Compare commits

...

9 Commits

Author SHA1 Message Date
Jay D Dee
e4265a6f11 v3.8.1.1 2018-02-09 23:30:14 -05:00
Jay D Dee
a28daca3ce v3.8.1 2018-02-07 16:38:45 -05:00
Jay D Dee
54b8fd7362 v3.8.0.1 2018-02-05 22:10:18 -05:00
Jay D Dee
ad2275f74a v3.8.0 2018-01-23 21:02:16 -05:00
Jay D Dee
a90d75b8f5 v3.7.10 2018-01-16 15:11:44 -05:00
Jay D Dee
bee78eac76 v3.7.9 2018-01-08 22:04:43 -05:00
Jay D Dee
2d2e54f001 v3.7.8 2017-12-30 19:19:46 -05:00
Jay D Dee
79164c24b5 v3.7.7 2017-12-17 12:00:42 -05:00
Jay D Dee
7a1389998b v3.7.6 2017-12-14 18:28:51 -05:00
213 changed files with 18952 additions and 4883 deletions

View File

@@ -22,7 +22,6 @@ cpuminer_SOURCES = \
api.c \
sysinfos.c \
algo-gate-api.c\
crypto/blake2s.c \
crypto/oaes_lib.c \
crypto/c_keccak.c \
crypto/c_groestl.c \
@@ -38,7 +37,6 @@ cpuminer_SOURCES = \
algo/argon2/ar2/cores.c \
algo/argon2/ar2/ar2-scrypt-jane.c \
algo/argon2/ar2/blake2b.c \
algo/axiom.c \
algo/blake/sph_blake.c \
algo/blake/blake-hash-4way.c \
algo/blake/blake-gate.c \
@@ -46,9 +44,12 @@ cpuminer_SOURCES = \
algo/blake/blake-4way.c \
algo/blake/sph_blake2b.c \
algo/blake/blake2b.c \
algo/blake/sph-blake2s.c \
algo/blake/blake2s.c \
algo/blake/blakecoin-gate.c \
algo/blake/mod_blakecoin.c \
algo/blake/blakecoin.c \
algo/blake/blakecoin-4way.c \
algo/blake/decred-gate.c \
algo/blake/decred.c \
algo/blake/decred-4way.c \
@@ -56,6 +57,7 @@ cpuminer_SOURCES = \
algo/blake/pentablake-4way.c \
algo/blake/pentablake.c \
algo/bmw/sph_bmw.c \
algo/bmw/bmw-hash-4way.c \
algo/bmw/bmw256.c \
algo/cryptonight/cryptolight.c \
algo/cryptonight/cryptonight-common.c\
@@ -63,10 +65,8 @@ cpuminer_SOURCES = \
algo/cryptonight/cryptonight.c\
algo/cubehash/sph_cubehash.c \
algo/cubehash/sse2/cubehash_sse2.c\
algo/drop.c \
algo/echo/sph_echo.c \
algo/echo/aes_ni/hash.c\
algo/fresh.c \
algo/gost/sph_gost.c \
algo/groestl/sph_groestl.c \
algo/groestl/groestl.c \
@@ -75,11 +75,12 @@ cpuminer_SOURCES = \
algo/groestl/aes_ni/hash-groestl256.c \
algo/fugue/sph_fugue.c \
algo/hamsi/sph_hamsi.c \
algo/haval/haval.c\
algo/hamsi/hamsi-hash-4way.c \
algo/haval/haval.c \
algo/haval/haval-hash-4way.c \
algo/heavy/sph_hefty1.c \
algo/heavy/heavy.c \
algo/heavy/bastion.c \
algo/hmq1725.c \
algo/hodl/aes.c \
algo/hodl/hodl-gate.c \
algo/hodl/hodl-wolf.c \
@@ -99,78 +100,135 @@ cpuminer_SOURCES = \
algo/lbry.c \
algo/luffa/sph_luffa.c \
algo/luffa/luffa.c \
algo/luffa/sse2/luffa_for_sse2.c \
algo/luffa/luffa_for_sse2.c \
algo/luffa/luffa-hash-2way.c \
algo/lyra2/lyra2.c \
algo/lyra2/sponge.c \
algo/lyra2/lyra2rev2-gate.c \
algo/lyra2/lyra2rev2.c \
algo/lyra2/lyra2rev2-4way.c \
algo/lyra2/lyra2re.c \
algo/lyra2/lyra2z-gate.c \
algo/lyra2/lyra2z.c \
algo/lyra2/lyra2z-4way.c \
algo/lyra2/lyra2z330.c \
algo/lyra2/lyra2h-gate.c \
algo/lyra2/lyra2h.c \
algo/lyra2/lyra2h-4way.c \
algo/m7m.c \
algo/neoscrypt.c \
algo/neoscrypt/neoscrypt.c \
algo/nist5/nist5-gate.c \
algo/nist5/nist5-4way.c \
algo/nist5/nist5.c \
algo/nist5/zr5.c \
algo/pluck.c \
algo/polytimos/polytimos-gate.c \
algo/polytimos/polytimos.c \
algo/quark/quark-gate.c \
algo/quark/quark.c \
algo/quark/quark-4way.c \
algo/quark/anime-gate.c \
algo/quark/anime.c \
algo/quark/anime-4way.c \
algo/qubit/qubit-gate.c \
algo/qubit/qubit.c \
algo/qubit/qubit-2way.c \
algo/qubit/deep-gate.c \
algo/qubit/deep-2way.c \
algo/qubit/deep.c \
algo/ripemd/sph_ripemd.c \
algo/scrypt.c \
algo/scryptjane/scrypt-jane.c \
algo/sha/sph_sha2.c \
algo/sha/sph_sha2big.c \
algo/sha/sha2-hash-4way.c \
algo/sha/sha2.c \
algo/sha/sha256t.c \
algo/shabal/sph_shabal.c \
algo/shabal/shabal-hash-4way.c \
algo/shavite/sph_shavite.c \
algo/shavite/sph-shavite-aesni.c \
algo/shavite/shavite.c \
algo/simd/sph_simd.c \
algo/simd/sse2/nist.c \
algo/simd/sse2/vector.c \
algo/simd/nist.c \
algo/simd/vector.c \
algo/simd/simd-hash-2way.c \
algo/skein/sph_skein.c \
algo/skein/skein-hash-4way.c \
algo/skein/skein.c \
algo/skein/skein-4way.c \
algo/skein/skein-gate.c \
algo/skein/skein-gate.c \
algo/skein/skein2.c \
algo/skein/skein2-4way.c \
algo/skein/skein2-gate.c \
algo/skunk.c \
algo/sm3/sm3.c \
algo/sm3/sm3-hash-4way.c \
algo/tiger/sph_tiger.c \
algo/timetravel.c \
algo/timetravel10.c \
algo/tribus/tribus-gate.c \
algo/tribus/tribus.c \
algo/tribus/tribus-4way.c \
algo/veltor.c \
algo/whirlpool/sph_whirlpool.c \
algo/whirlpool/whirlpool-hash-4way.c \
algo/whirlpool/whirlpool-gate.c \
algo/whirlpool/whirlpool-4way.c \
algo/whirlpool/whirlpool.c \
algo/whirlpool/whirlpoolx.c \
algo/x11/phi1612.c \
algo/x11/x11-gate.c \
algo/x11/x11.c \
algo/x11/x11evo.c \
algo/x11/x11-4way.c \
algo/x11/x11gost-gate.c \
algo/x11/x11gost.c \
algo/x11/x11gost-4way.c \
algo/x11/c11-gate.c \
algo/x11/c11.c \
algo/x11/c11-4way.c \
algo/x11/tribus-gate.c \
algo/x11/tribus.c \
algo/x11/tribus-4way.c \
algo/x11/timetravel-gate.c \
algo/x11/timetravel.c \
algo/x11/timetravel-4way.c \
algo/x11/timetravel10-gate.c \
algo/x11/timetravel10.c \
algo/x11/timetravel10-4way.c \
algo/x11/fresh.c \
algo/x11/x11evo.c \
algo/x11/x11evo-4way.c \
algo/x11/x11evo-gate.c \
algo/x13/x13-gate.c \
algo/x13/x13.c \
algo/x13/x13-4way.c \
algo/x13/x13sm3-gate.c \
algo/x13/x13sm3.c \
algo/x13/x13sm3-4way.c \
algo/x13/phi1612-gate.c \
algo/x13/phi1612.c \
algo/x13/phi1612-4way.c \
algo/x13/skunk-gate.c \
algo/x13/skunk-4way.c \
algo/x13/skunk.c \
algo/x13/drop.c \
algo/x14/x14-gate.c \
algo/x14/x14.c \
algo/x14/x14-4way.c \
algo/x14/veltor-gate.c \
algo/x14/veltor.c \
algo/x14/veltor-4way.c \
algo/x14/polytimos-gate.c \
algo/x14/polytimos.c \
algo/x14/polytimos-4way.c \
algo/x14/axiom.c \
algo/x15/x15-gate.c \
algo/x15/x15.c \
algo/x15/x15-4way.c \
algo/x17/x17-gate.c \
algo/x17/x17.c \
algo/xevan.c \
algo/x17/x17-4way.c \
algo/x17/xevan-gate.c \
algo/x17/xevan.c \
algo/x17/xevan-4way.c \
algo/x17/x16r-gate.c \
algo/x17/x16r.c \
algo/x17/x16r-4way.c \
algo/x17/hmq1725.c \
algo/yescrypt/yescrypt.c \
algo/yescrypt/sha256_Y.c\
algo/yescrypt/yescrypt-simd.c\
algo/zr5.c
algo/yescrypt/sha256_Y.c \
algo/yescrypt/yescrypt-simd.c
disable_flags =

View File

@@ -16,6 +16,7 @@ See file RELEASE_NOTES for change log and compile instructions.
Supported Algorithms
--------------------
anime Animecoin
argon2
axiom Shabal-256 MemoHash
bastion
@@ -40,6 +41,7 @@ Supported Algorithms
keccakc Creative coin
lbry LBC, LBRY Credits
luffa Luffa
lyra2h Hppcoin
lyra2re lyra2
lyra2rev2 lyra2v2, Vertcoin
lyra2z Zcoin (XZC)
@@ -67,7 +69,7 @@ Supported Algorithms
timetravel10 Bitcore
tribus Denarius (DNR)
vanilla blake256r8vnl (VCash)
veltor
veltor (VLT)
whirlpool
whirlpoolx
x11 Dash
@@ -77,9 +79,11 @@ Supported Algorithms
x13sm3 hsr (Hshare)
x14 X14
x15 X15
x16r Ravencoin
x17
xevan Bitsend
yescrypt Globalboost-Y (BSTY)
yescryptr8 BitZeny (ZNY)\n\
yescryptr16 Yenten (YTN)
zr5 Ziftr
@@ -95,13 +99,16 @@ algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
performance.
ARM CPUs are not supported.
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
Centos are known to work and have all dependencies in their repositories.
Others may work but may require more effort.
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
3. Stratum pool, cpuminer-opt only supports stratum minning. Some algos
may work wallet mining but there are no guarantees.
MacOS, OSx is not supported.
3. Stratum pool. Some algos may work wallet mining using getwork.
Errata
------
@@ -131,10 +138,13 @@ output from the miner showing the startup and any errors.
Donations
---------
I do not do this for money but I have a donation address if users
are so inclined.
cpuminer-opt has no fees of any kind but donations are accepted.
bitcoin:12tdvfF7KmAsihBXQXynT6E6th2c2pByTT?label=donations
BTC: 12tdvfF7KmAsihBXQXynT6E6th2c2pByTT
ETH: 0x72122edabcae9d3f57eab0729305a425f6fef6d0
LTC: LdUwoHJnux9r9EKqFWNvAi45kQompHk6e8
BCH: 1QKYkB6atn4P7RFozyziAXLEnurwnUM1cQ
BTG: GVUyECtRHeC5D58z9F3nGGfVQndwnsPnHQ
Happy mining!

View File

@@ -17,17 +17,20 @@ supported by cpuminer-opt due to an incompatible implementation of SSE2 on
these CPUs. Some algos may crash the miner with an invalid instruction.
Users are recommended to use an unoptimized miner such as cpuminer-multi.
Exe name Compile opts Arch name
Exe name Compile flags Arch name
cpuminer-sse2.exe -march=core2 Core2
cpuminer-sse42.exe -march=corei7 Nehalem
cpuminer-aes-sse42.exe -maes -msse4.2" Westmere
cpuminer-aes-avx.exe -march=corei7-avx" Sandybridge, Ivybridge
cpuminer-aes-avx2.exe "-march=core-avx2" Haswell, Broadwell, Skylake, Kabylake
cpuminer-4way.exe "-march=core-avx2 -DFOUR_WAY"
cpuminer-sse2.exe "-march=core2" Core2, Nehalem
cpuminer-aes-sse42.exe "-maes -msse4.2" Westmere
cpuminer-aes-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
cpuminer-avx2.exe "-march=core-avx2" Haswell...
cpuminer-avx2-sha.exe "-march=core-avx2 -msha" Ryzen
If you like this software feel free to donate:
BTC: 12tdvfF7KmAsihBXQXynT6E6th2c2pByTT
ETH: 0x72122edabcae9d3f57eab0729305a425f6fef6d0
LTC: LdUwoHJnux9r9EKqFWNvAi45kQompHk6e8
BCH: 1QKYkB6atn4P7RFozyziAXLEnurwnUM1cQ
BTG: GVUyECtRHeC5D58z9F3nGGfVQndwnsPnHQ
4way requires a CPU with AES and AVX2. It is still under development and
only a few algos are supported. See change log in RELEASE_NOTES in source
package for supported algos.
There is no binary support available for SHA on AMD Ryzen CPUs.

View File

@@ -27,8 +27,9 @@ Compile Instructions
Requirements:
Intel Core2 or newer, or AMD Steamroller or newer CPU.
64 bit Linux or Windows operating system.
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
supported.
64 bit Linux or Windows operating system. Apple is not supported.
Building on linux prerequisites:
@@ -91,20 +92,14 @@ SPH may give slightly better performance on algos that use sha256 when using
openssl 1.0.1 or older. Openssl 1.0.2 adds AVX2 and 1.1 adds SHA and perform
better than SPH.
-DFOUR_WAY
4 way will give much better performance on supported algos with CPUs
that have AVX2 and should only be used on CPUs with AVX2. 4 way algo
support will be added incrementally, see change log below for supported algos.
Start mining.
./cpuminer -a algo -o url -u username -p password
Windows
The following in how the Windows binary releases are built. It's old and
not very good but it works, for me anyway.
Precompiled Windows binaries are built on a Linux host using Mingw
with a more recent compiler than the following Windows hosted procedure.
Building on Windows prerequisites:
@@ -136,7 +131,7 @@ or similar Windows program.
In msys shell cd to miner directory.
cd /c/path/to/cpuminer-opt
Run winbuild.sh to build on Windows or execute the following commands.
Run build.sh to build on Windows or execute the following commands.
./autogen.sh
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
@@ -148,9 +143,9 @@ cpuminer.exe -a algo -o url -u user -p password
The following tips may be useful for older AMD CPUs.
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
these CPUs. Some algos may crash the miner with an invalid instruction.
AMD CPUs older than Steamroller, including Athlon x2 and Phenom II x4, are
not supported by cpuminer-opt due to an incompatible implementation of SSE2
on these CPUs. Some algos may crash the miner with an invalid instruction.
Users are recommended to use an unoptimized miner such as cpuminer-multi.
Some users with AMD CPUs without AES_NI have reported problems compiling
@@ -164,6 +159,57 @@ Support for even older x86_64 without AES_NI or SSE2 is not availble.
Change Log
----------
v3.8.1.1
Fixed Windows AVX2 crash.
v3.8.1
Fixes x16r on CPUs with only SSE2.
More Optimizations for X algos, qubit & deep.
Corrected algo optimizations for scrypt and yescrypt, no new optimizations.
v3.8.0.1
Fixed x16r AVX2 low hash rate.
v3.8.0
4way no longer a seperate feature, included in AVX2.
Added x16r algo for Ravencoin, anime algo for Animecoin.
More 4way optimizations for X13 and up.
Tweaked CPU affinity to better support more than 64 CPUs.
Fixed compile problem on some old AMD CPUs.
v3.7.10
4way optimizations for lyra2rev2, lyra2h, quark, timetravel8, timetravel10
x11evo, blakecoin.
Faster x13sm3 (hsr).
Added share difficulty to accepted message.
v3.7.9
Partial 4way optimizations for veltor, skunk, polytimos, lyra2z.
Additional 4way optimizations for X algos.
New algo yescryptr8 for BitZeny, not to be confused with original
yescrypt Globalboost-Y.
v3.7.8
Partial 4way optimization for most X algos including c11, xevan, phi, hsr
v3.7.7
Fixed regression caused by 64 CPU support.
Fixed lyra2h.
v3.7.6
Added lyra2h algo for Hppcoin.
Added support for more than 64 CPUs.
Optimized shavite512 with AES, improves x11 etc.
v3.7.5
New algo keccakc for Creative coin with 4way optimizations
@@ -171,7 +217,7 @@ New algo keccakc for Creative coin with 4way optimizations
Rewrote some AVX/AVX2 code for more consistent implementation and some
optimizing.
Enhanced capabilities check to support 4way, mor eprecise reporting of
Enhanced capabilities check to support 4way, more precise reporting of
features (not all algos use SSE2), and better error messages when using
an incompatible pre-built version (Windows users).

View File

@@ -16,7 +16,7 @@
#include <memory.h>
#include <unistd.h>
#include <openssl/sha.h>
#include "miner.h"
//#include "miner.h"
#include "algo-gate-api.h"
// Define null and standard functions.
@@ -138,6 +138,10 @@ void init_algo_gate( algo_gate_t* gate )
gate->work_cmp_size = STD_WORK_CMP_SIZE;
}
// Ignore warnings for not yet defined register functions
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
// called by each thread that uses the gate
bool register_algo_gate( int algo, algo_gate_t *gate )
{
@@ -151,11 +155,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
switch (algo)
{
// Ignore warnings for not yet defined register fucntions
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
case ALGO_ANIME: register_anime_algo ( gate ); break;
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
case ALGO_BASTION: register_bastion_algo ( gate ); break;
@@ -180,6 +180,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_KECCAKC: register_keccakc_algo ( gate ); break;
case ALGO_LBRY: register_lbry_algo ( gate ); break;
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
case ALGO_LYRA2H: register_lyra2h_algo ( gate ); break;
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
@@ -211,20 +212,18 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
case ALGO_X11: register_x11_algo ( gate ); break;
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
case ALGO_X11GOST: register_sib_algo ( gate ); break;
case ALGO_X11GOST: register_x11gost_algo ( gate ); break;
case ALGO_X13: register_x13_algo ( gate ); break;
case ALGO_X13SM3: register_x13sm3_algo ( gate ); break;
case ALGO_X14: register_x14_algo ( gate ); break;
case ALGO_X15: register_x15_algo ( gate ); break;
case ALGO_X16R: register_x16r_algo ( gate ); break;
case ALGO_X17: register_x17_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_ZR5: register_zr5_algo ( gate ); break;
// restore warnings
#pragma GCC diagnostic pop
default:
applog(LOG_ERR,"FAIL: algo_gate registration failed, unknown algo %s.\n", algo_names[opt_algo] );
return false;
@@ -239,6 +238,9 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
return true;
}
// restore warnings
#pragma GCC diagnostic pop
// override std defaults with jr2 defaults
bool register_json_rpc2( algo_gate_t *gate )
{
@@ -279,6 +281,7 @@ const char* const algo_alias_map[][2] =
{
// alias proper
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },
{ "blake256r8vnl", "vanilla" },
{ "blake256r14", "blake" },
@@ -301,10 +304,9 @@ const char* const algo_alias_map[][2] =
// { "sia", "blake2b" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "yes", "yescrypt" },
{ "ziftr", "zr5" },
{ "yenten", "yescryptr16" },
{ "yescryptr8", "yescrypt" },
{ "yescryptr8k", "yescrypt" },
{ "zcoin", "lyra2z" },
{ "zoin", "lyra2z330" },
{ NULL, NULL }

View File

@@ -1,7 +1,6 @@
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include "miner.h"
/////////////////////////////
@@ -91,7 +90,7 @@ typedef uint32_t set_t;
#define AVX_OPT 4
#define AVX2_OPT 8
#define SHA_OPT 0x10
#define FOUR_WAY_OPT 0x20
//#define FOUR_WAY_OPT 0x20
// return set containing all elements from sets a & b
inline set_t set_union ( set_t a, set_t b ) { return a | b; }
@@ -213,7 +212,8 @@ int64_t get_max64_0x3fffffLL();
int64_t get_max64_0x1ffff();
int64_t get_max64_0xffffLL();
void std_set_target ( struct work *work, double job_diff );
void std_set_target( struct work *work, double job_diff );
void alt_set_target( struct work* work, double job_diff );
void scrypt_set_target( struct work *work, double job_diff );
bool std_le_work_decode( const json_t *val, struct work *work );

View File

@@ -1,107 +1,90 @@
#include "blake-gate.h"
#include "sph_blake.h"
#if defined (BLAKE_4WAY)
#include "blake-hash-4way.h"
#include <string.h>
#include <stdint.h>
#include <memory.h>
#if defined (BLAKE_4WAY)
blake256r14_4way_context blake_ctx;
void blakehash_4way(void *state, const void *input)
{
uint32_t vhash[4*4] __attribute__ ((aligned (64)));
uint32_t hash0[4] __attribute__ ((aligned (32)));
uint32_t hash1[4] __attribute__ ((aligned (32)));
uint32_t hash2[4] __attribute__ ((aligned (32)));
uint32_t hash3[4] __attribute__ ((aligned (32)));
blake256_4way_context ctx;
blake256_4way_init( &ctx );
blake256_4way( &ctx, input, 16 );
blake256_4way_close( &ctx, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
memcpy( state, hash0, 32 );
memcpy( state+32, hash1, 32 );
memcpy( state+64, hash1, 32 );
memcpy( state+96, hash1, 32 );
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r14_4way_context ctx;
memcpy( &ctx, &blake_ctx, sizeof ctx );
blake256r14_4way( &ctx, input + (64<<2), 16 );
blake256r14_4way_close( &ctx, vhash );
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_blake_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[4*4] __attribute__ ((aligned (32)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
// uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) endiandata[20];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
uint32_t n = first_nonce;
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
// if (opt_benchmark)
// HTarget = 0x7f;
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
swab32_array( endiandata, pdata, 20 );
swab32_array( edata, pdata, 20 );
mm_interleave_4x32( vdata, endiandata, endiandata, endiandata,
endiandata, 640 );
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
blake256r14_4way_init( &blake_ctx );
blake256r14_4way( &blake_ctx, vdata, 64 );
uint32_t *noncep = vdata + 76; // 19*4
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep, n );
be32enc( noncep +2, n+1 );
be32enc( noncep +4, n+2 );
be32enc( noncep +6, n+3 );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
blakehash_4way( hash, vdata );
if ( hash[7] == 0 )
if ( hash[7] <= HTarget && fulltest( hash, ptarget ) )
{
if ( fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = n;
pdata[19] = n;
}
found[0] = true;
num_found++;
nonces[0] = n;
pdata[19] = n;
work_set_target_ratio( work, hash );
}
if ( (hash+8)[7] == 0 )
if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
{
if ( fulltest( hash, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
}
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( (hash+16)[7] == 0 )
if ( (hash+16)[7] <= HTarget && fulltest( hash+16, ptarget ) )
{
if ( fulltest( hash, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
}
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( (hash+24)[7] == 0 )
if ( (hash+24)[7] <= HTarget && fulltest( hash+24, ptarget ) )
{
if ( fulltest( hash, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
}
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
*hashes_done = n - first_nonce + 1;
} while ( (num_found == 0) && (n < max_nonce)
&& !work_restart[thr_id].restart );

View File

@@ -7,6 +7,7 @@ int64_t blake_get_max64 ()
bool register_blake_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT;
gate->get_max64 = (void*)&blake_get_max64;
//#if defined (__AVX2__) && defined (FOUR_WAY)
// gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
@@ -14,10 +15,8 @@ bool register_blake_algo( algo_gate_t* gate )
// gate->hash = (void*)&blakehash_8way;
#if defined(BLAKE_4WAY)
four_way_not_tested();
gate->optimizations = FOUR_WAY_OPT;
gate->scanhash = (void*)&scanhash_blake_4way;
gate->hash = (void*)&blakehash_4way;
four_way_not_tested();
#else
gate->scanhash = (void*)&scanhash_blake;
gate->hash = (void*)&blakehash;

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(FOUR_WAY) && defined(__AVX__)
#if defined(__AVX2__)
#define BLAKE_4WAY
#endif

View File

@@ -36,7 +36,6 @@
#include <string.h>
#include <limits.h>
//#include "sph_blake.h"
#include "blake-hash-4way.h"
#ifdef __cplusplus
@@ -79,6 +78,8 @@ static const sph_u64 IV512[8] = {
#if SPH_COMPACT_BLAKE_32 || SPH_COMPACT_BLAKE_64
// Blake-256 4 & 8 way, Blake-512 4way
static const unsigned sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
@@ -98,18 +99,6 @@ static const unsigned sigma[16][16] = {
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
/*
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0
*/
#endif
#define Z00 0
@@ -286,6 +275,8 @@ static const unsigned sigma[16][16] = {
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
// Blake-256 4 & 8 way
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
@@ -324,6 +315,8 @@ static const sph_u32 CS[16] = {
#if defined(__AVX2__)
// Blake-512 4 way
#define CBx(r, i) CBx_(Z ## r ## i)
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
@@ -414,6 +407,35 @@ do { \
#if defined (__AVX2__)
// BLAKE256 8 WAY
#define GS_8WAY( m0, m1, c0, c1, a, b, c, d ) \
do { \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set1_epi32( c1 ), m0 ), b ), a ); \
d = mm256_rotr_32( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_rotr_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set1_epi32( c0 ), m1 ), b ), a ); \
d = mm256_rotr_32( _mm256_xor_si256( d, a ), 8 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_rotr_32( _mm256_xor_si256( b, c ), 7 ); \
} while (0)
#define ROUND_S_8WAY(r) do { \
GS_8WAY(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS_8WAY(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS_8WAY(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS_8WAY(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS_8WAY(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS_8WAY(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS_8WAY(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS_8WAY(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
// Blake-512 4 way
#define GB_4WAY(m0, m1, c0, c1, a, b, c, d) do { \
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
_mm256_set_epi64x( c1, c1, c1, c1 ), m0 ), b ), a ); \
@@ -504,14 +526,9 @@ do { \
(state)->T1 = T1; \
} while (0)
//#define BLAKE32_ROUNDS 8
#ifndef BLAKE32_ROUNDS
#define BLAKE32_ROUNDS 14
#endif
#if SPH_COMPACT_BLAKE_32
#define COMPRESS32_4WAY do { \
#define COMPRESS32_4WAY( rounds ) do { \
__m128i M[16]; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
@@ -524,35 +541,35 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( s0, _mmset_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( s1, _mmset_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( s2, _mmset_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( s3, _mmset_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mmset_epi32( T0, T0, T0, T0 ), \
_mmset_epi32( CS4, CS4, CS4, CS4 ) ); \
VD = _mm_xor_si128( _mmset_epi32( T0, T0, T0, T0 ), \
_mmset_epi32( CS5, CS5, CS5, CS5 ) ); \
VE = _mm_xor_si128( _mmset_epi32( T1, T1, T1, T1 ) \
, _mmset_epi32( CS6, CS6, CS6, CS6 ) ); \
VF = _mm_xor_si128( _mmset_epi32( T1, T1, T1, T1 ), \
_mmset_epi32( CS7, CS7, CS7, CS7 ) ); \
M[0x0] = mm_byteswap_32( *(buf + 0) ); \
M[0x1] = mm_byteswap_32( *(buf + 1) ); \
M[0x2] = mm_byteswap_32( *(buf + 2) ); \
M[0x3] = mm_byteswap_32( *(buf + 3) ); \
M[0x4] = mm_byteswap_32( *(buf + 4) ); \
M[0x5] = mm_byteswap_32( *(buf + 5) ); \
M[0x6] = mm_byteswap_32( *(buf + 6) ); \
M[0x7] = mm_byteswap_32( *(buf + 7) ); \
M[0x8] = mm_byteswap_32( *(buf + 8) ); \
M[0x9] = mm_byteswap_32( *(buf + 9) ); \
M[0xA] = mm_byteswap_32( *(buf + 10) ); \
M[0xB] = mm_byteswap_32( *(buf + 11) ); \
M[0xC] = mm_byteswap_32( *(buf + 12) ); \
M[0xD] = mm_byteswap_32( *(buf + 13) ); \
M[0xE] = mm_byteswap_32( *(buf + 14) ); \
M[0xF] = mm_byteswap_32( *(buf + 15) ); \
for (r = 0; r < BLAKE32_ROUNDS; r ++) \
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \
VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \
VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ) \
, _mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
M[0x0] = mm_bswap_32( *(buf + 0) ); \
M[0x1] = mm_bswap_32( *(buf + 1) ); \
M[0x2] = mm_bswap_32( *(buf + 2) ); \
M[0x3] = mm_bswap_32( *(buf + 3) ); \
M[0x4] = mm_bswap_32( *(buf + 4) ); \
M[0x5] = mm_bswap_32( *(buf + 5) ); \
M[0x6] = mm_bswap_32( *(buf + 6) ); \
M[0x7] = mm_bswap_32( *(buf + 7) ); \
M[0x8] = mm_bswap_32( *(buf + 8) ); \
M[0x9] = mm_bswap_32( *(buf + 9) ); \
M[0xA] = mm_bswap_32( *(buf + 10) ); \
M[0xB] = mm_bswap_32( *(buf + 11) ); \
M[0xC] = mm_bswap_32( *(buf + 12) ); \
M[0xD] = mm_bswap_32( *(buf + 13) ); \
M[0xE] = mm_bswap_32( *(buf + 14) ); \
M[0xF] = mm_bswap_32( *(buf + 15) ); \
for (r = 0; r < rounds; r ++) \
ROUND_S_4WAY(r); \
H0 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( S0, V0 ), V8 ), H0 ); \
@@ -576,85 +593,194 @@ do { \
// current impl
#define COMPRESS32_4WAY do { \
__m128i M0, M1, M2, M3, M4, M5, M6, M7; \
__m128i M8, M9, MA, MB, MC, MD, ME, MF; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \
VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
_mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \
VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
M0 = mm_byteswap_32( * buf ); \
M1 = mm_byteswap_32( *(buf+1) ); \
M2 = mm_byteswap_32( *(buf+2) ); \
M3 = mm_byteswap_32( *(buf+3) ); \
M4 = mm_byteswap_32( *(buf+4) ); \
M5 = mm_byteswap_32( *(buf+5) ); \
M6 = mm_byteswap_32( *(buf+6) ); \
M7 = mm_byteswap_32( *(buf+7) ); \
M8 = mm_byteswap_32( *(buf+8) ); \
M9 = mm_byteswap_32( *(buf+9) ); \
MA = mm_byteswap_32( *(buf+10) ); \
MB = mm_byteswap_32( *(buf+11) ); \
MC = mm_byteswap_32( *(buf+12) ); \
MD = mm_byteswap_32( *(buf+13) ); \
ME = mm_byteswap_32( *(buf+14) ); \
MF = mm_byteswap_32( *(buf+15) ); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
ROUND_S_4WAY(4); \
ROUND_S_4WAY(5); \
ROUND_S_4WAY(6); \
ROUND_S_4WAY(7); \
if (BLAKE32_ROUNDS == 14) { \
ROUND_S_4WAY(8); \
ROUND_S_4WAY(9); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
} \
H0 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( V8, V0 ), S0 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( V9, V1 ), S1 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VA, V2 ), S2 ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VB, V3 ), S3 ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VC, V4 ), S0 ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VD, V5 ), S1 ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VE, V6 ), S2 ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( \
_mm_xor_si128( VF, V7 ), S3 ), H7 ); \
} while (0)
#define COMPRESS32_4WAY( rounds ) \
do { \
__m128i M0, M1, M2, M3, M4, M5, M6, M7; \
__m128i M8, M9, MA, MB, MC, MD, ME, MF; \
__m128i V0, V1, V2, V3, V4, V5, V6, V7; \
__m128i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
M0 = mm_bswap_32( * buf ); \
M1 = mm_bswap_32( *(buf+1) ); \
M2 = mm_bswap_32( *(buf+2) ); \
M3 = mm_bswap_32( *(buf+3) ); \
M4 = mm_bswap_32( *(buf+4) ); \
M5 = mm_bswap_32( *(buf+5) ); \
M6 = mm_bswap_32( *(buf+6) ); \
M7 = mm_bswap_32( *(buf+7) ); \
M8 = mm_bswap_32( *(buf+8) ); \
M9 = mm_bswap_32( *(buf+9) ); \
MA = mm_bswap_32( *(buf+10) ); \
MB = mm_bswap_32( *(buf+11) ); \
MC = mm_bswap_32( *(buf+12) ); \
MD = mm_bswap_32( *(buf+13) ); \
ME = mm_bswap_32( *(buf+14) ); \
MF = mm_bswap_32( *(buf+15) ); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
ROUND_S_4WAY(4); \
ROUND_S_4WAY(5); \
ROUND_S_4WAY(6); \
ROUND_S_4WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_4WAY(8); \
ROUND_S_4WAY(9); \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
ROUND_S_4WAY(2); \
ROUND_S_4WAY(3); \
} \
H0 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V8, V0 ), S0 ), H0 ); \
H1 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V9, V1 ), S1 ), H1 ); \
H2 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VA, V2 ), S2 ), H2 ); \
H3 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VB, V3 ), S3 ), H3 ); \
H4 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VC, V4 ), S0 ), H4 ); \
H5 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VD, V5 ), S1 ), H5 ); \
H6 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VE, V6 ), S2 ), H6 ); \
H7 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VF, V7 ), S3 ), H7 ); \
} while (0)
#endif
#if defined (__AVX2__)
// Blake-256 8 way
#define DECL_STATE32_8WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
sph_u32 T0, T1;
#define READ_STATE32_8WAY(state) \
do { \
H0 = (state)->H[0]; \
H1 = (state)->H[1]; \
H2 = (state)->H[2]; \
H3 = (state)->H[3]; \
H4 = (state)->H[4]; \
H5 = (state)->H[5]; \
H6 = (state)->H[6]; \
H7 = (state)->H[7]; \
S0 = (state)->S[0]; \
S1 = (state)->S[1]; \
S2 = (state)->S[2]; \
S3 = (state)->S[3]; \
T0 = (state)->T0; \
T1 = (state)->T1; \
} while (0)
#define WRITE_STATE32_8WAY(state) \
do { \
(state)->H[0] = H0; \
(state)->H[1] = H1; \
(state)->H[2] = H2; \
(state)->H[3] = H3; \
(state)->H[4] = H4; \
(state)->H[5] = H5; \
(state)->H[6] = H6; \
(state)->H[7] = H7; \
(state)->S[0] = S0; \
(state)->S[1] = S1; \
(state)->S[2] = S2; \
(state)->S[3] = S3; \
(state)->T0 = T0; \
(state)->T1 = T1; \
} while (0)
#define COMPRESS32_8WAY( rounds ) \
do { \
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set1_epi32( CS0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set1_epi32( CS1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set1_epi32( CS2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set1_epi32( CS3 ) ); \
VC = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS4 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS5 ) ); \
VE = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS6 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS7 ) ); \
M0 = mm256_bswap_32( * buf ); \
M1 = mm256_bswap_32( *(buf+1) ); \
M2 = mm256_bswap_32( *(buf+2) ); \
M3 = mm256_bswap_32( *(buf+3) ); \
M4 = mm256_bswap_32( *(buf+4) ); \
M5 = mm256_bswap_32( *(buf+5) ); \
M6 = mm256_bswap_32( *(buf+6) ); \
M7 = mm256_bswap_32( *(buf+7) ); \
M8 = mm256_bswap_32( *(buf+8) ); \
M9 = mm256_bswap_32( *(buf+9) ); \
MA = mm256_bswap_32( *(buf+10) ); \
MB = mm256_bswap_32( *(buf+11) ); \
MC = mm256_bswap_32( *(buf+12) ); \
MD = mm256_bswap_32( *(buf+13) ); \
ME = mm256_bswap_32( *(buf+14) ); \
MF = mm256_bswap_32( *(buf+15) ); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
ROUND_S_8WAY(4); \
ROUND_S_8WAY(5); \
ROUND_S_8WAY(6); \
ROUND_S_8WAY(7); \
if (rounds == 14) \
{ \
ROUND_S_8WAY(8); \
ROUND_S_8WAY(9); \
ROUND_S_8WAY(0); \
ROUND_S_8WAY(1); \
ROUND_S_8WAY(2); \
ROUND_S_8WAY(3); \
} \
H0 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V8, V0 ), \
S0 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V9, V1 ), \
S1 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VA, V2 ), \
S2 ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VB, V3 ), \
S3 ), H3 ); \
H4 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VC, V4 ), \
S0 ), H4 ); \
H5 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VD, V5 ), \
S1 ), H5 ); \
H6 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VE, V6 ), \
S2 ), H6 ); \
H7 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VF, V7 ), \
S3 ), H7 ); \
} while (0)
// Blake-512 4 way
#define DECL_STATE64_4WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
@@ -710,34 +836,34 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set_epi64( CB0, CB0, CB0, CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set_epi64( CB1, CB1, CB1, CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set_epi64( CB2, CB2, CB2, CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set_epi64( CB3, CB3, CB3, CB3 ) ); \
VC = _mm256_xor_si128( _mm256_set_epi64( T0, T0, T0, T0 ), \
_mm256_set_epi64( CB4, CB4, CB4, CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set_epi64( T0, T0, T0, T0 ), \
_mm256_set_epi64( CB5, CB5, CB5, CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set_epi64( T1, T1, T1, T1 ), \
_mm256_set256_epi64( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64( T1, T1, T1, T1 ), \
_mm256_set256_epi64( CB7, CB7, CB7, CB7 ) ); \
M[0x0] = mm256_byteswap_64( *(buf+0) ); \
M[0x1] = mm256_byteswap_64( *(buf+1) ); \
M[0x2] = mm256_byteswap_64( *(buf+2) ); \
M[0x3] = mm256_byteswap_64( *(buf+3) ); \
M[0x4] = mm256_byteswap_64( *(buf+4) ); \
M[0x5] = mm256_byteswap_64( *(buf+5) ); \
M[0x6] = mm256_byteswap_64( *(buf+6) ); \
M[0x7] = mm256_byteswap_64( *(buf+7) ); \
M[0x8] = mm256_byteswap_64( *(buf+8) ); \
M[0x9] = mm256_byteswap_64( *(buf+9) ); \
M[0xA] = mm256_byteswap_64( *(buf+10) ); \
M[0xB] = mm256_byteswap_64( *(buf+11) ); \
M[0xC] = mm256_byteswap_64( *(buf+12) ); \
M[0xD] = mm256_byteswap_64( *(buf+13) ); \
M[0xE] = mm256_byteswap_64( *(buf+14) ); \
M[0xF] = mm256_byteswap_64( *(buf+15) ); \
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
M[0x0] = mm256_bswap_64( *(buf+0) ); \
M[0x1] = mm256_bswap_64( *(buf+1) ); \
M[0x2] = mm256_bswap_64( *(buf+2) ); \
M[0x3] = mm256_bswap_64( *(buf+3) ); \
M[0x4] = mm256_bswap_64( *(buf+4) ); \
M[0x5] = mm256_bswap_64( *(buf+5) ); \
M[0x6] = mm256_bswap_64( *(buf+6) ); \
M[0x7] = mm256_bswap_64( *(buf+7) ); \
M[0x8] = mm256_bswap_64( *(buf+8) ); \
M[0x9] = mm256_bswap_64( *(buf+9) ); \
M[0xA] = mm256_bswap_64( *(buf+10) ); \
M[0xB] = mm256_bswap_64( *(buf+11) ); \
M[0xC] = mm256_bswap_64( *(buf+12) ); \
M[0xD] = mm256_bswap_64( *(buf+13) ); \
M[0xE] = mm256_bswap_64( *(buf+14) ); \
M[0xF] = mm256_bswap_64( *(buf+15) ); \
for (r = 0; r < 16; r ++) \
ROUND_B_4WAY(r); \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
@@ -787,22 +913,22 @@ do { \
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
M0 = mm256_byteswap_64( *(buf + 0) ); \
M1 = mm256_byteswap_64( *(buf + 1) ); \
M2 = mm256_byteswap_64( *(buf + 2) ); \
M3 = mm256_byteswap_64( *(buf + 3) ); \
M4 = mm256_byteswap_64( *(buf + 4) ); \
M5 = mm256_byteswap_64( *(buf + 5) ); \
M6 = mm256_byteswap_64( *(buf + 6) ); \
M7 = mm256_byteswap_64( *(buf + 7) ); \
M8 = mm256_byteswap_64( *(buf + 8) ); \
M9 = mm256_byteswap_64( *(buf + 9) ); \
MA = mm256_byteswap_64( *(buf + 10) ); \
MB = mm256_byteswap_64( *(buf + 11) ); \
MC = mm256_byteswap_64( *(buf + 12) ); \
MD = mm256_byteswap_64( *(buf + 13) ); \
ME = mm256_byteswap_64( *(buf + 14) ); \
MF = mm256_byteswap_64( *(buf + 15) ); \
M0 = mm256_bswap_64( *(buf + 0) ); \
M1 = mm256_bswap_64( *(buf + 1) ); \
M2 = mm256_bswap_64( *(buf + 2) ); \
M3 = mm256_bswap_64( *(buf + 3) ); \
M4 = mm256_bswap_64( *(buf + 4) ); \
M5 = mm256_bswap_64( *(buf + 5) ); \
M6 = mm256_bswap_64( *(buf + 6) ); \
M7 = mm256_bswap_64( *(buf + 7) ); \
M8 = mm256_bswap_64( *(buf + 8) ); \
M9 = mm256_bswap_64( *(buf + 9) ); \
MA = mm256_bswap_64( *(buf + 10) ); \
MB = mm256_bswap_64( *(buf + 11) ); \
MC = mm256_bswap_64( *(buf + 12) ); \
MD = mm256_bswap_64( *(buf + 13) ); \
ME = mm256_bswap_64( *(buf + 14) ); \
MF = mm256_bswap_64( *(buf + 15) ); \
ROUND_B_4WAY(0); \
ROUND_B_4WAY(1); \
ROUND_B_4WAY(2); \
@@ -841,19 +967,20 @@ do { \
#endif
static const sph_u32 salt_zero_small[4] = { 0, 0, 0, 0 };
static const sph_u32 salt_zero_4way_small[4] = { 0, 0, 0, 0 };
static void
blake32_4way_init( blake_4way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt)
const sph_u32 *salt, int rounds )
{
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm_set_epi32( iv[i], iv[i], iv[i], iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm_set_epi32( salt[i], salt[i], salt[i], salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm_set1_epi32( iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm_set1_epi32( salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;
}
static void
@@ -867,7 +994,6 @@ blake32_4way( blake_4way_small_context *sc, const void *data, size_t len )
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_128( buf + (ptr>>2), vdata, len>>2 );
@@ -892,7 +1018,7 @@ blake32_4way( blake_4way_small_context *sc, const void *data, size_t len )
{
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
T1 = SPH_T32(T1 + 1);
COMPRESS32_4WAY;
COMPRESS32_4WAY( sc->rounds );
ptr = 0;
}
}
@@ -915,57 +1041,176 @@ blake32_4way_close( blake_4way_small_context *sc, unsigned ub, unsigned n,
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
unsigned z = 0x80 >> n;
unsigned zz = ((ub & -z) | z) & 0xFF;
u.buf[ptr>>2] = _mm_set_epi32( zz, zz, zz, zz );
u.buf[ptr>>2] = _mm_set1_epi32( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00) + bit_len;
sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 48 )
if ( ptr <= 52 )
{
memset_zero_128( u.buf + (ptr>>2) + 1, (48 - ptr) >> 2 );
memset_zero_128( u.buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm_or_si128( u.buf[52>>2],
_mm_set_epi32( 0x010000000, 0x01000000,
0x010000000, 0x01000000 ) );
*(u.buf+(56>>2)) = mm_byteswap_32( _mm_set_epi32( th, th, th, th ) );
*(u.buf+(60>>2)) = mm_byteswap_32( _mm_set_epi32( tl, tl, tl, tl ) );
_mm_set1_epi32( 0x01000000UL ) );
*(u.buf+(56>>2)) = mm_bswap_32( _mm_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm_bswap_32( _mm_set1_epi32( tl ) );
blake32_4way( sc, u.buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_128( u.buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_4way( sc, u.buf + (ptr>>2), 64 - ptr );
sc->T0 = SPH_C32(0xFFFFFE00);
sc->T1 = SPH_C32(0xFFFFFFFF);
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
memset_zero_128( u.buf, 56>>2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm_set_epi32( 0x010000000, 0x01000000,
0x010000000, 0x01000000 );
*(u.buf+(56>>2)) = mm_byteswap_32( _mm_set_epi32( th, th, th, th ) );
*(u.buf+(60>>2)) = mm_byteswap_32( _mm_set_epi32( tl, tl, tl, tl ) );
u.buf[52>>2] = _mm_set1_epi32( 0x01000000UL );
*(u.buf+(56>>2)) = mm_bswap_32( _mm_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm_bswap_32( _mm_set1_epi32( tl ) );
blake32_4way( sc, u.buf, 64 );
}
out = (__m128i*)dst;
for ( k = 0; k < out_size_w32; k++ )
out[k] = mm_byteswap_32( sc->H[k] );
out[k] = mm_bswap_32( sc->H[k] );
}
#if defined (__AVX2__)
// Blake-256 8 way
static const sph_u32 salt_zero_8way_small[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static void
blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt, int rounds )
{
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm256_set1_epi32( iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm256_set1_epi32( salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;
}
static void
blake32_8way( blake_8way_small_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf;
size_t ptr;
const int buf_size = 64; // number of elements, sizeof/4
DECL_STATE32_8WAY
buf = sc->buf;
ptr = sc->ptr;
if ( len < buf_size - ptr )
{
memcpy_256( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE32_8WAY(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if (clen > len)
clen = len;
memcpy_256( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += (clen>>2);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T32(T0 + 512) ) < 512 )
T1 = SPH_T32(T1 + 1);
COMPRESS32_8WAY( sc->rounds );
ptr = 0;
}
}
WRITE_STATE32_8WAY(sc);
sc->ptr = ptr;
}
static void
blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
union {
__m256i buf[16];
sph_u32 dummy;
} u;
size_t ptr, k;
unsigned bit_len;
sph_u32 th, tl;
__m256i *out;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
u.buf[ptr>>2] = _mm256_set1_epi32( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C32(0xFFFFFE00UL) + bit_len;
sc->T1 = SPH_T32(sc->T1 - 1);
}
else
sc->T0 -= 512 - bit_len;
if ( ptr <= 52 )
{
memset_zero_256( u.buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm256_or_si256( u.buf[52>>2],
_mm256_set1_epi32( 0x01000000UL ) );
*(u.buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) );
blake32_8way( sc, u.buf + (ptr>>2), 64 - ptr );
}
else
{
memset_zero_256( u.buf + (ptr>>2) + 1, (60-ptr) >> 2 );
blake32_8way( sc, u.buf + (ptr>>2), 64 - ptr );
sc->T0 = SPH_C32(0xFFFFFE00UL);
sc->T1 = SPH_C32(0xFFFFFFFFUL);
memset_zero_256( u.buf, 56>>2 );
if (out_size_w32 == 8)
u.buf[52>>2] = _mm256_set1_epi32( 0x01000000UL );
*(u.buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) );
*(u.buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) );
blake32_8way( sc, u.buf, 64 );
}
out = (__m256i*)dst;
for ( k = 0; k < out_size_w32; k++ )
out[k] = mm256_bswap_32( sc->H[k] );
}
// Blake-512 4 way
static const sph_u64 salt_zero_big[4] = { 0, 0, 0, 0 };
static void
@@ -974,9 +1219,9 @@ blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
{
int i;
for ( i = 0; i < 8; i++ )
sc->H[i] = _mm256_set_epi64x( iv[i], iv[i], iv[i], iv[i] );
sc->H[i] = _mm256_set1_epi64x( iv[i] );
for ( i = 0; i < 4; i++ )
sc->S[i] = _mm256_set_epi64x( salt[i], salt[i], salt[i], salt[i] );
sc->S[i] = _mm256_set1_epi64x( salt[i] );
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
@@ -1048,12 +1293,12 @@ blake64_4way_close( blake_4way_big_context *sc,
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF);
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00) + bit_len;
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
}
else
@@ -1065,13 +1310,10 @@ blake64_4way_close( blake_4way_big_context *sc,
memset_zero_256( u.buf + (ptr>>3) + 1, (104-ptr) >> 3 );
if ( out_size_w64 == 8 )
u.buf[(104>>3)] = _mm256_or_si256( u.buf[(104>>3)],
_mm256_set_epi64x( 0x0100000000000000,
0x0100000000000000,
0x0100000000000000,
0x0100000000000000 ) );
*(u.buf+(112>>3)) = mm256_byteswap_64(
_mm256_set1_epi64x( 0x0100000000000000ULL ) );
*(u.buf+(112>>3)) = mm256_bswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(u.buf+(120>>3)) = mm256_byteswap_64(
*(u.buf+(120>>3)) = mm256_bswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
blake64_4way( sc, u.buf + (ptr>>3), 128 - ptr );
@@ -1081,33 +1323,32 @@ blake64_4way_close( blake_4way_big_context *sc,
memset_zero_256( u.buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
blake64_4way( sc, u.buf + (ptr>>3), 128 - ptr );
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFF);
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
memset_zero_256( u.buf, 112>>3 );
if ( out_size_w64 == 8 )
u.buf[104>>3] = _mm256_set_epi64x( 0x0100000000000000,
0x0100000000000000,
0x0100000000000000,
0x0100000000000000 );
*(u.buf+(112>>3)) = mm256_byteswap_64(
u.buf[104>>3] = _mm256_set1_epi64x( 0x0100000000000000ULL );
*(u.buf+(112>>3)) = mm256_bswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(u.buf+(120>>3)) = mm256_byteswap_64(
*(u.buf+(120>>3)) = mm256_bswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
blake64_4way( sc, u.buf, 128 );
}
out = (__m256i*)dst;
for ( k = 0; k < out_size_w64; k++ )
out[k] = mm256_byteswap_64( sc->H[k] );
out[k] = mm256_bswap_64( sc->H[k] );
}
#endif
// Blake-256 4 way & 8 way
// default 14 rounds, backward copatibility
void
blake256_4way_init(void *cc)
{
blake32_4way_init(cc, IV256, salt_zero_small);
blake32_4way_init( cc, IV256, salt_zero_4way_small, 14 );
}
void
@@ -1119,15 +1360,110 @@ blake256_4way(void *cc, const void *data, size_t len)
void
blake256_4way_close(void *cc, void *dst)
{
blake256_4way_addbits_and_close(cc, 0, 0, dst);
blake32_4way_close(cc, 0, 0, dst, 8);
}
#if defined(__AVX2__)
void
blake256_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
blake256_8way(void *cc, const void *data, size_t len)
{
blake32_4way_close(cc, ub, n, dst, 8);
blake32_8way(cc, data, len);
}
void
blake256_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
#endif
// 14 rounds Blake, Decred
void blake256r14_4way_init(void *cc)
{
blake32_4way_init( cc, IV256, salt_zero_4way_small, 14 );
}
void
blake256r14_4way(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
void
blake256r14_4way_close(void *cc, void *dst)
{
blake32_4way_close(cc, 0, 0, dst, 8);
}
#if defined(__AVX2__)
void blake256r14_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 14 );
}
void
blake256r14_8way(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r14_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
#endif
// 8 rounds Blakecoin, Vanilla
void blake256r8_4way_init(void *cc)
{
blake32_4way_init( cc, IV256, salt_zero_4way_small, 8 );
}
void
blake256r8_4way(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
void
blake256r8_4way_close(void *cc, void *dst)
{
blake32_4way_close(cc, 0, 0, dst, 8);
}
#if defined (__AVX2__)
void blake256r8_8way_init(void *cc)
{
blake32_8way_init( cc, IV256, salt_zero_8way_small, 8 );
}
void
blake256r8_8way(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
void
blake256r8_8way_close(void *cc, void *dst)
{
blake32_8way_close(cc, 0, 0, dst, 8);
}
#endif
// Blake-512 4 way
#if defined (__AVX2__)
void

