||
s5 = _mm256_blend_epi32( s5, _mm256_bslli_epi128( t1, 4 ), 0xAA ); \
|
||||
sD = _mm256_blend_epi32( sD, _mm256_bsrli_epi128( t1, 4 ), 0x55 ); \
|
||||
s6 = _mm256_blend_epi32( s6, t2, 0x55 ); \
|
||||
sE = _mm256_blend_epi32( sE, _mm256_bsrli_epi128( t2, 4 ), 0x55 ); \
|
||||
s7 = _mm256_blend_epi32( s7, t3, 0x55 ); \
|
||||
sF = _mm256_blend_epi32( sF, t3, 0xAA ); \
|
||||
} while (0)
|
||||
|
||||
#define P_BIG \
|
||||
do { \
|
||||
ROUND_BIG(0, alpha_n); \
|
||||
ROUND_BIG(1, alpha_n); \
|
||||
ROUND_BIG(2, alpha_n); \
|
||||
ROUND_BIG(3, alpha_n); \
|
||||
ROUND_BIG(4, alpha_n); \
|
||||
ROUND_BIG(5, alpha_n); \
|
||||
} while (0)
|
||||
|
||||
#define PF_BIG \
|
||||
do { \
|
||||
ROUND_BIG( 0, alpha_f); \
|
||||
ROUND_BIG( 1, alpha_f); \
|
||||
ROUND_BIG( 2, alpha_f); \
|
||||
ROUND_BIG( 3, alpha_f); \
|
||||
ROUND_BIG( 4, alpha_f); \
|
||||
ROUND_BIG( 5, alpha_f); \
|
||||
ROUND_BIG( 6, alpha_f); \
|
||||
ROUND_BIG( 7, alpha_f); \
|
||||
ROUND_BIG( 8, alpha_f); \
|
||||
ROUND_BIG( 9, alpha_f); \
|
||||
ROUND_BIG(10, alpha_f); \
|
||||
ROUND_BIG(11, alpha_f); \
|
||||
} while (0)
|
||||
|
||||
#define T_BIG \
|
||||
do { /* order is important */ \
|
||||
c7 = sc->h[ 0x7 ] = _mm256_xor_si256( sc->h[ 0x7 ], sB ); \
|
||||
c6 = sc->h[ 0x6 ] = _mm256_xor_si256( sc->h[ 0x6 ], sA ); \
|
||||
c5 = sc->h[ 0x5 ] = _mm256_xor_si256( sc->h[ 0x5 ], s9 ); \
|
||||
c4 = sc->h[ 0x4 ] = _mm256_xor_si256( sc->h[ 0x4 ], s8 ); \
|
||||
c3 = sc->h[ 0x3 ] = _mm256_xor_si256( sc->h[ 0x3 ], s3 ); \
|
||||
c2 = sc->h[ 0x2 ] = _mm256_xor_si256( sc->h[ 0x2 ], s2 ); \
|
||||
c1 = sc->h[ 0x1 ] = _mm256_xor_si256( sc->h[ 0x1 ], s1 ); \
|
||||
c0 = sc->h[ 0x0 ] = _mm256_xor_si256( sc->h[ 0x0 ], s0 ); \
|
||||
} while (0)
|
||||
|
||||
void hamsi_big( hamsi_4way_big_context *sc, __m256i *buf, size_t num )
|
||||
{
|
||||
DECL_STATE_BIG
|
||||
sph_u32 tmp;
|
||||
|
||||
tmp = SPH_T32( (sph_u32)num << 6 );
|
||||
sc->count_low = SPH_T32( sc->count_low + tmp );
|
||||
sc->count_high += (sph_u32)( (num >> 13) >> 13 );
|
||||
if ( sc->count_low < tmp )
|
||||
sc->count_high++;
|
||||
|
||||
READ_STATE_BIG( sc );
|
||||
while ( num-- > 0 )
|
||||
{
|
||||
__m256i m0, m1, m2, m3, m4, m5, m6, m7;
|
||||
|
||||
INPUT_BIG;
|
||||
P_BIG;
|
||||
T_BIG;
|
||||
buf++;
|
||||
}
|
||||
WRITE_STATE_BIG( sc );
|
||||
}
|
||||
|
||||
void hamsi_big_final( hamsi_4way_big_context *sc, __m256i *buf )
|
||||
{
|
||||
__m256i m0, m1, m2, m3, m4, m5, m6, m7;
|
||||
DECL_STATE_BIG
|
||||
READ_STATE_BIG( sc );
|
||||
INPUT_BIG;
|
||||
PF_BIG;
|
||||
T_BIG;
|
||||
WRITE_STATE_BIG( sc );
|
||||
}
|
||||
|
||||
void hamsi512_4way_init( hamsi_4way_big_context *sc )
|
||||
{
|
||||
sc->partial_len = 0;
|
||||
sph_u32 lo, hi;
|
||||
sc->count_high = sc->count_low = 0;
|
||||
for ( int i = 0; i < 8; i++ )
|
||||
{
|
||||
lo = 2*i;
|
||||
hi = 2*i + 1;
|
||||
sc->h[i] = _mm256_set_epi32( IV512[hi], IV512[lo], IV512[hi], IV512[lo],
|
||||
IV512[hi], IV512[lo], IV512[hi], IV512[lo] );
|
||||
}
|
||||
}
|
||||
|
||||
void hamsi512_4way( hamsi_4way_big_context *sc, const void *data, size_t len )
|
||||
{
|
||||
__m256i *vdata = (__m256i*)data;
|
||||
|