View File

@@ -35,7 +35,9 @@
*/
#ifndef __BLAKE_HASH_4WAY__
#define __BLAKE_HASH_4WAY___
#define __BLAKE_HASH_4WAY__
#ifdef __AVX__
#ifdef __cplusplus
extern "C"{
@@ -45,41 +47,75 @@ extern "C"{
#include "algo/sha/sph_types.h"
#include "avxdefs.h"
/**
* Output size (in bits) for BLAKE-256.
*/
#define SPH_SIZE_blake256 256
#if SPH_64
/**
* Output size (in bits) for BLAKE-512.
*/
#define SPH_SIZE_blake512 512
#endif
// With AVX only Blake-256 4 way is available.
// With AVX2 Blake-256 8way & Blake-512 4 way are also available.
// Blake-256 4 way
#ifdef __AVX__
typedef struct {
__m128i buf[16] __attribute__ ((aligned (64)));
__m128i H[8];
__m128i S[4];
size_t ptr;
sph_u32 T0, T1;
__m128i buf[16] __attribute__ ((aligned (64)));
__m128i H[8];
__m128i S[4];
size_t ptr;
sph_u32 T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla
} blake_4way_small_context;
// Default 14 rounds
typedef blake_4way_small_context blake256_4way_context;
void blake256_4way_init(void *cc);
void blake256_4way(void *cc, const void *data, size_t len);
void blake256_4way_close(void *cc, void *dst);
void blake256_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif
// 14 rounds, blake, decred
typedef blake_4way_small_context blake256r14_4way_context;
void blake256r14_4way_init(void *cc);
void blake256r14_4way(void *cc, const void *data, size_t len);
void blake256r14_4way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_4way_small_context blake256r8_4way_context;
void blake256r8_4way_init(void *cc);
void blake256r8_4way(void *cc, const void *data, size_t len);
void blake256r8_4way_close(void *cc, void *dst);
#ifdef __AVX2__
// Blake-256 8 way
typedef struct {
__m256i buf[16] __attribute__ ((aligned (64)));
__m256i H[8];
__m256i S[4];
size_t ptr;
sph_u32 T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla
} blake_8way_small_context;
// Default 14 rounds
typedef blake_8way_small_context blake256_8way_context;
void blake256_8way_init(void *cc);
void blake256_8way(void *cc, const void *data, size_t len);
void blake256_8way_close(void *cc, void *dst);
// 14 rounds, blake, decred
typedef blake_8way_small_context blake256r14_8way_context;
void blake256r14_8way_init(void *cc);
void blake256r14_8way(void *cc, const void *data, size_t len);
void blake256r14_8way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_8way_small_context blake256r8_8way_context;
void blake256r8_8way_init(void *cc);
void blake256r8_8way(void *cc, const void *data, size_t len);
void blake256r8_8way_close(void *cc, void *dst);
// Blake-512 4 way
typedef struct {
__m256i buf[16] __attribute__ ((aligned (64)));
__m256i H[8];
@@ -103,3 +139,5 @@ void blake512_4way_addbits_and_close(
#endif
#endif
#endif

View File

@@ -3,7 +3,7 @@
#include <string.h>
#include <stdint.h>
#include "crypto/blake2s.h"
#include "sph-blake2s.h"
static __thread blake2s_state s_midstate;
static __thread blake2s_state s_ctx;

106
algo/blake/blakecoin-4way.c Normal file
View File

@@ -0,0 +1,106 @@
#include "blakecoin-gate.h"
#if defined (BLAKECOIN_4WAY)
#include "blake-hash-4way.h"
#include <string.h>
#include <stdint.h>
#include <memory.h>
blake256r8_4way_context blakecoin_ctx;
void blakecoin_4way_hash(void *state, const void *input)
{
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r8_4way_context ctx;
memcpy( &ctx, &blakecoin_ctx, sizeof ctx );
blake256r8_4way( &ctx, input + (64<<2), 16 );
blake256r8_4way_close( &ctx, vhash );
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t HTarget = ptarget[7];
uint32_t _ALIGN(32) edata[20];
uint32_t n = first_nonce;
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
if (opt_benchmark)
HTarget = 0x7f;
// we need big endian data...
swab32_array( edata, pdata, 20 );
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
blake256r8_4way_init( &blakecoin_ctx );
blake256r8_4way( &blakecoin_ctx, vdata, 64 );
uint32_t *noncep = vdata + 76; // 19*4
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep, n );
be32enc( noncep +1, n+1 );
be32enc( noncep +2, n+2 );
be32enc( noncep +3, n+3 );
blakecoin_4way_hash( hash, vdata );
pdata[19] = n;
if ( hash[7] <= HTarget && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( (hash+16)[7] <= HTarget && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( (hash+24)[7] <= HTarget && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
} while ( (num_found == 0) && (n < max_nonce)
&& !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
// workaround to prevent flood of hash reports when nonce range exhasuted
// and thread is spinning waiting for new work
if ( ( n >= max_nonce ) && ( *hashes_done < 10 ) )
{
*hashes_done = 0;
sleep(1);
}
return num_found;
}
#endif

View File

@@ -0,0 +1,70 @@
#include "blakecoin-gate.h"
#include <memory.h>
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blakecoin_get_max64 ()
{
return 0x7ffffLL;
// return 0x3fffffLL;
}
// Blakecoin 4 way hashes so fast it runs out of nonces.
// This is an attempt to solve this but the result may be
// to rehash old nonces until new work is received.
void bc4w_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t *end_nonce_ptr, bool clean_job )
{
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
// if ( have_stratum && ( *nonceptr >= *end_nonce_ptr ) )
// algo_gate.stratum_gen_work( &stratum, g_work );
if ( memcmp( work->data, g_work->data, algo_gate.work_cmp_size )
|| ( *nonceptr >= *end_nonce_ptr )
|| ( ( work->job_id != g_work->job_id ) && clean_job ) )
/*
if ( memcmp( work->data, g_work->data, algo_gate.work_cmp_size )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr )
|| ( work->job_id != g_work->job_id ) ) )
*/
{
work_free( work );
work_copy( work, g_work );
*nonceptr = 0xffffffffU / opt_n_threads * thr_id;
if ( opt_randomize )
*nonceptr += ( (rand() *4 ) & UINT32_MAX ) / opt_n_threads;
*end_nonce_ptr = ( 0xffffffffU / opt_n_threads ) * (thr_id+1) - 0x20;
// try incrementing the xnonce to chsnge the data
// for ( int i = 0; i < work->xnonce2_size && !( ++work->xnonce2[i] ); i++ );
}
else
++(*nonceptr);
}
// vanilla uses default gen merkle root, otherwise identical to blakecoin
bool register_vanilla_algo( algo_gate_t* gate )
{
#if defined(BLAKECOIN_4WAY)
// four_way_not_tested();
gate->scanhash = (void*)&scanhash_blakecoin_4way;
gate->hash = (void*)&blakecoin_4way_hash;
// gate->get_new_work = (void*)&bc4w_get_new_work;
// blakecoin_4way_init( &blake_4way_init_ctx );
#else
gate->scanhash = (void*)&scanhash_blakecoin;
gate->hash = (void*)&blakecoinhash;
// blakecoin_init( &blake_init_ctx );
#endif
gate->optimizations = AVX2_OPT;
gate->get_max64 = (void*)&blakecoin_get_max64;
return true;
}
bool register_blakecoin_algo( algo_gate_t* gate )
{
register_vanilla_algo( gate );
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
return true;
}

View File

@@ -0,0 +1,21 @@
#ifndef __BLAKECOIN_GATE_H__
#define __BLAKECOIN_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#define BLAKECOIN_4WAY
#endif
#if defined (BLAKECOIN_4WAY)
void blakecoin_4way_hash(void *state, const void *input);
int scanhash_blakecoin_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
#endif
void blakecoinhash( void *state, const void *input );
int scanhash_blakecoin( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
#endif

View File

@@ -1,4 +1,4 @@
#include "algo-gate-api.h"
#include "blakecoin-gate.h"
#define BLAKE32_ROUNDS 8
#include "sph_blake.h"
@@ -98,7 +98,7 @@ void blakecoin_gen_merkle_root ( char* merkle_root, struct stratum_ctx* sctx )
SHA256( sctx->job.coinbase, (int)sctx->job.coinbase_size, merkle_root );
}
*/
/*
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blakecoin_get_max64 ()
{
@@ -121,4 +121,4 @@ bool register_blakecoin_algo( algo_gate_t* gate )
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
return true;
}
*/

View File

@@ -1,5 +1,4 @@
#include "decred-gate.h"
#include "sph_blake.h"
#include "blake-hash-4way.h"
#include <string.h>
#include <stdint.h>
@@ -9,110 +8,58 @@
#if defined (DECRED_4WAY)
static __thread blake256_4way_context blake_mid;
static __thread bool ctx_midstate_done = false;
void decred_hash_4way( void *state, const void *input )
{
uint32_t vhash[4*4] __attribute__ ((aligned (64)));
uint32_t hash0[4] __attribute__ ((aligned (32)));
uint32_t hash1[4] __attribute__ ((aligned (32)));
uint32_t hash2[4] __attribute__ ((aligned (32)));
uint32_t hash3[4] __attribute__ ((aligned (32)));
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (32)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
uint32_t hash3[8] __attribute__ ((aligned (32)));
void *tail = input + ( DECRED_MIDSTATE_LEN << 2 );
int tail_len = 180 - DECRED_MIDSTATE_LEN;
blake256_4way_context ctx __attribute__ ((aligned (64)));
sph_blake256_context ctx2 __attribute__ ((aligned (64)));
uint32_t hash[16] __attribute__ ((aligned (64)));
uint32_t sin0[45], sin1[45], sin2[45], sin3[45];
mm_deinterleave_4x32x( sin0, sin1, sin2, sin3, input, 180*8 );
void *tail = input + DECRED_MIDSTATE_LEN;
int tail_len = 180 - DECRED_MIDSTATE_LEN;
// #define MIDSTATE_LEN 128
/*
uint8_t *ending = (uint8_t*) input;
ending += MIDSTATE_LEN;
if ( !ctx_midstate_done )
{
blake256_4way_init( &blake_mid );
blake256_4way( &blake_mid, input, DECRED_MIDSTATE_LEN );
ctx_midstate_done = true;
}
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
blake256_4way( &ctx, tail, tail_len );
blake256_4way_close( &ctx, vhash );
*/
sph_blake256_init( &ctx2 );
sph_blake256( &ctx2, sin0, 180 );
sph_blake256_close( &ctx2, hash );
blake256_4way_init( &ctx );
blake256_4way( &ctx, input, 180 );
blake256_4way_close( &ctx, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
/*
for ( int i = 0; i < 8; i++ )
if ( hash[i] != hash0[i] )
printf(" hash mismatch, i = %u\n",i);
printf("hash: %08lx %08lx %08lx %08lx\n", *hash, *(hash+1),
*(hash+2), *(hash+3) );
printf("hash0: %08lx %08lx %08lx %08lx\n", *hash0, *(hash0+1),
*(hash0+2), *(hash0+3) );
printf("\n");
*/
// memcpy( state, hash0, 32 );
// memcpy( state+32, hash1, 32 );
// memcpy( state+64, hash1, 32 );
// memcpy( state+96, hash1, 32 );
memcpy( state, hash, 32 );
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t vdata[45*4] __attribute__ ((aligned (64)));
uint32_t hash[4*4] __attribute__ ((aligned (32)));
uint32_t _ALIGN(64) endiandata[48];
// uint32_t _ALIGN(64) hash32[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
uint32_t n = first_nonce;
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
uint32_t vdata[48*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (32)));
uint32_t _ALIGN(64) edata[48];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[DECRED_NONCE_INDEX];
uint32_t n = first_nonce;
const uint32_t HTarget = opt_benchmark ? 0x7f : ptarget[7];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
// #define DCR_NONCE_OFT32 35
ctx_midstate_done = false;
// memcpy(endiandata, pdata, 180);
// copy to buffer guaranteed to be aligned.
memcpy( edata, pdata, 180 );
// use the old way until new way updated for size.
mm_interleave_4x32x( vdata, pdata, pdata, pdata, pdata, 180*8 );
mm_interleave_4x32x( vdata, edata, edata, edata, edata, 180*8 );
blake256_4way_init( &blake_mid );
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
uint32_t *noncep = vdata + DECRED_NONCE_INDEX * 4;
do {
found[0] = found[1] = found[2] = found[3] = false;
* noncep = n;
*(noncep+2) = n+1;
*(noncep+4) = n+2;
*(noncep+6) = n+3;
*(noncep+1) = n+1;
*(noncep+2) = n+2;
*(noncep+3) = n+3;
decred_hash_4way( hash, vdata );
// endiandata[DCR_NONCE_OFT32] = n;
// decred_hash(hash32, endiandata);
if ( hash[7] <= HTarget && fulltest( hash, ptarget ) )
{
work_set_target_ratio( work, hash );
@@ -121,28 +68,28 @@ int scanhash_decred_4way( int thr_id, struct work *work, uint32_t max_nonce,
nonces[0] = n;
pdata[DECRED_NONCE_INDEX] = n;
}
/* if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
if ( (hash+8)[7] <= HTarget && fulltest( hash+8, ptarget ) )
{
work_set_target_ratio( work, hash+8 );
found[1] = true;
num_found++;
nonces[1] = n;
nonces[1] = n+1;
}
if ( (hash+16)[7] <= HTarget && fulltest( hash+16, ptarget ) )
{
work_set_target_ratio( work, hash+16 );
found[2] = true;
num_found++;
nonces[2] = n;
nonces[2] = n+2;
}
if ( (hash+24)[7] <= HTarget && fulltest( hash+24, ptarget ) )
{
work_set_target_ratio( work, hash+24 );
found[3] = true;
num_found++;
nonces[3] = n;
nonces[3] = n+3;
}
*/
n += 4;
} while ( (num_found == 0) && (n < max_nonce)
&& !work_restart[thr_id].restart );

View File

@@ -145,15 +145,13 @@ bool register_decred_algo( algo_gate_t* gate )
{
#if defined(DECRED_4WAY)
four_way_not_tested();
gate->optimizations = FOUR_WAY_OPT;
gate->scanhash = (void*)&scanhash_decred_4way;
gate->hash = (void*)&decred_hash_4way;
#else
gate->optimizations = SSE2_OPT;
gate->scanhash = (void*)&scanhash_decred;
gate->hash = (void*)&decred_hash;
#endif
gate->optimizations = AVX2_OPT;
gate->get_nonceptr = (void*)&decred_get_nonceptr;
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
gate->display_extra_data = (void*)&decred_decode_extradata;

View File

@@ -18,7 +18,7 @@
// uint64_t *hashes_done );
#endif
#if defined(FOUR_WAY) && defined(__AVX__)
#if defined(__AVX2__)
#define DECRED_4WAY
#endif

View File

@@ -1,4 +1,7 @@
#include "pentablake-gate.h"
#if defined (__AVX2__)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -9,8 +12,6 @@
//#define DEBUG_ALGO
#ifdef PENTABLAKE_4WAY
extern void pentablakehash_4way( void *output, const void *input )
{
unsigned char _ALIGN(32) hash[128];

View File

@@ -9,7 +9,7 @@ bool register_pentablake_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_pentablake;
gate->hash = (void*)&pentablakehash;
#endif
gate->optimizations = FOUR_WAY_OPT;
gate->optimizations = AVX2_OPT;
gate->get_max64 = (void*)&get_max64_0x3ffff;
return true;
};

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(FOUR_WAY) && defined(__AVX__)
#if defined(__AVX2__)
#define PENTABLAKE_4WAY
#endif

View File

@@ -16,7 +16,7 @@
#include <stdio.h>
#include "algo/sha/sph_types.h"
#include "crypto/blake2s.h"
#include "sph-blake2s.h"
static const uint32_t blake2s_IV[8] =
{

View File

@@ -872,6 +872,7 @@ blake32_close(sph_blake_small_context *sc,
} else {
sc->T0 -= 512 - bit_len;
}
if (bit_len <= 446) {
memset(u.buf + ptr + 1, 0, 55 - ptr);
if (out_size_w32 == 8)

1177
algo/bmw/bmw-hash-4way.c Normal file

File diff suppressed because it is too large Load Diff

95
algo/bmw/bmw-hash-4way.h Normal file
View File

@@ -0,0 +1,95 @@
/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */
/**
* BMW interface. BMW (aka "Blue Midnight Wish") is a family of
* functions which differ by their output size; this implementation
* defines BMW for output sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_bmw.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef BMW_HASH_H__
#define BMW_HASH_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#ifdef __AVX2__
#include "algo/sha/sph_types.h"
#include "avxdefs.h"
#define SPH_SIZE_bmw256 256
#define SPH_SIZE_bmw512 512
typedef struct {
__m128i buf[64];
__m128i H[16];
size_t ptr;
sph_u32 bit_count; // assume bit_count fits in 32 bits
} bmw_4way_small_context;
typedef bmw_4way_small_context bmw256_4way_context;
typedef struct {
__m256i buf[16];
__m256i H[16];
size_t ptr;
sph_u64 bit_count;
} bmw_4way_big_context;
typedef bmw_4way_big_context bmw512_4way_context;
void bmw256_4way_init(void *cc);
void bmw256_4way(void *cc, const void *data, size_t len);
void bmw256_4way_close(void *cc, void *dst);
void bmw256_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
void bmw512_4way_init(void *cc);
void bmw512_4way(void *cc, const void *data, size_t len);
void bmw512_4way_close(void *cc, void *dst);
void bmw512_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -3,7 +3,8 @@
#include "cryptonight.h"
#include "miner.h"
#include "crypto/c_keccak.h"
#include "avxdefs.h"
#include <immintrin.h>
//#include "avxdefs.h"
void aesni_parallel_noxor(uint8_t *long_state, uint8_t *text, uint8_t *ExpandedKey);
void aesni_parallel_xor(uint8_t *text, uint8_t *ExpandedKey, uint8_t *long_state);

View File

@@ -10,6 +10,10 @@
#endif
#include "cubehash_sse2.h"
#include "algo/sha/sha3-defs.h"
#include <stdbool.h>
#include <unistd.h>
#include <memory.h>
#include "avxdefs.h"
static void transform( cubehashParam *sp )
{
@@ -125,6 +129,18 @@ static void transform( cubehashParam *sp )
#endif
} // transform
// Cubehash context initializing is very expensive.
// Cache the intial value for faster reinitializing.
cubehashParam cube_ctx_cache __attribute__ ((aligned (64)));
int cubehashReinit( cubehashParam *sp )
{
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
return SUCCESS;
}
// Initialize the cache then copy to sp.
int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
{
int i;
@@ -135,24 +151,26 @@ int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
/* Sanity checks */
if ( rounds <= 0 || rounds > 32 )
rounds = CUBEHASH_ROUNDS;
rounds = CUBEHASH_ROUNDS;
if ( blockbytes <= 0 || blockbytes >= 256)
blockbytes = CUBEHASH_BLOCKBYTES;
blockbytes = CUBEHASH_BLOCKBYTES;
// all sizes of __m128i
sp->hashlen = hashbitlen/128;
sp->blocksize = blockbytes/16;
sp->rounds = rounds;
sp->pos = 0;
cube_ctx_cache.hashlen = hashbitlen/128;
cube_ctx_cache.blocksize = blockbytes/16;
cube_ctx_cache.rounds = rounds;
cube_ctx_cache.pos = 0;
for ( i = 0; i < 8; ++i )
sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
cube_ctx_cache.x[i] = _mm_setzero_si128();;
sp->x[0] = _mm_set_epi32( 0, rounds, blockbytes, hashbitlen / 8 );
cube_ctx_cache.x[0] = _mm_set_epi32( 0, rounds, blockbytes,
hashbitlen / 8 );
for ( i = 0; i < 10; ++i )
transform(sp);
// sp->pos = 0;
transform( &cube_ctx_cache );
memcpy( sp, &cube_ctx_cache, sizeof(cubehashParam) );
return SUCCESS;
}

View File

@@ -29,6 +29,8 @@ extern "C" {
#endif
int cubehashInit(cubehashParam* sp, int hashbitlen, int rounds, int blockbytes);
// reinitialize context with same parameters, much faster.
int cubehashReinit( cubehashParam* sp );
int cubehashUpdate(cubehashParam* sp, const byte *data, size_t size);

View File

@@ -20,11 +20,11 @@ typedef struct {
#else
hashState_groestl groestl;
#endif
#ifndef USE_SPH_SHA
SHA256_CTX sha;
#else
//#ifndef USE_SPH_SHA
// SHA256_CTX sha;
//#else
sph_sha256_context sha;
#endif
//#endif
} myrgr_ctx_holder;
myrgr_ctx_holder myrgr_ctx;
@@ -36,11 +36,11 @@ void init_myrgr_ctx()
#else
init_groestl (&myrgr_ctx.groestl, 64 );
#endif
#ifndef USE_SPH_SHA
SHA256_Init( &myrgr_ctx.sha );
#else
//#ifndef USE_SPH_SHA
// SHA256_Init( &myrgr_ctx.sha );
//#else
sph_sha256_init( &myrgr_ctx.sha );
#endif
//#endif
}
void myriadhash( void *output, const void *input )
@@ -57,13 +57,13 @@ void myriadhash( void *output, const void *input )
(const char*)input, 640 );
#endif
#ifndef USE_SPH_SHA
SHA256_Update( &ctx.sha, hash, 64 );
SHA256_Final( (unsigned char*) hash, &ctx.sha );
#else
//#ifndef USE_SPH_SHA
// SHA256_Update( &ctx.sha, hash, 64 );
// SHA256_Final( (unsigned char*) hash, &ctx.sha );
//#else
sph_sha256(&ctx.sha, hash, 64);
sph_sha256_close(&ctx.sha, hash);
#endif
//#endif
memcpy(output, hash, 32);
}

View File

@@ -0,0 +1,935 @@
/* $Id: hamsi.c 251 2010-10-19 14:31:51Z tp $ */
/*
* Hamsi implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
//#include "miner.h"
#include "hamsi-hash-4way.h"
#if defined(__AVX2__)
#ifdef __cplusplus
extern "C"{
#endif
/*
* The SPH_HAMSI_EXPAND_* define how many input bits we handle in one
* table lookup during message expansion (1 to 8, inclusive). If we note
* w the number of bits per message word (w=32 for Hamsi-224/256, w=64
* for Hamsi-384/512), r the size of a "row" in 32-bit words (r=8 for
* Hamsi-224/256, r=16 for Hamsi-384/512), and n the expansion level,
* then we will get t tables (where t=ceil(w/n)) of individual size
* 2^n*r*4 (in bytes). The last table may be shorter (e.g. with w=32 and
* n=5, there are 7 tables, but the last one uses only two bits on
* input, not five).
*
* Also, we read t rows of r words from RAM. Words in a given row are
* concatenated in RAM in that order, so most of the cost is about
* reading the first row word; comparatively, cache misses are thus
* less expensive with Hamsi-512 (r=16) than with Hamsi-256 (r=8).
*
* When n=1, tables are "special" in that we omit the first entry of
* each table (which always contains 0), so that total table size is
* halved.
*
* We thus have the following (size1 is the cumulative table size of
* Hamsi-224/256; size2 is for Hamsi-384/512; similarly, t1 and t2
* are for Hamsi-224/256 and Hamsi-384/512, respectively).
*
* n size1 size2 t1 t2
* ---------------------------------------
* 1 1024 4096 32 64
* 2 2048 8192 16 32
* 3 2688 10880 11 22
* 4 4096 16384 8 16
* 5 6272 25600 7 13
* 6 10368 41984 6 11
* 7 16896 73856 5 10
* 8 32768 131072 4 8
*
* So there is a trade-off: a lower n makes the tables fit better in
* L1 cache, but increases the number of memory accesses. The optimal
* value depends on the amount of available L1 cache and the relative
* impact of a cache miss.
*
* Experimentally, in ideal benchmark conditions (which are not necessarily
* realistic with regards to L1 cache contention), it seems that n=8 is
* the best value on "big" architectures (those with 32 kB or more of L1
* cache), while n=4 is better on "small" architectures. This was tested
* on an Intel Core2 Q6600 (both 32-bit and 64-bit mode), a PowerPC G3
* (32 kB L1 cache, hence "big"), and a MIPS-compatible Broadcom BCM3302
* (8 kB L1 cache).
*
* Note: with n=1, the 32 tables (actually implemented as one big table)
* are read entirely and sequentially, regardless of the input data,
* thus avoiding any data-dependent table access pattern.
*/
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
//#include "hamsi-helper-4way.c"
static const sph_u32 IV512[] = {
SPH_C32(0x73746565), SPH_C32(0x6c706172), SPH_C32(0x6b204172),
SPH_C32(0x656e6265), SPH_C32(0x72672031), SPH_C32(0x302c2062),
SPH_C32(0x75732032), SPH_C32(0x3434362c), SPH_C32(0x20422d33),
SPH_C32(0x30303120), SPH_C32(0x4c657576), SPH_C32(0x656e2d48),
SPH_C32(0x65766572), SPH_C32(0x6c65652c), SPH_C32(0x2042656c),
SPH_C32(0x6769756d)
};
static const sph_u32 alpha_n[] = {
SPH_C32(0xff00f0f0), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0cccc),
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00),
SPH_C32(0xaaaacccc), SPH_C32(0xf0f0ff00), SPH_C32(0xf0f0cccc),
SPH_C32(0xaaaaff00), SPH_C32(0xccccff00), SPH_C32(0xaaaaf0f0),
SPH_C32(0xaaaaf0f0), SPH_C32(0xff00cccc), SPH_C32(0xccccf0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xff00f0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xf0f0cccc), SPH_C32(0xf0f0ff00),
SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00), SPH_C32(0xaaaacccc),
SPH_C32(0xaaaaff00), SPH_C32(0xf0f0cccc), SPH_C32(0xaaaaf0f0),
SPH_C32(0xccccff00), SPH_C32(0xff00cccc), SPH_C32(0xaaaaf0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xccccf0f0)
};
static const sph_u32 alpha_f[] = {
SPH_C32(0xcaf9639c), SPH_C32(0x0ff0f9c0), SPH_C32(0x639c0ff0),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9),
SPH_C32(0xf9c00ff0), SPH_C32(0x639ccaf9), SPH_C32(0x639c0ff0),
SPH_C32(0xf9c0caf9), SPH_C32(0x0ff0caf9), SPH_C32(0xf9c0639c),
SPH_C32(0xf9c0639c), SPH_C32(0xcaf90ff0), SPH_C32(0x0ff0639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0xcaf9639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x639c0ff0), SPH_C32(0x639ccaf9),
SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9), SPH_C32(0xf9c00ff0),
SPH_C32(0xf9c0caf9), SPH_C32(0x639c0ff0), SPH_C32(0xf9c0639c),
SPH_C32(0x0ff0caf9), SPH_C32(0xcaf90ff0), SPH_C32(0xf9c0639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0639c)
};
// imported from hamsi helper
/* Note: this table lists bits within each byte from least
siginificant to most significant. */
static const sph_u32 T512[64][16] = {
{ SPH_C32(0xef0b0270), SPH_C32(0x3afd0000), SPH_C32(0x5dae0000),
SPH_C32(0x69490000), SPH_C32(0x9b0f3c06), SPH_C32(0x4405b5f9),
SPH_C32(0x66140a51), SPH_C32(0x924f5d0a), SPH_C32(0xc96b0030),
SPH_C32(0xe7250000), SPH_C32(0x2f840000), SPH_C32(0x264f0000),
SPH_C32(0x08695bf9), SPH_C32(0x6dfcf137), SPH_C32(0x509f6984),
SPH_C32(0x9e69af68) },
{ SPH_C32(0xc96b0030), SPH_C32(0xe7250000), SPH_C32(0x2f840000),
SPH_C32(0x264f0000), SPH_C32(0x08695bf9), SPH_C32(0x6dfcf137),
SPH_C32(0x509f6984), SPH_C32(0x9e69af68), SPH_C32(0x26600240),
SPH_C32(0xddd80000), SPH_C32(0x722a0000), SPH_C32(0x4f060000),
SPH_C32(0x936667ff), SPH_C32(0x29f944ce), SPH_C32(0x368b63d5),
SPH_C32(0x0c26f262) },
{ SPH_C32(0x145a3c00), SPH_C32(0xb9e90000), SPH_C32(0x61270000),
SPH_C32(0xf1610000), SPH_C32(0xce613d6c), SPH_C32(0xb0493d78),
SPH_C32(0x47a96720), SPH_C32(0xe18e24c5), SPH_C32(0x23671400),
SPH_C32(0xc8b90000), SPH_C32(0xf4c70000), SPH_C32(0xfb750000),
SPH_C32(0x73cd2465), SPH_C32(0xf8a6a549), SPH_C32(0x02c40a3f),
SPH_C32(0xdc24e61f) },
{ SPH_C32(0x23671400), SPH_C32(0xc8b90000), SPH_C32(0xf4c70000),
SPH_C32(0xfb750000), SPH_C32(0x73cd2465), SPH_C32(0xf8a6a549),
SPH_C32(0x02c40a3f), SPH_C32(0xdc24e61f), SPH_C32(0x373d2800),
SPH_C32(0x71500000), SPH_C32(0x95e00000), SPH_C32(0x0a140000),
SPH_C32(0xbdac1909), SPH_C32(0x48ef9831), SPH_C32(0x456d6d1f),
SPH_C32(0x3daac2da) },
{ SPH_C32(0x54285c00), SPH_C32(0xeaed0000), SPH_C32(0xc5d60000),
SPH_C32(0xa1c50000), SPH_C32(0xb3a26770), SPH_C32(0x94a5c4e1),
SPH_C32(0x6bb0419d), SPH_C32(0x551b3782), SPH_C32(0x9cbb1800),
SPH_C32(0xb0d30000), SPH_C32(0x92510000), SPH_C32(0xed930000),
SPH_C32(0x593a4345), SPH_C32(0xe114d5f4), SPH_C32(0x430633da),
SPH_C32(0x78cace29) },
{ SPH_C32(0x9cbb1800), SPH_C32(0xb0d30000), SPH_C32(0x92510000),
SPH_C32(0xed930000), SPH_C32(0x593a4345), SPH_C32(0xe114d5f4),
SPH_C32(0x430633da), SPH_C32(0x78cace29), SPH_C32(0xc8934400),
SPH_C32(0x5a3e0000), SPH_C32(0x57870000), SPH_C32(0x4c560000),
SPH_C32(0xea982435), SPH_C32(0x75b11115), SPH_C32(0x28b67247),
SPH_C32(0x2dd1f9ab) },
{ SPH_C32(0x29449c00), SPH_C32(0x64e70000), SPH_C32(0xf24b0000),
SPH_C32(0xc2f30000), SPH_C32(0x0ede4e8f), SPH_C32(0x56c23745),
SPH_C32(0xf3e04259), SPH_C32(0x8d0d9ec4), SPH_C32(0x466d0c00),
SPH_C32(0x08620000), SPH_C32(0xdd5d0000), SPH_C32(0xbadd0000),
SPH_C32(0x6a927942), SPH_C32(0x441f2b93), SPH_C32(0x218ace6f),
SPH_C32(0xbf2c0be2) },
{ SPH_C32(0x466d0c00), SPH_C32(0x08620000), SPH_C32(0xdd5d0000),
SPH_C32(0xbadd0000), SPH_C32(0x6a927942), SPH_C32(0x441f2b93),
SPH_C32(0x218ace6f), SPH_C32(0xbf2c0be2), SPH_C32(0x6f299000),
SPH_C32(0x6c850000), SPH_C32(0x2f160000), SPH_C32(0x782e0000),
SPH_C32(0x644c37cd), SPH_C32(0x12dd1cd6), SPH_C32(0xd26a8c36),
SPH_C32(0x32219526) },
{ SPH_C32(0xf6800005), SPH_C32(0x3443c000), SPH_C32(0x24070000),
SPH_C32(0x8f3d0000), SPH_C32(0x21373bfb), SPH_C32(0x0ab8d5ae),
SPH_C32(0xcdc58b19), SPH_C32(0xd795ba31), SPH_C32(0xa67f0001),
SPH_C32(0x71378000), SPH_C32(0x19fc0000), SPH_C32(0x96db0000),
SPH_C32(0x3a8b6dfd), SPH_C32(0xebcaaef3), SPH_C32(0x2c6d478f),
SPH_C32(0xac8e6c88) },
{ SPH_C32(0xa67f0001), SPH_C32(0x71378000), SPH_C32(0x19fc0000),
SPH_C32(0x96db0000), SPH_C32(0x3a8b6dfd), SPH_C32(0xebcaaef3),
SPH_C32(0x2c6d478f), SPH_C32(0xac8e6c88), SPH_C32(0x50ff0004),
SPH_C32(0x45744000), SPH_C32(0x3dfb0000), SPH_C32(0x19e60000),
SPH_C32(0x1bbc5606), SPH_C32(0xe1727b5d), SPH_C32(0xe1a8cc96),
SPH_C32(0x7b1bd6b9) },
{ SPH_C32(0xf7750009), SPH_C32(0xcf3cc000), SPH_C32(0xc3d60000),
SPH_C32(0x04920000), SPH_C32(0x029519a9), SPH_C32(0xf8e836ba),
SPH_C32(0x7a87f14e), SPH_C32(0x9e16981a), SPH_C32(0xd46a0000),
SPH_C32(0x8dc8c000), SPH_C32(0xa5af0000), SPH_C32(0x4a290000),
SPH_C32(0xfc4e427a), SPH_C32(0xc9b4866c), SPH_C32(0x98369604),
SPH_C32(0xf746c320) },
{ SPH_C32(0xd46a0000), SPH_C32(0x8dc8c000), SPH_C32(0xa5af0000),
SPH_C32(0x4a290000), SPH_C32(0xfc4e427a), SPH_C32(0xc9b4866c),
SPH_C32(0x98369604), SPH_C32(0xf746c320), SPH_C32(0x231f0009),
SPH_C32(0x42f40000), SPH_C32(0x66790000), SPH_C32(0x4ebb0000),
SPH_C32(0xfedb5bd3), SPH_C32(0x315cb0d6), SPH_C32(0xe2b1674a),
SPH_C32(0x69505b3a) },
{ SPH_C32(0x774400f0), SPH_C32(0xf15a0000), SPH_C32(0xf5b20000),
SPH_C32(0x34140000), SPH_C32(0x89377e8c), SPH_C32(0x5a8bec25),
SPH_C32(0x0bc3cd1e), SPH_C32(0xcf3775cb), SPH_C32(0xf46c0050),
SPH_C32(0x96180000), SPH_C32(0x14a50000), SPH_C32(0x031f0000),
SPH_C32(0x42947eb8), SPH_C32(0x66bf7e19), SPH_C32(0x9ca470d2),
SPH_C32(0x8a341574) },
{ SPH_C32(0xf46c0050), SPH_C32(0x96180000), SPH_C32(0x14a50000),
SPH_C32(0x031f0000), SPH_C32(0x42947eb8), SPH_C32(0x66bf7e19),
SPH_C32(0x9ca470d2), SPH_C32(0x8a341574), SPH_C32(0x832800a0),
SPH_C32(0x67420000), SPH_C32(0xe1170000), SPH_C32(0x370b0000),
SPH_C32(0xcba30034), SPH_C32(0x3c34923c), SPH_C32(0x9767bdcc),
SPH_C32(0x450360bf) },
{ SPH_C32(0xe8870170), SPH_C32(0x9d720000), SPH_C32(0x12db0000),
SPH_C32(0xd4220000), SPH_C32(0xf2886b27), SPH_C32(0xa921e543),
SPH_C32(0x4ef8b518), SPH_C32(0x618813b1), SPH_C32(0xb4370060),
SPH_C32(0x0c4c0000), SPH_C32(0x56c20000), SPH_C32(0x5cae0000),
SPH_C32(0x94541f3f), SPH_C32(0x3b3ef825), SPH_C32(0x1b365f3d),
SPH_C32(0xf3d45758) },
{ SPH_C32(0xb4370060), SPH_C32(0x0c4c0000), SPH_C32(0x56c20000),
SPH_C32(0x5cae0000), SPH_C32(0x94541f3f), SPH_C32(0x3b3ef825),
SPH_C32(0x1b365f3d), SPH_C32(0xf3d45758), SPH_C32(0x5cb00110),
SPH_C32(0x913e0000), SPH_C32(0x44190000), SPH_C32(0x888c0000),
SPH_C32(0x66dc7418), SPH_C32(0x921f1d66), SPH_C32(0x55ceea25),
SPH_C32(0x925c44e9) },
{ SPH_C32(0x0c720000), SPH_C32(0x49e50f00), SPH_C32(0x42790000),
SPH_C32(0x5cea0000), SPH_C32(0x33aa301a), SPH_C32(0x15822514),
SPH_C32(0x95a34b7b), SPH_C32(0xb44b0090), SPH_C32(0xfe220000),
SPH_C32(0xa7580500), SPH_C32(0x25d10000), SPH_C32(0xf7600000),
SPH_C32(0x893178da), SPH_C32(0x1fd4f860), SPH_C32(0x4ed0a315),
SPH_C32(0xa123ff9f) },
{ SPH_C32(0xfe220000), SPH_C32(0xa7580500), SPH_C32(0x25d10000),
SPH_C32(0xf7600000), SPH_C32(0x893178da), SPH_C32(0x1fd4f860),
SPH_C32(0x4ed0a315), SPH_C32(0xa123ff9f), SPH_C32(0xf2500000),
SPH_C32(0xeebd0a00), SPH_C32(0x67a80000), SPH_C32(0xab8a0000),
SPH_C32(0xba9b48c0), SPH_C32(0x0a56dd74), SPH_C32(0xdb73e86e),
SPH_C32(0x1568ff0f) },
{ SPH_C32(0x45180000), SPH_C32(0xa5b51700), SPH_C32(0xf96a0000),
SPH_C32(0x3b480000), SPH_C32(0x1ecc142c), SPH_C32(0x231395d6),
SPH_C32(0x16bca6b0), SPH_C32(0xdf33f4df), SPH_C32(0xb83d0000),
SPH_C32(0x16710600), SPH_C32(0x379a0000), SPH_C32(0xf5b10000),
SPH_C32(0x228161ac), SPH_C32(0xae48f145), SPH_C32(0x66241616),
SPH_C32(0xc5c1eb3e) },
{ SPH_C32(0xb83d0000), SPH_C32(0x16710600), SPH_C32(0x379a0000),
SPH_C32(0xf5b10000), SPH_C32(0x228161ac), SPH_C32(0xae48f145),
SPH_C32(0x66241616), SPH_C32(0xc5c1eb3e), SPH_C32(0xfd250000),
SPH_C32(0xb3c41100), SPH_C32(0xcef00000), SPH_C32(0xcef90000),
SPH_C32(0x3c4d7580), SPH_C32(0x8d5b6493), SPH_C32(0x7098b0a6),
SPH_C32(0x1af21fe1) },
{ SPH_C32(0x75a40000), SPH_C32(0xc28b2700), SPH_C32(0x94a40000),
SPH_C32(0x90f50000), SPH_C32(0xfb7857e0), SPH_C32(0x49ce0bae),
SPH_C32(0x1767c483), SPH_C32(0xaedf667e), SPH_C32(0xd1660000),
SPH_C32(0x1bbc0300), SPH_C32(0x9eec0000), SPH_C32(0xf6940000),
SPH_C32(0x03024527), SPH_C32(0xcf70fcf2), SPH_C32(0xb4431b17),
SPH_C32(0x857f3c2b) },
{ SPH_C32(0xd1660000), SPH_C32(0x1bbc0300), SPH_C32(0x9eec0000),
SPH_C32(0xf6940000), SPH_C32(0x03024527), SPH_C32(0xcf70fcf2),
SPH_C32(0xb4431b17), SPH_C32(0x857f3c2b), SPH_C32(0xa4c20000),
SPH_C32(0xd9372400), SPH_C32(0x0a480000), SPH_C32(0x66610000),
SPH_C32(0xf87a12c7), SPH_C32(0x86bef75c), SPH_C32(0xa324df94),
SPH_C32(0x2ba05a55) },
{ SPH_C32(0x75c90003), SPH_C32(0x0e10c000), SPH_C32(0xd1200000),
SPH_C32(0xbaea0000), SPH_C32(0x8bc42f3e), SPH_C32(0x8758b757),
SPH_C32(0xbb28761d), SPH_C32(0x00b72e2b), SPH_C32(0xeecf0001),
SPH_C32(0x6f564000), SPH_C32(0xf33e0000), SPH_C32(0xa79e0000),
SPH_C32(0xbdb57219), SPH_C32(0xb711ebc5), SPH_C32(0x4a3b40ba),
SPH_C32(0xfeabf254) },
{ SPH_C32(0xeecf0001), SPH_C32(0x6f564000), SPH_C32(0xf33e0000),
SPH_C32(0xa79e0000), SPH_C32(0xbdb57219), SPH_C32(0xb711ebc5),
SPH_C32(0x4a3b40ba), SPH_C32(0xfeabf254), SPH_C32(0x9b060002),
SPH_C32(0x61468000), SPH_C32(0x221e0000), SPH_C32(0x1d740000),
SPH_C32(0x36715d27), SPH_C32(0x30495c92), SPH_C32(0xf11336a7),
SPH_C32(0xfe1cdc7f) },
{ SPH_C32(0x86790000), SPH_C32(0x3f390002), SPH_C32(0xe19ae000),
SPH_C32(0x98560000), SPH_C32(0x9565670e), SPH_C32(0x4e88c8ea),
SPH_C32(0xd3dd4944), SPH_C32(0x161ddab9), SPH_C32(0x30b70000),
SPH_C32(0xe5d00000), SPH_C32(0xf4f46000), SPH_C32(0x42c40000),
SPH_C32(0x63b83d6a), SPH_C32(0x78ba9460), SPH_C32(0x21afa1ea),
SPH_C32(0xb0a51834) },
{ SPH_C32(0x30b70000), SPH_C32(0xe5d00000), SPH_C32(0xf4f46000),
SPH_C32(0x42c40000), SPH_C32(0x63b83d6a), SPH_C32(0x78ba9460),
SPH_C32(0x21afa1ea), SPH_C32(0xb0a51834), SPH_C32(0xb6ce0000),
SPH_C32(0xdae90002), SPH_C32(0x156e8000), SPH_C32(0xda920000),
SPH_C32(0xf6dd5a64), SPH_C32(0x36325c8a), SPH_C32(0xf272e8ae),
SPH_C32(0xa6b8c28d) },
{ SPH_C32(0x14190000), SPH_C32(0x23ca003c), SPH_C32(0x50df0000),
SPH_C32(0x44b60000), SPH_C32(0x1b6c67b0), SPH_C32(0x3cf3ac75),
SPH_C32(0x61e610b0), SPH_C32(0xdbcadb80), SPH_C32(0xe3430000),
SPH_C32(0x3a4e0014), SPH_C32(0xf2c60000), SPH_C32(0xaa4e0000),
SPH_C32(0xdb1e42a6), SPH_C32(0x256bbe15), SPH_C32(0x123db156),
SPH_C32(0x3a4e99d7) },
{ SPH_C32(0xe3430000), SPH_C32(0x3a4e0014), SPH_C32(0xf2c60000),
SPH_C32(0xaa4e0000), SPH_C32(0xdb1e42a6), SPH_C32(0x256bbe15),
SPH_C32(0x123db156), SPH_C32(0x3a4e99d7), SPH_C32(0xf75a0000),
SPH_C32(0x19840028), SPH_C32(0xa2190000), SPH_C32(0xeef80000),
SPH_C32(0xc0722516), SPH_C32(0x19981260), SPH_C32(0x73dba1e6),
SPH_C32(0xe1844257) },
{ SPH_C32(0x54500000), SPH_C32(0x0671005c), SPH_C32(0x25ae0000),
SPH_C32(0x6a1e0000), SPH_C32(0x2ea54edf), SPH_C32(0x664e8512),
SPH_C32(0xbfba18c3), SPH_C32(0x7e715d17), SPH_C32(0xbc8d0000),
SPH_C32(0xfc3b0018), SPH_C32(0x19830000), SPH_C32(0xd10b0000),
SPH_C32(0xae1878c4), SPH_C32(0x42a69856), SPH_C32(0x0012da37),
SPH_C32(0x2c3b504e) },
{ SPH_C32(0xbc8d0000), SPH_C32(0xfc3b0018), SPH_C32(0x19830000),
SPH_C32(0xd10b0000), SPH_C32(0xae1878c4), SPH_C32(0x42a69856),
SPH_C32(0x0012da37), SPH_C32(0x2c3b504e), SPH_C32(0xe8dd0000),
SPH_C32(0xfa4a0044), SPH_C32(0x3c2d0000), SPH_C32(0xbb150000),
SPH_C32(0x80bd361b), SPH_C32(0x24e81d44), SPH_C32(0xbfa8c2f4),
SPH_C32(0x524a0d59) },
{ SPH_C32(0x69510000), SPH_C32(0xd4e1009c), SPH_C32(0xc3230000),
SPH_C32(0xac2f0000), SPH_C32(0xe4950bae), SPH_C32(0xcea415dc),
SPH_C32(0x87ec287c), SPH_C32(0xbce1a3ce), SPH_C32(0xc6730000),
SPH_C32(0xaf8d000c), SPH_C32(0xa4c10000), SPH_C32(0x218d0000),
SPH_C32(0x23111587), SPH_C32(0x7913512f), SPH_C32(0x1d28ac88),
SPH_C32(0x378dd173) },
{ SPH_C32(0xc6730000), SPH_C32(0xaf8d000c), SPH_C32(0xa4c10000),
SPH_C32(0x218d0000), SPH_C32(0x23111587), SPH_C32(0x7913512f),
SPH_C32(0x1d28ac88), SPH_C32(0x378dd173), SPH_C32(0xaf220000),
SPH_C32(0x7b6c0090), SPH_C32(0x67e20000), SPH_C32(0x8da20000),
SPH_C32(0xc7841e29), SPH_C32(0xb7b744f3), SPH_C32(0x9ac484f4),
SPH_C32(0x8b6c72bd) },
{ SPH_C32(0xcc140000), SPH_C32(0xa5630000), SPH_C32(0x5ab90780),
SPH_C32(0x3b500000), SPH_C32(0x4bd013ff), SPH_C32(0x879b3418),
SPH_C32(0x694348c1), SPH_C32(0xca5a87fe), SPH_C32(0x819e0000),
SPH_C32(0xec570000), SPH_C32(0x66320280), SPH_C32(0x95f30000),
SPH_C32(0x5da92802), SPH_C32(0x48f43cbc), SPH_C32(0xe65aa22d),
SPH_C32(0x8e67b7fa) },
{ SPH_C32(0x819e0000), SPH_C32(0xec570000), SPH_C32(0x66320280),
SPH_C32(0x95f30000), SPH_C32(0x5da92802), SPH_C32(0x48f43cbc),
SPH_C32(0xe65aa22d), SPH_C32(0x8e67b7fa), SPH_C32(0x4d8a0000),
SPH_C32(0x49340000), SPH_C32(0x3c8b0500), SPH_C32(0xaea30000),
SPH_C32(0x16793bfd), SPH_C32(0xcf6f08a4), SPH_C32(0x8f19eaec),
SPH_C32(0x443d3004) },
{ SPH_C32(0x78230000), SPH_C32(0x12fc0000), SPH_C32(0xa93a0b80),
SPH_C32(0x90a50000), SPH_C32(0x713e2879), SPH_C32(0x7ee98924),
SPH_C32(0xf08ca062), SPH_C32(0x636f8bab), SPH_C32(0x02af0000),
SPH_C32(0xb7280000), SPH_C32(0xba1c0300), SPH_C32(0x56980000),
SPH_C32(0xba8d45d3), SPH_C32(0x8048c667), SPH_C32(0xa95c149a),
SPH_C32(0xf4f6ea7b) },
{ SPH_C32(0x02af0000), SPH_C32(0xb7280000), SPH_C32(0xba1c0300),
SPH_C32(0x56980000), SPH_C32(0xba8d45d3), SPH_C32(0x8048c667),
SPH_C32(0xa95c149a), SPH_C32(0xf4f6ea7b), SPH_C32(0x7a8c0000),
SPH_C32(0xa5d40000), SPH_C32(0x13260880), SPH_C32(0xc63d0000),
SPH_C32(0xcbb36daa), SPH_C32(0xfea14f43), SPH_C32(0x59d0b4f8),
SPH_C32(0x979961d0) },
{ SPH_C32(0xac480000), SPH_C32(0x1ba60000), SPH_C32(0x45fb1380),
SPH_C32(0x03430000), SPH_C32(0x5a85316a), SPH_C32(0x1fb250b6),
SPH_C32(0xfe72c7fe), SPH_C32(0x91e478f6), SPH_C32(0x1e4e0000),
SPH_C32(0xdecf0000), SPH_C32(0x6df80180), SPH_C32(0x77240000),
SPH_C32(0xec47079e), SPH_C32(0xf4a0694e), SPH_C32(0xcda31812),
SPH_C32(0x98aa496e) },
{ SPH_C32(0x1e4e0000), SPH_C32(0xdecf0000), SPH_C32(0x6df80180),
SPH_C32(0x77240000), SPH_C32(0xec47079e), SPH_C32(0xf4a0694e),
SPH_C32(0xcda31812), SPH_C32(0x98aa496e), SPH_C32(0xb2060000),
SPH_C32(0xc5690000), SPH_C32(0x28031200), SPH_C32(0x74670000),
SPH_C32(0xb6c236f4), SPH_C32(0xeb1239f8), SPH_C32(0x33d1dfec),
SPH_C32(0x094e3198) },
{ SPH_C32(0xaec30000), SPH_C32(0x9c4f0001), SPH_C32(0x79d1e000),
SPH_C32(0x2c150000), SPH_C32(0x45cc75b3), SPH_C32(0x6650b736),
SPH_C32(0xab92f78f), SPH_C32(0xa312567b), SPH_C32(0xdb250000),
SPH_C32(0x09290000), SPH_C32(0x49aac000), SPH_C32(0x81e10000),
SPH_C32(0xcafe6b59), SPH_C32(0x42793431), SPH_C32(0x43566b76),
SPH_C32(0xe86cba2e) },
{ SPH_C32(0xdb250000), SPH_C32(0x09290000), SPH_C32(0x49aac000),
SPH_C32(0x81e10000), SPH_C32(0xcafe6b59), SPH_C32(0x42793431),
SPH_C32(0x43566b76), SPH_C32(0xe86cba2e), SPH_C32(0x75e60000),
SPH_C32(0x95660001), SPH_C32(0x307b2000), SPH_C32(0xadf40000),
SPH_C32(0x8f321eea), SPH_C32(0x24298307), SPH_C32(0xe8c49cf9),
SPH_C32(0x4b7eec55) },
{ SPH_C32(0x58430000), SPH_C32(0x807e0000), SPH_C32(0x78330001),
SPH_C32(0xc66b3800), SPH_C32(0xe7375cdc), SPH_C32(0x79ad3fdd),
SPH_C32(0xac73fe6f), SPH_C32(0x3a4479b1), SPH_C32(0x1d5a0000),
SPH_C32(0x2b720000), SPH_C32(0x488d0000), SPH_C32(0xaf611800),
SPH_C32(0x25cb2ec5), SPH_C32(0xc879bfd0), SPH_C32(0x81a20429),
SPH_C32(0x1e7536a6) },
{ SPH_C32(0x1d5a0000), SPH_C32(0x2b720000), SPH_C32(0x488d0000),
SPH_C32(0xaf611800), SPH_C32(0x25cb2ec5), SPH_C32(0xc879bfd0),
SPH_C32(0x81a20429), SPH_C32(0x1e7536a6), SPH_C32(0x45190000),
SPH_C32(0xab0c0000), SPH_C32(0x30be0001), SPH_C32(0x690a2000),
SPH_C32(0xc2fc7219), SPH_C32(0xb1d4800d), SPH_C32(0x2dd1fa46),
SPH_C32(0x24314f17) },
{ SPH_C32(0xa53b0000), SPH_C32(0x14260000), SPH_C32(0x4e30001e),
SPH_C32(0x7cae0000), SPH_C32(0x8f9e0dd5), SPH_C32(0x78dfaa3d),
SPH_C32(0xf73168d8), SPH_C32(0x0b1b4946), SPH_C32(0x07ed0000),
SPH_C32(0xb2500000), SPH_C32(0x8774000a), SPH_C32(0x970d0000),
SPH_C32(0x437223ae), SPH_C32(0x48c76ea4), SPH_C32(0xf4786222),
SPH_C32(0x9075b1ce) },
{ SPH_C32(0x07ed0000), SPH_C32(0xb2500000), SPH_C32(0x8774000a),
SPH_C32(0x970d0000), SPH_C32(0x437223ae), SPH_C32(0x48c76ea4),
SPH_C32(0xf4786222), SPH_C32(0x9075b1ce), SPH_C32(0xa2d60000),
SPH_C32(0xa6760000), SPH_C32(0xc9440014), SPH_C32(0xeba30000),
SPH_C32(0xccec2e7b), SPH_C32(0x3018c499), SPH_C32(0x03490afa),
SPH_C32(0x9b6ef888) },
{ SPH_C32(0x88980000), SPH_C32(0x1f940000), SPH_C32(0x7fcf002e),
SPH_C32(0xfb4e0000), SPH_C32(0xf158079a), SPH_C32(0x61ae9167),
SPH_C32(0xa895706c), SPH_C32(0xe6107494), SPH_C32(0x0bc20000),
SPH_C32(0xdb630000), SPH_C32(0x7e88000c), SPH_C32(0x15860000),
SPH_C32(0x91fd48f3), SPH_C32(0x7581bb43), SPH_C32(0xf460449e),
SPH_C32(0xd8b61463) },
{ SPH_C32(0x0bc20000), SPH_C32(0xdb630000), SPH_C32(0x7e88000c),
SPH_C32(0x15860000), SPH_C32(0x91fd48f3), SPH_C32(0x7581bb43),
SPH_C32(0xf460449e), SPH_C32(0xd8b61463), SPH_C32(0x835a0000),
SPH_C32(0xc4f70000), SPH_C32(0x01470022), SPH_C32(0xeec80000),
SPH_C32(0x60a54f69), SPH_C32(0x142f2a24), SPH_C32(0x5cf534f2),
SPH_C32(0x3ea660f7) },
{ SPH_C32(0x52500000), SPH_C32(0x29540000), SPH_C32(0x6a61004e),
SPH_C32(0xf0ff0000), SPH_C32(0x9a317eec), SPH_C32(0x452341ce),
SPH_C32(0xcf568fe5), SPH_C32(0x5303130f), SPH_C32(0x538d0000),
SPH_C32(0xa9fc0000), SPH_C32(0x9ef70006), SPH_C32(0x56ff0000),
SPH_C32(0x0ae4004e), SPH_C32(0x92c5cdf9), SPH_C32(0xa9444018),
SPH_C32(0x7f975691) },
{ SPH_C32(0x538d0000), SPH_C32(0xa9fc0000), SPH_C32(0x9ef70006),
SPH_C32(0x56ff0000), SPH_C32(0x0ae4004e), SPH_C32(0x92c5cdf9),
SPH_C32(0xa9444018), SPH_C32(0x7f975691), SPH_C32(0x01dd0000),
SPH_C32(0x80a80000), SPH_C32(0xf4960048), SPH_C32(0xa6000000),
SPH_C32(0x90d57ea2), SPH_C32(0xd7e68c37), SPH_C32(0x6612cffd),
SPH_C32(0x2c94459e) },
{ SPH_C32(0xe6280000), SPH_C32(0x4c4b0000), SPH_C32(0xa8550000),
SPH_C32(0xd3d002e0), SPH_C32(0xd86130b8), SPH_C32(0x98a7b0da),
SPH_C32(0x289506b4), SPH_C32(0xd75a4897), SPH_C32(0xf0c50000),
SPH_C32(0x59230000), SPH_C32(0x45820000), SPH_C32(0xe18d00c0),
SPH_C32(0x3b6d0631), SPH_C32(0xc2ed5699), SPH_C32(0xcbe0fe1c),
SPH_C32(0x56a7b19f) },
{ SPH_C32(0xf0c50000), SPH_C32(0x59230000), SPH_C32(0x45820000),
SPH_C32(0xe18d00c0), SPH_C32(0x3b6d0631), SPH_C32(0xc2ed5699),
SPH_C32(0xcbe0fe1c), SPH_C32(0x56a7b19f), SPH_C32(0x16ed0000),
SPH_C32(0x15680000), SPH_C32(0xedd70000), SPH_C32(0x325d0220),
SPH_C32(0xe30c3689), SPH_C32(0x5a4ae643), SPH_C32(0xe375f8a8),
SPH_C32(0x81fdf908) },
{ SPH_C32(0xb4310000), SPH_C32(0x77330000), SPH_C32(0xb15d0000),
SPH_C32(0x7fd004e0), SPH_C32(0x78a26138), SPH_C32(0xd116c35d),
SPH_C32(0xd256d489), SPH_C32(0x4e6f74de), SPH_C32(0xe3060000),
SPH_C32(0xbdc10000), SPH_C32(0x87130000), SPH_C32(0xbff20060),
SPH_C32(0x2eba0a1a), SPH_C32(0x8db53751), SPH_C32(0x73c5ab06),
SPH_C32(0x5bd61539) },
{ SPH_C32(0xe3060000), SPH_C32(0xbdc10000), SPH_C32(0x87130000),
SPH_C32(0xbff20060), SPH_C32(0x2eba0a1a), SPH_C32(0x8db53751),
SPH_C32(0x73c5ab06), SPH_C32(0x5bd61539), SPH_C32(0x57370000),
SPH_C32(0xcaf20000), SPH_C32(0x364e0000), SPH_C32(0xc0220480),
SPH_C32(0x56186b22), SPH_C32(0x5ca3f40c), SPH_C32(0xa1937f8f),
SPH_C32(0x15b961e7) },
{ SPH_C32(0x02f20000), SPH_C32(0xa2810000), SPH_C32(0x873f0000),
SPH_C32(0xe36c7800), SPH_C32(0x1e1d74ef), SPH_C32(0x073d2bd6),
SPH_C32(0xc4c23237), SPH_C32(0x7f32259e), SPH_C32(0xbadd0000),
SPH_C32(0x13ad0000), SPH_C32(0xb7e70000), SPH_C32(0xf7282800),
SPH_C32(0xdf45144d), SPH_C32(0x361ac33a), SPH_C32(0xea5a8d14),
SPH_C32(0x2a2c18f0) },
{ SPH_C32(0xbadd0000), SPH_C32(0x13ad0000), SPH_C32(0xb7e70000),
SPH_C32(0xf7282800), SPH_C32(0xdf45144d), SPH_C32(0x361ac33a),
SPH_C32(0xea5a8d14), SPH_C32(0x2a2c18f0), SPH_C32(0xb82f0000),
SPH_C32(0xb12c0000), SPH_C32(0x30d80000), SPH_C32(0x14445000),
SPH_C32(0xc15860a2), SPH_C32(0x3127e8ec), SPH_C32(0x2e98bf23),
SPH_C32(0x551e3d6e) },
{ SPH_C32(0x1e6c0000), SPH_C32(0xc4420000), SPH_C32(0x8a2e0000),
SPH_C32(0xbcb6b800), SPH_C32(0x2c4413b6), SPH_C32(0x8bfdd3da),
SPH_C32(0x6a0c1bc8), SPH_C32(0xb99dc2eb), SPH_C32(0x92560000),
SPH_C32(0x1eda0000), SPH_C32(0xea510000), SPH_C32(0xe8b13000),
SPH_C32(0xa93556a5), SPH_C32(0xebfb6199), SPH_C32(0xb15c2254),
SPH_C32(0x33c5244f) },
{ SPH_C32(0x92560000), SPH_C32(0x1eda0000), SPH_C32(0xea510000),
SPH_C32(0xe8b13000), SPH_C32(0xa93556a5), SPH_C32(0xebfb6199),
SPH_C32(0xb15c2254), SPH_C32(0x33c5244f), SPH_C32(0x8c3a0000),
SPH_C32(0xda980000), SPH_C32(0x607f0000), SPH_C32(0x54078800),
SPH_C32(0x85714513), SPH_C32(0x6006b243), SPH_C32(0xdb50399c),
SPH_C32(0x8a58e6a4) },
{ SPH_C32(0x033d0000), SPH_C32(0x08b30000), SPH_C32(0xf33a0000),
SPH_C32(0x3ac20007), SPH_C32(0x51298a50), SPH_C32(0x6b6e661f),
SPH_C32(0x0ea5cfe3), SPH_C32(0xe6da7ffe), SPH_C32(0xa8da0000),
SPH_C32(0x96be0000), SPH_C32(0x5c1d0000), SPH_C32(0x07da0002),
SPH_C32(0x7d669583), SPH_C32(0x1f98708a), SPH_C32(0xbb668808),
SPH_C32(0xda878000) },
{ SPH_C32(0xa8da0000), SPH_C32(0x96be0000), SPH_C32(0x5c1d0000),
SPH_C32(0x07da0002), SPH_C32(0x7d669583), SPH_C32(0x1f98708a),
SPH_C32(0xbb668808), SPH_C32(0xda878000), SPH_C32(0xabe70000),
SPH_C32(0x9e0d0000), SPH_C32(0xaf270000), SPH_C32(0x3d180005),
SPH_C32(0x2c4f1fd3), SPH_C32(0x74f61695), SPH_C32(0xb5c347eb),
SPH_C32(0x3c5dfffe) },
{ SPH_C32(0x01930000), SPH_C32(0xe7820000), SPH_C32(0xedfb0000),
SPH_C32(0xcf0c000b), SPH_C32(0x8dd08d58), SPH_C32(0xbca3b42e),
SPH_C32(0x063661e1), SPH_C32(0x536f9e7b), SPH_C32(0x92280000),
SPH_C32(0xdc850000), SPH_C32(0x57fa0000), SPH_C32(0x56dc0003),
SPH_C32(0xbae92316), SPH_C32(0x5aefa30c), SPH_C32(0x90cef752),
SPH_C32(0x7b1675d7) },
{ SPH_C32(0x92280000), SPH_C32(0xdc850000), SPH_C32(0x57fa0000),
SPH_C32(0x56dc0003), SPH_C32(0xbae92316), SPH_C32(0x5aefa30c),
SPH_C32(0x90cef752), SPH_C32(0x7b1675d7), SPH_C32(0x93bb0000),
SPH_C32(0x3b070000), SPH_C32(0xba010000), SPH_C32(0x99d00008),
SPH_C32(0x3739ae4e), SPH_C32(0xe64c1722), SPH_C32(0x96f896b3),
SPH_C32(0x2879ebac) },
{ SPH_C32(0x5fa80000), SPH_C32(0x56030000), SPH_C32(0x43ae0000),
SPH_C32(0x64f30013), SPH_C32(0x257e86bf), SPH_C32(0x1311944e),
SPH_C32(0x541e95bf), SPH_C32(0x8ea4db69), SPH_C32(0x00440000),
SPH_C32(0x7f480000), SPH_C32(0xda7c0000), SPH_C32(0x2a230001),
SPH_C32(0x3badc9cc), SPH_C32(0xa9b69c87), SPH_C32(0x030a9e60),
SPH_C32(0xbe0a679e) },
{ SPH_C32(0x00440000), SPH_C32(0x7f480000), SPH_C32(0xda7c0000),
SPH_C32(0x2a230001), SPH_C32(0x3badc9cc), SPH_C32(0xa9b69c87),
SPH_C32(0x030a9e60), SPH_C32(0xbe0a679e), SPH_C32(0x5fec0000),
SPH_C32(0x294b0000), SPH_C32(0x99d20000), SPH_C32(0x4ed00012),
SPH_C32(0x1ed34f73), SPH_C32(0xbaa708c9), SPH_C32(0x57140bdf),
SPH_C32(0x30aebcf7) },
{ SPH_C32(0xee930000), SPH_C32(0xd6070000), SPH_C32(0x92c10000),
SPH_C32(0x2b9801e0), SPH_C32(0x9451287c), SPH_C32(0x3b6cfb57),
SPH_C32(0x45312374), SPH_C32(0x201f6a64), SPH_C32(0x7b280000),
SPH_C32(0x57420000), SPH_C32(0xa9e50000), SPH_C32(0x634300a0),
SPH_C32(0x9edb442f), SPH_C32(0x6d9995bb), SPH_C32(0x27f83b03),
SPH_C32(0xc7ff60f0) },
{ SPH_C32(0x7b280000), SPH_C32(0x57420000), SPH_C32(0xa9e50000),
SPH_C32(0x634300a0), SPH_C32(0x9edb442f), SPH_C32(0x6d9995bb),
SPH_C32(0x27f83b03), SPH_C32(0xc7ff60f0), SPH_C32(0x95bb0000),
SPH_C32(0x81450000), SPH_C32(0x3b240000), SPH_C32(0x48db0140),
SPH_C32(0x0a8a6c53), SPH_C32(0x56f56eec), SPH_C32(0x62c91877),
SPH_C32(0xe7e00a94) }
};
#define INPUT_BIG \
do { \
__m256i db = *buf; \
const sph_u32 *tp = &T512[0][0]; \
m0 = m256_zero; \
m1 = m256_zero; \
m2 = m256_zero; \
m3 = m256_zero; \
m4 = m256_zero; \
m5 = m256_zero; \
m6 = m256_zero; \
m7 = m256_zero; \
for ( int u = 0; u < 64; u++ ) \
{ \
__m256i dm = _mm256_and_si256( db, m256_one_64 ) ; \
dm = mm256_negate_32( _mm256_or_si256( dm, \
_mm256_slli_epi64( dm, 32 ) ) ); \
m0 = _mm256_xor_si256( m0, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x1], tp[0x0], tp[0x1], tp[0x0], \
tp[0x1], tp[0x0], tp[0x1], tp[0x0] ) ) ); \
m1 = _mm256_xor_si256( m1, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x3], tp[0x2], tp[0x3], tp[0x2], \
tp[0x3], tp[0x2], tp[0x3], tp[0x2] ) ) ); \
m2 = _mm256_xor_si256( m2, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x5], tp[0x4], tp[0x5], tp[0x4], \
tp[0x5], tp[0x4], tp[0x5], tp[0x4] ) ) ); \
m3 = _mm256_xor_si256( m3, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x7], tp[0x6], tp[0x7], tp[0x6], \
tp[0x7], tp[0x6], tp[0x7], tp[0x6] ) ) ); \
m4 = _mm256_xor_si256( m4, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0x9], tp[0x8], tp[0x9], tp[0x8], \
tp[0x9], tp[0x8], tp[0x9], tp[0x8] ) ) ); \
m5 = _mm256_xor_si256( m5, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xB], tp[0xA], tp[0xB], tp[0xA], \
tp[0xB], tp[0xA], tp[0xB], tp[0xA] ) ) ); \
m6 = _mm256_xor_si256( m6, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xD], tp[0xC], tp[0xD], tp[0xC], \
tp[0xD], tp[0xC], tp[0xD], tp[0xC] ) ) ); \
m7 = _mm256_xor_si256( m7, _mm256_and_si256( dm, \
_mm256_set_epi32( tp[0xF], tp[0xE], tp[0xF], tp[0xE], \
tp[0xF], tp[0xE], tp[0xF], tp[0xE] ) ) ); \
tp += 0x10; \
db = _mm256_srli_epi64( db, 1 ); \
} \
} while (0)
#define SBOX( a, b, c, d ) \
do { \
__m256i t; \
t = a; \
a = _mm256_and_si256( a, c ); \
a = _mm256_xor_si256( a, d ); \
c = _mm256_xor_si256( c, b ); \
c = _mm256_xor_si256( c, a ); \
d = _mm256_or_si256( d, t ); \
d = _mm256_xor_si256( d, b ); \
t = _mm256_xor_si256( t, c ); \
b = d; \
d = _mm256_or_si256( d, t ); \
d = _mm256_xor_si256( d, a ); \
a = _mm256_and_si256( a, b ); \
t = _mm256_xor_si256( t, a ); \
b = _mm256_xor_si256( b, d ); \
b = _mm256_xor_si256( b, t ); \
a = c; \
c = b; \
b = d; \
d = mm256_not( t ); \
} while (0)
#define L( a, b, c, d ) \
do { \
a = mm256_rotl_32( a, 13 ); \
c = mm256_rotl_32( c, 3 ); \
b = _mm256_xor_si256( b, _mm256_xor_si256( a, c ) ); \
d = _mm256_xor_si256( d, _mm256_xor_si256( c, \
_mm256_slli_epi32( a, 3 ) ) ); \
b = mm256_rotl_32( b, 1 ); \
d = mm256_rotl_32( d, 7 ); \
a = _mm256_xor_si256( a, _mm256_xor_si256( b, d ) ); \
c = _mm256_xor_si256( c, _mm256_xor_si256( d, \
_mm256_slli_epi32( b, 7 ) ) ); \
a = mm256_rotl_32( a, 5 ); \
c = mm256_rotl_32( c, 22 ); \
} while (0)
#define DECL_STATE_BIG \
__m256i c0, c1, c2, c3, c4, c5, c6, c7; \
#define READ_STATE_BIG(sc) \
do { \
c0 = sc->h[0x0]; \
c1 = sc->h[0x1]; \
c2 = sc->h[0x2]; \
c3 = sc->h[0x3]; \
c4 = sc->h[0x4]; \
c5 = sc->h[0x5]; \
c6 = sc->h[0x6]; \
c7 = sc->h[0x7]; \
} while (0)
#define WRITE_STATE_BIG(sc) \
do { \
sc->h[0x0] = c0; \
sc->h[0x1] = c1; \
sc->h[0x2] = c2; \
sc->h[0x3] = c3; \
sc->h[0x4] = c4; \
sc->h[0x5] = c5; \
sc->h[0x6] = c6; \
sc->h[0x7] = c7; \
} while (0)
#define s0 m0
#define s1 c0
#define s2 m1
#define s3 c1
#define s4 c2
#define s5 m2
#define s6 c3
#define s7 m3
#define s8 m4
#define s9 c4
#define sA m5
#define sB c5
#define sC c6
#define sD m6
#define sE c7
#define sF m7
#define ROUND_BIG(rc, alpha) \
do { \
__m256i t0, t1, t2, t3; \
s0 = _mm256_xor_si256( s0, _mm256_set_epi32( \
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00], \
alpha[0x01] ^ (rc), alpha[0x00], alpha[0x01] ^ (rc), alpha[0x00] ) ); \
s1 = _mm256_xor_si256( s1, _mm256_set_epi32( \
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02], \
alpha[0x03], alpha[0x02], alpha[0x03], alpha[0x02] ) ); \
s2 = _mm256_xor_si256( s2, _mm256_set_epi32( \
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04], \
alpha[0x05], alpha[0x04], alpha[0x05], alpha[0x04] ) ); \
s3 = _mm256_xor_si256( s3, _mm256_set_epi32( \
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06], \
alpha[0x07], alpha[0x06], alpha[0x07], alpha[0x06] ) ); \
s4 = _mm256_xor_si256( s4, _mm256_set_epi32( \
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08], \
alpha[0x09], alpha[0x08], alpha[0x09], alpha[0x08] ) ); \
s5 = _mm256_xor_si256( s5, _mm256_set_epi32( \
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A], \
alpha[0x0B], alpha[0x0A], alpha[0x0B], alpha[0x0A] ) ); \
s6 = _mm256_xor_si256( s6, _mm256_set_epi32( \
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C], \
alpha[0x0D], alpha[0x0C], alpha[0x0D], alpha[0x0C] ) ); \
s7 = _mm256_xor_si256( s7, _mm256_set_epi32( \
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E], \
alpha[0x0F], alpha[0x0E], alpha[0x0F], alpha[0x0E] ) ); \
s8 = _mm256_xor_si256( s8, _mm256_set_epi32( \
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10], \
alpha[0x11], alpha[0x10], alpha[0x11], alpha[0x10] ) ); \
s9 = _mm256_xor_si256( s9, _mm256_set_epi32( \
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12], \
alpha[0x13], alpha[0x12], alpha[0x13], alpha[0x12] ) ); \
sA = _mm256_xor_si256( sA, _mm256_set_epi32( \
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14], \
alpha[0x15], alpha[0x14], alpha[0x15], alpha[0x14] ) ); \
sB = _mm256_xor_si256( sB, _mm256_set_epi32( \
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16], \
alpha[0x17], alpha[0x16], alpha[0x17], alpha[0x16] ) ); \
sC = _mm256_xor_si256( sC, _mm256_set_epi32( \
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18], \
alpha[0x19], alpha[0x18], alpha[0x19], alpha[0x18] ) ); \
sD = _mm256_xor_si256( sD, _mm256_set_epi32( \
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A], \
alpha[0x1B], alpha[0x1A], alpha[0x1B], alpha[0x1A] ) ); \
sE = _mm256_xor_si256( sE, _mm256_set_epi32( \
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C], \
alpha[0x1D], alpha[0x1C], alpha[0x1D], alpha[0x1C] ) ); \
sF = _mm256_xor_si256( sF, _mm256_set_epi32( \
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E], \
alpha[0x1F], alpha[0x1E], alpha[0x1F], alpha[0x1E] ) ); \
\
SBOX( s0, s4, s8, sC ); \
SBOX( s1, s5, s9, sD ); \
SBOX( s2, s6, sA, sE ); \
SBOX( s3, s7, sB, sF ); \
\
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s4, 4 ), \
_mm256_bslli_epi128( s5, 4 ), 0xAA ); \
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sD, 4 ), \
_mm256_bslli_epi128( sE, 4 ), 0xAA ); \
L( s0, t1, s9, t3 ); \
s4 = _mm256_blend_epi32( s4, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
s5 = _mm256_blend_epi32( s5, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
sD = _mm256_blend_epi32( sD, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
sE = _mm256_blend_epi32( sE, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
\
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s5, 4 ), \
_mm256_bslli_epi128( s6, 4 ), 0xAA ); \
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sE, 4 ), \
_mm256_bslli_epi128( sF, 4 ), 0xAA ); \
L( s1, t1, sA, t3 ); \
s5 = _mm256_blend_epi32( s5, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
s6 = _mm256_blend_epi32( s6, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
sE = _mm256_blend_epi32( sE, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
sF = _mm256_blend_epi32( sF, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
\
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s6, 4 ), \
_mm256_bslli_epi128( s7, 4 ), 0xAA ); \
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sF, 4 ), \
_mm256_bslli_epi128( sC, 4 ), 0xAA ); \
L( s2, t1, sB, t3 ); \
s6 = _mm256_blend_epi32( s6, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
s7 = _mm256_blend_epi32( s7, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
sF = _mm256_blend_epi32( sF, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
sC = _mm256_blend_epi32( sC, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
\
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s7, 4 ), \
_mm256_bslli_epi128( s4, 4 ), 0xAA ); \
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( sC, 4 ), \
_mm256_bslli_epi128( sD, 4 ), 0xAA ); \
L( s3, t1, s8, t3 ); \
s7 = _mm256_blend_epi32( s7, _mm256_bslli_epi128( t1, 4 ), 0xAA );\
s4 = _mm256_blend_epi32( s4, _mm256_bsrli_epi128( t1, 4 ), 0x55 );\
sC = _mm256_blend_epi32( sC, _mm256_bslli_epi128( t3, 4 ), 0xAA );\
sD = _mm256_blend_epi32( sD, _mm256_bsrli_epi128( t3, 4 ), 0x55 );\
\
t0 = _mm256_blend_epi32( s0, _mm256_bslli_epi128( s8, 4 ), 0xAA ); \
t1 = _mm256_blend_epi32( s1, s9, 0xAA ); \
t2 = _mm256_blend_epi32( _mm256_bsrli_epi128( s2, 4 ), sA, 0xAA ); \
t3 = _mm256_blend_epi32( _mm256_bsrli_epi128( s3, 4 ), \
_mm256_bslli_epi128( sB, 4 ), 0xAA ); \
L( t0, t1, t2, t3 ); \
s0 = _mm256_blend_epi32( s0, t0, 0x55 ); \
s8 = _mm256_blend_epi32( s8, _mm256_bsrli_epi128( t0, 4 ), 0x55 ); \
s1 = _mm256_blend_epi32( s1, t1, 0x55 ); \
s9 = _mm256_blend_epi32( s9, t1, 0xAA ); \
s2 = _mm256_blend_epi32( s2, _mm256_bslli_epi128( t2, 4 ), 0xAA ); \
sA = _mm256_blend_epi32( sA, t2, 0xAA ); \
s3 = _mm256_blend_epi32( s3, _mm256_bslli_epi128( t3, 4 ), 0xAA ); \
sB = _mm256_blend_epi32( sB, _mm256_bsrli_epi128( t3, 4 ), 0x55 ); \
\
t0 = _mm256_blend_epi32( _mm256_bsrli_epi128( s4, 4 ), sC, 0xAA ); \
t1 = _mm256_blend_epi32( _mm256_bsrli_epi128( s5, 4 ), \
_mm256_bslli_epi128( sD, 4 ), 0xAA ); \
t2 = _mm256_blend_epi32( s6, _mm256_bslli_epi128( sE, 4 ), 0xAA ); \
t3 = _mm256_blend_epi32( s7, sF, 0xAA ); \
L( t0, t1, t2, t3 ); \
s4 = _mm256_blend_epi32( s4, _mm256_bslli_epi128( t0, 4 ), 0xAA ); \
sC = _mm256_blend_epi32( sC, t0, 0xAA ); \
s5 = _mm256_blend_epi32( s5, _mm256_bslli_epi128( t1, 4 ), 0xAA ); \
sD = _mm256_blend_epi32( sD, _mm256_bsrli_epi128( t1, 4 ), 0x55 ); \
s6 = _mm256_blend_epi32( s6, t2, 0x55 ); \
sE = _mm256_blend_epi32( sE, _mm256_bsrli_epi128( t2, 4 ), 0x55 ); \
s7 = _mm256_blend_epi32( s7, t3, 0x55 ); \
sF = _mm256_blend_epi32( sF, t3, 0xAA ); \
} while (0)
#define P_BIG \
do { \
ROUND_BIG(0, alpha_n); \
ROUND_BIG(1, alpha_n); \
ROUND_BIG(2, alpha_n); \
ROUND_BIG(3, alpha_n); \
ROUND_BIG(4, alpha_n); \
ROUND_BIG(5, alpha_n); \
} while (0)
#define PF_BIG \
do { \
ROUND_BIG( 0, alpha_f); \
ROUND_BIG( 1, alpha_f); \
ROUND_BIG( 2, alpha_f); \
ROUND_BIG( 3, alpha_f); \
ROUND_BIG( 4, alpha_f); \
ROUND_BIG( 5, alpha_f); \
ROUND_BIG( 6, alpha_f); \
ROUND_BIG( 7, alpha_f); \
ROUND_BIG( 8, alpha_f); \
ROUND_BIG( 9, alpha_f); \
ROUND_BIG(10, alpha_f); \
ROUND_BIG(11, alpha_f); \
} while (0)
#define T_BIG \
do { /* order is important */ \
c7 = sc->h[ 0x7 ] = _mm256_xor_si256( sc->h[ 0x7 ], sB ); \
c6 = sc->h[ 0x6 ] = _mm256_xor_si256( sc->h[ 0x6 ], sA ); \
c5 = sc->h[ 0x5 ] = _mm256_xor_si256( sc->h[ 0x5 ], s9 ); \
c4 = sc->h[ 0x4 ] = _mm256_xor_si256( sc->h[ 0x4 ], s8 ); \
c3 = sc->h[ 0x3 ] = _mm256_xor_si256( sc->h[ 0x3 ], s3 ); \
c2 = sc->h[ 0x2 ] = _mm256_xor_si256( sc->h[ 0x2 ], s2 ); \
c1 = sc->h[ 0x1 ] = _mm256_xor_si256( sc->h[ 0x1 ], s1 ); \
c0 = sc->h[ 0x0 ] = _mm256_xor_si256( sc->h[ 0x0 ], s0 ); \
} while (0)
void hamsi_big( hamsi_4way_big_context *sc, __m256i *buf, size_t num )
{
DECL_STATE_BIG
sph_u32 tmp;
tmp = SPH_T32( (sph_u32)num << 6 );
sc->count_low = SPH_T32( sc->count_low + tmp );
sc->count_high += (sph_u32)( (num >> 13) >> 13 );
if ( sc->count_low < tmp )
sc->count_high++;
READ_STATE_BIG( sc );
while ( num-- > 0 )
{
__m256i m0, m1, m2, m3, m4, m5, m6, m7;
INPUT_BIG;
P_BIG;
T_BIG;
buf++;
}
WRITE_STATE_BIG( sc );
}
void hamsi_big_final( hamsi_4way_big_context *sc, __m256i *buf )
{
__m256i m0, m1, m2, m3, m4, m5, m6, m7;
DECL_STATE_BIG
READ_STATE_BIG( sc );
INPUT_BIG;
PF_BIG;
T_BIG;
WRITE_STATE_BIG( sc );
}
void hamsi512_4way_init( hamsi_4way_big_context *sc )
{
sc->partial_len = 0;
sph_u32 lo, hi;
sc->count_high = sc->count_low = 0;
for ( int i = 0; i < 8; i++ )
{
lo = 2*i;
hi = 2*i + 1;
sc->h[i] = _mm256_set_epi32( IV512[hi], IV512[lo], IV512[hi], IV512[lo],
IV512[hi], IV512[lo], IV512[hi], IV512[lo] );
}
}
void hamsi512_4way( hamsi_4way_big_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
// It looks like the only way to get in here is if core was previously called
// with a very small len
// That's not likely even with 80 byte input so deprecate partial len
/*
if ( sc->partial_len != 0 )
{
size_t mlen;
mlen = 8 - sc->partial_len;
if ( len < mlen )
{
memcpy_256( sc->partial + (sc->partial_len >> 3), data, len>>3 );
sc->partial_len += len;
return;
}
else
{
memcpy_256( sc->partial + (sc->partial_len >> 3), data, mlen>>3 );
len -= mlen;
vdata += mlen>>3;
hamsi_big( sc, sc->partial, 1 );
sc->partial_len = 0;
}
}
*/
hamsi_big( sc, vdata, len>>3 );
vdata += ( (len& ~(size_t)7) >> 3 );
len &= (size_t)7;
memcpy_256( sc->buf, vdata, len>>3 );
sc->partial_len = len;
}
void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
{
__m256i *out = (__m256i*)dst;
__m256i pad[1];
size_t u;
int ch, cl;
sph_enc32be( &ch, sc->count_high );
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
pad[0] = _mm256_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch );
sc->buf[0] = _mm256_set_epi32( 0UL, 0x80UL, 0UL, 0x80UL,
0UL, 0x80UL, 0UL, 0x80UL );
hamsi_big( sc, sc->buf, 1 );
hamsi_big_final( sc, pad );
for ( u = 0; u < 8; u ++ )
out[u] = mm256_bswap_32( sc->h[u] );
}
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,72 @@
/* $Id: sph_hamsi.h 216 2010-06-08 09:46:57Z tp $ */
/**
* Hamsi interface. This code implements Hamsi with the recommended
* parameters for SHA-3, with outputs of 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_hamsi.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef HAMSI_4WAY_H__
#define HAMSI_4WAY_H__
#include <stddef.h>
#include "algo/sha/sph_types.h"
#if defined (__AVX__)
#include "avxdefs.h"
#ifdef __cplusplus
extern "C"{
#endif
#define SPH_SIZE_hamsi512 512
// Partial is only scalar but needs pointer ref for hamsi-helper
// deprecate partial_len
typedef struct {
__m256i h[8];
__m256i buf[1];
size_t partial_len;
sph_u32 count_high, count_low;
} hamsi_4way_big_context;
typedef hamsi_4way_big_context hamsi512_4way_context;
void hamsi512_4way_init( hamsi512_4way_context *sc );
void hamsi512_4way( hamsi512_4way_context *sc, const void *data, size_t len );
void hamsi512_4way_close( hamsi512_4way_context *sc, void *dst );
#ifdef __cplusplus
}
#endif
#endif
#endif