||||
// It looks like the only way to get in here is if core was previously called
|
||||
// with a very small len
|
||||
// That's not likely even with 80 byte input so deprecate partial len
|
||||
/*
|
||||
if ( sc->partial_len != 0 )
|
||||
{
|
||||
size_t mlen;
|
||||
|
||||
mlen = 8 - sc->partial_len;
|
||||
if ( len < mlen )
|
||||
{
|
||||
memcpy_256( sc->partial + (sc->partial_len >> 3), data, len>>3 );
|
||||
sc->partial_len += len;
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy_256( sc->partial + (sc->partial_len >> 3), data, mlen>>3 );
|
||||
len -= mlen;
|
||||
vdata += mlen>>3;
|
||||
hamsi_big( sc, sc->partial, 1 );
|
||||
sc->partial_len = 0;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
hamsi_big( sc, vdata, len>>3 );
|
||||
vdata += ( (len& ~(size_t)7) >> 3 );
|
||||
len &= (size_t)7;
|
||||
memcpy_256( sc->buf, vdata, len>>3 );
|
||||
sc->partial_len = len;
|
||||
}
|
||||
|
||||
void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
|
||||
{
|
||||
__m256i *out = (__m256i*)dst;
|
||||
__m256i pad[1];
|
||||
size_t u;
|
||||
int ch, cl;
|
||||
|
||||
sph_enc32be( &ch, sc->count_high );
|
||||
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
|
||||
pad[0] = _mm256_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch );
|
||||
sc->buf[0] = _mm256_set_epi32( 0UL, 0x80UL, 0UL, 0x80UL,
|
||||
0UL, 0x80UL, 0UL, 0x80UL );
|
||||
hamsi_big( sc, sc->buf, 1 );
|
||||
hamsi_big_final( sc, pad );
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
out[u] = mm256_bswap_32( sc->h[u] );
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
72
algo/hamsi/hamsi-hash-4way.h
Normal file
72
algo/hamsi/hamsi-hash-4way.h
Normal file
@@ -0,0 +1,72 @@
|
||||
/* $Id: sph_hamsi.h 216 2010-06-08 09:46:57Z tp $ */
|
||||
/**
|
||||
* Hamsi interface. This code implements Hamsi with the recommended
|
||||
* parameters for SHA-3, with outputs of 224, 256, 384 and 512 bits.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @file sph_hamsi.h
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#ifndef HAMSI_4WAY_H__
|
||||
#define HAMSI_4WAY_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
#include "avxdefs.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
#endif
|
||||
|
||||
#define SPH_SIZE_hamsi512 512
|
||||
|
||||
// Partial is only scalar but needs pointer ref for hamsi-helper
|
||||
// deprecate partial_len
|
||||
typedef struct {
|
||||
__m256i h[8];
|
||||
__m256i buf[1];
|
||||
size_t partial_len;
|
||||
sph_u32 count_high, count_low;
|
||||
} hamsi_4way_big_context;
|
||||
|
||||
typedef hamsi_4way_big_context hamsi512_4way_context;
|
||||
|
||||
void hamsi512_4way_init( hamsi512_4way_context *sc );
|
||||
void hamsi512_4way( hamsi512_4way_context *sc, const void *data, size_t len );
|
||||
void hamsi512_4way_close( hamsi512_4way_context *sc, void *dst );
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
115
algo/haval/haval-4way-helper.c
Normal file
115
algo/haval/haval-4way-helper.c
Normal file
@@ -0,0 +1,115 @@
|
||||
/* $Id: haval_helper.c 218 2010-06-08 17:06:34Z tp $ */
|
||||
/*
|
||||
* Helper code, included (three times !) by HAVAL implementation.