940
algo/hamsi/sph_hamsi.c.test Normal file
View File

@@ -0,0 +1,940 @@
/* $Id: hamsi.c 251 2010-10-19 14:31:51Z tp $ */
/*
* Hamsi implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph_hamsi.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_HAMSI
#define SPH_SMALL_FOOTPRINT_HAMSI 1
#endif
/*
* The SPH_HAMSI_EXPAND_* define how many input bits we handle in one
* table lookup during message expansion (1 to 8, inclusive). If we note
* w the number of bits per message word (w=32 for Hamsi-224/256, w=64
* for Hamsi-384/512), r the size of a "row" in 32-bit words (r=8 for
* Hamsi-224/256, r=16 for Hamsi-384/512), and n the expansion level,
* then we will get t tables (where t=ceil(w/n)) of individual size
* 2^n*r*4 (in bytes). The last table may be shorter (e.g. with w=32 and
* n=5, there are 7 tables, but the last one uses only two bits on
* input, not five).
*
* Also, we read t rows of r words from RAM. Words in a given row are
* concatenated in RAM in that order, so most of the cost is about
* reading the first row word; comparatively, cache misses are thus
* less expensive with Hamsi-512 (r=16) than with Hamsi-256 (r=8).
*
* When n=1, tables are "special" in that we omit the first entry of
* each table (which always contains 0), so that total table size is
* halved.
*
* We thus have the following (size1 is the cumulative table size of
* Hamsi-224/256; size2 is for Hamsi-384/512; similarly, t1 and t2
* are for Hamsi-224/256 and Hamsi-384/512, respectively).
*
* n size1 size2 t1 t2
* ---------------------------------------
* 1 1024 4096 32 64
* 2 2048 8192 16 32
* 3 2688 10880 11 22
* 4 4096 16384 8 16
* 5 6272 25600 7 13
* 6 10368 41984 6 11
* 7 16896 73856 5 10
* 8 32768 131072 4 8
*
* So there is a trade-off: a lower n makes the tables fit better in
* L1 cache, but increases the number of memory accesses. The optimal
* value depends on the amount of available L1 cache and the relative
* impact of a cache miss.
*
* Experimentally, in ideal benchmark conditions (which are not necessarily
* realistic with regards to L1 cache contention), it seems that n=8 is
* the best value on "big" architectures (those with 32 kB or more of L1
* cache), while n=4 is better on "small" architectures. This was tested
* on an Intel Core2 Q6600 (both 32-bit and 64-bit mode), a PowerPC G3
* (32 kB L1 cache, hence "big"), and a MIPS-compatible Broadcom BCM3302
* (8 kB L1 cache).
*
* Note: with n=1, the 32 tables (actually implemented as one big table)
* are read entirely and sequentially, regardless of the input data,
* thus avoiding any data-dependent table access pattern.
*/
#if !defined SPH_HAMSI_EXPAND_SMALL
#if SPH_SMALL_FOOTPRINT_HAMSI
#define SPH_HAMSI_EXPAND_SMALL 4
#else
#define SPH_HAMSI_EXPAND_SMALL 8
#endif
#endif
#if !defined SPH_HAMSI_EXPAND_BIG
#define SPH_HAMSI_EXPAND_BIG 8
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
#include "sph_hamsi_helper.c"
static const sph_u32 IV224[] = {
SPH_C32(0xc3967a67), SPH_C32(0xc3bc6c20), SPH_C32(0x4bc3bcc3),
SPH_C32(0xa7c3bc6b), SPH_C32(0x2c204b61), SPH_C32(0x74686f6c),
SPH_C32(0x69656b65), SPH_C32(0x20556e69)
};
/*
* This version is the one used in the Hamsi submission package for
* round 2 of the SHA-3 competition; the UTF-8 encoding is wrong and
* shall soon be corrected in the official Hamsi specification.
*
static const sph_u32 IV224[] = {
SPH_C32(0x3c967a67), SPH_C32(0x3cbc6c20), SPH_C32(0xb4c343c3),
SPH_C32(0xa73cbc6b), SPH_C32(0x2c204b61), SPH_C32(0x74686f6c),
SPH_C32(0x69656b65), SPH_C32(0x20556e69)
};
*/
static const sph_u32 IV256[] = {
SPH_C32(0x76657273), SPH_C32(0x69746569), SPH_C32(0x74204c65),
SPH_C32(0x7576656e), SPH_C32(0x2c204465), SPH_C32(0x70617274),
SPH_C32(0x656d656e), SPH_C32(0x7420456c)
};
static const sph_u32 IV384[] = {
SPH_C32(0x656b7472), SPH_C32(0x6f746563), SPH_C32(0x686e6965),
SPH_C32(0x6b2c2043), SPH_C32(0x6f6d7075), SPH_C32(0x74657220),
SPH_C32(0x53656375), SPH_C32(0x72697479), SPH_C32(0x20616e64),
SPH_C32(0x20496e64), SPH_C32(0x75737472), SPH_C32(0x69616c20),
SPH_C32(0x43727970), SPH_C32(0x746f6772), SPH_C32(0x61706879),
SPH_C32(0x2c204b61)
};
static const sph_u32 IV512[] = {
SPH_C32(0x73746565), SPH_C32(0x6c706172), SPH_C32(0x6b204172),
SPH_C32(0x656e6265), SPH_C32(0x72672031), SPH_C32(0x302c2062),
SPH_C32(0x75732032), SPH_C32(0x3434362c), SPH_C32(0x20422d33),
SPH_C32(0x30303120), SPH_C32(0x4c657576), SPH_C32(0x656e2d48),
SPH_C32(0x65766572), SPH_C32(0x6c65652c), SPH_C32(0x2042656c),
SPH_C32(0x6769756d)
};
static const sph_u32 alpha_n[] = {
SPH_C32(0xff00f0f0), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0cccc),
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00),
SPH_C32(0xaaaacccc), SPH_C32(0xf0f0ff00), SPH_C32(0xf0f0cccc),
SPH_C32(0xaaaaff00), SPH_C32(0xccccff00), SPH_C32(0xaaaaf0f0),
SPH_C32(0xaaaaf0f0), SPH_C32(0xff00cccc), SPH_C32(0xccccf0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xccccaaaa), SPH_C32(0xff00f0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xf0f0cccc), SPH_C32(0xf0f0ff00),
SPH_C32(0xccccaaaa), SPH_C32(0xf0f0ff00), SPH_C32(0xaaaacccc),
SPH_C32(0xaaaaff00), SPH_C32(0xf0f0cccc), SPH_C32(0xaaaaf0f0),
SPH_C32(0xccccff00), SPH_C32(0xff00cccc), SPH_C32(0xaaaaf0f0),
SPH_C32(0xff00aaaa), SPH_C32(0xccccf0f0)
};
static const sph_u32 alpha_f[] = {
SPH_C32(0xcaf9639c), SPH_C32(0x0ff0f9c0), SPH_C32(0x639c0ff0),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9),
SPH_C32(0xf9c00ff0), SPH_C32(0x639ccaf9), SPH_C32(0x639c0ff0),
SPH_C32(0xf9c0caf9), SPH_C32(0x0ff0caf9), SPH_C32(0xf9c0639c),
SPH_C32(0xf9c0639c), SPH_C32(0xcaf90ff0), SPH_C32(0x0ff0639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0f9c0), SPH_C32(0xcaf9639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x639c0ff0), SPH_C32(0x639ccaf9),
SPH_C32(0x0ff0f9c0), SPH_C32(0x639ccaf9), SPH_C32(0xf9c00ff0),
SPH_C32(0xf9c0caf9), SPH_C32(0x639c0ff0), SPH_C32(0xf9c0639c),
SPH_C32(0x0ff0caf9), SPH_C32(0xcaf90ff0), SPH_C32(0xf9c0639c),
SPH_C32(0xcaf9f9c0), SPH_C32(0x0ff0639c)
};
#define DECL_STATE_SMALL \
sph_u32 c0, c1, c2, c3, c4, c5, c6, c7;
#define READ_STATE_SMALL(sc) do { \
c0 = sc->h[0x0]; \
c1 = sc->h[0x1]; \
c2 = sc->h[0x2]; \
c3 = sc->h[0x3]; \
c4 = sc->h[0x4]; \
c5 = sc->h[0x5]; \
c6 = sc->h[0x6]; \
c7 = sc->h[0x7]; \
} while (0)
#define WRITE_STATE_SMALL(sc) do { \
sc->h[0x0] = c0; \
sc->h[0x1] = c1; \
sc->h[0x2] = c2; \
sc->h[0x3] = c3; \
sc->h[0x4] = c4; \
sc->h[0x5] = c5; \
sc->h[0x6] = c6; \
sc->h[0x7] = c7; \
} while (0)
#define s0 m0
#define s1 m1
#define s2 c0
#define s3 c1
#define s4 c2
#define s5 c3
#define s6 m2
#define s7 m3
#define s8 m4
#define s9 m5
#define sA c4
#define sB c5
#define sC c6
#define sD c7
#define sE m6
#define sF m7
#define SBOX(a, b, c, d) do { \
sph_u32 t; \
t = (a); \
(a) &= (c); \
(a) ^= (d); \
(c) ^= (b); \
(c) ^= (a); \
(d) |= t; \
(d) ^= (b); \
t ^= (c); \
(b) = (d); \
(d) |= t; \
(d) ^= (a); \
(a) &= (b); \
t ^= (a); \
(b) ^= (d); \
(b) ^= t; \
(a) = (c); \
(c) = (b); \
(b) = (d); \
(d) = SPH_T32(~t); \
} while (0)
#define L(a, b, c, d) do { \
(a) = SPH_ROTL32(a, 13); \
(c) = SPH_ROTL32(c, 3); \
(b) ^= (a) ^ (c); \
(d) ^= (c) ^ SPH_T32((a) << 3); \
(b) = SPH_ROTL32(b, 1); \
(d) = SPH_ROTL32(d, 7); \
(a) ^= (b) ^ (d); \
(c) ^= (d) ^ SPH_T32((b) << 7); \
(a) = SPH_ROTL32(a, 5); \
(c) = SPH_ROTL32(c, 22); \
} while (0)
#define ROUND_SMALL(rc, alpha) do { \
s0 ^= alpha[0x00]; \
s1 ^= alpha[0x01] ^ (sph_u32)(rc); \
s2 ^= alpha[0x02]; \
s3 ^= alpha[0x03]; \
s4 ^= alpha[0x08]; \
s5 ^= alpha[0x09]; \
s6 ^= alpha[0x0A]; \
s7 ^= alpha[0x0B]; \
s8 ^= alpha[0x10]; \
s9 ^= alpha[0x11]; \
sA ^= alpha[0x12]; \
sB ^= alpha[0x13]; \
sC ^= alpha[0x18]; \
sD ^= alpha[0x19]; \
sE ^= alpha[0x1A]; \
sF ^= alpha[0x1B]; \
SBOX(s0, s4, s8, sC); \
SBOX(s1, s5, s9, sD); \
SBOX(s2, s6, sA, sE); \
SBOX(s3, s7, sB, sF); \
L(s0, s5, sA, sF); \
L(s1, s6, sB, sC); \
L(s2, s7, s8, sD); \
L(s3, s4, s9, sE); \
} while (0)
#define P_SMALL do { \
ROUND_SMALL(0, alpha_n); \
ROUND_SMALL(1, alpha_n); \
ROUND_SMALL(2, alpha_n); \
} while (0)
#define PF_SMALL do { \
ROUND_SMALL(0, alpha_f); \
ROUND_SMALL(1, alpha_f); \
ROUND_SMALL(2, alpha_f); \
ROUND_SMALL(3, alpha_f); \
ROUND_SMALL(4, alpha_f); \
ROUND_SMALL(5, alpha_f); \
} while (0)
#define T_SMALL do { \
/* order is important */ \
c7 = (sc->h[7] ^= sB); \
c6 = (sc->h[6] ^= sA); \
c5 = (sc->h[5] ^= s9); \
c4 = (sc->h[4] ^= s8); \
c3 = (sc->h[3] ^= s3); \
c2 = (sc->h[2] ^= s2); \
c1 = (sc->h[1] ^= s1); \
c0 = (sc->h[0] ^= s0); \
} while (0)
static void
hamsi_small(sph_hamsi_small_context *sc, const unsigned char *buf, size_t num)
{
DECL_STATE_SMALL
#if !SPH_64
sph_u32 tmp;
#endif
#if SPH_64
sc->count += (sph_u64)num << 5;
#else
tmp = SPH_T32((sph_u32)num << 5);
sc->count_low = SPH_T32(sc->count_low + tmp);
sc->count_high += (sph_u32)((num >> 13) >> 14);
if (sc->count_low < tmp)
sc->count_high ++;
#endif
READ_STATE_SMALL(sc);
while (num -- > 0) {
sph_u32 m0, m1, m2, m3, m4, m5, m6, m7;
INPUT_SMALL;
P_SMALL;
T_SMALL;
buf += 4;
}
WRITE_STATE_SMALL(sc);
}
static void
hamsi_small_final(sph_hamsi_small_context *sc, const unsigned char *buf)
{
sph_u32 m0, m1, m2, m3, m4, m5, m6, m7;
DECL_STATE_SMALL
READ_STATE_SMALL(sc);
INPUT_SMALL;
PF_SMALL;
T_SMALL;
WRITE_STATE_SMALL(sc);
}
static void
hamsi_small_init(sph_hamsi_small_context *sc, const sph_u32 *iv)
{
sc->partial_len = 0;
memcpy(sc->h, iv, sizeof sc->h);
#if SPH_64
sc->count = 0;
#else
sc->count_high = sc->count_low = 0;
#endif
}
static void
hamsi_small_core(sph_hamsi_small_context *sc, const void *data, size_t len)
{
if (sc->partial_len != 0) {
size_t mlen;
mlen = 4 - sc->partial_len;
if (len < mlen) {
memcpy(sc->partial + sc->partial_len, data, len);
sc->partial_len += len;
return;
} else {
memcpy(sc->partial + sc->partial_len, data, mlen);
len -= mlen;
data = (const unsigned char *)data + mlen;
hamsi_small(sc, sc->partial, 1);
sc->partial_len = 0;
}
}
hamsi_small(sc, data, (len >> 2));
data = (const unsigned char *)data + (len & ~(size_t)3);
len &= (size_t)3;
memcpy(sc->partial, data, len);
sc->partial_len = len;
}
static void
hamsi_small_close(sph_hamsi_small_context *sc,
unsigned ub, unsigned n, void *dst, size_t out_size_w32)
{
unsigned char pad[12];
size_t ptr, u;
unsigned z;
unsigned char *out;
ptr = sc->partial_len;
memcpy(pad, sc->partial, ptr);
#if SPH_64
sph_enc64be(pad + 4, sc->count + (ptr << 3) + n);
#else
sph_enc32be(pad + 4, sc->count_high);
sph_enc32be(pad + 8, sc->count_low + (ptr << 3) + n);
#endif
z = 0x80 >> n;
pad[ptr ++] = ((ub & -z) | z) & 0xFF;
while (ptr < 4)
pad[ptr ++] = 0;
hamsi_small(sc, pad, 2);
hamsi_small_final(sc, pad + 8);
out = dst;
for (u = 0; u < out_size_w32; u ++)
sph_enc32be(out + (u << 2), sc->h[u]);
}
#define DECL_STATE_BIG \
sph_u32 c0, c1, c2, c3, c4, c5, c6, c7; \
sph_u32 c8, c9, cA, cB, cC, cD, cE, cF;
#define READ_STATE_BIG(sc) do { \
c0 = sc->h[0x0]; \
c1 = sc->h[0x1]; \
c2 = sc->h[0x2]; \
c3 = sc->h[0x3]; \
c4 = sc->h[0x4]; \
c5 = sc->h[0x5]; \
c6 = sc->h[0x6]; \
c7 = sc->h[0x7]; \
c8 = sc->h[0x8]; \
c9 = sc->h[0x9]; \
cA = sc->h[0xA]; \
cB = sc->h[0xB]; \
cC = sc->h[0xC]; \
cD = sc->h[0xD]; \
cE = sc->h[0xE]; \
cF = sc->h[0xF]; \
} while (0)
#define WRITE_STATE_BIG(sc) do { \
sc->h[0x0] = c0; \
sc->h[0x1] = c1; \
sc->h[0x2] = c2; \
sc->h[0x3] = c3; \
sc->h[0x4] = c4; \
sc->h[0x5] = c5; \
sc->h[0x6] = c6; \
sc->h[0x7] = c7; \
sc->h[0x8] = c8; \
sc->h[0x9] = c9; \
sc->h[0xA] = cA; \
sc->h[0xB] = cB; \
sc->h[0xC] = cC; \
sc->h[0xD] = cD; \
sc->h[0xE] = cE; \
sc->h[0xF] = cF; \
} while (0)
#define s00 m0
#define s01 m1
#define s02 c0
#define s03 c1
#define s04 m2
#define s05 m3
#define s06 c2
#define s07 c3
#define s08 c4
#define s09 c5
#define s0A m4
#define s0B m5
#define s0C c6
#define s0D c7
#define s0E m6
#define s0F m7
#define s10 m8
#define s11 m9
#define s12 c8
#define s13 c9
#define s14 mA
#define s15 mB
#define s16 cA
#define s17 cB
#define s18 cC
#define s19 cD
#define s1A mC
#define s1B mD
#define s1C cE
#define s1D cF
#define s1E mE
#define s1F mF
#define ROUND_BIG(rc, alpha) do { \
s00 ^= alpha[0x00]; \
s01 ^= alpha[0x01] ^ (sph_u32)(rc); \
s02 ^= alpha[0x02]; \
s03 ^= alpha[0x03]; \
s04 ^= alpha[0x04]; \
s05 ^= alpha[0x05]; \
s06 ^= alpha[0x06]; \
s07 ^= alpha[0x07]; \
s08 ^= alpha[0x08]; \
s09 ^= alpha[0x09]; \
s0A ^= alpha[0x0A]; \
s0B ^= alpha[0x0B]; \
s0C ^= alpha[0x0C]; \
s0D ^= alpha[0x0D]; \
s0E ^= alpha[0x0E]; \
s0F ^= alpha[0x0F]; \
s10 ^= alpha[0x10]; \
s11 ^= alpha[0x11]; \
s12 ^= alpha[0x12]; \
s13 ^= alpha[0x13]; \
s14 ^= alpha[0x14]; \
s15 ^= alpha[0x15]; \
s16 ^= alpha[0x16]; \
s17 ^= alpha[0x17]; \
s18 ^= alpha[0x18]; \
s19 ^= alpha[0x19]; \
s1A ^= alpha[0x1A]; \
s1B ^= alpha[0x1B]; \
s1C ^= alpha[0x1C]; \
s1D ^= alpha[0x1D]; \
s1E ^= alpha[0x1E]; \
s1F ^= alpha[0x1F]; \
SBOX(s00, s08, s10, s18); \
SBOX(s01, s09, s11, s19); \
SBOX(s02, s0A, s12, s1A); \
SBOX(s03, s0B, s13, s1B); \
SBOX(s04, s0C, s14, s1C); \
SBOX(s05, s0D, s15, s1D); \
SBOX(s06, s0E, s16, s1E); \
SBOX(s07, s0F, s17, s1F); \
L(s00, s09, s12, s1B); \
L(s01, s0A, s13, s1C); \
L(s02, s0B, s14, s1D); \
L(s03, s0C, s15, s1E); \
L(s04, s0D, s16, s1F); \
L(s05, s0E, s17, s18); \
L(s06, s0F, s10, s19); \
L(s07, s08, s11, s1A); \
/*if (rc == 0 ) { \
printf("S L5 post s10 %08lx s11 %08lx s12 %08lx s13 %08lx\n",s10,s11,s12,s13); \
}*/ \
L(s00, s02, s05, s07); \
L(s10, s13, s15, s16); \
/*if (rc == 0 ) { \
printf("S L5 post s10 %08lx s11 %08lx s12 %08lx s13 %08lx\n",s10,s11,s12,s13); \
}*/ \
L(s09, s0B, s0C, s0E); \
L(s19, s1A, s1C, s1F); \
} while (0)
#if SPH_SMALL_FOOTPRINT_HAMSI
#define P_BIG do { \
unsigned r; \
for (r = 0; r < 6; r ++) \
ROUND_BIG(r, alpha_n); \
} while (0)
#define PF_BIG do { \
unsigned r; \
for (r = 0; r < 12; r ++) \
ROUND_BIG(r, alpha_f); \
} while (0)
#else
#define P_BIG do { \
ROUND_BIG(0, alpha_n); \
/*printf("S R0 s00 %08lx s01 %08lx s02 %08lx s03 %08lx\n",s00,s01,s02,s03); \
printf("S R0 s04 %08lx s05 %08lx s06 %08lx s07 %08lx\n",s04,s05,s06,s07); \
printf("S R0 s08 %08lx s09 %08lx s0A %08lx s0B %08lx\n",s08,s09,s0A,s0B); \
printf("S R0 s0C %08lx s0D %08lx s0E %08lx s0F %08lx\n",s0C,s0D,s0E,s0F); \
printf("S R0 s10 %08lx s11 %08lx s12 %08lx s13 %08lx\n",s10,s11,s12,s13); \
printf("S R0 s14 %08lx s15 %08lx s16 %08lx s17 %08lx\n",s14,s15,s16,s17); \
printf("S R0 s18 %08lx s19 %08lx s1A %08lx s1B %08lx\n",s18,s19,s1A,s1B); \
printf("S R0 s1C %08lx s1D %08lx s1E %08lx s1F %08lx\n",s1C,s1D,s1E,s1F); \
*/\
ROUND_BIG(1, alpha_n); \
ROUND_BIG(2, alpha_n); \
ROUND_BIG(3, alpha_n); \
ROUND_BIG(4, alpha_n); \
ROUND_BIG(5, alpha_n); \
} while (0)
#define PF_BIG do { \
ROUND_BIG(0, alpha_f); \
ROUND_BIG(1, alpha_f); \
ROUND_BIG(2, alpha_f); \
ROUND_BIG(3, alpha_f); \
ROUND_BIG(4, alpha_f); \
ROUND_BIG(5, alpha_f); \
ROUND_BIG(6, alpha_f); \
ROUND_BIG(7, alpha_f); \
ROUND_BIG(8, alpha_f); \
ROUND_BIG(9, alpha_f); \
ROUND_BIG(10, alpha_f); \
ROUND_BIG(11, alpha_f); \
} while (0)
#endif
#define T_BIG do { \
/* order is important */ \
cF = (sc->h[0xF] ^= s17); \
cE = (sc->h[0xE] ^= s16); \
cD = (sc->h[0xD] ^= s15); \
cC = (sc->h[0xC] ^= s14); \
cB = (sc->h[0xB] ^= s13); \
cA = (sc->h[0xA] ^= s12); \
c9 = (sc->h[0x9] ^= s11); \
c8 = (sc->h[0x8] ^= s10); \
c7 = (sc->h[0x7] ^= s07); \
c6 = (sc->h[0x6] ^= s06); \
c5 = (sc->h[0x5] ^= s05); \
c4 = (sc->h[0x4] ^= s04); \
c3 = (sc->h[0x3] ^= s03); \
c2 = (sc->h[0x2] ^= s02); \
c1 = (sc->h[0x1] ^= s01); \
c0 = (sc->h[0x0] ^= s00); \
} while (0)
static void
hamsi_big(sph_hamsi_big_context *sc, const unsigned char *buf, size_t num)
{
DECL_STATE_BIG
#if !SPH_64
sph_u32 tmp;
#endif
#if SPH_64
sc->count += (sph_u64)num << 6;
#else
tmp = SPH_T32((sph_u32)num << 6);
sc->count_low = SPH_T32(sc->count_low + tmp);
sc->count_high += (sph_u32)((num >> 13) >> 13);
if (sc->count_low < tmp)
sc->count_high ++;
#endif
READ_STATE_BIG(sc);
/*
uint32_t* b = (uint32_t*)buf;
//printf("S s64: %016llx\n",*ss);
//printf("S buf: %08lx %08lx\n",b[0], b[1]);
int n1 = 1;
int n2 = 1;
*/
while (num -- > 0) {
sph_u32 m0, m1, m2, m3, m4, m5, m6, m7;
sph_u32 m8, m9, mA, mB, mC, mD, mE, mF;
INPUT_BIG;
/*if ( n1 )
{
n1 = 0;
printf("S INPUT m: %08lx %08lx %08lx %08lx\n",m0,m1,m2,m3 );
printf("S INPUT m: %08lx %08lx %08lx %08lx\n",m4,m5,m6,m7);
printf("S INPUT m: %08lx %08lx %08lx %08lx\n",m8,m9,mA,mB );
printf("S INPUT m: %08lx %08lx %08lx %08lx\n",mC,mD,mE,mF);
}
*/
P_BIG;
/*if ( n2 )
{
n2 = 0;
printf("S P_BIG s: %08lx %08lx %08lx %08lx\n",s00,s01,s02,s03 );
printf("S P_BIG s: %08lx %08lx %08lx %08lx\n",s04,s05,s07,s07);
printf("S P_BIG s: %08lx %08lx %08lx %08lx\n",s08,s09,s0A,s0B );
printf("S P_BIG s: %08lx %08lx %08lx %08lx\n",s0C,s0D,s0E,s0F);
}
*/
T_BIG;
buf += 8;
}
WRITE_STATE_BIG(sc);
}
static void
hamsi_big_final(sph_hamsi_big_context *sc, const unsigned char *buf)
{
sph_u32 m0, m1, m2, m3, m4, m5, m6, m7;
sph_u32 m8, m9, mA, mB, mC, mD, mE, mF;
DECL_STATE_BIG
READ_STATE_BIG(sc);
INPUT_BIG;
PF_BIG;
T_BIG;
WRITE_STATE_BIG(sc);
}
static void
hamsi_big_init(sph_hamsi_big_context *sc, const sph_u32 *iv)
{
sc->partial_len = 0;
memcpy(sc->h, iv, sizeof sc->h);
#if SPH_64
sc->count = 0;
#else
sc->count_high = sc->count_low = 0;
#endif
}
static void
hamsi_big_core(sph_hamsi_big_context *sc, const void *data, size_t len)
{
uint64_t* d = (uint64_t*)data;
uint64_t* h = (uint64_t*)sc->h;
/*
printf("S core1 len = %d\n",len);
printf("S data: %016llx %016llx %016llx %016llx\n",d[0],d[1],d[2],d[3]);
printf("S data: %016llx %016llx %016llx %016llx\n",d[4],d[5],d[6],d[7]);
printf("S H: %016llx %016llx %016llx %016llx\n",h[0],h[1],h[2],h[3]);
*/
if (sc->partial_len != 0) {
//printf("WARNING partial_len != 0\n");
size_t mlen;
mlen = 8 - sc->partial_len;
if (len < mlen) {
memcpy(sc->partial + sc->partial_len, data, len);
sc->partial_len += len;
return;
} else {
memcpy(sc->partial + sc->partial_len, data, mlen);
len -= mlen;
data = (const unsigned char *)data + mlen;
hamsi_big(sc, sc->partial, 1);
sc->partial_len = 0;
}
}
hamsi_big(sc, data, (len >> 3));
/*
printf("S core2\n");
printf("S H: %016llx %016llx %016llx %016llx\n",h[0],h[1],h[2],h[3]);
*/
data = (const unsigned char *)data + (len & ~(size_t)7);
len &= (size_t)7;
memcpy(sc->partial, data, len);
sc->partial_len = len;
}
static void
hamsi_big_close(sph_hamsi_big_context *sc,
unsigned ub, unsigned n, void *dst, size_t out_size_w32)
{
unsigned char pad[8];
size_t ptr, u;
unsigned z;
unsigned char *out;
//uint64_t* h = (uint64_t*)sc->h;
ptr = sc->partial_len;
#if SPH_64
sph_enc64be(pad, sc->count + (ptr << 3) + n);
#else
sph_enc32be(pad, sc->count_high);
sph_enc32be(pad + 4, sc->count_low + (ptr << 3) + n);
#endif
z = 0x80 >> n;
sc->partial[ptr ++] = ((ub & -z) | z) & 0xFF;
while (ptr < 8)
sc->partial[ptr ++] = 0;
//printf("S close1\n");
//printf("S H: %016llx %016llx %016llx %016llx\n",h[0],h[1],h[2],h[3]);
hamsi_big(sc, sc->partial, 1);
//printf("S close2\n");
//printf("S H: %016llx %016llx %016llx %016llx\n",h[0],h[1],h[2],h[3]);
hamsi_big_final(sc, pad);
//printf("S close3\n");
//printf("S H: %016llx %016llx %016llx %016llx\n",h[0],h[1],h[2],h[3]);
out = dst;
if (out_size_w32 == 12) {
sph_enc32be(out + 0, sc->h[ 0]);
sph_enc32be(out + 4, sc->h[ 1]);
sph_enc32be(out + 8, sc->h[ 3]);
sph_enc32be(out + 12, sc->h[ 4]);
sph_enc32be(out + 16, sc->h[ 5]);
sph_enc32be(out + 20, sc->h[ 6]);
sph_enc32be(out + 24, sc->h[ 8]);
sph_enc32be(out + 28, sc->h[ 9]);
sph_enc32be(out + 32, sc->h[10]);
sph_enc32be(out + 36, sc->h[12]);
sph_enc32be(out + 40, sc->h[13]);
sph_enc32be(out + 44, sc->h[15]);
} else {
for (u = 0; u < 16; u ++)
sph_enc32be(out + (u << 2), sc->h[u]);
}
}
/* see sph_hamsi.h */
void
sph_hamsi224_init(void *cc)
{
hamsi_small_init(cc, IV224);
}
/* see sph_hamsi.h */
void
sph_hamsi224(void *cc, const void *data, size_t len)
{
hamsi_small_core(cc, data, len);
}
/* see sph_hamsi.h */
void
sph_hamsi224_close(void *cc, void *dst)
{
hamsi_small_close(cc, 0, 0, dst, 7);
// hamsi_small_init(cc, IV224);
}
/* see sph_hamsi.h */
void
sph_hamsi224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
hamsi_small_close(cc, ub, n, dst, 7);
// hamsi_small_init(cc, IV224);
}
/* see sph_hamsi.h */
void
sph_hamsi256_init(void *cc)
{
hamsi_small_init(cc, IV256);
}
/* see sph_hamsi.h */
void
sph_hamsi256(void *cc, const void *data, size_t len)
{
hamsi_small_core(cc, data, len);
}
/* see sph_hamsi.h */
void
sph_hamsi256_close(void *cc, void *dst)
{
hamsi_small_close(cc, 0, 0, dst, 8);
// hamsi_small_init(cc, IV256);
}
/* see sph_hamsi.h */
void
sph_hamsi256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
hamsi_small_close(cc, ub, n, dst, 8);
// hamsi_small_init(cc, IV256);
}
/* see sph_hamsi.h */
void
sph_hamsi384_init(void *cc)
{
hamsi_big_init(cc, IV384);
}
/* see sph_hamsi.h */
void
sph_hamsi384(void *cc, const void *data, size_t len)
{
hamsi_big_core(cc, data, len);
}
/* see sph_hamsi.h */
void
sph_hamsi384_close(void *cc, void *dst)
{
hamsi_big_close(cc, 0, 0, dst, 12);
// hamsi_big_init(cc, IV384);
}
/* see sph_hamsi.h */
void
sph_hamsi384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
hamsi_big_close(cc, ub, n, dst, 12);
// hamsi_big_init(cc, IV384);
}
/* see sph_hamsi.h */
void
sph_hamsi512_init(void *cc)
{
hamsi_big_init(cc, IV512);
}
/* see sph_hamsi.h */
void
sph_hamsi512(void *cc, const void *data, size_t len)
{
hamsi_big_core(cc, data, len);
}
/* see sph_hamsi.h */
void
sph_hamsi512_close(void *cc, void *dst)
{
hamsi_big_close(cc, 0, 0, dst, 16);
// hamsi_big_init(cc, IV512);
}
/* see sph_hamsi.h */
void
sph_hamsi512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
hamsi_big_close(cc, ub, n, dst, 16);
// hamsi_big_init(cc, IV512);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,115 @@
/* $Id: haval_helper.c 218 2010-06-08 17:06:34Z tp $ */
/*
* Helper code, included (three times !) by HAVAL implementation.
*
* TODO: try to merge this with md_helper.c.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#undef SPH_XCAT
#define SPH_XCAT(a, b) SPH_XCAT_(a, b)
#undef SPH_XCAT_
#define SPH_XCAT_(a, b) a ## b
static void
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way)
( haval_4way_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;
unsigned current;
current = (unsigned)sc->count_low & 127U;
while ( len > 0 )
{
unsigned clen;
sph_u32 clow, clow2;
clen = 128U - current;
if ( clen > len )
clen = len;
memcpy_128( sc->buf + (current>>2), vdata, clen>>2 );
vdata += clen>>2;
current += clen;
len -= clen;
if ( current == 128U )
{
DSTATE;
IN_PREPARE(sc->buf);
RSTATE;
SPH_XCAT(CORE, PASSES)(INW);
WSTATE;
current = 0;
}
clow = sc->count_low;
clow2 = SPH_T32(clow + clen);
sc->count_low = clow2;
if ( clow2 < clow )
sc->count_high ++;
}
}
static void
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way_close)( haval_4way_context *sc,
void *dst)
{
unsigned current;
DSTATE;
current = (unsigned)sc->count_low & 127UL;
sc->buf[ current>>2 ] = m128_one_32;
current += 4;
RSTATE;
if ( current > 116UL )
{
memset_zero_128( sc->buf + ( current>>2 ), (128UL-current) >> 2 );
do
{
IN_PREPARE(sc->buf);
SPH_XCAT(CORE, PASSES)(INW);
} while (0);
current = 0;
}
uint32_t t1, t2;
memset_zero_128( sc->buf + ( current>>2 ), (116UL-current) >> 2 );
t1 = 0x01 | (PASSES << 3);
t2 = sc->olen << 3;
sc->buf[ 116>>2 ] = _mm_set1_epi32( ( t1 << 16 ) | ( t2 << 24 ) );
sc->buf[ 120>>2 ] = _mm_set1_epi32( sc->count_low << 3 );
sc->buf[ 124>>2 ] = _mm_set1_epi32( (sc->count_high << 3)
| (sc->count_low >> 29) );
do
{
IN_PREPARE(sc->buf);
SPH_XCAT(CORE, PASSES)(INW);
} while (0);
WSTATE;
haval_4way_out( sc, dst );
}

View File

@@ -0,0 +1,522 @@
/* $Id: haval.c 227 2010-06-16 17:28:38Z tp $ */
/*
* HAVAL implementation.
*
* The HAVAL reference paper is of questionable clarity with regards to
* some details such as endianness of bits within a byte, bytes within
* a 32-bit word, or the actual ordering of words within a stream of
* words. This implementation has been made compatible with the reference
* implementation available on: http://labs.calyptix.com/haval.php
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "haval-hash-4way.h"
#if defined (__AVX__)
#ifdef __cplusplus
extern "C"{
#endif
//#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_HAVAL
#define SPH_SMALL_FOOTPRINT_HAVAL 1
//#endif
#define F1(x6, x5, x4, x3, x2, x1, x0) \
_mm_xor_si128( x0, \
_mm_xor_si128( _mm_and_si128(_mm_xor_si128( x0, x4 ), x1 ), \
_mm_xor_si128( _mm_and_si128( x2, x5 ), \
_mm_and_si128( x3, x6 ) ) ) ) \
#define F2(x6, x5, x4, x3, x2, x1, x0) \
_mm_xor_si128( \
_mm_and_si128( x2, \
_mm_xor_si128( _mm_andnot_si128( x3, x1 ), \
_mm_xor_si128( _mm_and_si128( x4, x5 ), \
_mm_xor_si128( x6, x0 ) ) ) ), \
_mm_xor_si128( \
_mm_and_si128( x4, _mm_xor_si128( x1, x5 ) ), \
_mm_xor_si128( _mm_and_si128( x3, x5 ), x0 ) ) ) \
#define F3(x6, x5, x4, x3, x2, x1, x0) \
_mm_xor_si128( \
_mm_and_si128( x3, \
_mm_xor_si128( _mm_and_si128( x1, x2 ), \
_mm_xor_si128( x6, x0 ) ) ), \
_mm_xor_si128( _mm_xor_si128(_mm_and_si128( x1, x4 ), \
_mm_and_si128( x2, x5 ) ), x0 ) )
#define F4(x6, x5, x4, x3, x2, x1, x0) \
_mm_xor_si128( \
_mm_xor_si128( \
_mm_and_si128( x3, \
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( x1, x2 ), \
_mm_or_si128( x4, x6 ) ), x5 ) ), \
_mm_and_si128( x4, \
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( mm_not(x2), x5 ), \
_mm_xor_si128( x1, x6 ) ), x0 ) ) ), \
_mm_xor_si128( _mm_and_si128( x2, x6 ), x0 ) )
#define F5(x6, x5, x4, x3, x2, x1, x0) \
_mm_xor_si128( \
_mm_and_si128( x0, \
mm_not( _mm_xor_si128( \
_mm_and_si128( _mm_and_si128( x1, x2 ), x3 ), x5 ) ) ), \
_mm_xor_si128( _mm_xor_si128( _mm_and_si128( x1, x4 ), \
_mm_and_si128( x2, x5 ) ), \
_mm_and_si128( x3, x6 ) ) )
/*
* The macros below integrate the phi() permutations, depending on the
* pass and the total number of passes.
*/
#define FP3_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x1, x0, x3, x5, x6, x2, x4)
#define FP3_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x4, x2, x1, x0, x5, x3, x6)
#define FP3_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x6, x1, x2, x3, x4, x5, x0)
#define FP4_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x2, x6, x1, x4, x5, x3, x0)
#define FP4_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x3, x5, x2, x0, x1, x6, x4)
#define FP4_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x1, x4, x3, x6, x0, x2, x5)
#define FP4_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x6, x4, x0, x5, x2, x1, x3)
#define FP5_1(x6, x5, x4, x3, x2, x1, x0) \
F1(x3, x4, x1, x0, x5, x2, x6)
#define FP5_2(x6, x5, x4, x3, x2, x1, x0) \
F2(x6, x2, x1, x0, x3, x4, x5)
#define FP5_3(x6, x5, x4, x3, x2, x1, x0) \
F3(x2, x6, x0, x4, x3, x1, x5)
#define FP5_4(x6, x5, x4, x3, x2, x1, x0) \
F4(x1, x5, x3, x2, x0, x4, x6)
#define FP5_5(x6, x5, x4, x3, x2, x1, x0) \
F5(x2, x5, x0, x6, x4, x3, x1)
/*
* One step, for "n" passes, pass number "p" (1 <= p <= n), using
* input word number "w" and step constant "c".
*/
#define STEP(n, p, x7, x6, x5, x4, x3, x2, x1, x0, w, c) \
do { \
__m128i t = FP ## n ## _ ## p(x6, x5, x4, x3, x2, x1, x0); \
x7 = _mm_add_epi32( _mm_add_epi32( mm_rotr_32( t, 7 ), \
mm_rotr_32( x7, 11 ) ), \
_mm_add_epi32( w, _mm_set1_epi32( c ) ) ); \
} while (0)
/*
* PASSy(n, in) computes pass number "y", for a total of "n", using the
* one-argument macro "in" to access input words. Current state is assumed
* to be held in variables "s0" to "s7".
*/
//#if SPH_SMALL_FOOTPRINT_HAVAL
#define PASS1(n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, 1, s7, s6, s5, s4, s3, s2, s1, s0, \
in(pass_count + 0), SPH_C32(0x00000000)); \
STEP(n, 1, s6, s5, s4, s3, s2, s1, s0, s7, \
in(pass_count + 1), SPH_C32(0x00000000)); \
STEP(n, 1, s5, s4, s3, s2, s1, s0, s7, s6, \
in(pass_count + 2), SPH_C32(0x00000000)); \
STEP(n, 1, s4, s3, s2, s1, s0, s7, s6, s5, \
in(pass_count + 3), SPH_C32(0x00000000)); \
STEP(n, 1, s3, s2, s1, s0, s7, s6, s5, s4, \
in(pass_count + 4), SPH_C32(0x00000000)); \
STEP(n, 1, s2, s1, s0, s7, s6, s5, s4, s3, \
in(pass_count + 5), SPH_C32(0x00000000)); \
STEP(n, 1, s1, s0, s7, s6, s5, s4, s3, s2, \
in(pass_count + 6), SPH_C32(0x00000000)); \
STEP(n, 1, s0, s7, s6, s5, s4, s3, s2, s1, \
in(pass_count + 7), SPH_C32(0x00000000)); \
} \
} while (0)
#define PASSG(p, n, in) do { \
unsigned pass_count; \
for (pass_count = 0; pass_count < 32; pass_count += 8) { \
STEP(n, p, s7, s6, s5, s4, s3, s2, s1, s0, \
in(MP ## p[pass_count + 0]), \
RK ## p[pass_count + 0]); \
STEP(n, p, s6, s5, s4, s3, s2, s1, s0, s7, \
in(MP ## p[pass_count + 1]), \
RK ## p[pass_count + 1]); \
STEP(n, p, s5, s4, s3, s2, s1, s0, s7, s6, \
in(MP ## p[pass_count + 2]), \
RK ## p[pass_count + 2]); \
STEP(n, p, s4, s3, s2, s1, s0, s7, s6, s5, \
in(MP ## p[pass_count + 3]), \
RK ## p[pass_count + 3]); \
STEP(n, p, s3, s2, s1, s0, s7, s6, s5, s4, \
in(MP ## p[pass_count + 4]), \
RK ## p[pass_count + 4]); \
STEP(n, p, s2, s1, s0, s7, s6, s5, s4, s3, \
in(MP ## p[pass_count + 5]), \
RK ## p[pass_count + 5]); \
STEP(n, p, s1, s0, s7, s6, s5, s4, s3, s2, \
in(MP ## p[pass_count + 6]), \
RK ## p[pass_count + 6]); \
STEP(n, p, s0, s7, s6, s5, s4, s3, s2, s1, \
in(MP ## p[pass_count + 7]), \
RK ## p[pass_count + 7]); \
} \
} while (0)
#define PASS2(n, in) PASSG(2, n, in)
#define PASS3(n, in) PASSG(3, n, in)
#define PASS4(n, in) PASSG(4, n, in)
#define PASS5(n, in) PASSG(5, n, in)
static const unsigned MP2[32] = {
5, 14, 26, 18, 11, 28, 7, 16,
0, 23, 20, 22, 1, 10, 4, 8,
30, 3, 21, 9, 17, 24, 29, 6,
19, 12, 15, 13, 2, 25, 31, 27
};
static const unsigned MP3[32] = {
19, 9, 4, 20, 28, 17, 8, 22,
29, 14, 25, 12, 24, 30, 16, 26,
31, 15, 7, 3, 1, 0, 18, 27,
13, 6, 21, 10, 23, 11, 5, 2
};
static const unsigned MP4[32] = {
24, 4, 0, 14, 2, 7, 28, 23,
26, 6, 30, 20, 18, 25, 19, 3,
22, 11, 31, 21, 8, 27, 12, 9,
1, 29, 5, 15, 17, 10, 16, 13
};
static const unsigned MP5[32] = {
27, 3, 21, 26, 17, 11, 20, 29,
19, 0, 12, 7, 13, 8, 31, 10,
5, 9, 14, 30, 18, 6, 28, 24,
2, 23, 16, 22, 4, 1, 25, 15
};
static const sph_u32 RK2[32] = {
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917),
SPH_C32(0x9216D5D9), SPH_C32(0x8979FB1B),
SPH_C32(0xD1310BA6), SPH_C32(0x98DFB5AC),
SPH_C32(0x2FFD72DB), SPH_C32(0xD01ADFB7),
SPH_C32(0xB8E1AFED), SPH_C32(0x6A267E96),
SPH_C32(0xBA7C9045), SPH_C32(0xF12C7F99),
SPH_C32(0x24A19947), SPH_C32(0xB3916CF7),
SPH_C32(0x0801F2E2), SPH_C32(0x858EFC16),
SPH_C32(0x636920D8), SPH_C32(0x71574E69),
SPH_C32(0xA458FEA3), SPH_C32(0xF4933D7E),
SPH_C32(0x0D95748F), SPH_C32(0x728EB658),
SPH_C32(0x718BCD58), SPH_C32(0x82154AEE),
SPH_C32(0x7B54A41D), SPH_C32(0xC25A59B5)
};
static const sph_u32 RK3[32] = {
SPH_C32(0x9C30D539), SPH_C32(0x2AF26013),
SPH_C32(0xC5D1B023), SPH_C32(0x286085F0),
SPH_C32(0xCA417918), SPH_C32(0xB8DB38EF),
SPH_C32(0x8E79DCB0), SPH_C32(0x603A180E),
SPH_C32(0x6C9E0E8B), SPH_C32(0xB01E8A3E),
SPH_C32(0xD71577C1), SPH_C32(0xBD314B27),
SPH_C32(0x78AF2FDA), SPH_C32(0x55605C60),
SPH_C32(0xE65525F3), SPH_C32(0xAA55AB94),
SPH_C32(0x57489862), SPH_C32(0x63E81440),
SPH_C32(0x55CA396A), SPH_C32(0x2AAB10B6),
SPH_C32(0xB4CC5C34), SPH_C32(0x1141E8CE),
SPH_C32(0xA15486AF), SPH_C32(0x7C72E993),
SPH_C32(0xB3EE1411), SPH_C32(0x636FBC2A),
SPH_C32(0x2BA9C55D), SPH_C32(0x741831F6),
SPH_C32(0xCE5C3E16), SPH_C32(0x9B87931E),
SPH_C32(0xAFD6BA33), SPH_C32(0x6C24CF5C)
};
static const sph_u32 RK4[32] = {
SPH_C32(0x7A325381), SPH_C32(0x28958677),
SPH_C32(0x3B8F4898), SPH_C32(0x6B4BB9AF),
SPH_C32(0xC4BFE81B), SPH_C32(0x66282193),
SPH_C32(0x61D809CC), SPH_C32(0xFB21A991),
SPH_C32(0x487CAC60), SPH_C32(0x5DEC8032),
SPH_C32(0xEF845D5D), SPH_C32(0xE98575B1),
SPH_C32(0xDC262302), SPH_C32(0xEB651B88),
SPH_C32(0x23893E81), SPH_C32(0xD396ACC5),
SPH_C32(0x0F6D6FF3), SPH_C32(0x83F44239),
SPH_C32(0x2E0B4482), SPH_C32(0xA4842004),
SPH_C32(0x69C8F04A), SPH_C32(0x9E1F9B5E),
SPH_C32(0x21C66842), SPH_C32(0xF6E96C9A),
SPH_C32(0x670C9C61), SPH_C32(0xABD388F0),
SPH_C32(0x6A51A0D2), SPH_C32(0xD8542F68),
SPH_C32(0x960FA728), SPH_C32(0xAB5133A3),
SPH_C32(0x6EEF0B6C), SPH_C32(0x137A3BE4)
};
static const sph_u32 RK5[32] = {
SPH_C32(0xBA3BF050), SPH_C32(0x7EFB2A98),
SPH_C32(0xA1F1651D), SPH_C32(0x39AF0176),
SPH_C32(0x66CA593E), SPH_C32(0x82430E88),
SPH_C32(0x8CEE8619), SPH_C32(0x456F9FB4),
SPH_C32(0x7D84A5C3), SPH_C32(0x3B8B5EBE),
SPH_C32(0xE06F75D8), SPH_C32(0x85C12073),
SPH_C32(0x401A449F), SPH_C32(0x56C16AA6),
SPH_C32(0x4ED3AA62), SPH_C32(0x363F7706),
SPH_C32(0x1BFEDF72), SPH_C32(0x429B023D),
SPH_C32(0x37D0D724), SPH_C32(0xD00A1248),
SPH_C32(0xDB0FEAD3), SPH_C32(0x49F1C09B),
SPH_C32(0x075372C9), SPH_C32(0x80991B7B),
SPH_C32(0x25D479D8), SPH_C32(0xF6E8DEF7),
SPH_C32(0xE3FE501A), SPH_C32(0xB6794C3B),
SPH_C32(0x976CE0BD), SPH_C32(0x04C006BA),
SPH_C32(0xC1A94FB6), SPH_C32(0x409F60C4)
};
#define SAVE_STATE \
__m128i u0, u1, u2, u3, u4, u5, u6, u7; \
do { \
u0 = s0; \
u1 = s1; \
u2 = s2; \
u3 = s3; \
u4 = s4; \
u5 = s5; \
u6 = s6; \
u7 = s7; \
} while (0)
#define UPDATE_STATE \
do { \
s0 = _mm_add_epi32( s0, u0 ); \
s1 = _mm_add_epi32( s1, u1 ); \
s2 = _mm_add_epi32( s2, u2 ); \
s3 = _mm_add_epi32( s3, u3 ); \
s4 = _mm_add_epi32( s4, u4 ); \
s5 = _mm_add_epi32( s5, u5 ); \
s6 = _mm_add_epi32( s6, u6 ); \
s7 = _mm_add_epi32( s7, u7 ); \
} while (0)
/*
* COREn(in) performs the core HAVAL computation for "n" passes, using
* the one-argument macro "in" to access the input words. Running state
* is held in variable "s0" to "s7".
*/
/*
#define CORE3(in) do { \
SAVE_STATE; \
PASS1(3, in); \
PASS2(3, in); \
PASS3(3, in); \
UPDATE_STATE; \
} while (0)
#define CORE4(in) do { \
SAVE_STATE; \
PASS1(4, in); \
PASS2(4, in); \
PASS3(4, in); \
PASS4(4, in); \
UPDATE_STATE; \
} while (0)
*/
#define CORE5(in) do { \
SAVE_STATE; \
PASS1(5, in); \
PASS2(5, in); \
PASS3(5, in); \
PASS4(5, in); \
PASS5(5, in); \
UPDATE_STATE; \
} while (0)
/*
* DSTATE declares the state variables "s0" to "s7".
*/
#define DSTATE __m128i s0, s1, s2, s3, s4, s5, s6, s7
/*
* RSTATE fills the state variables from the context "sc".
*/
#define RSTATE \
do { \
s0 = sc->s0; \
s1 = sc->s1; \
s2 = sc->s2; \
s3 = sc->s3; \
s4 = sc->s4; \
s5 = sc->s5; \
s6 = sc->s6; \
s7 = sc->s7; \
} while (0)
/*
* WSTATE updates the context "sc" from the state variables.
*/
#define WSTATE \
do { \
sc->s0 = s0; \
sc->s1 = s1; \
sc->s2 = s2; \
sc->s3 = s3; \
sc->s4 = s4; \
sc->s5 = s5; \
sc->s6 = s6; \
sc->s7 = s7; \
} while (0)
/*
* Initialize a context. "olen" is the output length, in 32-bit words
* (between 4 and 8, inclusive). "passes" is the number of passes
* (3, 4 or 5).
*/
static void
haval_4way_init( haval_4way_context *sc, unsigned olen, unsigned passes )
{
sc->s0 = _mm_set1_epi32( 0x243F6A88UL );
sc->s1 = _mm_set1_epi32( 0x85A308D3UL );
sc->s2 = _mm_set1_epi32( 0x13198A2EUL );
sc->s3 = _mm_set1_epi32( 0x03707344UL );
sc->s4 = _mm_set1_epi32( 0xA4093822UL );
sc->s5 = _mm_set1_epi32( 0x299F31D0UL );
sc->s6 = _mm_set1_epi32( 0x082EFA98UL );
sc->s7 = _mm_set1_epi32( 0xEC4E6C89UL );
sc->olen = olen;
sc->passes = passes;
sc->count_high = 0;
sc->count_low = 0;
}
#define IN_PREPARE(indata) const __m128i *const load_ptr = (indata)
#define INW(i) load_ptr[ i ]
/*
* Write out HAVAL output. The output length is tailored to the requested
* length.
*/
static void
haval_4way_out( haval_4way_context *sc, void *dst )
{
__m128i *buf = (__m128i*)dst;
DSTATE;
RSTATE;
buf[0] = s0;
buf[1] = s1;
buf[2] = s2;
buf[3] = s3;
buf[4] = s4;
buf[5] = s5;
buf[6] = s6;
buf[7] = s7;
}
/*
* The main core functions inline the code with the COREx() macros. We
* use a helper file, included three times, which avoids code copying.
*/
/*
#undef PASSES
#define PASSES 3
#include "haval-helper.c"
#undef PASSES
#define PASSES 4
#include "haval-helper.c"
*/
#undef PASSES
#define PASSES 5
#include "haval-4way-helper.c"
/* ====================================================================== */
#define API(xxx, y) \
void \
haval ## xxx ## _ ## y ## _4way_init(void *cc) \
{ \
haval_4way_init(cc, xxx >> 5, y); \
} \
\
void \
haval ## xxx ## _ ## y ## _4way (void *cc, const void *data, size_t len) \
{ \
haval ## y ## _4way(cc, data, len); \
} \
\
void \
haval ## xxx ## _ ## y ## _4way_close(void *cc, void *dst) \
{ \
haval ## y ## _4way_close(cc, dst); \
} \
API(256, 5)
#define RVAL \
do { \
s0 = val[0]; \
s1 = val[1]; \
s2 = val[2]; \
s3 = val[3]; \
s4 = val[4]; \
s5 = val[5]; \
s6 = val[6]; \
s7 = val[7]; \
} while (0)
#define WVAL \
do { \
val[0] = s0; \
val[1] = s1; \
val[2] = s2; \
val[3] = s3; \
val[4] = s4; \
val[5] = s5; \
val[6] = s6; \
val[7] = s7; \
} while (0)
#define INMSG(i) msg[i]
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,95 @@
/* $Id: sph_haval.h 218 2010-06-08 17:06:34Z tp $ */
/**
* HAVAL interface.
*
* HAVAL is actually a family of 15 hash functions, depending on whether
* the internal computation uses 3, 4 or 5 passes, and on the output
* length, which is 128, 160, 192, 224 or 256 bits. This implementation
* provides interface functions for all 15, which internally map to
* three cores (depending on the number of passes). Note that output
* lengths other than 256 bits are not obtained by a simple truncation
* of a longer result; the requested length is encoded within the
* padding data.
*
* HAVAL was published in: Yuliang Zheng, Josef Pieprzyk and Jennifer
* Seberry: "HAVAL -- a one-way hashing algorithm with variable length
* of output", Advances in Cryptology -- AUSCRYPT'92, Lecture Notes in
* Computer Science, Vol.718, pp.83-104, Springer-Verlag, 1993.
*
* This paper, and a reference implementation, are available on the
* Calyptix web site: http://labs.calyptix.com/haval.php
*
* The HAVAL reference paper is quite unclear on the data encoding
* details, i.e. endianness (both byte order within a 32-bit word, and
* word order within a message block). This implementation has been
* made compatible with the reference implementation referenced above.
*
* @warning A collision for HAVAL-128/3 (HAVAL with three passes and
* 128-bit output) has been published; this function is thus considered
* as cryptographically broken. The status for other variants is unclear;
* use only with care.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_haval.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef HAVAL_HASH_4WAY_H__
#define HAVAL_HASH_4WAY_H__
#if defined(__AVX__)
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "avxdefs.h"
#define SPH_SIZE_haval256_5 256
typedef struct {
__m128i buf[32];
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
unsigned olen, passes;
sph_u32 count_high, count_low;
} haval_4way_context;
typedef haval_4way_context haval256_5_4way_context;
void haval256_5_4way_init( void *cc );
void haval256_5_4way( void *cc, const void *data, size_t len );
void haval256_5_4way_close( void *cc, void *dst );
#ifdef __cplusplus
}
#endif
#endif
#endif

View File

@@ -15,7 +15,7 @@
#include "algo/shabal/sph_shabal.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/luffa/sse2/luffa_for_sse2.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/skein/sse2/skein.c"
#ifndef NO_AES_NI

View File

@@ -99,6 +99,7 @@ int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
pthread_barrier_wait( &hodl_barrier );
return scanhash_hodl_wolf( thr_id, work, max_nonce, hashes_done );
#endif
return false;
}
bool register_hodl_algo( algo_gate_t* gate )

View File

@@ -96,34 +96,18 @@ extern "C"{
do { \
__m256i cc = _mm256_set_epi64x( c, c, c, c ); \
x3 = mm256_not( x3 ); \
x0 = _mm256_xor_si256( x0, _mm256_and_si256( cc, mm256_not( x2 ) ) ); \
x0 = _mm256_xor_si256( x0, _mm256_andnot_si256( x2, cc ) ); \
tmp = _mm256_xor_si256( cc, _mm256_and_si256( x0, x1 ) ); \
x0 = _mm256_xor_si256( x0, _mm256_and_si256( x2, x3 ) ); \
x3 = _mm256_xor_si256( x3, _mm256_and_si256( mm256_not( x1 ), x2 ) ); \
x3 = _mm256_xor_si256( x3, _mm256_andnot_si256( x1, x2 ) ); \
x1 = _mm256_xor_si256( x1, _mm256_and_si256( x0, x2 ) ); \
x2 = _mm256_xor_si256( x2, _mm256_and_si256( x0, mm256_not( x3 ) ) ); \
x2 = _mm256_xor_si256( x2, _mm256_andnot_si256( x3, x0 ) ); \
x0 = _mm256_xor_si256( x0, _mm256_or_si256( x1, x3 ) ); \
x3 = _mm256_xor_si256( x3, _mm256_and_si256( x1, x2 ) ); \
x1 = _mm256_xor_si256( x1, _mm256_and_si256( tmp, x0 ) ); \
x2 = _mm256_xor_si256( x2, tmp ); \
} while (0)
/*
#define Sb(x0, x1, x2, x3, c) do { \
x3 = ~x3; \
x0 ^= (c) & ~x2; \
tmp = (c) ^ (x0 & x1); \
x0 ^= x2 & x3; \
x3 ^= ~x1 & x2; \
x1 ^= x0 & x2; \
x2 ^= x0 & ~x3; \
x0 ^= x1 | x3; \
x3 ^= x1 & x2; \
x1 ^= tmp & x0; \
x2 ^= tmp; \
} while (0)
*/
#define Lb(x0, x1, x2, x3, x4, x5, x6, x7) \
do { \
x4 = _mm256_xor_si256( x4, x1 ); \
@@ -136,20 +120,6 @@ do { \
x3 = _mm256_xor_si256( x3, x4 ); \
} while (0)
/*
#define Lb(x0, x1, x2, x3, x4, x5, x6, x7) do { \
x4 ^= x1; \
x5 ^= x2; \
x6 ^= x3 ^ x0; \
x7 ^= x0; \
x0 ^= x5; \
x1 ^= x6; \
x2 ^= x7 ^ x4; \
x3 ^= x4; \
} while (0)
*/
#if SPH_JH_64
static const sph_u64 C[] = {

View File

@@ -23,12 +23,12 @@ void jha_hash_4way( void *out, const void *input )
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhash0[8*4] __attribute__ ((aligned (64)));
uint64_t vhash1[8*4] __attribute__ ((aligned (64)));
__m256i mask0, mask1;
__m256i* vh = (__m256i*)vhash;
__m256i* vh0 = (__m256i*)vhash0;
__m256i* vh1 = (__m256i*)vhash1;
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
uint64_t vhashB[8*4] __attribute__ ((aligned (64)));
__m256i* vh = (__m256i*)vhash;
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
blake512_4way_context ctx_blake;
hashState_groestl ctx_groestl;
@@ -40,122 +40,69 @@ void jha_hash_4way( void *out, const void *input )
keccak512_4way( &ctx_keccak, input, 80 );
keccak512_4way_close( &ctx_keccak, vhash );
// memcpy( &ctx_keccak, &jha_kec_mid, sizeof jha_kec_mid );
// keccak512_4way( &ctx_keccak, input + (64<<2), 16 );
// keccak512_4way_close( &ctx_keccak, vhash );
// Heavy & Light Pair Loop
for ( int round = 0; round < 3; round++ )
{
// memset_zero_256( vh0, 20 );
// memset_zero_256( vh1, 20 );
// positive logic, if maski select vhi
// going from bit to mask reverses logic such that if the test bit is set
// zero will be put in mask0, meaning don't take vh0. mask1 is
// inverted so 1 will be put in mask1 meaning take it.
mask0 = mm256_negate_64(
_mm256_and_si256( vh[0], _mm256_set1_epi64x( 0x1 ) ) );
mask1 = mm256_not( mask0 );
// mask = _mm256_sub_epi64( _mm256_and_si256( vh[0],
// _mm256_set1_epi64x( 0x1 ) ), _mm256_set1_epi64x( 0x1 ) );
// groestl (serial) v skein
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256(
vh[0], _mm256_set1_epi64x( 1 ) ), m256_zero );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash0,
(char*)hash0, 512 );
(char*)hash0, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash1,
(char*)hash1, 512 );
(char*)hash1, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash2,
(char*)hash2, 512 );
(char*)hash2, 512 );
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash3,
(char*)hash3, 512 );
mm256_interleave_4x64( vhash0, hash0, hash1, hash2, hash3, 512 );
// skein
(char*)hash3, 512 );
mm256_interleave_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
skein512_4way_init( &ctx_skein );
skein512_4way( &ctx_skein, vhash, 64 );
skein512_4way_close( &ctx_skein, vhash1 );
skein512_4way_close( &ctx_skein, vhashB );
// merge vectored hash
for ( int i = 0; i < 8; i++ )
{
vh[i] = _mm256_or_si256( _mm256_and_si256( vh0[i], mask0 ),
_mm256_and_si256( vh1[i], mask1 ) );
/*
vha256[i] = _mm256_maskload_epi64(
vhasha + i*4, mm256_not( mask ) );
vhb256[i] = _mm256_maskload_epi64(
vhashb + i*4, mask );
vh256[i] = _mm256_or_si256( vha256[i], vhb256[i] );
*/
}
// blake v jh
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
blake512_4way_init( &ctx_blake );
blake512_4way( &ctx_blake, vhash, 64 );
blake512_4way_close( &ctx_blake, vhash0 );
blake512_4way_close( &ctx_blake, vhashA );
jh512_4way_init( &ctx_jh );
jh512_4way( &ctx_jh, vhash, 64 );
jh512_4way_close( &ctx_jh, vhash1 );
jh512_4way_close( &ctx_jh, vhashB );
// merge hash
for ( int i = 0; i < 8; i++ )
{
vh[i] = _mm256_or_si256( _mm256_and_si256( vh0[i], mask0 ),
_mm256_and_si256( vh1[i], mask1 ) );
/*
vha256[i] = _mm256_maskload_epi64(
vhasha + i*4, mm256_not( mask ) );
vhb256[i] = _mm256_maskload_epi64(
vhashb + i*4, mask );
vh256[i] = _mm256_or_si256( vha256[i], vhb256[i] );
*/
}
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
}
mm256_deinterleave_4x64( out, out+32, out+64, out+96, vhash, 256 );
// memcpy( output, hash0, 32 );
// memcpy( output+32, hash1, 32 );
// memcpy( output+64, hash2, 32 );
// memcpy( output+96, hash3, 32 );
}
int scanhash_jha_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
uint32_t *noncep1 = vdata + 75;
uint32_t *noncep2 = vdata + 77;
uint32_t *noncep3 = vdata + 79;
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
uint32_t *noncep1 = vdata + 75;
uint32_t *noncep2 = vdata + 77;
uint32_t *noncep3 = vdata + 79;
uint64_t htmax[] = {
uint64_t htmax[] = {
0,
0xF,
0xFF,
@@ -163,7 +110,7 @@ int scanhash_jha_4way( int thr_id, struct work *work, uint32_t max_nonce,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
@@ -172,17 +119,12 @@ int scanhash_jha_4way( int thr_id, struct work *work, uint32_t max_nonce,
0
};
// we need bigendian data...
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
// precalc midstate for keccak
// keccak512_4way_init( &jha_kec_mid );
// keccak512_4way( &jha_kec_mid, vdata, 64 );
for ( int m = 0; m < 6; m++ )
{
if ( Htarg <= htmax[m] )
@@ -196,7 +138,6 @@ int scanhash_jha_4way( int thr_id, struct work *work, uint32_t max_nonce,
be32enc( noncep3, n+3 );
jha_hash_4way( hash, vdata );
pdata[19] = n;
if ( ( !(hash[7] & mask) )
@@ -234,11 +175,9 @@ int scanhash_jha_4way( int thr_id, struct work *work, uint32_t max_nonce,
n += 4;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
break;
}
}
*hashes_done = n - first_nonce + 1;
return num_found;
}

View File

@@ -5,14 +5,13 @@ bool register_jha_algo( algo_gate_t* gate )
{
#if defined (JHA_4WAY)
four_way_not_tested();
gate->optimizations = SSE2_OPT | AES_OPT | FOUR_WAY_OPT;
gate->scanhash = (void*)&scanhash_jha_4way;
gate->hash = (void*)&jha_hash_4way;
#else
gate->optimizations = SSE2_OPT | AES_OPT | FOUR_WAY_OPT;
gate->scanhash = (void*)&scanhash_jha;
gate->hash = (void*)&jha_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->set_target = (void*)&scrypt_set_target;
return true;
};

View File

@@ -5,7 +5,7 @@
#include <stdint.h>
#if defined(FOUR_WAY) && defined(__AVX2__) && !defined(NO_AES_NI)
#if defined(__AVX2__) && defined(__AES__)
#define JHA_4WAY
#endif

View File

@@ -9,7 +9,7 @@ int64_t keccak_get_max64() { return 0x7ffffLL; }
bool register_keccak_algo( algo_gate_t* gate )
{
gate->optimizations = FOUR_WAY_OPT;
gate->optimizations = AVX2_OPT;
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
gate->set_target = (void*)&keccak_set_target;
gate->get_max64 = (void*)&keccak_get_max64;
@@ -30,7 +30,7 @@ void keccakc_set_target( struct work* work, double job_diff )
bool register_keccakc_algo( algo_gate_t* gate )
{
gate->optimizations = FOUR_WAY_OPT;
gate->optimizations = AVX2_OPT;
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
gate->set_target = (void*)&keccakc_set_target;
gate->get_max64 = (void*)&keccak_get_max64;

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(FOUR_WAY) && defined(__AVX2__)
#if defined(__AVX2__)
#define KECCAK_4WAY
#endif

View File

@@ -59,7 +59,7 @@ static const sph_u64 RC[] = {
#define XOR64(d, a, b) (d = _mm256_xor_si256(a,b))
#define AND64(d, a, b) (d = _mm256_and_si256(a,b))
#define OR64(d, a, b) (d = _mm256_or_si256(a,b))
#define NOT64(d, s) (d = _mm256_xor_si256(s,mm256_neg1))
#define NOT64(d, s) (d = _mm256_xor_si256(s,m256_neg1))
#define ROL64(d, v, n) (d = mm256_rotl_64(v, n))
#define XOR64_IOTA XOR64
@@ -375,12 +375,12 @@ static void keccak64_init( keccak64_ctx_m256i *kc, unsigned out_size )
kc->w[i] = _mm256_setzero_si256();
// Initialization for the "lane complement".
kc->w[ 1] = mm256_neg1;
kc->w[ 2] = mm256_neg1;
kc->w[ 8] = mm256_neg1;
kc->w[12] = mm256_neg1;
kc->w[17] = mm256_neg1;
kc->w[20] = mm256_neg1;
kc->w[ 1] = m256_neg1;
kc->w[ 2] = m256_neg1;
kc->w[ 8] = m256_neg1;
kc->w[12] = m256_neg1;
kc->w[17] = m256_neg1;
kc->w[20] = m256_neg1;
kc->ptr = 0;
kc->lim = 200 - (out_size >> 2);
}