|
||||
*
|
||||
* TODO: try to merge this with md_helper.c.
|
||||
*
|
||||
* ==========================(LICENSE BEGIN)============================
|
||||
*
|
||||
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
* ===========================(LICENSE END)=============================
|
||||
*
|
||||
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
||||
*/
|
||||
|
||||
#undef SPH_XCAT
|
||||
#define SPH_XCAT(a, b) SPH_XCAT_(a, b)
|
||||
#undef SPH_XCAT_
|
||||
#define SPH_XCAT_(a, b) a ## b
|
||||
|
||||
static void
|
||||
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way)
|
||||
( haval_4way_context *sc, const void *data, size_t len )
|
||||
{
|
||||
__m128i *vdata = (__m128i*)data;
|
||||
unsigned current;
|
||||
|
||||
current = (unsigned)sc->count_low & 127U;
|
||||
while ( len > 0 )
|
||||
{
|
||||
unsigned clen;
|
||||
sph_u32 clow, clow2;
|
||||
|
||||
clen = 128U - current;
|
||||
if ( clen > len )
|
||||
clen = len;
|
||||
memcpy_128( sc->buf + (current>>2), vdata, clen>>2 );
|
||||
vdata += clen>>2;
|
||||
current += clen;
|
||||
len -= clen;
|
||||
if ( current == 128U )
|
||||
{
|
||||
DSTATE;
|
||||
IN_PREPARE(sc->buf);
|
||||
RSTATE;
|
||||
SPH_XCAT(CORE, PASSES)(INW);
|
||||
WSTATE;
|
||||
current = 0;
|
||||
}
|
||||
clow = sc->count_low;
|
||||
clow2 = SPH_T32(clow + clen);
|
||||
sc->count_low = clow2;
|
||||
if ( clow2 < clow )
|
||||
sc->count_high ++;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way_close)( haval_4way_context *sc,
|
||||
void *dst)
|
||||
{
|
||||
unsigned current;
|
||||
DSTATE;
|
||||
|
||||
current = (unsigned)sc->count_low & 127UL;
|
||||
|
||||
sc->buf[ current>>2 ] = m128_one_32;
|
||||
current += 4;
|
||||
RSTATE;
|
||||
if ( current > 116UL )
|
||||
{
|
||||
memset_zero_128( sc->buf + ( current>>2 ), (128UL-current) >> 2 );
|
||||
do
|
||||
{
|
||||
IN_PREPARE(sc->buf);
|
||||
SPH_XCAT(CORE, PASSES)(INW);
|
||||
} while (0);
|
||||
current = 0;
|
||||
}
|
||||
|
||||
uint32_t t1, t2;
|
||||
memset_zero_128( sc->buf + ( current>>2 ), (116UL-current) >> 2 );
|
||||
t1 = 0x01 | (PASSES << 3);
|
||||
t2 = sc->olen << 3;
|
||||
sc->buf[ 116>>2 ] = _mm_set1_epi32( ( t1 << 16 ) | ( t2 << 24 ) );
|
||||
sc->buf[ 120>>2 ] = _mm_set1_epi32( sc->count_low << 3 );
|
||||
sc->buf[ 124>>2 ] = _mm_set1_epi32( (sc->count_high << 3)
|
||||
| (sc->count_low >> 29) );
|
||||
do
|
||||
{
|
||||
IN_PREPARE(sc->buf);
|
||||
SPH_XCAT(CORE, PASSES)(INW);
|
||||
} while (0);
|
||||
WSTATE;
|
||||
haval_4way_out( sc, dst );
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user