View File

@@ -0,0 +1,584 @@
/*
* luffa_for_sse2.c
* Version 2.0 (Sep 15th 2009)
*
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved.
*
* Hitachi, Ltd. is the owner of this software and hereby grant
* the U.S. Government and any interested party the right to use
* this software for the purposes of the SHA-3 evaluation process,
* notwithstanding that this software is copyrighted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <string.h>
#include <immintrin.h>
#include "luffa-hash-2way.h"
#if defined(__AVX2__)
#include "avxdefs.h"
#define MASK _mm256_set_epi32( 0UL, 0UL, 0UL, 0xffffffffUL, \
0UL, 0UL, 0UL, 0xffffffffUL )
#define ADD_CONSTANT(a,b,c0,c1)\
a = _mm256_xor_si256(a,c0);\
b = _mm256_xor_si256(b,c1);\
#define MULT2(a0,a1) \
do { \
__m256i b = _mm256_xor_si256( a0, \
_mm256_shuffle_epi32( _mm256_and_si256(a1,MASK), 16 ) ); \
a0 = _mm256_or_si256( _mm256_srli_si256(b,4), _mm256_slli_si256(a1,12) ); \
a1 = _mm256_or_si256( _mm256_srli_si256(a1,4), _mm256_slli_si256(b,12) ); \
} while(0)
// confirm pointer arithmetic
// ok but use array indexes
#define STEP_PART(x,c,t)\
SUBCRUMB(*x,*(x+1),*(x+2),*(x+3),*t);\
SUBCRUMB(*(x+5),*(x+6),*(x+7),*(x+4),*t);\
MIXWORD(*x,*(x+4),*t,*(t+1));\
MIXWORD(*(x+1),*(x+5),*t,*(t+1));\
MIXWORD(*(x+2),*(x+6),*t,*(t+1));\
MIXWORD(*(x+3),*(x+7),*t,*(t+1));\
ADD_CONSTANT(*x, *(x+4), *c, *(c+1));
#define SUBCRUMB(a0,a1,a2,a3,t)\
t = _mm256_load_si256(&a0);\
a0 = _mm256_or_si256(a0,a1);\
a2 = _mm256_xor_si256(a2,a3);\
a1 = _mm256_andnot_si256(a1, m256_neg1 );\
a0 = _mm256_xor_si256(a0,a3);\
a3 = _mm256_and_si256(a3,t);\
a1 = _mm256_xor_si256(a1,a3);\
a3 = _mm256_xor_si256(a3,a2);\
a2 = _mm256_and_si256(a2,a0);\
a0 = _mm256_andnot_si256(a0, m256_neg1 );\
a2 = _mm256_xor_si256(a2,a1);\
a1 = _mm256_or_si256(a1,a3);\
t = _mm256_xor_si256(t,a1);\
a3 = _mm256_xor_si256(a3,a2);\
a2 = _mm256_and_si256(a2,a1);\
a1 = _mm256_xor_si256(a1,a0);\
a0 = _mm256_load_si256(&t);\
#define MIXWORD(a,b,t1,t2)\
b = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(a,2);\
t2 = _mm256_srli_epi32(a,30);\
a = _mm256_or_si256(t1,t2);\
a = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(b,14);\
t2 = _mm256_srli_epi32(b,18);\
b = _mm256_or_si256(t1,t2);\
b = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(a,10);\
t2 = _mm256_srli_epi32(a,22);\
a = _mm256_or_si256(t1,t2);\
a = _mm256_xor_si256(a,b);\
t1 = _mm256_slli_epi32(b,1);\
t2 = _mm256_srli_epi32(b,31);\
b = _mm256_or_si256(t1,t2);
#define STEP_PART2(a0,a1,t0,t1,c0,c1,tmp0,tmp1)\
a1 = _mm256_shuffle_epi32(a1,147);\
t0 = _mm256_load_si256(&a1);\
a1 = _mm256_unpacklo_epi32(a1,a0);\
t0 = _mm256_unpackhi_epi32(t0,a0);\
t1 = _mm256_shuffle_epi32(t0,78);\
a0 = _mm256_shuffle_epi32(a1,78);\
SUBCRUMB(t1,t0,a0,a1,tmp0);\
t0 = _mm256_unpacklo_epi32(t0,t1);\
a1 = _mm256_unpacklo_epi32(a1,a0);\
a0 = _mm256_load_si256(&a1);\
a0 = _mm256_unpackhi_epi64(a0,t0);\
a1 = _mm256_unpacklo_epi64(a1,t0);\
a1 = _mm256_shuffle_epi32(a1,57);\
MIXWORD(a0,a1,tmp0,tmp1);\
ADD_CONSTANT(a0,a1,c0,c1);
#define NMLTOM768(r0,r1,r2,s0,s1,s2,s3,p0,p1,p2,q0,q1,q2,q3)\
s2 = _mm256_load_si256(&r1);\
q2 = _mm256_load_si256(&p1);\
r2 = _mm256_shuffle_epi32(r2,216);\
p2 = _mm256_shuffle_epi32(p2,216);\
r1 = _mm256_unpacklo_epi32(r1,r0);\
p1 = _mm256_unpacklo_epi32(p1,p0);\
s2 = _mm256_unpackhi_epi32(s2,r0);\
q2 = _mm256_unpackhi_epi32(q2,p0);\
s0 = _mm256_load_si256(&r2);\
q0 = _mm256_load_si256(&p2);\
r2 = _mm256_unpacklo_epi64(r2,r1);\
p2 = _mm256_unpacklo_epi64(p2,p1);\
s1 = _mm256_load_si256(&s0);\
q1 = _mm256_load_si256(&q0);\
s0 = _mm256_unpackhi_epi64(s0,r1);\
q0 = _mm256_unpackhi_epi64(q0,p1);\
r2 = _mm256_shuffle_epi32(r2,225);\
p2 = _mm256_shuffle_epi32(p2,225);\
r0 = _mm256_load_si256(&s1);\
p0 = _mm256_load_si256(&q1);\
s0 = _mm256_shuffle_epi32(s0,225);\
q0 = _mm256_shuffle_epi32(q0,225);\
s1 = _mm256_unpacklo_epi64(s1,s2);\
q1 = _mm256_unpacklo_epi64(q1,q2);\
r0 = _mm256_unpackhi_epi64(r0,s2);\
p0 = _mm256_unpackhi_epi64(p0,q2);\
s2 = _mm256_load_si256(&r0);\
q2 = _mm256_load_si256(&p0);\
s3 = _mm256_load_si256(&r2);\
q3 = _mm256_load_si256(&p2);\
#define MIXTON768(r0,r1,r2,r3,s0,s1,s2,p0,p1,p2,p3,q0,q1,q2)\
s0 = _mm256_load_si256(&r0);\
q0 = _mm256_load_si256(&p0);\
s1 = _mm256_load_si256(&r2);\
q1 = _mm256_load_si256(&p2);\
r0 = _mm256_unpackhi_epi32(r0,r1);\
p0 = _mm256_unpackhi_epi32(p0,p1);\
r2 = _mm256_unpackhi_epi32(r2,r3);\
p2 = _mm256_unpackhi_epi32(p2,p3);\
s0 = _mm256_unpacklo_epi32(s0,r1);\
q0 = _mm256_unpacklo_epi32(q0,p1);\
s1 = _mm256_unpacklo_epi32(s1,r3);\
q1 = _mm256_unpacklo_epi32(q1,p3);\
r1 = _mm256_load_si256(&r0);\
p1 = _mm256_load_si256(&p0);\
r0 = _mm256_unpackhi_epi64(r0,r2);\
p0 = _mm256_unpackhi_epi64(p0,p2);\
s0 = _mm256_unpackhi_epi64(s0,s1);\
q0 = _mm256_unpackhi_epi64(q0,q1);\
r1 = _mm256_unpacklo_epi64(r1,r2);\
p1 = _mm256_unpacklo_epi64(p1,p2);\
s2 = _mm256_load_si256(&r0);\
q2 = _mm256_load_si256(&p0);\
s1 = _mm256_load_si256(&r1);\
q1 = _mm256_load_si256(&p1);\
#define NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\
s1 = _mm256_load_si256(&r3);\
q1 = _mm256_load_si256(&p3);\
s3 = _mm256_load_si256(&r3);\
q3 = _mm256_load_si256(&p3);\
s1 = _mm256_unpackhi_epi32(s1,r2);\
q1 = _mm256_unpackhi_epi32(q1,p2);\
s3 = _mm256_unpacklo_epi32(s3,r2);\
q3 = _mm256_unpacklo_epi32(q3,p2);\
s0 = _mm256_load_si256(&s1);\
q0 = _mm256_load_si256(&q1);\
s2 = _mm256_load_si256(&s3);\
q2 = _mm256_load_si256(&q3);\
r3 = _mm256_load_si256(&r1);\
p3 = _mm256_load_si256(&p1);\
r1 = _mm256_unpacklo_epi32(r1,r0);\
p1 = _mm256_unpacklo_epi32(p1,p0);\
r3 = _mm256_unpackhi_epi32(r3,r0);\
p3 = _mm256_unpackhi_epi32(p3,p0);\
s0 = _mm256_unpackhi_epi64(s0,r3);\
q0 = _mm256_unpackhi_epi64(q0,p3);\
s1 = _mm256_unpacklo_epi64(s1,r3);\
q1 = _mm256_unpacklo_epi64(q1,p3);\
s2 = _mm256_unpackhi_epi64(s2,r1);\
q2 = _mm256_unpackhi_epi64(q2,p1);\
s3 = _mm256_unpacklo_epi64(s3,r1);\
q3 = _mm256_unpacklo_epi64(q3,p1);
#define MIXTON1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\
NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3);
/* initial values of chaining variables */
static const uint32 IV[40] __attribute((aligned(32))) = {
0xdbf78465,0x4eaa6fb4,0x44b051e0,0x6d251e69,
0xdef610bb,0xee058139,0x90152df4,0x6e292011,
0xde099fa3,0x70eee9a0,0xd9d2f256,0xc3b44b95,
0x746cd581,0xcf1ccf0e,0x8fc944b3,0x5d9b0557,
0xad659c05,0x04016ce5,0x5dba5781,0xf7efc89d,
0x8b264ae7,0x24aa230a,0x666d1836,0x0306194f,
0x204b1f67,0xe571f7d7,0x36d79cce,0x858075d5,
0x7cde72ce,0x14bcb808,0x57e9e923,0x35870c6a,
0xaffb4363,0xc825b7c7,0x5ec41e22,0x6c68e9be,
0x03e86cea,0xb07224cc,0x0fc688f1,0xf5df3999
};
/* Round Constants */
static const uint32 CNS_INIT[128] __attribute((aligned(32))) = {
0xb213afa5,0xfc20d9d2,0xb6de10ed,0x303994a6,
0xe028c9bf,0xe25e72c1,0x01685f3d,0xe0337818,
0xc84ebe95,0x34552e25,0x70f47aae,0xc0e65299,
0x44756f91,0xe623bb72,0x05a17cf4,0x441ba90d,
0x4e608a22,0x7ad8818f,0x0707a3d4,0x6cc33a12,
0x7e8fce32,0x5c58a4a4,0xbd09caca,0x7f34d442,
0x56d858fe,0x8438764a,0x1c1e8f51,0xdc56983e,
0x956548be,0x1e38e2e7,0xf4272b28,0x9389217f,
0x343b138f,0xbb6de032,0x707a3d45,0x1e00108f,
0xfe191be2,0x78e38b9d,0x144ae5cc,0xe5a8bce6,
0xd0ec4e3d,0xedb780c8,0xaeb28562,0x7800423d,
0x3cb226e5,0x27586719,0xfaa7ae2b,0x5274baf4,
0x2ceb4882,0xd9847356,0xbaca1589,0x8f5b7882,
0x5944a28e,0x36eda57f,0x2e48f1c1,0x26889ba7,
0xb3ad2208,0xa2c78434,0x40a46f3e,0x96e1db12,
0xa1c4c355,0x703aace7,0xb923c704,0x9a226e9d,
0x00000000,0x00000000,0x00000000,0xf0d2e9e3,
0x00000000,0x00000000,0x00000000,0x5090d577,
0x00000000,0x00000000,0x00000000,0xac11d7fa,
0x00000000,0x00000000,0x00000000,0x2d1925ab,
0x00000000,0x00000000,0x00000000,0x1bcb66f2,
0x00000000,0x00000000,0x00000000,0xb46496ac,
0x00000000,0x00000000,0x00000000,0x6f2d9bc9,
0x00000000,0x00000000,0x00000000,0xd1925ab0,
0x00000000,0x00000000,0x00000000,0x78602649,
0x00000000,0x00000000,0x00000000,0x29131ab6,
0x00000000,0x00000000,0x00000000,0x8edae952,
0x00000000,0x00000000,0x00000000,0x0fc053c3,
0x00000000,0x00000000,0x00000000,0x3b6ba548,
0x00000000,0x00000000,0x00000000,0x3f014f0c,
0x00000000,0x00000000,0x00000000,0xedae9520,
0x00000000,0x00000000,0x00000000,0xfc053c31
};
__m256i CNS[32];
/***************************************************/
/* Round function */
/* state: hash context */
void rnd512_2way( luffa_2way_context *state, __m256i *msg )
{
__m256i t[2];
__m256i *chainv = state->chainv;
__m256i msg0, msg1;
__m256i tmp[2];
__m256i x[8];
t[0] = chainv[0];
t[1] = chainv[1];
t[0] = _mm256_xor_si256( t[0], chainv[2] );
t[1] = _mm256_xor_si256( t[1], chainv[3] );
t[0] = _mm256_xor_si256( t[0], chainv[4] );
t[1] = _mm256_xor_si256( t[1], chainv[5] );
t[0] = _mm256_xor_si256( t[0], chainv[6] );
t[1] = _mm256_xor_si256( t[1], chainv[7] );
t[0] = _mm256_xor_si256( t[0], chainv[8] );
t[1] = _mm256_xor_si256( t[1], chainv[9] );
MULT2( t[0], t[1] );
msg0 = _mm256_shuffle_epi32( msg[0], 27 );
msg1 = _mm256_shuffle_epi32( msg[1], 27 );
chainv[0] = _mm256_xor_si256( chainv[0], t[0] );
chainv[1] = _mm256_xor_si256( chainv[1], t[1] );
chainv[2] = _mm256_xor_si256( chainv[2], t[0] );
chainv[3] = _mm256_xor_si256( chainv[3], t[1] );
chainv[4] = _mm256_xor_si256( chainv[4], t[0] );
chainv[5] = _mm256_xor_si256( chainv[5], t[1] );
chainv[6] = _mm256_xor_si256( chainv[6], t[0] );
chainv[7] = _mm256_xor_si256( chainv[7], t[1] );
chainv[8] = _mm256_xor_si256( chainv[8], t[0] );
chainv[9] = _mm256_xor_si256( chainv[9], t[1] );
t[0] = chainv[0];
t[1] = chainv[1];
MULT2( chainv[0], chainv[1]);
chainv[0] = _mm256_xor_si256( chainv[0], chainv[2] );
chainv[1] = _mm256_xor_si256( chainv[1], chainv[3] );
MULT2( chainv[2], chainv[3]);
chainv[2] = _mm256_xor_si256(chainv[2], chainv[4]);
chainv[3] = _mm256_xor_si256(chainv[3], chainv[5]);
MULT2( chainv[4], chainv[5]);
chainv[4] = _mm256_xor_si256(chainv[4], chainv[6]);
chainv[5] = _mm256_xor_si256(chainv[5], chainv[7]);
MULT2( chainv[6], chainv[7]);
chainv[6] = _mm256_xor_si256(chainv[6], chainv[8]);
chainv[7] = _mm256_xor_si256(chainv[7], chainv[9]);
MULT2( chainv[8], chainv[9]);
chainv[8] = _mm256_xor_si256( chainv[8], t[0] );
chainv[9] = _mm256_xor_si256( chainv[9], t[1] );
t[0] = chainv[8];
t[1] = chainv[9];
MULT2( chainv[8], chainv[9]);
chainv[8] = _mm256_xor_si256( chainv[8], chainv[6] );
chainv[9] = _mm256_xor_si256( chainv[9], chainv[7] );
MULT2( chainv[6], chainv[7]);
chainv[6] = _mm256_xor_si256( chainv[6], chainv[4] );
chainv[7] = _mm256_xor_si256( chainv[7], chainv[5] );
MULT2( chainv[4], chainv[5]);
chainv[4] = _mm256_xor_si256( chainv[4], chainv[2] );
chainv[5] = _mm256_xor_si256( chainv[5], chainv[3] );
MULT2( chainv[2], chainv[3] );
chainv[2] = _mm256_xor_si256( chainv[2], chainv[0] );
chainv[3] = _mm256_xor_si256( chainv[3], chainv[1] );
MULT2( chainv[0], chainv[1] );
chainv[0] = _mm256_xor_si256( _mm256_xor_si256( chainv[0], t[0] ), msg0 );
chainv[1] = _mm256_xor_si256( _mm256_xor_si256( chainv[1], t[1] ), msg1 );
MULT2( msg0, msg1);
chainv[2] = _mm256_xor_si256( chainv[2], msg0 );
chainv[3] = _mm256_xor_si256( chainv[3], msg1 );
MULT2( msg0, msg1);
chainv[4] = _mm256_xor_si256( chainv[4], msg0 );
chainv[5] = _mm256_xor_si256( chainv[5], msg1 );
MULT2( msg0, msg1);
chainv[6] = _mm256_xor_si256( chainv[6], msg0 );
chainv[7] = _mm256_xor_si256( chainv[7], msg1 );
MULT2( msg0, msg1);
chainv[8] = _mm256_xor_si256( chainv[8], msg0 );
chainv[9] = _mm256_xor_si256( chainv[9], msg1 );
MULT2( msg0, msg1);
chainv[3] = _mm256_or_si256( _mm256_slli_epi32( chainv[3], 1 ),
_mm256_srli_epi32( chainv[3], 31 ) );
chainv[5] = _mm256_or_si256( _mm256_slli_epi32( chainv[5], 2 ),
_mm256_srli_epi32( chainv[5], 30 ) );
chainv[7] = _mm256_or_si256( _mm256_slli_epi32( chainv[7], 3 ),
_mm256_srli_epi32( chainv[7], 29 ) );
chainv[9] = _mm256_or_si256( _mm256_slli_epi32( chainv[9], 4 ),
_mm256_srli_epi32( chainv[9], 28 ) );
NMLTOM1024( chainv[0], chainv[2], chainv[4], chainv[6],
x[0], x[1], x[2], x[3],
chainv[1],chainv[3],chainv[5],chainv[7],
x[4], x[5], x[6], x[7] );
STEP_PART( &x[0], &CNS[ 0], &tmp[0] );
STEP_PART( &x[0], &CNS[ 2], &tmp[0] );
STEP_PART( &x[0], &CNS[ 4], &tmp[0] );
STEP_PART( &x[0], &CNS[ 6], &tmp[0] );
STEP_PART( &x[0], &CNS[ 8], &tmp[0] );
STEP_PART( &x[0], &CNS[10], &tmp[0] );
STEP_PART( &x[0], &CNS[12], &tmp[0] );
STEP_PART( &x[0], &CNS[14], &tmp[0] );
MIXTON1024( x[0], x[1], x[2], x[3],
chainv[0], chainv[2], chainv[4],chainv[6],
x[4], x[5], x[6], x[7],
chainv[1],chainv[3],chainv[5],chainv[7]);
/* Process last 256-bit block */
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[16], CNS[17],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[18], CNS[19],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[20], CNS[21],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[22], CNS[23],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[24], CNS[25],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[26], CNS[27],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[28], CNS[29],
tmp[0], tmp[1] );
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS[30], CNS[31],
tmp[0], tmp[1] );
}
/***************************************************/
/* Finalization function */
/* state: hash context */
/* b[8]: hash values */
void finalization512_2way( luffa_2way_context *state, uint32 *b )
{
uint32 hash[8] __attribute((aligned(64)));
__m256i* chainv = state->chainv;
__m256i t[2];
__m256i zero[2];
zero[0] = zero[1] = _mm256_setzero_si256();
/*---- blank round with m=0 ----*/
rnd512_2way( state, zero );
t[0] = chainv[0];
t[1] = chainv[1];
t[0] = _mm256_xor_si256( t[0], chainv[2] );
t[1] = _mm256_xor_si256( t[1], chainv[3] );
t[0] = _mm256_xor_si256( t[0], chainv[4] );
t[1] = _mm256_xor_si256( t[1], chainv[5] );
t[0] = _mm256_xor_si256( t[0], chainv[6] );
t[1] = _mm256_xor_si256( t[1], chainv[7] );
t[0] = _mm256_xor_si256( t[0], chainv[8] );
t[1] = _mm256_xor_si256( t[1], chainv[9] );
t[0] = _mm256_shuffle_epi32( t[0], 27 );
t[1] = _mm256_shuffle_epi32( t[1], 27 );
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
rnd512_2way( state, zero );
t[0] = chainv[0];
t[1] = chainv[1];
t[0] = _mm256_xor_si256( t[0], chainv[2] );
t[1] = _mm256_xor_si256( t[1], chainv[3] );
t[0] = _mm256_xor_si256( t[0], chainv[4] );
t[1] = _mm256_xor_si256( t[1], chainv[5] );
t[0] = _mm256_xor_si256( t[0], chainv[6] );
t[1] = _mm256_xor_si256( t[1], chainv[7] );
t[0] = _mm256_xor_si256( t[0], chainv[8] );
t[1] = _mm256_xor_si256( t[1], chainv[9] );
t[0] = _mm256_shuffle_epi32( t[0], 27 );
t[1] = _mm256_shuffle_epi32( t[1], 27 );
_mm256_store_si256( (__m256i*)&hash[0], t[0] );
_mm256_store_si256( (__m256i*)&hash[8], t[1] );
casti_m256i( b, 2 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 3 ) = mm256_bswap_32( casti_m256i( hash, 1 ) );
}
int luffa_2way_init( luffa_2way_context *state, int hashbitlen )
{
int i;
state->hashbitlen = hashbitlen;
for ( i=0; i<32; i++ ) CNS[i] =
_mm256_set_epi32( CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ],
CNS_INIT[ (i<<2) + 3 ], CNS_INIT[ (i<<2) +2 ],
CNS_INIT[ (i<<2) + 1 ], CNS_INIT[ (i<<2) ] );
for ( i=0; i<10; i++ ) state->chainv[i] =
_mm256_set_epi32( IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ],
IV[ (i<<2) +3 ], IV[ (i<<2) +2 ],
IV[ (i<<2) +1 ], IV[ (i<<2) ] );
((__m256i*)state->buffer)[0] = m256_zero;
((__m256i*)state->buffer)[1] = m256_zero;
return 0;
}
// Do not call luffa_update_close after having called luffa_update.
// Once luffa_update has been called only call luffa_update or luffa_close.
int luffa_2way_update( luffa_2way_context *state, const void *data,
size_t len )
{
__m256i *vdata = (__m256i*)data;
__m256i *buffer = (__m256i*)state->buffer;
__m256i msg[2];
int i;
int blocks = (int)len / 32;
state-> rembytes = (int)len % 32;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ i ] );
msg[1] = mm256_bswap_32( vdata[ i+1 ] );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
// store in buffer for transform in final for midstate to work
if ( state->rembytes )
{
// remaining data bytes
buffer[0] = mm256_bswap_32( vdata[0] );
buffer[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
}
return 0;
}
int luffa_2way_close( luffa_2way_context *state, void *hashval )
{
__m256i *buffer = (__m256i*)state->buffer;
__m256i msg[2];
// transform pad block
if ( state->rembytes )
// not empty, data is in buffer
rnd512_2way( state, buffer );
else
{ // empty pad block, constant data
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)hashval );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( hashval+128 ) );
return 0;
}
int luffa_2way_update_close( luffa_2way_context *state,
void *output, const void *data, size_t inlen )
{
// Optimized for integrals of 16 bytes, good for 64 and 80 byte len
const __m256i *vdata = (__m256i*)data;
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = mm256_bswap_32( vdata[ 0 ] );
msg[1] = mm256_bswap_32( vdata[ 1 ] );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = mm256_bswap_32( vdata[0] );
msg[1] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = _mm256_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( output+128 ) );
return 0;
}
#endif

View File

@@ -0,0 +1,69 @@
#if !defined(LUFFA_HASH_2WAY_H__)
#define LUFFA_HASH_2WAY_H__ 1
/*
* luffa_for_sse2.h
* Version 2.0 (Sep 15th 2009)
*
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved.
*
* Hitachi, Ltd. is the owner of this software and hereby grant
* the U.S. Government and any interested party the right to use
* this software for the purposes of the SHA-3 evaluation process,
* notwithstanding that this software is copyrighted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#if defined(__AVX2__)
#include <immintrin.h>
#include "algo/sha/sha3-defs.h"
#include "avxdefs.h"
/* The length of digests*/
#define DIGEST_BIT_LEN_224 224
#define DIGEST_BIT_LEN_256 256
#define DIGEST_BIT_LEN_384 384
#define DIGEST_BIT_LEN_512 512
/*********************************/
/* The parameters of Luffa */
#define MSG_BLOCK_BIT_LEN 256 /*The bit length of a message block*/
#define MSG_BLOCK_BYTE_LEN (MSG_BLOCK_BIT_LEN >> 3) /* The byte length
* of a message block*/
/* The number of blocks in Luffa */
#define WIDTH_224 3
#define WIDTH_256 3
#define WIDTH_384 4
#define WIDTH_512 5
/* The limit of the length of message */
#define LIMIT_224 64
#define LIMIT_256 64
#define LIMIT_384 128
#define LIMIT_512 128
/*********************************/
typedef struct {
uint32 buffer[8*2] __attribute((aligned(64)));
__m256i chainv[10] __attribute((aligned(32))); /* Chaining values */
int hashbitlen;
int rembytes;
} luffa_2way_context;
int luffa_2way_init( luffa_2way_context *state, int hashbitlen );
int luffa_2way_update( luffa_2way_context *state, const void *data,
size_t len );
int luffa_2way_close( luffa_2way_context *state, void *hashval );
int luffa_2way_update_close( luffa_2way_context *state, void *output,
const void *data, size_t inlen );
#endif
#endif

View File

@@ -272,8 +272,8 @@ HashReturn update_luffa( hashState_luffa *state, const BitSequence *data,
// full blocks
for ( i = 0; i < blocks; i++ )
{
rnd512( state, mm_byteswap_32( casti_m128i( data, 1 ) ),
mm_byteswap_32( casti_m128i( data, 0 ) ) );
rnd512( state, mm_bswap_32( casti_m128i( data, 1 ) ),
mm_bswap_32( casti_m128i( data, 0 ) ) );
data += MSG_BLOCK_BYTE_LEN;
}
@@ -282,7 +282,7 @@ HashReturn update_luffa( hashState_luffa *state, const BitSequence *data,
if ( state->rembytes )
{
// remaining data bytes
casti_m128i( state->buffer, 0 ) = mm_byteswap_32( cast_m128i( data ) );
casti_m128i( state->buffer, 0 ) = mm_bswap_32( cast_m128i( data ) );
// padding of partial block
casti_m128i( state->buffer, 1 ) =
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 );
@@ -324,8 +324,8 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
// full blocks
for ( i = 0; i < blocks; i++ )
{
rnd512( state, mm_byteswap_32( casti_m128i( data, 1 ) ),
mm_byteswap_32( casti_m128i( data, 0 ) ) );
rnd512( state, mm_bswap_32( casti_m128i( data, 1 ) ),
mm_bswap_32( casti_m128i( data, 0 ) ) );
data += MSG_BLOCK_BYTE_LEN;
}
@@ -334,7 +334,7 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
{
// padding of partial block
rnd512( state, _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ),
mm_byteswap_32( cast_m128i( data ) ) );
mm_bswap_32( cast_m128i( data ) ) );
}
else
{
@@ -542,7 +542,7 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm256_store_si256( (__m256i*)hash, t );
casti_m256i( b, 0 ) = mm256_byteswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 0 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
rnd512( state, zero, zero );
@@ -555,7 +555,7 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm256_store_si256( (__m256i*)hash, t );
casti_m256i( b, 1 ) = mm256_byteswap_32( casti_m256i( hash, 0 ) );
casti_m256i( b, 1 ) = mm256_bswap_32( casti_m256i( hash, 0 ) );
}
#else
@@ -587,8 +587,8 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm_store_si128((__m128i*)&hash[0], t[0]);
_mm_store_si128((__m128i*)&hash[4], t[1]);
casti_m128i( b, 0 ) = mm_byteswap_32( casti_m128i( hash, 0 ) );
casti_m128i( b, 1 ) = mm_byteswap_32( casti_m128i( hash, 1 ) );
casti_m128i( b, 0 ) = mm_bswap_32( casti_m128i( hash, 0 ) );
casti_m128i( b, 1 ) = mm_bswap_32( casti_m128i( hash, 1 ) );
rnd512( state, zero, zero );
@@ -609,8 +609,8 @@ static void finalization512( hashState_luffa *state, uint32 *b )
_mm_store_si128((__m128i*)&hash[0], t[0]);
_mm_store_si128((__m128i*)&hash[4], t[1]);
casti_m128i( b, 2 ) = mm_byteswap_32( casti_m128i( hash, 0 ) );
casti_m128i( b, 3 ) = mm_byteswap_32( casti_m128i( hash, 1 ) );
casti_m128i( b, 2 ) = mm_bswap_32( casti_m128i( hash, 0 ) );
casti_m128i( b, 3 ) = mm_bswap_32( casti_m128i( hash, 1 ) );
}
#endif

128
algo/lyra2/lyra2h-4way.c Normal file
View File

@@ -0,0 +1,128 @@
#include "lyra2h-gate.h"
#ifdef LYRA2H_4WAY
#include <memory.h>
#include <mm_malloc.h>
#include "lyra2.h"
#include "algo/blake/sph_blake.h"
#include "algo/blake/blake-hash-4way.h"
__thread uint64_t* lyra2h_4way_matrix;
bool lyra2h_4way_thread_init()
{
return ( lyra2h_4way_matrix = _mm_malloc( LYRA2H_MATRIX_SIZE, 64 ) );
}
static __thread blake256_4way_context l2h_4way_blake_mid;
void lyra2h_4way_midstate( const void* input )
{
blake256_4way_init( &l2h_4way_blake_mid );
blake256_4way( &l2h_4way_blake_mid, input, 64 );
}
void lyra2h_4way_hash( void *state, const void *input )
{
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
uint32_t hash3[8] __attribute__ ((aligned (64)));
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2h_4way_blake_mid, sizeof l2h_4way_blake_mid );
blake256_4way( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
LYRA2Z( lyra2h_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 16, 16, 16 );
LYRA2Z( lyra2h_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 16, 16, 16 );
LYRA2Z( lyra2h_4way_matrix, hash2, 32, hash2, 32, hash2, 32, 16, 16, 16 );
LYRA2Z( lyra2h_4way_matrix, hash3, 32, hash3, 32, hash3, 32, 16, 16, 16 );
memcpy( state, hash0, 32 );
memcpy( state+32, hash1, 32 );
memcpy( state+64, hash2, 32 );
memcpy( state+96, hash3, 32 );
}
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 76; // 19*4
uint32_t *noncep1 = vdata + 77;
uint32_t *noncep2 = vdata + 78;
uint32_t *noncep3 = vdata + 79;
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
for ( int i=0; i < 19; i++ )
be32enc( &edata[i], pdata[i] );
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
lyra2h_4way_midstate( vdata );
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
be32enc( &edata[19], n );
lyra2h_4way_hash( hash, vdata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = pdata[19] = n;
work_set_target_ratio( work, hash );
}
if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
} while ( (num_found == 0) && (n < max_nonce-4)
&& !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

25
algo/lyra2/lyra2h-gate.c Normal file
View File

@@ -0,0 +1,25 @@
#include "lyra2h-gate.h"
#include "lyra2.h"
void lyra2h_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool register_lyra2h_algo( algo_gate_t* gate )
{
#ifdef LYRA2H_4WAY
gate->miner_thread_init = (void*)&lyra2h_4way_thread_init;
gate->scanhash = (void*)&scanhash_lyra2h_4way;
gate->hash = (void*)&lyra2h_4way_hash;
#else
gate->miner_thread_init = (void*)&lyra2h_thread_init;
gate->scanhash = (void*)&scanhash_lyra2h;
gate->hash = (void*)&lyra2h_hash;
#endif
gate->optimizations = AVX_OPT | AVX2_OPT;
gate->get_max64 = (void*)&get_max64_0xffffLL;
gate->set_target = (void*)&lyra2h_set_target;
return true;
};

32
algo/lyra2/lyra2h-gate.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef LYRA2H_GATE_H__
#define LYRA2H_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__)
#define LYRA2H_4WAY
#endif
#define LYRA2H_MATRIX_SIZE BLOCK_LEN_INT64 * 16 * 16 * 8
#if defined(LYRA2H_4WAY)
void lyra2h_4way_hash( void *state, const void *input );
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
bool lyra2h_4way_thread_init();
#endif
void lyra2h_hash( void *state, const void *input );
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
bool lyra2h_thread_init();
#endif

75
algo/lyra2/lyra2h.c Normal file
View File

@@ -0,0 +1,75 @@
#include "lyra2h-gate.h"
#include <memory.h>
#include <mm_malloc.h>
#include "lyra2.h"
#include "algo/blake/sph_blake.h"
__thread uint64_t* lyra2h_matrix;
bool lyra2h_thread_init()
{
lyra2h_matrix = _mm_malloc( LYRA2H_MATRIX_SIZE, 64 );
return lyra2h_matrix;
}
static __thread sph_blake256_context lyra2h_blake_mid;
void lyra2h_midstate( const void* input )
{
sph_blake256_init( &lyra2h_blake_mid );
sph_blake256( &lyra2h_blake_mid, input, 64 );
}
void lyra2h_hash( void *state, const void *input )
{
uint32_t _ALIGN(64) hash[16];
sph_blake256_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &lyra2h_blake_mid, sizeof lyra2h_blake_mid );
sph_blake256( &ctx_blake, input + 64, 16 );
sph_blake256_close( &ctx_blake, hash );
LYRA2Z( lyra2h_matrix, hash, 32, hash, 32, hash, 32, 16, 16, 16 );
memcpy(state, hash, 32);
}
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t _ALIGN(64) hash[8];
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
if (opt_benchmark)
ptarget[7] = 0x0000ff;
for (int i=0; i < 19; i++) {
be32enc(&endiandata[i], pdata[i]);
}
lyra2h_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
lyra2h_hash( hash, endiandata );
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
work_set_target_ratio(work, hash);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

View File

@@ -106,6 +106,7 @@ int scanhash_lyra2re(int thr_id, struct work *work,
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio( work, hash );
return 1;
}
}

185
algo/lyra2/lyra2rev2-4way.c Normal file
View File

@@ -0,0 +1,185 @@
#include "lyra2rev2-gate.h"
#include <memory.h>
#if defined (__AVX2__)
#include "algo/blake/blake-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/cubehash/sph_cubehash.h"
//#include "algo/bmw/sph_bmw.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
typedef struct {
blake256_4way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
bmw256_4way_context bmw;
// sph_bmw256_context bmw;
} lyra2v2_4way_ctx_holder;
static lyra2v2_4way_ctx_holder l2v2_4way_ctx;
void init_lyra2rev2_4way_ctx()
{
// blake256_4way_init( &l2v2_4way_ctx.blake );
keccak256_4way_init( &l2v2_4way_ctx.keccak );
cubehashInit( &l2v2_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_4way_ctx.skein );
bmw256_4way_init( &l2v2_4way_ctx.bmw );
// sph_bmw256_init( &l2v2_4way_ctx.bmw );
}
void lyra2rev2_4way_hash( void *state, const void *input )
{
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
uint32_t hash3[8] __attribute__ ((aligned (32)));
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhash64[4*4] __attribute__ ((aligned (64)));
lyra2v2_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) );
blake256_4way( &ctx.blake, input + (64<<2), 16 );
// blake256_4way( &ctx.blake, input, 80 );
blake256_4way_close( &ctx.blake, vhash );
mm256_reinterleave_4x64( vhash64, vhash, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
mm256_interleave_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
// BMW256 4way has a lane corruption problem, only lanes 0 & 2 produce
// good hash. As a result this ugly workaround of running bmw256-4way
// twice with data shuffled to get all 4 lanes of good hash.
// The hash is then shuffled back into the appropriate lanes for output.
// Not as fast but still faster than using sph serially.
// shift lane 1 data to lane 2.
mm_interleave_4x32( vhash, hash0, hash0, hash1, hash1, 256 );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, vhash );
uint32_t trash[8] __attribute__ ((aligned (32)));
// extract lane 0 as usual and lane2 containing lane 1 hash
mm_deinterleave_4x32( state, trash, state+32, trash, vhash, 256 );
// shift lane2 data to lane 0 and lane 3 data to lane 2
mm_interleave_4x32( vhash, hash2, hash2, hash3, hash3, 256 );
bmw256_4way_init( &ctx.bmw );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, vhash );
// extract lane 2 hash from lane 0 and lane 3 hash from lane 2.
mm_deinterleave_4x32( state+64, trash, state+96, trash, vhash, 256 );
}
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 76; // 19*4
uint32_t *noncep1 = vdata + 77;
uint32_t *noncep2 = vdata + 78;
uint32_t *noncep3 = vdata + 79;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
swab32_array( edata, pdata, 20 );
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
blake256_4way_init( &l2v2_4way_ctx.blake );
blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 );
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
lyra2rev2_4way_hash( hash, vdata );
pdata[19] = n;
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
//printf("found0\n");
found[0] = true;
num_found++;
nonces[0] = pdata[19] = n;
work_set_target_ratio( work, hash );
}
if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
{
//printf("found1\n");
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) )
{
//printf("found2\n");
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) )
{
//printf("found3\n");
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
} while ( (num_found == 0) && (n < max_nonce-4)
&& !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

View File

@@ -0,0 +1,38 @@
#include "lyra2rev2-gate.h"
__thread uint64_t* l2v2_wholeMatrix;
void lyra2rev2_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool lyra2rev2_thread_init()
{
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int i = (int64_t)ROW_LEN_BYTES * 4; // nRows;
l2v2_wholeMatrix = _mm_malloc( i, 64 );
return l2v2_wholeMatrix;
}
bool register_lyra2rev2_algo( algo_gate_t* gate )
{
#if defined (LYRA2REV2_4WAY)
init_lyra2rev2_4way_ctx();
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
gate->hash = (void*)&lyra2rev2_4way_hash;
#else
init_lyra2rev2_ctx();
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
gate->set_target = (void*)&lyra2rev2_set_target;
return true;
};

View File

@@ -0,0 +1,35 @@
#ifndef LYRA2REV2_GATE_H__
#define LYRA2REV2_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#include "lyra2.h"
#if defined(__AVX2__)
#define LYRA2REV2_4WAY
#endif
extern __thread uint64_t* l2v2_wholeMatrix;
bool register_lyra2rev2_algo( algo_gate_t* gate );
#if defined(LYRA2REV2_4WAY)
void lyra2rev2_4way_hash( void *state, const void *input );
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_lyra2rev2_4way_ctx();
#endif
void lyra2rev2_hash( void *state, const void *input );
int scanhash_lyra2rev2( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_lyra2rev2_ctx();
#endif

View File

@@ -1,20 +1,12 @@
#include "lyra2rev2-gate.h"
#include <memory.h>
#include "algo-gate-api.h"
#include "algo/blake/sph_blake.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "lyra2.h"
#include "avxdefs.h"
// This gets allocated when miner_thread starts up and is never freed.
// It's not a leak because the only way to allocate it again is to exit
// the thread and that only occurs when the entire program exits.
__thread uint64_t* l2v2_wholeMatrix;
//#include "lyra2.h"
typedef struct {
cubehashParam cube1;
@@ -106,6 +98,7 @@ int scanhash_lyra2rev2(int thr_id, struct work *work,
if( fulltest(hash, ptarget) )
{
pdata[19] = nonce;
work_set_target_ratio( work, hash );
*hashes_done = pdata[19] - first_nonce;
return 1;
}
@@ -119,30 +112,3 @@ int scanhash_lyra2rev2(int thr_id, struct work *work,
return 0;
}
void lyra2rev2_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool lyra2rev2_thread_init()
{
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int i = (int64_t)ROW_LEN_BYTES * 4; // nRows;
l2v2_wholeMatrix = _mm_malloc( i, 64 );
return l2v2_wholeMatrix;
}
bool register_lyra2rev2_algo( algo_gate_t* gate )
{
init_lyra2rev2_ctx();
gate->optimizations = AVX_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
gate->set_target = (void*)&lyra2rev2_set_target;
return true;
};

View File

@@ -4,13 +4,10 @@
#include <memory.h>
#include <mm_malloc.h>
//#include "algo-gate-api.h"
#include "lyra2.h"
#include "algo/blake/sph_blake.h"
#include "algo/blake/blake-hash-4way.h"
//#include "avxdefs.h"
// same size, only difference is the name, lyra2 is done serially
__thread uint64_t* lyra2z_4way_matrix;
bool lyra2z_4way_thread_init()
@@ -26,12 +23,8 @@ void lyra2z_4way_midstate( const void* input )
blake256_4way( &l2z_4way_blake_mid, input, 64 );
}
// block 2050 new algo, blake plus new lyra parms. new input
// is power of 2 so normal lyra can be used
//void zcoin_hash(void *state, const void *input, uint32_t height)
void lyra2z_4way_hash( void *state, const void *input )
{
// uint32_t _ALIGN(64) hash[16];
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
@@ -39,27 +32,21 @@ void lyra2z_4way_hash( void *state, const void *input )
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
// memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid );
// blake256_4way( &ctx_blake, input + (64*4), 16 );
// blake256_4way_close( &ctx_blake, vhash );
blake256_4way_init( &ctx_blake );
blake256_4way( &ctx_blake, input, 80 );
memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid );
blake256_4way( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
LYRA2Z( lyra2z_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 );
// LYRA2Z( lyra2z_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 );
LYRA2Z( lyra2z_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 );
LYRA2Z( lyra2z_4way_matrix, hash2, 32, hash2, 32, hash2, 32, 8, 8, 8 );
// LYRA2Z( lyra2z_4way_matrix, hash3, 32, hash3, 32, hash3, 32, 8, 8, 8 );
LYRA2Z( lyra2z_4way_matrix, hash3, 32, hash3, 32, hash3, 32, 8, 8, 8 );
memcpy( state, hash0, 32 );
memcpy( state+32, hash1, 32 );
memcpy( state+64, hash2, 32 );
memcpy( state+96, hash3, 32 );
// memcpy(state, hash, 32);
}
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
@@ -67,7 +54,6 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
// uint32_t _ALIGN(64) hash[8];
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -90,7 +76,7 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
// lyra2z_4way_midstate( vdata );
lyra2z_4way_midstate( vdata );
do {
found[0] = found[1] = found[2] = found[3] = false;
@@ -99,46 +85,38 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
be32enc( &edata[19], n );
lyra2z_4way_hash( hash, vdata );
pdata[19] = n;
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
printf("found 0\n");
found[0] = true;
num_found++;
nonces[0] = pdata[19] = n;
work_set_target_ratio( work, hash );
}
/* if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
{
printf("found 1\n");
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
*/
if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) )
{
printf("found 2\n");
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
/*
if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) )
{
printf("found 3\n");
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
*/
n += 2;
} while ( (num_found == 0) && (n < max_nonce-4)
&& !work_restart[thr_id].restart);
@@ -148,21 +126,3 @@ printf("found 3\n");
#endif
/*
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
work_set_target_ratio(work, hash);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
*/

View File

@@ -9,18 +9,15 @@ void lyra2z_set_target( struct work* work, double job_diff )
bool register_lyra2z_algo( algo_gate_t* gate )
{
#ifdef LYRA2Z_4WAY
four_way_not_tested();
gate->optimizations = AVX_OPT | AVX2_OPT | FOUR_WAY_OPT;
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z_4way;
gate->hash = (void*)&lyra2z_4way_hash;
#else
gate->optimizations = AVX_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2z_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z;
gate->hash = (void*)&lyra2z_hash;
#endif
gate->optimizations = AVX_OPT | AVX2_OPT;
gate->get_max64 = (void*)&get_max64_0xffffLL;
gate->set_target = (void*)&lyra2z_set_target;
return true;

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(HASH_4WAY)
#if defined(__AVX2__)
#define LYRA2Z_4WAY
#endif

View File

@@ -82,41 +82,3 @@ int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
return 0;
}
/*
//int64_t get_max64_0xffffLL() { return 0xffffLL; };
void lyra2z_set_target( struct work* work, double job_diff )
{
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool zcoin_get_work_height( struct work* work, struct stratum_ctx* sctx )
{
work->height = sctx->bloc_height;
return false;
}
bool lyra2z_thread_init()
{
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 8; // nCols
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int i = (int64_t)ROW_LEN_BYTES * 8; // nRows;
lyra2z_wholeMatrix = _mm_malloc( i, 64 );
return lyra2z_wholeMatrix;
}
bool register_lyra2z_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2z_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z;
gate->hash = (void*)&lyra2z_hash;
gate->get_max64 = (void*)&get_max64_0xffffLL;
gate->set_target = (void*)&lyra2z_set_target;
// gate->prevent_dupes = (void*)&zcoin_get_work_height;
return true;
};
*/

View File

@@ -65,13 +65,13 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm256_rotl256_1x64( s1); \
s1 = mm256_rotr256_1x64( s1); \
s2 = mm256_swap_128( s2 ); \
s3 = mm256_rotr256_1x64( s3 ); \
s3 = mm256_rotl256_1x64( s3 ); \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm256_rotr256_1x64( s1 ); \
s1 = mm256_rotl256_1x64( s1 ); \
s2 = mm256_swap_128( s2 ); \
s3 = mm256_rotl256_1x64( s3 );
s3 = mm256_rotr256_1x64( s3 );
#define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \

View File

@@ -346,6 +346,7 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
hash_str,
target_str);
}
work_set_target_ratio( work, hash );
pdata[19] = data[19];
goto out;
}

View File

@@ -2,7 +2,7 @@
bool register_nist5_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | FOUR_WAY_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
#if defined (NIST5_4WAY)
gate->scanhash = (void*)&scanhash_nist5_4way;
gate->hash = (void*)&nist5hash_4way;

View File

@@ -4,7 +4,7 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(FOUR_WAY) && defined(__AVX2__) && !defined(NO_AES_NI)
#if defined(__AVX2__) && defined(__AES__)
#define NIST5_4WAY
#endif

View File

@@ -132,6 +132,7 @@ int scanhash_nist5(int thr_id, struct work *work,
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}

View File

@@ -172,6 +172,7 @@ int scanhash_zr5( int thr_id, struct work *work,
pdata[0] = tmpdata[0];
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
work_set_target_ratio( work, hash );
if (opt_debug)
applog(LOG_INFO, "found nonce %x", nonce);
return 1;

View File

@@ -1,12 +0,0 @@
#ifndef __POLYTIMOS_GATE_H__
#define __POLYTIMOS_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
void polytimos_hash( void *state, const void *input );
int scanhash_polytimos( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_polytimos_context();
#endif

231
algo/quark/anime-4way.c Normal file
View File

@@ -0,0 +1,231 @@
#include "cpuminer-config.h"
#include "anime-gate.h"
#if defined (ANIME_4WAY)
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
jh512_4way_context jh;
skein512_4way_context skein;
keccak512_4way_context keccak;
} anime_4way_ctx_holder;
anime_4way_ctx_holder anime_4way_ctx __attribute__ ((aligned (64)));
void init_anime_4way_ctx()
{
blake512_4way_init( &anime_4way_ctx.blake );
bmw512_4way_init( &anime_4way_ctx.bmw );
init_groestl( &anime_4way_ctx.groestl, 64 );
skein512_4way_init( &anime_4way_ctx.skein );
jh512_4way_init( &anime_4way_ctx.jh );
keccak512_4way_init( &anime_4way_ctx.keccak );
}
void anime_4way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
uint64_t vhashB[8*4] __attribute__ ((aligned (64)));
__m256i* vh = (__m256i*)vhash;
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
__m256i bit3_mask; bit3_mask = _mm256_set1_epi64x( 8 );
int i;
anime_4way_ctx_holder ctx;
memcpy( &ctx, &anime_4way_ctx, sizeof(anime_4way_ctx) );
bmw512_4way( &ctx.bmw, vhash, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
blake512_4way( &ctx.blake, input, 64 );
blake512_4way_close( &ctx.blake, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
mm256_interleave_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
mm256_deinterleave_4x64( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_anime_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
uint32_t *noncep1 = vdata + 75;
uint32_t *noncep2 = vdata + 77;
uint32_t *noncep3 = vdata + 79;
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])
{
uint32_t mask = masks[m];
do
{
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
anime_4way_hash( hash, vdata );
pdata[19] = n;
if ( ( hash[7] & mask ) == 0 && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( ( (hash+8)[7] & mask ) == 0 && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash );
}
if ( ( (hash+16)[7] & mask ) == 0 && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash );
}
if ( ( (hash+24)[7] & mask ) == 0 && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash );
}
n += 4;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

17
algo/quark/anime-gate.c Normal file
View File

@@ -0,0 +1,17 @@
#include "anime-gate.h"
bool register_anime_algo( algo_gate_t* gate )
{
#if defined (ANIME_4WAY)
init_anime_4way_ctx();
gate->scanhash = (void*)&scanhash_anime_4way;
gate->hash = (void*)&anime_4way_hash;
#else
init_anime_ctx();
gate->scanhash = (void*)&scanhash_anime;
gate->hash = (void*)&anime_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
return true;
};

32
algo/quark/anime-gate.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef ANIME_GATE_H__
#define ANIME_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY
#endif
bool register_anime_algo( algo_gate_t* gate );
#if defined(ANIME_4WAY)
void anime_4way_hash( void *state, const void *input );
int scanhash_anime_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_anime_4way_ctx();
#endif
void anime_hash( void *state, const void *input );
int scanhash_anime( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_anime_ctx();
#endif

189
algo/quark/anime.c Normal file
View File

@@ -0,0 +1,189 @@
#include "cpuminer-config.h"
#include "anime-gate.h"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/skein/sph_skein.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
typedef struct {
sph_blake512_context blake;
sph_bmw512_context bmw;
#ifdef __AES__
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
#endif
sph_jh512_context jh;
sph_skein512_context skein;
sph_keccak512_context keccak;
} anime_ctx_holder;
anime_ctx_holder anime_ctx __attribute__ ((aligned (64)));
void init_anime_ctx()
{
sph_blake512_init( &anime_ctx.blake );
sph_bmw512_init( &anime_ctx.bmw );
#ifdef __AES__
init_groestl( &anime_ctx.groestl, 64 );
#else
sph_groestl512_init( &anime_ctx.groestl );
#endif
sph_skein512_init( &anime_ctx.skein );
sph_jh512_init( &anime_ctx.jh );
sph_keccak512_init( &anime_ctx.keccak );
}
void anime_hash( void *state, const void *input )
{
unsigned char hash[128] __attribute__ ((aligned (32)));
/*
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
uint64_t vhashB[8*4] __attribute__ ((aligned (64)));
__m256i* vh = (__m256i*)vhash;
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
__m256i bit3_mask; bit3_mask = _mm256_set1_epi64x( 8 );
*/
uint32_t mask = 8;
anime_ctx_holder ctx;
memcpy( &ctx, &anime_ctx, sizeof(anime_ctx) );
sph_bmw512( &ctx.bmw, input, 80 );
sph_bmw512_close( &ctx.bmw, hash );
sph_blake512( &ctx.blake, hash, 64 );
sph_blake512_close( &ctx.blake, hash );
if ( ( hash[0] & mask ) != 0 )
{
#ifdef __AES__
update_and_final_groestl( &ctx.groestl, (char*)hash, (char*)hash, 512 );
reinit_groestl( &ctx.groestl );
#else
sph_groestl512 ( &ctx.groestl, hash, 64 );
sph_groestl512_close( &ctx.groestl, hash );
sph_groestl512_init( &ctx.groestl );
#endif
}
else
{
sph_skein512( &ctx.skein, hash, 64 );
sph_skein512_close( &ctx.skein, hash );
sph_skein512_init( &ctx.skein );
}
#ifdef __AES__
update_and_final_groestl( &ctx.groestl, (char*)hash, (char*)hash, 512 );
#else
sph_groestl512 ( &ctx.groestl, hash, 64 );
sph_groestl512_close( &ctx.groestl, hash );
#endif
sph_jh512( &ctx.jh, hash, 64 );
sph_jh512_close( &ctx.jh, hash );
if ( ( hash[0] & mask ) != 0 )
{
sph_blake512_init( &ctx.blake );
sph_blake512( &ctx.blake, hash, 64 );
sph_blake512_close( &ctx.blake, hash );
}
else
{
sph_bmw512_init( &ctx.bmw );
sph_bmw512( &ctx.bmw, hash, 64 );
sph_bmw512_close( &ctx.bmw, hash );
}
sph_keccak512( &ctx.keccak, hash, 64 );
sph_keccak512_close( &ctx.keccak, hash );
sph_skein512( &ctx.skein, hash, 64 );
sph_skein512_close( &ctx.skein, hash );
if ( ( hash[0] & mask ) != 0 )
{
sph_keccak512_init( &ctx.keccak );
sph_keccak512( &ctx.keccak, hash, 64 );
sph_keccak512_close( &ctx.keccak, hash );
}
else
{
sph_jh512_init( &ctx.jh );
sph_jh512( &ctx.jh, hash, 64 );
sph_jh512_close( &ctx.jh, hash );
}
memcpy( state, hash, 32 );
}
int scanhash_anime( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t hash[8] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
swab32_array( endiandata, pdata, 20 );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])
{
uint32_t mask = masks[m];
do
{
be32enc( &endiandata[19], n );
anime_hash( hash, endiandata );
pdata[19] = n;
if ( ( hash[7] & mask ) == 0 && fulltest( hash, ptarget ) )
{
work_set_target_ratio( work, hash );
*hashes_done = n - first_nonce + 1;
return true;
}
n++;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
pdata[19] = n;
return 0;
}

207
algo/quark/quark-4way.c Normal file
View File

@@ -0,0 +1,207 @@
#include "cpuminer-config.h"
#include "quark-gate.h"
#if defined (QUARK_4WAY)
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_groestl groestl;
jh512_4way_context jh;
skein512_4way_context skein;
keccak512_4way_context keccak;
} quark_4way_ctx_holder;
quark_4way_ctx_holder quark_4way_ctx __attribute__ ((aligned (64)));
void init_quark_4way_ctx()
{
blake512_4way_init( &quark_4way_ctx.blake );
bmw512_4way_init( &quark_4way_ctx.bmw );
init_groestl( &quark_4way_ctx.groestl, 64 );
skein512_4way_init( &quark_4way_ctx.skein );
jh512_4way_init( &quark_4way_ctx.jh );
keccak512_4way_init( &quark_4way_ctx.keccak );
}
void quark_4way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
uint64_t vhashB[8*4] __attribute__ ((aligned (64)));
__m256i* vh = (__m256i*)vhash;
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
__m256i bit3_mask; bit3_mask = _mm256_set1_epi64x( 8 );
int i;
quark_4way_ctx_holder ctx;
memcpy( &ctx, &quark_4way_ctx, sizeof(quark_4way_ctx) );
blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
mm256_interleave_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
mm256_interleave_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
blake512_4way_init( &ctx.blake );
blake512_4way( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
bmw512_4way_init( &ctx.bmw );
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
m256_zero );
keccak512_4way_init( &ctx.keccak );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
jh512_4way_init( &ctx.jh );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
for ( i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
mm256_deinterleave_4x64( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_quark_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done)
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 73; // 9*8 + 1
uint32_t *noncep1 = vdata + 75;
uint32_t *noncep2 = vdata + 77;
uint32_t *noncep3 = vdata + 79;
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_4x64( (uint64_t*)vdata, edata, edata, edata, edata, 640 );
do
{
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
quark_4way_hash( hash, vdata );
pdata[19] = n;
if ( ( hash[7] & 0xFFFFFF00 ) == 0 && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( ( (hash+8)[7] & 0xFFFFFF00 ) == 0 && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash );
}
if ( ( (hash+16)[7] & 0xFFFFFF00 ) == 0 && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash );
}
if ( ( (hash+24)[7] & 0xFFFFFF00 ) == 0 && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash );
}
n += 4;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

17
algo/quark/quark-gate.c Normal file
View File

@@ -0,0 +1,17 @@
#include "quark-gate.h"
bool register_quark_algo( algo_gate_t* gate )
{
#if defined (QUARK_4WAY)
init_quark_4way_ctx();
gate->scanhash = (void*)&scanhash_quark_4way;
gate->hash = (void*)&quark_4way_hash;
#else
init_quark_ctx();
gate->scanhash = (void*)&scanhash_quark;
gate->hash = (void*)&quark_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
return true;
};

32
algo/quark/quark-gate.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef QUARK_GATE_H__
#define QUARK_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define QUARK_4WAY
#endif
bool register_quark_algo( algo_gate_t* gate );
#if defined(QUARK_4WAY)
void quark_4way_hash( void *state, const void *input );
int scanhash_quark_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_quark_4way_ctx();
#endif
void quark_hash( void *state, const void *input );
int scanhash_quark( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_quark_ctx();
#endif

View File

@@ -1,5 +1,5 @@
#include "cpuminer-config.h"
#include "algo-gate-api.h"
#include "quark-gate.h"
#include <stdio.h>
#include <string.h>
@@ -47,7 +47,7 @@ void init_quark_ctx()
#endif
}
inline static void quarkhash(void *state, const void *input)
void quark_hash(void *state, const void *input)
{
unsigned char hashbuf[128];
size_t hashptr;
@@ -187,11 +187,12 @@ int scanhash_quark( int thr_id, struct work *work, uint32_t max_nonce,
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
quarkhash(hash64, &endiandata);
quark_hash(hash64, &endiandata);
if ((hash64[7]&0xFFFFFF00)==0)
{
if (fulltest(hash64, ptarget))
{
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
@@ -203,12 +204,3 @@ int scanhash_quark( int thr_id, struct work *work, uint32_t max_nonce,
return 0;
}
bool register_quark_algo( algo_gate_t* gate )
{
init_quark_ctx();
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_quark;
gate->hash = (void*)&quarkhash;
return true;
};

130
algo/qubit/deep-2way.c Normal file
View File

@@ -0,0 +1,130 @@
#include "deep-gate.h"
#if defined(DEEP_2WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/echo/aes_ni/hash_api.h"
typedef struct
{
luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_echo echo;
} deep_2way_ctx_holder;
deep_2way_ctx_holder deep_2way_ctx;
void init_deep_2way_ctx()
{
luffa_2way_init( &deep_2way_ctx.luffa, 512 );
cubehashInit(&deep_2way_ctx.cube,512,16,32);
sph_shavite512_init(&deep_2way_ctx.shavite);
init_echo(&deep_2way_ctx.echo, 512);
};
void deep_2way_hash( void *output, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*2] __attribute__ ((aligned (64)));
deep_2way_ctx_holder ctx;
memcpy( &ctx, &deep_2way_ctx, sizeof(deep_2way_ctx) );
luffa_2way_update( &ctx.luffa, input + (64<<1), 16 );
luffa_2way_close( &ctx.luffa, vhash );
mm256_deinterleave_2x128( hash0, hash1, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*) hash0, 64 );
memcpy( &ctx.cube, &deep_2way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1, 64 );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &deep_2way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &deep_2way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
}
int scanhash_deep_2way( int thr_id, struct work *work,uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 32+3; // 4*8 + 3
uint32_t *noncep1 = vdata + 32+7;
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
// big endian encode 0..18 uint32_t, 64 bits at a time
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_2x128( (uint64_t*)vdata, edata, edata, 640 );
luffa_2way_init( &deep_2way_ctx.luffa, 512 );
luffa_2way_update( &deep_2way_ctx.luffa, vdata, 64 );
for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
{
found[0] = found[1] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
deep_2way_hash( hash, vdata );
pdata[19] = n;
if ( !( hash[7] & mask ) && fulltest( hash, ptarget) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( !( (hash+8)[7] & mask ) && fulltest( hash+8, ptarget) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
n += 2;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

17
algo/qubit/deep-gate.c Normal file
View File

@@ -0,0 +1,17 @@
#include "deep-gate.h"
bool register_deep_algo( algo_gate_t* gate )
{
#if defined (DEEP_2WAY)
init_deep_2way_ctx();
gate->scanhash = (void*)&scanhash_deep_2way;
gate->hash = (void*)&deep_2way_hash;
#else
init_deep_ctx();
gate->scanhash = (void*)&scanhash_deep;
gate->hash = (void*)&deep_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
return true;
};

32
algo/qubit/deep-gate.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef DEEP_GATE_H__
#define DEEP_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define DEEP_2WAY
#endif
bool register_deep_algo( algo_gate_t* gate );
#if defined(DEEP_2WAY)
void deep_2way_hash( void *state, const void *input );
int scanhash_deep_2way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_deep_2way_ctx();
#endif
void deep_hash( void *state, const void *input );
int scanhash_deep( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_deep_ctx();
#endif

View File

@@ -1,31 +1,20 @@
#include "algo-gate-api.h"
#include "deep-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/luffa/sse2/luffa_for_sse2.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/simd/sse2/nist.h"
#include "algo/shavite/sph_shavite.h"
#ifndef NO_AES_NI
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/echo/sph_echo.h"
#endif
typedef struct
{
hashState_luffa luffa;
cubehashParam cubehash;
sph_shavite512_context shavite;
hashState_sd simd;
#ifdef NO_AES_NI
sph_echo512_context echo;
#else
@@ -133,6 +122,7 @@ int scanhash_deep( int thr_id, struct work *work, uint32_t max_nonce,
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
@@ -149,12 +139,3 @@ int scanhash_deep( int thr_id, struct work *work, uint32_t max_nonce,
return 0;
}
bool register_deep_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
init_deep_ctx();
gate->scanhash = (void*)&scanhash_deep;
gate->hash = (void*)&deep_hash;
return true;
};

138
algo/qubit/qubit-2way.c Normal file
View File

@@ -0,0 +1,138 @@
#include "qubit-gate.h"
#if defined(QUBIT_2WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/echo/aes_ni/hash_api.h"
typedef struct
{
luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hashState_echo echo;
} qubit_2way_ctx_holder;
qubit_2way_ctx_holder qubit_2way_ctx;
void init_qubit_2way_ctx()
{
luffa_2way_init( &qubit_2way_ctx.luffa, 512 );
cubehashInit(&qubit_2way_ctx.cube,512,16,32);
sph_shavite512_init(&qubit_2way_ctx.shavite);
simd_2way_init( &qubit_2way_ctx.simd, 512 );
init_echo(&qubit_2way_ctx.echo, 512);
};
void qubit_2way_hash( void *output, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*2] __attribute__ ((aligned (64)));
qubit_2way_ctx_holder ctx;
memcpy( &ctx, &qubit_2way_ctx, sizeof(qubit_2way_ctx) );
luffa_2way_update( &ctx.luffa, input + (64<<1), 16 );
luffa_2way_close( &ctx.luffa, vhash );
mm256_deinterleave_2x128( hash0, hash1, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*) hash0, 64 );
memcpy( &ctx.cube, &qubit_2way_ctx.cube, sizeof(cubehashParam) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1, 64 );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &qubit_2way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
mm256_interleave_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
mm256_deinterleave_2x128( hash0, hash1, vhash, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &qubit_2way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
}
int scanhash_qubit_2way( int thr_id, struct work *work,uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 32+3; // 4*8 + 3
uint32_t *noncep1 = vdata + 32+7;
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
// big endian encode 0..18 uint32_t, 64 bits at a time
swab32_array( endiandata, pdata, 20 );
uint64_t *edata = (uint64_t*)endiandata;
mm256_interleave_2x128( (uint64_t*)vdata, edata, edata, 640 );
luffa_2way_init( &qubit_2way_ctx.luffa, 512 );
luffa_2way_update( &qubit_2way_ctx.luffa, vdata, 64 );
for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
{
found[0] = found[1] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
qubit_2way_hash( hash, vdata );
pdata[19] = n;
if ( !( hash[7] & mask ) && fulltest( hash, ptarget) )
{
found[0] = true;
num_found++;
nonces[0] = n;
work_set_target_ratio( work, hash );
}
if ( !( (hash+8)[7] & mask ) && fulltest( hash+8, ptarget) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
n += 2;
} while ( ( num_found == 0 ) && ( n < max_nonce )
&& !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

17
algo/qubit/qubit-gate.c Normal file
View File

@@ -0,0 +1,17 @@
#include "qubit-gate.h"
bool register_qubit_algo( algo_gate_t* gate )
{
#if defined (QUBIT_2WAY)
init_qubit_2way_ctx();
gate->scanhash = (void*)&scanhash_qubit_2way;
gate->hash = (void*)&qubit_2way_hash;
#else
init_qubit_ctx();
gate->scanhash = (void*)&scanhash_qubit;
gate->hash = (void*)&qubit_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
return true;
};

32
algo/qubit/qubit-gate.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef QUBIT_GATE_H__
#define QUBIT_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define QUBIT_2WAY
#endif
bool register_qubit_algo( algo_gate_t* gate );
#if defined(QUBIT_2WAY)
void qubit_2way_hash( void *state, const void *input );
int scanhash_qubit_2way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_qubit_2way_ctx();
#endif
void qubit_hash( void *state, const void *input );
int scanhash_qubit( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_qubit_ctx();
#endif

View File

@@ -1,23 +1,16 @@
#include "algo-gate-api.h"
#include "qubit-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/luffa/sse2/luffa_for_sse2.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/simd/sse2/nist.h"
#include "algo/simd/nist.h"
#include "algo/shavite/sph_shavite.h"
#ifndef NO_AES_NI
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/echo/sph_echo.h"
#endif
typedef struct
@@ -55,7 +48,7 @@ void qubit_luffa_midstate( const void* input )
update_luffa( &qubit_luffa_mid, input, 64 );
}
void qubithash(void *output, const void *input)
void qubit_hash(void *output, const void *input)
{
unsigned char hash[128] __attribute((aligned(64)));
#define hashB hash+64
@@ -122,7 +115,7 @@ int scanhash_qubit(int thr_id, struct work *work,
{
pdata[19] = ++n;
be32enc(&endiandata[19], n);
qubithash(hash64, endiandata);
qubit_hash(hash64, endiandata);
#ifndef DEBUG_ALGO
if (!(hash64[7] & mask))
{
@@ -141,6 +134,7 @@ int scanhash_qubit(int thr_id, struct work *work,
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
@@ -157,12 +151,3 @@ int scanhash_qubit(int thr_id, struct work *work,
return 0;
}
bool register_qubit_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
init_qubit_ctx();
gate->scanhash = (void*)&scanhash_qubit;
gate->hash = (void*)&qubithash;
return true;
};

View File

@@ -754,6 +754,7 @@ extern int scanhash_scrypt( int thr_id, struct work *work, uint32_t max_nonce,
if (unlikely(hash[i * 8 + 7] <= Htarg && fulltest(hash + i * 8, ptarget))) {
*hashes_done = n - pdata[19] + 1;
pdata[19] = data[i * 20 + 19];
work_set_target_ratio( work, hash );
return 1;
}
}
@@ -777,6 +778,7 @@ bool scrypt_miner_thread_init( int thr_id )
bool register_scrypt_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
gate->scanhash = (void*)&scanhash_scrypt;
// gate->hash = (void*)&scrypt_1024_1_1_256_24way;

View File

@@ -114,7 +114,7 @@ available_implementations() {
return flags;
}
#endif
/*
static int
scrypt_test_mix() {
static const uint8_t expected[16] = {
@@ -145,4 +145,4 @@ scrypt_test_mix() {
return ret;
}
*/

View File

@@ -26,7 +26,7 @@
#include "scrypt-jane-pbkdf2.h"
#define SCRYPT_TEST_HASH_LEN 257 /* (2 * largest block size) + 1 */
/*
static int
scrypt_test_hash() {
scrypt_hash_state st;
@@ -45,4 +45,4 @@ scrypt_test_hash() {
scrypt_hash_finish(&st, final);
return scrypt_verify(final, scrypt_test_hash_expected, SCRYPT_HASH_DIGEST_SIZE);
}
*/

270
algo/sha/md-helper-4way.c Normal file
View File

@@ -0,0 +1,270 @@
/* $Id: md_helper.c 216 2010-06-08 09:46:57Z tp $ */
/*
* This file contains some functions which implement the external data
* handling and padding for Merkle-Damgard hash functions which follow
* the conventions set out by MD4 (little-endian) or SHA-1 (big-endian).
*
* API: this file is meant to be included, not compiled as a stand-alone
* file. Some macros must be defined:
* RFUN name for the round function
* HASH "short name" for the hash function
* BE32 defined for big-endian, 32-bit based (e.g. SHA-1)
* LE32 defined for little-endian, 32-bit based (e.g. MD5)
* BE64 defined for big-endian, 64-bit based (e.g. SHA-512)
* LE64 defined for little-endian, 64-bit based (no example yet)
* PW01 if defined, append 0x01 instead of 0x80 (for Tiger)
* BLEN if defined, length of a message block (in bytes)
* PLW1 if defined, length is defined on one 64-bit word only (for Tiger)
* PLW4 if defined, length is defined on four 64-bit words (for WHIRLPOOL)
* SVAL if defined, reference to the context state information
*
* BLEN is used when a message block is not 16 (32-bit or 64-bit) words:
* this is used for instance for Tiger, which works on 64-bit words but
* uses 512-bit message blocks (eight 64-bit words). PLW1 and PLW4 are
* ignored if 32-bit words are used; if 64-bit words are used and PLW1 is
* set, then only one word (64 bits) will be used to encode the input
* message length (in bits), otherwise two words will be used (as in
* SHA-384 and SHA-512). If 64-bit words are used and PLW4 is defined (but
* not PLW1), four 64-bit words will be used to encode the message length
* (in bits). Note that regardless of those settings, only 64-bit message
* lengths are supported (in bits): messages longer than 2 Exabytes will be
* improperly hashed (this is unlikely to happen soon: 2 Exabytes is about
* 2 millions Terabytes, which is huge).
*
* If CLOSE_ONLY is defined, then this file defines only the sph_XXX_close()
* function. This is used for Tiger2, which is identical to Tiger except
* when it comes to the padding (Tiger2 uses the standard 0x80 byte instead
* of the 0x01 from original Tiger).
*
* The RFUN function is invoked with two arguments, the first pointing to
* aligned data (as a "const void *"), the second being state information
* from the context structure. By default, this state information is the
* "val" field from the context, and this field is assumed to be an array
* of words ("sph_u32" or "sph_u64", depending on BE32/LE32/BE64/LE64).
* from the context structure. The "val" field can have any type, except
* for the output encoding which assumes that it is an array of "sph_u32"
* values. By defining NO_OUTPUT, this last step is deactivated; the
* includer code is then responsible for writing out the hash result. When
* NO_OUTPUT is defined, the third parameter to the "close()" function is
* ignored.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
#undef SPH_XCAT
#define SPH_XCAT(a, b) SPH_XCAT_(a, b)
#undef SPH_XCAT_
#define SPH_XCAT_(a, b) a ## b
#undef SPH_BLEN
#undef SPH_WLEN
#if defined BE64 || defined LE64
#define SPH_BLEN 128U
#define SPH_WLEN 8U
#else
#define SPH_BLEN 64U
#define SPH_WLEN 4U
#endif
#ifdef BLEN
#undef SPH_BLEN
#define SPH_BLEN BLEN
#endif
#undef SPH_MAXPAD
#if defined PLW1
#define SPH_MAXPAD (SPH_BLEN - SPH_WLEN)
#elif defined PLW4
#define SPH_MAXPAD (SPH_BLEN - (SPH_WLEN << 2))
#else
#define SPH_MAXPAD (SPH_BLEN - (SPH_WLEN << 1))
#endif
#undef SPH_VAL
#undef SPH_NO_OUTPUT
#ifdef SVAL
#define SPH_VAL SVAL
#define SPH_NO_OUTPUT 1
#else
#define SPH_VAL sc->val
#endif
#ifndef CLOSE_ONLY
#ifdef SPH_UPTR
static void
SPH_XCAT(HASH, _short)( void *cc, const void *data, size_t len )
#else
void
HASH ( void *cc, const void *data, size_t len )
#endif
{
SPH_XCAT( HASH, _context ) *sc;
__m256i *vdata = (__m256i*)data;
size_t ptr;
sc = cc;
ptr = (unsigned)sc->count & (SPH_BLEN - 1U);
while ( len > 0 )
{
size_t clen;
clen = SPH_BLEN - ptr;
if ( clen > len )
clen = len;
memcpy_256( sc->buf + (ptr>>3), vdata, clen>>3 );
vdata = vdata + (clen>>3);
ptr += clen;
len -= clen;
if ( ptr == SPH_BLEN )
{
RFUN( sc->buf, SPH_VAL );
ptr = 0;
}
sc->count += clen;
}
}
#ifdef SPH_UPTR
void
HASH (void *cc, const void *data, size_t len)
{
SPH_XCAT(HASH, _context) *sc;
__m256i *vdata = (__m256i*)data;
unsigned ptr;
if ( len < (2 * SPH_BLEN) )
{
SPH_XCAT(HASH, _short)(cc, data, len);
return;
}
sc = cc;
ptr = (unsigned)sc->count & (SPH_BLEN - 1U);
if ( ptr > 0 )
{
unsigned t;
t = SPH_BLEN - ptr;
SPH_XCAT( HASH, _short )( cc, data, t );
vdata = vdata + (t>>3);
len -= t;
}
SPH_XCAT( HASH, _short )( cc, data, len );
}
#endif
#endif
/*
* Perform padding and produce result. The context is NOT reinitialized
* by this function.
*/
static void
SPH_XCAT( HASH, _addbits_and_close )(void *cc, unsigned ub, unsigned n,
void *dst, unsigned rnum )
{
SPH_XCAT(HASH, _context) *sc;
unsigned ptr, u;
sc = cc;
ptr = (unsigned)sc->count & (SPH_BLEN - 1U);
#ifdef PW01
sc->buf[ptr>>3] = _mm256_set1_epi64x( 0x100 >> 8 );
#else
sc->buf[ptr>>3] = _mm256_set1_epi64x( 0x80 );
#endif
ptr += 8;
if ( ptr > SPH_MAXPAD )
{
memset_zero_256( sc->buf + (ptr>>3), (SPH_BLEN - ptr) >> 3 );
RFUN( sc->buf, SPH_VAL );
memset_zero_256( sc->buf, SPH_MAXPAD >> 3 );
}
else
{
memset_zero_256( sc->buf + (ptr>>3), (SPH_MAXPAD - ptr) >> 3 );
}
#if defined BE64
#if defined PLW1
sc->buf[ SPH_MAXPAD>>3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
#elif defined PLW4
memset_zero_256( sc->buf + (SPH_MAXPAD>>3), ( 2 * SPH_WLEN ) >> 3 );
sc->buf[ (SPH_MAXPAD + 2 * SPH_WLEN ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count >> 61 ) );
sc->buf[ (SPH_MAXPAD + 3 * SPH_WLEN ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
#else
sc->buf[ ( SPH_MAXPAD + 2 * SPH_WLEN ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count >> 61 ) );
sc->buf[ ( SPH_MAXPAD + 3 * SPH_WLEN ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
#endif // PLW
#else // LE64
#if defined PLW1
sc->buf[ SPH_MAXPAD >> 3 ] = _mm256_set1_epi64x( sc->count << 3 );
#elif defined PLW4
sc->buf[ SPH_MAXPAD >> 3 ] = _mm256_set1_epi64x( sc->count << 3 );
sc->buf[ ( SPH_MAXPAD + SPH_WLEN ) >> 3 ] =
_mm256_set1_epi64x( c->count >> 61 );
memset_zero_256( sc->buf + ( ( SPH_MAXPAD + 2 * SPH_WLEN ) >> 3 ),
2 * SPH_WLEN );
#else
sc->buf[ SPH_MAXPAD >> 3 ] = _mm256_set1_epi64x( sc->count << 3 );
sc->buf[ ( SPH_MAXPAD + SPH_WLEN ) >> 3 ] =
_mm256_set1_epi64x( sc->count >> 61 );
#endif // PLW
#endif // LE64
RFUN( sc->buf, SPH_VAL );
#ifdef SPH_NO_OUTPUT
(void)dst;
(void)rnum;
(void)u;
#else
for ( u = 0; u < rnum; u ++ )
{
#if defined BE64
((__m256i*)dst)[u] = mm256_bswap_64( sc->val[u] );
#else // LE64
((__m256i*)dst)[u] = sc->val[u];
#endif
}
#endif
}
static void
SPH_XCAT( HASH, _mdclose )( void *cc, void *dst, unsigned rnum )
{
SPH_XCAT( HASH, _addbits_and_close )( cc, 0, 0, dst, rnum );
}

247
algo/sha/sha2-big-4way.c Normal file
View File

@@ -0,0 +1,247 @@
/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */
/*
* SHA-384 / SHA-512 implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph_sha2.h"
#if SPH_64
#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z)))
#define ROTR64 SPH_ROTR64
#define BSG5_0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39))
#define BSG5_1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41))
#define SSG5_0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ SPH_T64((x) >> 7))
#define SSG5_1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ SPH_T64((x) >> 6))
static const sph_u64 K512[80] = {
SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD),
SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC),
SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019),
SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118),
SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE),
SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2),
SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1),
SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694),
SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3),
SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65),
SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483),
SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5),
SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210),
SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4),
SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725),
SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70),
SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926),
SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF),
SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8),
SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B),
SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001),
SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30),
SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910),
SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8),
SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53),
SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8),
SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB),
SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3),
SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60),
SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC),
SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9),
SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B),
SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207),
SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178),
SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6),
SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B),
SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493),
SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C),
SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A),
SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817)
};
static const sph_u64 H384[8] = {
SPH_C64(0xCBBB9D5DC1059ED8), SPH_C64(0x629A292A367CD507),
SPH_C64(0x9159015A3070DD17), SPH_C64(0x152FECD8F70E5939),
SPH_C64(0x67332667FFC00B31), SPH_C64(0x8EB44A8768581511),
SPH_C64(0xDB0C2E0D64F98FA7), SPH_C64(0x47B5481DBEFA4FA4)
};
static const sph_u64 H512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
/*
* This macro defines the body for a SHA-384 / SHA-512 compression function
* implementation. The "in" parameter should evaluate, when applied to a
* numerical input parameter from 0 to 15, to an expression which yields
* the corresponding input block. The "r" parameter should evaluate to
* an array or pointer expression designating the array of 8 words which
* contains the input and output of the compression function.
*
* SHA-512 is hard for the compiler. If the loop is completely unrolled,
* then the code will be quite huge (possibly more than 100 kB), and the
* performance will be degraded due to cache misses on the code. We
* unroll only eight steps, which avoids all needless copies when
* 64-bit registers are swapped.
*/
#define SHA3_STEP(A, B, C, D, E, F, G, H, i) do { \
sph_u64 T1, T2; \
T1 = SPH_T64(H + BSG5_1(E) + CH(E, F, G) + K512[i] + W[i]); \
T2 = SPH_T64(BSG5_0(A) + MAJ(A, B, C)); \
D = SPH_T64(D + T1); \
H = SPH_T64(T1 + T2); \
} while (0)
#define SHA3_ROUND_BODY(in, r) do { \
int i; \
sph_u64 A, B, C, D, E, F, G, H; \
sph_u64 W[80]; \
\
for (i = 0; i < 16; i ++) \
W[i] = in(i); \
for (i = 16; i < 80; i ++) \
W[i] = SPH_T64(SSG5_1(W[i - 2]) + W[i - 7] \
+ SSG5_0(W[i - 15]) + W[i - 16]); \
A = (r)[0]; \
B = (r)[1]; \
C = (r)[2]; \
D = (r)[3]; \
E = (r)[4]; \
F = (r)[5]; \
G = (r)[6]; \
H = (r)[7]; \
for (i = 0; i < 80; i += 8) { \
SHA3_STEP(A, B, C, D, E, F, G, H, i + 0); \
SHA3_STEP(H, A, B, C, D, E, F, G, i + 1); \
SHA3_STEP(G, H, A, B, C, D, E, F, i + 2); \
SHA3_STEP(F, G, H, A, B, C, D, E, i + 3); \
SHA3_STEP(E, F, G, H, A, B, C, D, i + 4); \
SHA3_STEP(D, E, F, G, H, A, B, C, i + 5); \
SHA3_STEP(C, D, E, F, G, H, A, B, i + 6); \
SHA3_STEP(B, C, D, E, F, G, H, A, i + 7); \
} \
(r)[0] = SPH_T64((r)[0] + A); \
(r)[1] = SPH_T64((r)[1] + B); \
(r)[2] = SPH_T64((r)[2] + C); \
(r)[3] = SPH_T64((r)[3] + D); \
(r)[4] = SPH_T64((r)[4] + E); \
(r)[5] = SPH_T64((r)[5] + F); \
(r)[6] = SPH_T64((r)[6] + G); \
(r)[7] = SPH_T64((r)[7] + H); \
} while (0)
/*
* One round of SHA-384 / SHA-512. The data must be aligned for 64-bit access.
*/
static void
sha3_round(const unsigned char *data, sph_u64 r[8])
{
#define SHA3_IN(x) sph_dec64be_aligned(data + (8 * (x)))
SHA3_ROUND_BODY(SHA3_IN, r);
#undef SHA3_IN
}
/* see sph_sha3.h */
void
sph_sha384_init(void *cc)
{
sph_sha384_context *sc;
sc = cc;
memcpy(sc->val, H384, sizeof H384);
sc->count = 0;
}
/* see sph_sha3.h */
void
sph_sha512_init(void *cc)
{
sph_sha512_context *sc;
sc = cc;
memcpy(sc->val, H512, sizeof H512);
sc->count = 0;
}
#define RFUN sha3_round
#define HASH sha384
#define BE64 1
#include "md_helper.c"
/* see sph_sha3.h */
void
sph_sha384_close(void *cc, void *dst)
{
sha384_close(cc, dst, 6);
// sph_sha384_init(cc);
}
/* see sph_sha3.h */
void
sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha384_addbits_and_close(cc, ub, n, dst, 6);
// sph_sha384_init(cc);
}
/* see sph_sha3.h */
void
sph_sha512_close(void *cc, void *dst)
{
sha384_close(cc, dst, 8);
// sph_sha512_init(cc);
}
/* see sph_sha3.h */
void
sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha384_addbits_and_close(cc, ub, n, dst, 8);
// sph_sha512_init(cc);
}
/* see sph_sha3.h */
void
sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8])
{
#define SHA3_IN(x) msg[x]
SHA3_ROUND_BODY(SHA3_IN, val);
#undef SHA3_IN
}
#endif

452
algo/sha/sha2-hash-4way.c Normal file
View File

@@ -0,0 +1,452 @@
/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */
/*
* SHA-384 / SHA-512 implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#if defined(__AVX__)
#include <stddef.h>
#include <string.h>
#include "sha2-hash-4way.h"
// SHA256 4 way 32 bit
static const sph_u32 H256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
static const sph_u32 K256[80] = {
SPH_C32(0x428A2F98), SPH_C32(0x71374491),
SPH_C32(0xB5C0FBCF), SPH_C32(0xE9B5DBA5),
SPH_C32(0x3956C25B), SPH_C32(0x59F111F1),
SPH_C32(0x923F82A4), SPH_C32(0xAB1C5ED5),
SPH_C32(0xD807AA98), SPH_C32(0x12835B01),
SPH_C32(0x243185BE), SPH_C32(0x550C7DC3),
SPH_C32(0x72BE5D74), SPH_C32(0x80DEB1FE),
SPH_C32(0x9BDC06A7), SPH_C32(0xC19BF174),
SPH_C32(0xE49B69C1), SPH_C32(0xEFBE4786),
SPH_C32(0x0FC19DC6), SPH_C32(0x240CA1CC),
SPH_C32(0x2DE92C6F), SPH_C32(0x4A7484AA),
SPH_C32(0x5CB0A9DC), SPH_C32(0x76F988DA),
SPH_C32(0x983E5152), SPH_C32(0xA831C66D),
SPH_C32(0xB00327C8), SPH_C32(0xBF597FC7),
SPH_C32(0xC6E00BF3), SPH_C32(0xD5A79147),
SPH_C32(0x06CA6351), SPH_C32(0x14292967),
SPH_C32(0x27B70A85), SPH_C32(0x2E1B2138),
SPH_C32(0x4D2C6DFC), SPH_C32(0x53380D13),
SPH_C32(0x650A7354), SPH_C32(0x766A0ABB),
SPH_C32(0x81C2C92E), SPH_C32(0x92722C85),
SPH_C32(0xA2BFE8A1), SPH_C32(0xA81A664B),
SPH_C32(0xC24B8B70), SPH_C32(0xC76C51A3),
SPH_C32(0xD192E819), SPH_C32(0xD6990624),
SPH_C32(0xF40E3585), SPH_C32(0x106AA070),
SPH_C32(0x19A4C116), SPH_C32(0x1E376C08),
SPH_C32(0x2748774C), SPH_C32(0x34B0BCB5),
SPH_C32(0x391C0CB3), SPH_C32(0x4ED8AA4A),
SPH_C32(0x5B9CCA4F), SPH_C32(0x682E6FF3),
SPH_C32(0x748F82EE), SPH_C32(0x78A5636F),
SPH_C32(0x84C87814), SPH_C32(0x8CC70208),
SPH_C32(0x90BEFFFA), SPH_C32(0xA4506CEB),
SPH_C32(0xBEF9A3F7), SPH_C32(0xC67178F2),
SPH_C32(0xCA273ECE), SPH_C32(0xD186B8C7),
SPH_C32(0xEADA7DD6), SPH_C32(0xF57D4F7F),
SPH_C32(0x06F067AA), SPH_C32(0x0A637DC5),
SPH_C32(0x113F9804), SPH_C32(0x1B710B35),
SPH_C32(0x28DB77F5), SPH_C32(0x32CAAB7B),
SPH_C32(0x3C9EBE0A), SPH_C32(0x431D67C4),
SPH_C32(0x4CC5D4BE), SPH_C32(0x597F299C),
SPH_C32(0x5FCB6FAB), SPH_C32(0x6C44198C)
};
#define CHs(X, Y, Z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
#define MAJs(X, Y, Z) \
_mm_or_si128( _mm_and_si128( X, Y ), \
_mm_and_si128( _mm_or_si128( X, Y ), Z ) )
#define BSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm_rotr_32(x, 2), mm_rotr_32(x, 13) ), mm_rotr_32( x, 22) )
#define BSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm_rotr_32(x, 6), mm_rotr_32(x, 11) ), mm_rotr_32( x, 25) )
#define SSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm_rotr_32(x, 7), mm_rotr_32(x, 18) ), _mm_srli_epi32(x, 3) )
#define SSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm_rotr_32(x, 17), mm_rotr_32(x, 19) ), _mm_srli_epi32(x, 10) )
#define SHA256_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m128i T1, T2; \
T1 = _mm_add_epi32( _mm_add_epi32( _mm_add_epi32( \
_mm_add_epi32( H, BSG2_1(E) ), CHs(E, F, G) ), \
_mm_set1_epi32( K256[i] ) ), W[i] ); \
T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \
D = _mm_add_epi32( D, T1 ); \
H = _mm_add_epi32( T1, T2 ); \
} while (0)
static void
sha256_4way_round( __m128i *in, __m128i r[8] )
{
int i;
__m128i A, B, C, D, E, F, G, H;
__m128i W[80];
for ( i = 0; i < 16; i++ )
W[i] = mm_bswap_32( in[i] );
for ( i = 16; i < 80; i++ )
W[i] = _mm_add_epi32( _mm_add_epi32( _mm_add_epi32(
SSG2_1( W[ i-2 ] ), W[ i-7 ] ), SSG2_0( W[ i-15 ] ) ), W[ i-16 ] );
A = r[0];
B = r[1];
C = r[2];
D = r[3];
E = r[4];
F = r[5];
G = r[6];
H = r[7];
for ( i = 0; i < 80; i += 8 )
{
SHA256_4WAY_STEP( A, B, C, D, E, F, G, H, i + 0 );
SHA256_4WAY_STEP( H, A, B, C, D, E, F, G, i + 1 );
SHA256_4WAY_STEP( G, H, A, B, C, D, E, F, i + 2 );
SHA256_4WAY_STEP( F, G, H, A, B, C, D, E, i + 3 );
SHA256_4WAY_STEP( E, F, G, H, A, B, C, D, i + 4 );
SHA256_4WAY_STEP( D, E, F, G, H, A, B, C, i + 5 );
SHA256_4WAY_STEP( C, D, E, F, G, H, A, B, i + 6 );
SHA256_4WAY_STEP( B, C, D, E, F, G, H, A, i + 7 );
}
r[0] = _mm_add_epi32( r[0], A );
r[1] = _mm_add_epi32( r[1], B );
r[2] = _mm_add_epi32( r[2], C );
r[3] = _mm_add_epi32( r[3], D );
r[4] = _mm_add_epi32( r[4], E );
r[5] = _mm_add_epi32( r[5], F );
r[6] = _mm_add_epi32( r[6], G );
r[7] = _mm_add_epi32( r[7], H );
}
void sha256_4way_init( sha256_4way_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = _mm_set1_epi32( H256[0] );
sc->val[1] = _mm_set1_epi32( H256[1] );
sc->val[2] = _mm_set1_epi32( H256[2] );
sc->val[3] = _mm_set1_epi32( H256[3] );
sc->val[4] = _mm_set1_epi32( H256[4] );
sc->val[5] = _mm_set1_epi32( H256[5] );
sc->val[6] = _mm_set1_epi32( H256[6] );
sc->val[7] = _mm_set1_epi32( H256[7] );
}
void sha256_4way( sha256_4way_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;
size_t ptr;
const int buf_size = 64;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
uint32_t clow, clow2;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_128( sc->buf + (ptr>>2), vdata, clen>>2 );
vdata = vdata + (clen>>2);
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha256_4way_round( sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
clow2 = SPH_T32( clow + clen );
sc->count_low = clow2;
if ( clow2 < clow )
sc->count_high++;
}
}
void sha256_4way_close( sha256_4way_context *sc, void *dst )
{
unsigned ptr, u;
uint32_t low, high;
const int buf_size = 64;
const int pad = buf_size - 8;
ptr = (unsigned)sc->count_low & (buf_size - 1U);
sc->buf[ ptr>>2 ] = _mm_set1_epi32( 0x80 );
ptr += 4;
if ( ptr > pad )
{
memset_zero_128( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_4way_round( sc->buf, sc->val );
memset_zero_128( sc->buf, pad >> 2 );
}
else
memset_zero_128( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
low = sc->count_low;
high = (sc->count_high << 3) | (low >> 29);
low = low << 3;
sc->buf[ pad >> 2 ] =
mm_bswap_32( _mm_set1_epi32( high ) );
sc->buf[ ( pad+4 ) >> 2 ] =
mm_bswap_32( _mm_set1_epi32( low ) );
sha256_4way_round( sc->buf, sc->val );
for ( u = 0; u < 8; u ++ )
((__m128i*)dst)[u] = mm_bswap_32( sc->val[u] );
}
#if defined(__AVX2__)
// SHA512 4 way 64 bit
static const sph_u64 H512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
static const sph_u64 K512[80] = {
SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD),
SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC),
SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019),
SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118),
SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE),
SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2),
SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1),
SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694),
SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3),
SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65),
SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483),
SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5),
SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210),
SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4),
SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725),
SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70),
SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926),
SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF),
SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8),
SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B),
SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001),
SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30),
SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910),
SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8),
SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53),
SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8),
SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB),
SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3),
SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60),
SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC),
SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9),
SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B),
SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207),
SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178),
SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6),
SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B),
SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493),
SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C),
SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A),
SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817)
};
#define CH(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
#define MAJ(X, Y, Z) \
_mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
#define BSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_rotr_64(x, 28), mm256_rotr_64(x, 34) ), mm256_rotr_64(x, 39) )
#define BSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_rotr_64(x, 14), mm256_rotr_64(x, 18) ), mm256_rotr_64(x, 41) )
#define SSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_rotr_64(x, 1), mm256_rotr_64(x, 8) ), _mm256_srli_epi64(x, 7) )
#define SSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_rotr_64(x, 19), mm256_rotr_64(x, 61) ), _mm256_srli_epi64(x, 6) )
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i T1, T2; \
T1 = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64( \
_mm256_add_epi64( H, BSG5_1(E) ), CH(E, F, G) ), \
_mm256_set1_epi64x( K512[i] ) ), W[i] ); \
T2 = _mm256_add_epi64( BSG5_0(A), MAJ(A, B, C) ); \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
static void
sha512_4way_round( __m256i *in, __m256i r[8] )
{
int i;
__m256i A, B, C, D, E, F, G, H;
__m256i W[80];
for ( i = 0; i < 16; i++ )
W[i] = mm256_bswap_64( in[i] );
for ( i = 16; i < 80; i++ )
W[i] = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64(
SSG5_1( W[ i-2 ] ), W[ i-7 ] ), SSG5_0( W[ i-15 ] ) ), W[ i-16 ] );
A = r[0];
B = r[1];
C = r[2];
D = r[3];
E = r[4];
F = r[5];
G = r[6];
H = r[7];
for ( i = 0; i < 80; i += 8 )
{
SHA3_4WAY_STEP( A, B, C, D, E, F, G, H, i + 0 );
SHA3_4WAY_STEP( H, A, B, C, D, E, F, G, i + 1 );
SHA3_4WAY_STEP( G, H, A, B, C, D, E, F, i + 2 );
SHA3_4WAY_STEP( F, G, H, A, B, C, D, E, i + 3 );
SHA3_4WAY_STEP( E, F, G, H, A, B, C, D, i + 4 );
SHA3_4WAY_STEP( D, E, F, G, H, A, B, C, i + 5 );
SHA3_4WAY_STEP( C, D, E, F, G, H, A, B, i + 6 );
SHA3_4WAY_STEP( B, C, D, E, F, G, H, A, i + 7 );
}
r[0] = _mm256_add_epi64( r[0], A );
r[1] = _mm256_add_epi64( r[1], B );
r[2] = _mm256_add_epi64( r[2], C );
r[3] = _mm256_add_epi64( r[3], D );
r[4] = _mm256_add_epi64( r[4], E );
r[5] = _mm256_add_epi64( r[5], F );
r[6] = _mm256_add_epi64( r[6], G );
r[7] = _mm256_add_epi64( r[7], H );
}
void sha512_4way_init( sha512_4way_context *sc )
{
sc->count = 0;
sc->val[0] = _mm256_set1_epi64x( H512[0] );
sc->val[1] = _mm256_set1_epi64x( H512[1] );
sc->val[2] = _mm256_set1_epi64x( H512[2] );
sc->val[3] = _mm256_set1_epi64x( H512[3] );
sc->val[4] = _mm256_set1_epi64x( H512[4] );
sc->val[5] = _mm256_set1_epi64x( H512[5] );
sc->val[6] = _mm256_set1_epi64x( H512[6] );
sc->val[7] = _mm256_set1_epi64x( H512[7] );
}
void sha512_4way( sha512_4way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
size_t ptr;
const int buf_size = 128;
ptr = (unsigned)sc->count & (buf_size - 1U);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( sc->buf + (ptr>>3), vdata, clen>>3 );
vdata = vdata + (clen>>3);
ptr += clen;
len -= clen;
if ( ptr == buf_size )
{
sha512_4way_round( sc->buf, sc->val );
ptr = 0;
}
sc->count += clen;
}
}
void sha512_4way_close( sha512_4way_context *sc, void *dst )
{
unsigned ptr, u;
const int buf_size = 128;
const int pad = buf_size - 16;
ptr = (unsigned)sc->count & (buf_size - 1U);
sc->buf[ ptr>>3 ] = _mm256_set1_epi64x( 0x80 );
ptr += 8;
if ( ptr > pad )
{
memset_zero_256( sc->buf + (ptr>>3), (buf_size - ptr) >> 3 );
sha512_4way_round( sc->buf, sc->val );
memset_zero_256( sc->buf, pad >> 3 );
}
else
memset_zero_256( sc->buf + (ptr>>3), (pad - ptr) >> 3 );
sc->buf[ pad >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count >> 61 ) );
sc->buf[ ( pad+8 ) >> 3 ] =
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
sha512_4way_round( sc->buf, sc->val );
for ( u = 0; u < 8; u ++ )
((__m256i*)dst)[u] = mm256_bswap_64( sc->val[u] );
}
#endif // __AVX2__
#endif // __AVX__

77
algo/sha/sha2-hash-4way.h Normal file
View File

@@ -0,0 +1,77 @@
/* $Id: sph_sha2.h 216 2010-06-08 09:46:57Z tp $ */
/**
* SHA-224, SHA-256, SHA-384 and SHA-512 interface.
*
* SHA-256 has been published in FIPS 180-2, now amended with a change
* notice to include SHA-224 as well (which is a simple variation on
* SHA-256). SHA-384 and SHA-512 are also defined in FIPS 180-2. FIPS
* standards can be found at:
* http://csrc.nist.gov/publications/fips/
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_sha2.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SHA2_HASH_4WAY_H__
#define SHA2_HASH_4WAY_H__ 1
#include <stddef.h>
#include "sph_types.h"
#include "avxdefs.h"
#if defined(__AVX__)
#define SPH_SIZE_sha256 256
typedef struct {
__m128i buf[64>>2];
__m128i val[8];
uint32_t count_high, count_low;
} sha256_4way_context;
void sha256_4way_init( sha256_4way_context *sc );
void sha256_4way( sha256_4way_context *sc, const void *data, size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
#if defined (__AVX2__)
#define SPH_SIZE_sha512 512
typedef struct {
__m256i buf[128>>3];
__m256i val[8];
uint64_t count;
} sha512_4way_context;
void sha512_4way_init( sha512_4way_context *sc);
void sha512_4way( sha512_4way_context *sc, const void *data, size_t len );
void sha512_4way_close( sha512_4way_context *sc, void *dst );
#endif
#endif
#endif

View File

@@ -36,15 +36,15 @@ void sha256t_hash(void* output, const void* input, uint32_t len)
memcpy( &ctx_sha256, &sha256t_mid, sizeof sha256t_mid );
SHA256_Update( &ctx_sha256, input + midlen, tail );
SHA256_Final( hashA, &ctx_sha256 );
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
memcpy( &ctx_sha256, &sha256t_ctx, sizeof sha256t_ctx );
SHA256_Update( &ctx_sha256, hashA, 32 );
SHA256_Final( hashA, &ctx_sha256 );
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
memcpy( &ctx_sha256, &sha256t_ctx, sizeof sha256t_ctx );
SHA256_Update( &ctx_sha256, hashA, 32 );
SHA256_Final( hashA, &ctx_sha256 );
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
#else
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
memcpy( &ctx_sha256, &sha256t_mid, sizeof sha256t_mid );

View File

@@ -0,0 +1,618 @@
/* $Id: shabal.c 175 2010-05-07 16:03:20Z tp $ */
/*
* Shabal implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#ifdef __AVX2__
#include "shabal-hash-4way.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
/*
* Part of this code was automatically generated (the part between
* the "BEGIN" and "END" markers).
*/
#define sM 16
#define C32 SPH_C32
#define T32 SPH_T32
#define O1 13
#define O2 9
#define O3 6
/*
* We copy the state into local variables, so that the compiler knows
* that it can optimize them at will.
*/
/* BEGIN -- automatically generated code. */
#define DECL_STATE \
__m128i A00, A01, A02, A03, A04, A05, A06, A07, \
A08, A09, A0A, A0B; \
__m128i B0, B1, B2, B3, B4, B5, B6, B7, \
B8, B9, BA, BB, BC, BD, BE, BF; \
__m128i C0, C1, C2, C3, C4, C5, C6, C7, \
C8, C9, CA, CB, CC, CD, CE, CF; \
__m128i M0, M1, M2, M3, M4, M5, M6, M7, \
M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 Wlow, Whigh;
#define READ_STATE(state) do { \
A00 = (state)->A[0]; \
A01 = (state)->A[1]; \
A02 = (state)->A[2]; \
A03 = (state)->A[3]; \
A04 = (state)->A[4]; \
A05 = (state)->A[5]; \
A06 = (state)->A[6]; \
A07 = (state)->A[7]; \
A08 = (state)->A[8]; \
A09 = (state)->A[9]; \
A0A = (state)->A[10]; \
A0B = (state)->A[11]; \
B0 = (state)->B[0]; \
B1 = (state)->B[1]; \
B2 = (state)->B[2]; \
B3 = (state)->B[3]; \
B4 = (state)->B[4]; \
B5 = (state)->B[5]; \
B6 = (state)->B[6]; \
B7 = (state)->B[7]; \
B8 = (state)->B[8]; \
B9 = (state)->B[9]; \
BA = (state)->B[10]; \
BB = (state)->B[11]; \
BC = (state)->B[12]; \
BD = (state)->B[13]; \
BE = (state)->B[14]; \
BF = (state)->B[15]; \
C0 = (state)->C[0]; \
C1 = (state)->C[1]; \
C2 = (state)->C[2]; \
C3 = (state)->C[3]; \
C4 = (state)->C[4]; \
C5 = (state)->C[5]; \
C6 = (state)->C[6]; \
C7 = (state)->C[7]; \
C8 = (state)->C[8]; \
C9 = (state)->C[9]; \
CA = (state)->C[10]; \
CB = (state)->C[11]; \
CC = (state)->C[12]; \
CD = (state)->C[13]; \
CE = (state)->C[14]; \
CF = (state)->C[15]; \
Wlow = (state)->Wlow; \
Whigh = (state)->Whigh; \
} while (0)
#define WRITE_STATE(state) do { \
(state)->A[0] = A00; \
(state)->A[1] = A01; \
(state)->A[2] = A02; \
(state)->A[3] = A03; \
(state)->A[4] = A04; \
(state)->A[5] = A05; \
(state)->A[6] = A06; \
(state)->A[7] = A07; \
(state)->A[8] = A08; \
(state)->A[9] = A09; \
(state)->A[10] = A0A; \
(state)->A[11] = A0B; \
(state)->B[0] = B0; \
(state)->B[1] = B1; \
(state)->B[2] = B2; \
(state)->B[3] = B3; \
(state)->B[4] = B4; \
(state)->B[5] = B5; \
(state)->B[6] = B6; \
(state)->B[7] = B7; \
(state)->B[8] = B8; \
(state)->B[9] = B9; \
(state)->B[10] = BA; \
(state)->B[11] = BB; \
(state)->B[12] = BC; \
(state)->B[13] = BD; \
(state)->B[14] = BE; \
(state)->B[15] = BF; \
(state)->C[0] = C0; \
(state)->C[1] = C1; \
(state)->C[2] = C2; \
(state)->C[3] = C3; \
(state)->C[4] = C4; \
(state)->C[5] = C5; \
(state)->C[6] = C6; \
(state)->C[7] = C7; \
(state)->C[8] = C8; \
(state)->C[9] = C9; \
(state)->C[10] = CA; \
(state)->C[11] = CB; \
(state)->C[12] = CC; \
(state)->C[13] = CD; \
(state)->C[14] = CE; \
(state)->C[15] = CF; \
(state)->Wlow = Wlow; \
(state)->Whigh = Whigh; \
} while (0)
#define DECODE_BLOCK \
do { \
M0 = buf[ 0]; \
M1 = buf[ 1]; \
M2 = buf[ 2]; \
M3 = buf[ 3]; \
M4 = buf[ 4]; \
M5 = buf[ 5]; \
M6 = buf[ 6]; \
M7 = buf[ 7]; \
M8 = buf[ 8]; \
M9 = buf[ 9]; \
MA = buf[10]; \
MB = buf[11]; \
MC = buf[12]; \
MD = buf[13]; \
ME = buf[14]; \
MF = buf[15]; \
} while (0)
#define INPUT_BLOCK_ADD \
do { \
B0 = _mm_add_epi32( B0, M0 );\
B1 = _mm_add_epi32( B1, M1 );\
B2 = _mm_add_epi32( B2, M2 );\
B3 = _mm_add_epi32( B3, M3 );\
B4 = _mm_add_epi32( B4, M4 );\
B5 = _mm_add_epi32( B5, M5 );\
B6 = _mm_add_epi32( B6, M6 );\
B7 = _mm_add_epi32( B7, M7 );\
B8 = _mm_add_epi32( B8, M8 );\
B9 = _mm_add_epi32( B9, M9 );\
BA = _mm_add_epi32( BA, MA );\
BB = _mm_add_epi32( BB, MB );\
BC = _mm_add_epi32( BC, MC );\
BD = _mm_add_epi32( BD, MD );\
BE = _mm_add_epi32( BE, ME );\
BF = _mm_add_epi32( BF, MF );\
} while (0)
#define INPUT_BLOCK_SUB \
do { \
C0 = _mm_sub_epi32( C0, M0 ); \
C1 = _mm_sub_epi32( C1, M1 ); \
C2 = _mm_sub_epi32( C2, M2 ); \
C3 = _mm_sub_epi32( C3, M3 ); \
C4 = _mm_sub_epi32( C4, M4 ); \
C5 = _mm_sub_epi32( C5, M5 ); \
C6 = _mm_sub_epi32( C6, M6 ); \
C7 = _mm_sub_epi32( C7, M7 ); \
C8 = _mm_sub_epi32( C8, M8 ); \
C9 = _mm_sub_epi32( C9, M9 ); \
CA = _mm_sub_epi32( CA, MA ); \
CB = _mm_sub_epi32( CB, MB ); \
CC = _mm_sub_epi32( CC, MC ); \
CD = _mm_sub_epi32( CD, MD ); \
CE = _mm_sub_epi32( CE, ME ); \
CF = _mm_sub_epi32( CF, MF ); \
} while (0)
#define XOR_W \
do { \
A00 = _mm_xor_si128( A00, _mm_set1_epi32( Wlow ) ); \
A01 = _mm_xor_si128( A01, _mm_set1_epi32( Whigh ) ); \
} while (0)
/*
#define SWAP(v1, v2) do { \
sph_u32 tmp = (v1); \
(v1) = (v2); \
(v2) = tmp; \
} while (0)
*/
#define SWAP_BC \
do { \
mm_swap_128( B0, C0 ); \
mm_swap_128( B1, C1 ); \
mm_swap_128( B2, C2 ); \
mm_swap_128( B3, C3 ); \
mm_swap_128( B4, C4 ); \
mm_swap_128( B5, C5 ); \
mm_swap_128( B6, C6 ); \
mm_swap_128( B7, C7 ); \
mm_swap_128( B8, C8 ); \
mm_swap_128( B9, C9 ); \
mm_swap_128( BA, CA ); \
mm_swap_128( BB, CB ); \
mm_swap_128( BC, CC ); \
mm_swap_128( BD, CD ); \
mm_swap_128( BE, CE ); \
mm_swap_128( BF, CF ); \
} while (0)
#define PERM_ELT(xa0, xa1, xb0, xb1, xb2, xb3, xc, xm) \
do { \
xa0 = _mm_xor_si128( xm, _mm_xor_si128( xb1, _mm_xor_si128( \
_mm_andnot_si128( xb3, xb2 ), \
_mm_mullo_epi32( _mm_xor_si128( xa0, _mm_xor_si128( xc, \
_mm_mullo_epi32( mm_rotl_32( xa1, 15 ), _mm_set1_epi32(5UL) ) \
) ), _mm_set1_epi32(3UL) ) ) ) ); \
xb0 = mm_not( _mm_xor_si128( xa0, mm_rotl_32( xb0, 1 ) ) ); \
} while (0)
#define PERM_STEP_0 do { \
PERM_ELT(A00, A0B, B0, BD, B9, B6, C8, M0); \
PERM_ELT(A01, A00, B1, BE, BA, B7, C7, M1); \
PERM_ELT(A02, A01, B2, BF, BB, B8, C6, M2); \
PERM_ELT(A03, A02, B3, B0, BC, B9, C5, M3); \
PERM_ELT(A04, A03, B4, B1, BD, BA, C4, M4); \
PERM_ELT(A05, A04, B5, B2, BE, BB, C3, M5); \
PERM_ELT(A06, A05, B6, B3, BF, BC, C2, M6); \
PERM_ELT(A07, A06, B7, B4, B0, BD, C1, M7); \
PERM_ELT(A08, A07, B8, B5, B1, BE, C0, M8); \
PERM_ELT(A09, A08, B9, B6, B2, BF, CF, M9); \
PERM_ELT(A0A, A09, BA, B7, B3, B0, CE, MA); \
PERM_ELT(A0B, A0A, BB, B8, B4, B1, CD, MB); \
PERM_ELT(A00, A0B, BC, B9, B5, B2, CC, MC); \
PERM_ELT(A01, A00, BD, BA, B6, B3, CB, MD); \
PERM_ELT(A02, A01, BE, BB, B7, B4, CA, ME); \
PERM_ELT(A03, A02, BF, BC, B8, B5, C9, MF); \
} while (0)
#define PERM_STEP_1 do { \
PERM_ELT(A04, A03, B0, BD, B9, B6, C8, M0); \
PERM_ELT(A05, A04, B1, BE, BA, B7, C7, M1); \
PERM_ELT(A06, A05, B2, BF, BB, B8, C6, M2); \
PERM_ELT(A07, A06, B3, B0, BC, B9, C5, M3); \
PERM_ELT(A08, A07, B4, B1, BD, BA, C4, M4); \
PERM_ELT(A09, A08, B5, B2, BE, BB, C3, M5); \
PERM_ELT(A0A, A09, B6, B3, BF, BC, C2, M6); \
PERM_ELT(A0B, A0A, B7, B4, B0, BD, C1, M7); \
PERM_ELT(A00, A0B, B8, B5, B1, BE, C0, M8); \
PERM_ELT(A01, A00, B9, B6, B2, BF, CF, M9); \
PERM_ELT(A02, A01, BA, B7, B3, B0, CE, MA); \
PERM_ELT(A03, A02, BB, B8, B4, B1, CD, MB); \
PERM_ELT(A04, A03, BC, B9, B5, B2, CC, MC); \
PERM_ELT(A05, A04, BD, BA, B6, B3, CB, MD); \
PERM_ELT(A06, A05, BE, BB, B7, B4, CA, ME); \
PERM_ELT(A07, A06, BF, BC, B8, B5, C9, MF); \
} while (0)
#define PERM_STEP_2 do { \
PERM_ELT(A08, A07, B0, BD, B9, B6, C8, M0); \
PERM_ELT(A09, A08, B1, BE, BA, B7, C7, M1); \
PERM_ELT(A0A, A09, B2, BF, BB, B8, C6, M2); \
PERM_ELT(A0B, A0A, B3, B0, BC, B9, C5, M3); \
PERM_ELT(A00, A0B, B4, B1, BD, BA, C4, M4); \
PERM_ELT(A01, A00, B5, B2, BE, BB, C3, M5); \
PERM_ELT(A02, A01, B6, B3, BF, BC, C2, M6); \
PERM_ELT(A03, A02, B7, B4, B0, BD, C1, M7); \
PERM_ELT(A04, A03, B8, B5, B1, BE, C0, M8); \
PERM_ELT(A05, A04, B9, B6, B2, BF, CF, M9); \
PERM_ELT(A06, A05, BA, B7, B3, B0, CE, MA); \
PERM_ELT(A07, A06, BB, B8, B4, B1, CD, MB); \
PERM_ELT(A08, A07, BC, B9, B5, B2, CC, MC); \
PERM_ELT(A09, A08, BD, BA, B6, B3, CB, MD); \
PERM_ELT(A0A, A09, BE, BB, B7, B4, CA, ME); \
PERM_ELT(A0B, A0A, BF, BC, B8, B5, C9, MF); \
} while (0)
#define APPLY_P \
do { \
B0 = mm_rotr_32( B0, 15 ); \
B1 = mm_rotr_32( B1, 15 ); \
B2 = mm_rotr_32( B2, 15 ); \
B3 = mm_rotr_32( B3, 15 ); \
B4 = mm_rotr_32( B4, 15 ); \
B5 = mm_rotr_32( B5, 15 ); \
B6 = mm_rotr_32( B6, 15 ); \
B7 = mm_rotr_32( B7, 15 ); \
B8 = mm_rotr_32( B8, 15 ); \
B9 = mm_rotr_32( B9, 15 ); \
BA = mm_rotr_32( BA, 15 ); \
BB = mm_rotr_32( BB, 15 ); \
BC = mm_rotr_32( BC, 15 ); \
BD = mm_rotr_32( BD, 15 ); \
BE = mm_rotr_32( BE, 15 ); \
BF = mm_rotr_32( BF, 15 ); \
PERM_STEP_0; \
PERM_STEP_1; \
PERM_STEP_2; \
A0B = _mm_add_epi32( A0B, C6 ); \
A0A = _mm_add_epi32( A0A, C5 ); \
A09 = _mm_add_epi32( A09, C4 ); \
A08 = _mm_add_epi32( A08, C3 ); \
A07 = _mm_add_epi32( A07, C2 ); \
A06 = _mm_add_epi32( A06, C1 ); \
A05 = _mm_add_epi32( A05, C0 ); \
A04 = _mm_add_epi32( A04, CF ); \
A03 = _mm_add_epi32( A03, CE ); \
A02 = _mm_add_epi32( A02, CD ); \
A01 = _mm_add_epi32( A01, CC ); \
A00 = _mm_add_epi32( A00, CB ); \
A0B = _mm_add_epi32( A0B, CA ); \
A0A = _mm_add_epi32( A0A, C9 ); \
A09 = _mm_add_epi32( A09, C8 ); \
A08 = _mm_add_epi32( A08, C7 ); \
A07 = _mm_add_epi32( A07, C6 ); \
A06 = _mm_add_epi32( A06, C5 ); \
A05 = _mm_add_epi32( A05, C4 ); \
A04 = _mm_add_epi32( A04, C3 ); \
A03 = _mm_add_epi32( A03, C2 ); \
A02 = _mm_add_epi32( A02, C1 ); \
A01 = _mm_add_epi32( A01, C0 ); \
A00 = _mm_add_epi32( A00, CF ); \
A0B = _mm_add_epi32( A0B, CE ); \
A0A = _mm_add_epi32( A0A, CD ); \
A09 = _mm_add_epi32( A09, CC ); \
A08 = _mm_add_epi32( A08, CB ); \
A07 = _mm_add_epi32( A07, CA ); \
A06 = _mm_add_epi32( A06, C9 ); \
A05 = _mm_add_epi32( A05, C8 ); \
A04 = _mm_add_epi32( A04, C7 ); \
A03 = _mm_add_epi32( A03, C6 ); \
A02 = _mm_add_epi32( A02, C5 ); \
A01 = _mm_add_epi32( A01, C4 ); \
A00 = _mm_add_epi32( A00, C3 ); \
} while (0)
#define INCR_W do { \
if ((Wlow = T32(Wlow + 1)) == 0) \
Whigh = T32(Whigh + 1); \
} while (0)
static const sph_u32 A_init_256[] = {
C32(0x52F84552), C32(0xE54B7999), C32(0x2D8EE3EC), C32(0xB9645191),
C32(0xE0078B86), C32(0xBB7C44C9), C32(0xD2B5C1CA), C32(0xB0D2EB8C),
C32(0x14CE5A45), C32(0x22AF50DC), C32(0xEFFDBC6B), C32(0xEB21B74A)
};
static const sph_u32 B_init_256[] = {
C32(0xB555C6EE), C32(0x3E710596), C32(0xA72A652F), C32(0x9301515F),
C32(0xDA28C1FA), C32(0x696FD868), C32(0x9CB6BF72), C32(0x0AFE4002),
C32(0xA6E03615), C32(0x5138C1D4), C32(0xBE216306), C32(0xB38B8890),
C32(0x3EA8B96B), C32(0x3299ACE4), C32(0x30924DD4), C32(0x55CB34A5)
};
static const sph_u32 C_init_256[] = {
C32(0xB405F031), C32(0xC4233EBA), C32(0xB3733979), C32(0xC0DD9D55),
C32(0xC51C28AE), C32(0xA327B8E1), C32(0x56C56167), C32(0xED614433),
C32(0x88B59D60), C32(0x60E2CEBA), C32(0x758B4B8B), C32(0x83E82A7F),
C32(0xBC968828), C32(0xE6E00BF7), C32(0xBA839E55), C32(0x9B491C60)
};
static const sph_u32 A_init_512[] = {
C32(0x20728DFD), C32(0x46C0BD53), C32(0xE782B699), C32(0x55304632),
C32(0x71B4EF90), C32(0x0EA9E82C), C32(0xDBB930F1), C32(0xFAD06B8B),
C32(0xBE0CAE40), C32(0x8BD14410), C32(0x76D2ADAC), C32(0x28ACAB7F)
};
static const sph_u32 B_init_512[] = {
C32(0xC1099CB7), C32(0x07B385F3), C32(0xE7442C26), C32(0xCC8AD640),
C32(0xEB6F56C7), C32(0x1EA81AA9), C32(0x73B9D314), C32(0x1DE85D08),
C32(0x48910A5A), C32(0x893B22DB), C32(0xC5A0DF44), C32(0xBBC4324E),
C32(0x72D2F240), C32(0x75941D99), C32(0x6D8BDE82), C32(0xA1A7502B)
};
static const sph_u32 C_init_512[] = {
C32(0xD9BF68D1), C32(0x58BAD750), C32(0x56028CB2), C32(0x8134F359),
C32(0xB5D469D8), C32(0x941A8CC2), C32(0x418B2A6E), C32(0x04052780),
C32(0x7F07D787), C32(0x5194358F), C32(0x3C60D665), C32(0xBE97D79A),
C32(0x950C3434), C32(0xAED9A06D), C32(0x2537DC8D), C32(0x7CDB5969)
};
static void
shabal_4way_init( void *cc, unsigned size )
{
shabal_4way_context *sc = (shabal_4way_context*)cc;
int i;
if ( size == 512 )
{
for ( i = 0; i < 12; i++ )
sc->A[i] = _mm_set1_epi32( A_init_512[i] );
for ( i = 0; i < 16; i++ )
{
sc->B[i] = _mm_set1_epi32( B_init_512[i] );
sc->C[i] = _mm_set1_epi32( C_init_512[i] );
}
}
else
{
for ( i = 0; i < 12; i++ )
sc->A[i] = _mm_set1_epi32( A_init_256[i] );
for ( i = 0; i < 16; i++ )
{
sc->B[i] = _mm_set1_epi32( B_init_256[i] );
sc->C[i] = _mm_set1_epi32( C_init_256[i] );
}
}
sc->Wlow = 1;
sc->Whigh = 0;
sc->ptr = 0;
}
static void
shabal_4way_core( void *cc, const unsigned char *data, size_t len )
{
shabal_4way_context *sc = (shabal_4way_context*)cc;
__m128i *buf;
__m128i *vdata = (__m128i*)data;
const int buf_size = 64;
size_t ptr;
DECL_STATE
buf = sc->buf;
ptr = sc->ptr;
if ( len < (buf_size - ptr ) )
{
memcpy_128( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE(sc);
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_128( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += clen>>2;
len -= clen;
if ( ptr == buf_size )
{
DECODE_BLOCK;
INPUT_BLOCK_ADD;
XOR_W;
APPLY_P;
INPUT_BLOCK_SUB;
SWAP_BC;
INCR_W;
ptr = 0;
}
}
WRITE_STATE(sc);
sc->ptr = ptr;
}
static void
shabal_4way_close( void *cc, unsigned ub, unsigned n, void *dst,
unsigned size_words )
{
shabal_4way_context *sc = (shabal_4way_context*)cc;
__m128i *buf;
const int buf_size = 64;
size_t ptr;
int i;
unsigned z, zz;
DECL_STATE
buf = sc->buf;
ptr = sc->ptr;
z = 0x80 >> n;
zz = ((ub & -z) | z) & 0xFF;
buf[ptr>>2] = _mm_set1_epi32( zz );
memset_zero_128( buf + (ptr>>2) + 1, ( (buf_size - ptr) >> 2 ) - 1 );
READ_STATE(sc);
DECODE_BLOCK;
INPUT_BLOCK_ADD;
XOR_W;
APPLY_P;
for ( i = 0; i < 3; i ++ )
{
SWAP_BC;
XOR_W;
APPLY_P;
}
__m128i *d = (__m128i*)dst;
if ( size_words == 16 ) // 512
{
d[ 0] = B0; d[ 1] = B1; d[ 2] = B2; d[ 3] = B3;
d[ 4] = B4; d[ 5] = B5; d[ 6] = B6; d[ 7] = B7;
d[ 8] = B8; d[ 9] = B9; d[10] = BA; d[11] = BB;
d[12] = BC; d[13] = BD; d[14] = BE; d[15] = BF;
}
else // 256
{
d[ 0] = B8; d[ 1] = B9; d[ 2] = BA; d[ 3] = BB;
d[ 4] = BC; d[ 5] = BD; d[ 6] = BE; d[ 7] = BF;
}
}
void
shabal256_4way_init( void *cc )
{
shabal_4way_init(cc, 256);
}
void
shabal256_4way( void *cc, const void *data, size_t len )
{
shabal_4way_core( cc, data, len );
}
void
shabal256_4way_close( void *cc, void *dst )
{
shabal_4way_close(cc, 0, 0, dst, 8);
}
void
shabal256_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst )
{
shabal_4way_close(cc, ub, n, dst, 8);
}
void
shabal512_4way_init(void *cc)
{
shabal_4way_init(cc, 512);
}
void
shabal512_4way(void *cc, const void *data, size_t len)
{
shabal_4way_core(cc, data, len);
}
void
shabal512_4way_close(void *cc, void *dst)
{
shabal_4way_close(cc, 0, 0, dst, 16);
}
void
shabal512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
shabal_4way_close(cc, ub, n, dst, 16);
}
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,82 @@
/* $Id: sph_shabal.h 175 2010-05-07 16:03:20Z tp $ */
/**
* Shabal interface. Shabal is a family of functions which differ by
* their output size; this implementation defines Shabal for output
* sizes 192, 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_shabal.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SHABAL_HASH_4WAY_H__
#define SHABAL_HASH_4WAY_H__ 1
#ifdef __AVX2__
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "avxdefs.h"
#ifdef __cplusplus
extern "C"{
#endif
#define SPH_SIZE_shabal256 256
#define SPH_SIZE_shabal512 512
typedef struct {
__m128i buf[16] __attribute__ ((aligned (64)));
__m128i A[12], B[16], C[16];
sph_u32 Whigh, Wlow;
size_t ptr;
} shabal_4way_context;
typedef shabal_4way_context shabal256_4way_context;
typedef shabal_4way_context shabal512_4way_context;
void shabal256_4way_init( void *cc );
void shabal256_4way( void *cc, const void *data, size_t len );
void shabal256_4way_close( void *cc, void *dst );
void shabal256_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void shabal512_4way_init( void *cc );
void shabal512_4way( void *cc, const void *data, size_t len );
void shabal512_4way_close( void *cc, void *dst );
void shabal512_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
#ifdef __cplusplus
}
#endif
#endif
#endif

View File

@@ -0,0 +1,682 @@
/* $Id: shavite.c 227 2010-06-16 17:28:38Z tp $ */
/*
* SHAvite-3 implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#ifdef __AES__
#include "sph_shavite.h"
#include "avxdefs.h"
#ifdef __cplusplus
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SHAVITE
#define SPH_SMALL_FOOTPRINT_SHAVITE 1
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
#define C32 SPH_C32
/*
* As of round 2 of the SHA-3 competition, the published reference
* implementation and test vectors are wrong, because they use
* big-endian AES tables while the internal decoding uses little-endian.
* The code below follows the specification. To turn it into a code
* which follows the reference implementation (the one called "BugFix"
* on the SHAvite-3 web site, published on Nov 23rd, 2009), comment out
* the code below (from the '#define AES_BIG_ENDIAN...' to the definition
* of the AES_ROUND_NOKEY macro) and replace it with the version which
* is commented out afterwards.
*/
#define AES_BIG_ENDIAN 0
#include "algo/sha/aes_helper.c"
static const sph_u32 IV512[] = {
C32(0x72FCCDD8), C32(0x79CA4727), C32(0x128A077B), C32(0x40D55AEC),
C32(0xD1901A06), C32(0x430AE307), C32(0xB29F5CD1), C32(0xDF07FBFC),
C32(0x8E45D73D), C32(0x681AB538), C32(0xBDE86578), C32(0xDD577E47),
C32(0xE275EADE), C32(0x502D9FCD), C32(0xB9357178), C32(0x022A4B9A)
};
// Return hi 128 bits with elements shifted one lane with vacated lane filled
// with data rotated from lo.
// Partially rotate elements in two 128 bit vectors as one 256 bit vector
// and return the rotated high 128 bits.
// Similar to mm_rotr256_1x32 but only a partial rotation as lo is not
// completed. It's faster than a full rotation.
static inline __m128i mm_rotr256hi_1x32( __m128i hi, __m128i lo, int n )
{ return _mm_or_si128( _mm_srli_si128( hi, n<<2 ),
_mm_slli_si128( lo, 16 - (n<<2) ) );
}
#define AES_ROUND_NOKEY(x0, x1, x2, x3) do { \
sph_u32 t0 = (x0); \
sph_u32 t1 = (x1); \
sph_u32 t2 = (x2); \
sph_u32 t3 = (x3); \
AES_ROUND_NOKEY_LE(t0, t1, t2, t3, x0, x1, x2, x3); \
} while (0)
#define KEY_EXPAND_ELT(k0, k1, k2, k3) do { \
sph_u32 kt; \
AES_ROUND_NOKEY(k1, k2, k3, k0); \
kt = (k0); \
(k0) = (k1); \
(k1) = (k2); \
(k2) = (k3); \
(k3) = kt; \
} while (0)
#if SPH_SMALL_FOOTPRINT_SHAVITE
/*
* This function assumes that "msg" is aligned for 32-bit access.
*/
static void
c512(sph_shavite_big_context *sc, const void *msg)
{
sph_u32 p0, p1, p2, p3, p4, p5, p6, p7;
sph_u32 p8, p9, pA, pB, pC, pD, pE, pF;
sph_u32 rk[448];
size_t u;
int r, s;
#if SPH_LITTLE_ENDIAN
memcpy(rk, msg, 128);
#else
for (u = 0; u < 32; u += 4) {
rk[u + 0] = sph_dec32le_aligned(
(const unsigned char *)msg + (u << 2) + 0);
rk[u + 1] = sph_dec32le_aligned(
(const unsigned char *)msg + (u << 2) + 4);
rk[u + 2] = sph_dec32le_aligned(
(const unsigned char *)msg + (u << 2) + 8);
rk[u + 3] = sph_dec32le_aligned(
(const unsigned char *)msg + (u << 2) + 12);
}
#endif
u = 32;
for (;;) {
for (s = 0; s < 4; s ++) {
sph_u32 x0, x1, x2, x3;
x0 = rk[u - 31];
x1 = rk[u - 30];
x2 = rk[u - 29];
x3 = rk[u - 32];
AES_ROUND_NOKEY(x0, x1, x2, x3);
rk[u + 0] = x0 ^ rk[u - 4];
rk[u + 1] = x1 ^ rk[u - 3];
rk[u + 2] = x2 ^ rk[u - 2];
rk[u + 3] = x3 ^ rk[u - 1];
if (u == 32) {
rk[ 32] ^= sc->count0;
rk[ 33] ^= sc->count1;
rk[ 34] ^= sc->count2;
rk[ 35] ^= SPH_T32(~sc->count3);
} else if (u == 440) {
rk[440] ^= sc->count1;
rk[441] ^= sc->count0;
rk[442] ^= sc->count3;
rk[443] ^= SPH_T32(~sc->count2);
}
u += 4;
x0 = rk[u - 31];
x1 = rk[u - 30];
x2 = rk[u - 29];
x3 = rk[u - 32];
AES_ROUND_NOKEY(x0, x1, x2, x3);
rk[u + 0] = x0 ^ rk[u - 4];
rk[u + 1] = x1 ^ rk[u - 3];
rk[u + 2] = x2 ^ rk[u - 2];
rk[u + 3] = x3 ^ rk[u - 1];
if (u == 164) {
rk[164] ^= sc->count3;
rk[165] ^= sc->count2;
rk[166] ^= sc->count1;
rk[167] ^= SPH_T32(~sc->count0);
} else if (u == 316) {
rk[316] ^= sc->count2;
rk[317] ^= sc->count3;
rk[318] ^= sc->count0;
rk[319] ^= SPH_T32(~sc->count1);
}
u += 4;
}
if (u == 448)
break;
for (s = 0; s < 8; s ++) {
rk[u + 0] = rk[u - 32] ^ rk[u - 7];
rk[u + 1] = rk[u - 31] ^ rk[u - 6];
rk[u + 2] = rk[u - 30] ^ rk[u - 5];
rk[u + 3] = rk[u - 29] ^ rk[u - 4];
u += 4;
}
}
p0 = sc->h[0x0];
p1 = sc->h[0x1];
p2 = sc->h[0x2];
p3 = sc->h[0x3];
p4 = sc->h[0x4];
p5 = sc->h[0x5];
p6 = sc->h[0x6];
p7 = sc->h[0x7];
p8 = sc->h[0x8];
p9 = sc->h[0x9];
pA = sc->h[0xA];
pB = sc->h[0xB];
pC = sc->h[0xC];
pD = sc->h[0xD];
pE = sc->h[0xE];
pF = sc->h[0xF];
u = 0;
for (r = 0; r < 14; r ++) {
#define C512_ELT(l0, l1, l2, l3, r0, r1, r2, r3) do { \
sph_u32 x0, x1, x2, x3; \
x0 = r0 ^ rk[u ++]; \
x1 = r1 ^ rk[u ++]; \
x2 = r2 ^ rk[u ++]; \
x3 = r3 ^ rk[u ++]; \
AES_ROUND_NOKEY(x0, x1, x2, x3); \
x0 ^= rk[u ++]; \
x1 ^= rk[u ++]; \
x2 ^= rk[u ++]; \
x3 ^= rk[u ++]; \
AES_ROUND_NOKEY(x0, x1, x2, x3); \
x0 ^= rk[u ++]; \
x1 ^= rk[u ++]; \
x2 ^= rk[u ++]; \
x3 ^= rk[u ++]; \
AES_ROUND_NOKEY(x0, x1, x2, x3); \
x0 ^= rk[u ++]; \
x1 ^= rk[u ++]; \
x2 ^= rk[u ++]; \
x3 ^= rk[u ++]; \
AES_ROUND_NOKEY(x0, x1, x2, x3); \
l0 ^= x0; \
l1 ^= x1; \
l2 ^= x2; \
l3 ^= x3; \
} while (0)
#define WROT(a, b, c, d) do { \
sph_u32 t = d; \
d = c; \
c = b; \
b = a; \
a = t; \
} while (0)
C512_ELT(p0, p1, p2, p3, p4, p5, p6, p7);
C512_ELT(p8, p9, pA, pB, pC, pD, pE, pF);
WROT(p0, p4, p8, pC);
WROT(p1, p5, p9, pD);
WROT(p2, p6, pA, pE);
WROT(p3, p7, pB, pF);
#undef C512_ELT
#undef WROT
}
sc->h[0x0] ^= p0;
sc->h[0x1] ^= p1;
sc->h[0x2] ^= p2;
sc->h[0x3] ^= p3;
sc->h[0x4] ^= p4;
sc->h[0x5] ^= p5;
sc->h[0x6] ^= p6;
sc->h[0x7] ^= p7;
sc->h[0x8] ^= p8;
sc->h[0x9] ^= p9;
sc->h[0xA] ^= pA;
sc->h[0xB] ^= pB;
sc->h[0xC] ^= pC;
sc->h[0xD] ^= pD;
sc->h[0xE] ^= pE;
sc->h[0xF] ^= pF;
}
#else
static void
c512( sph_shavite_big_context *sc, const void *msg )
{
__m128i p0, p1, p2, p3, x;
__m128i k00, k01, k02, k03, k10, k11, k12, k13;
__m128i *m = (__m128i*)msg;
__m128i *h = (__m128i*)sc->h;
int r;
p0 = h[0];
p1 = h[1];
p2 = h[2];
p3 = h[3];
// round
k00 = m[0];
x = _mm_xor_si128( p1, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = m[1];
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = m[2];
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = m[3];
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p0 = _mm_xor_si128( p0, x );
k10 = m[4];
x = _mm_xor_si128( p3, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = m[5];
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = m[6];
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = m[7];
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p2 = _mm_xor_si128( p2, x );
for ( r = 0; r < 3; r ++ )
{
// round 1, 5, 9
k00 = mm_rotr_1x32( _mm_aesenc_si128( k00, m128_zero ) );
k00 = _mm_xor_si128( k00, k13 );
if ( r == 0 )
k00 = _mm_xor_si128( k00, _mm_set_epi32(
~sc->count3, sc->count2, sc->count1, sc->count0 ) );
x = _mm_xor_si128( p0, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = mm_rotr_1x32( _mm_aesenc_si128( k01, m128_zero ) );
k01 = _mm_xor_si128( k01, k00 );
if ( r == 1 )
k01 = _mm_xor_si128( k01, _mm_set_epi32(
~sc->count0, sc->count1, sc->count2, sc->count3 ) );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = mm_rotr_1x32( _mm_aesenc_si128( k02, m128_zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = mm_rotr_1x32( _mm_aesenc_si128( k03, m128_zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p3 = _mm_xor_si128( p3, x );
k10 = mm_rotr_1x32( _mm_aesenc_si128( k10, m128_zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p2, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = mm_rotr_1x32( _mm_aesenc_si128( k11, m128_zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = mm_rotr_1x32( _mm_aesenc_si128( k12, m128_zero ) );
k12 = _mm_xor_si128( k12, k11 );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = mm_rotr_1x32( _mm_aesenc_si128( k13, m128_zero ) );
k13 = _mm_xor_si128( k13, k12 );
if ( r == 2 )
k13 = _mm_xor_si128( k13, _mm_set_epi32(
~sc->count1, sc->count0, sc->count3, sc->count2 ) );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p1 = _mm_xor_si128( p1, x );
// round 2, 6, 10
k00 = _mm_xor_si128( k00, mm_rotr256hi_1x32( k12, k13, 1 ) );
x = _mm_xor_si128( p3, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = _mm_xor_si128( k01, mm_rotr256hi_1x32( k13, k00, 1 ) );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = _mm_xor_si128( k02, mm_rotr256hi_1x32( k00, k01, 1 ) );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = _mm_xor_si128( k03, mm_rotr256hi_1x32( k01, k02, 1 ) );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p2 = _mm_xor_si128( p2, x );
k10 = _mm_xor_si128( k10, mm_rotr256hi_1x32( k02, k03, 1 ) );
x = _mm_xor_si128( p1, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = _mm_xor_si128( k11, mm_rotr256hi_1x32( k03, k10, 1 ) );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = _mm_xor_si128( k12, mm_rotr256hi_1x32( k10, k11, 1 ) );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = _mm_xor_si128( k13, mm_rotr256hi_1x32( k11, k12, 1 ) );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p0 = _mm_xor_si128( p0, x );
// round 3, 7, 11
k00 = mm_rotr_1x32( _mm_aesenc_si128( k00, m128_zero ) );
k00 = _mm_xor_si128( k00, k13 );
x = _mm_xor_si128( p2, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = mm_rotr_1x32( _mm_aesenc_si128( k01, m128_zero ) );
k01 = _mm_xor_si128( k01, k00 );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = mm_rotr_1x32( _mm_aesenc_si128( k02, m128_zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = mm_rotr_1x32( _mm_aesenc_si128( k03, m128_zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p1 = _mm_xor_si128( p1, x );
k10 = mm_rotr_1x32( _mm_aesenc_si128( k10, m128_zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p0, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = mm_rotr_1x32( _mm_aesenc_si128( k11, m128_zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = mm_rotr_1x32( _mm_aesenc_si128( k12, m128_zero ) );
k12 = _mm_xor_si128( k12, k11 );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = mm_rotr_1x32( _mm_aesenc_si128( k13, m128_zero ) );
k13 = _mm_xor_si128( k13, k12 );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p3 = _mm_xor_si128( p3, x );
// round 4, 8, 12
k00 = _mm_xor_si128( k00, mm_rotr256hi_1x32( k12, k13, 1 ) );
x = _mm_xor_si128( p1, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = _mm_xor_si128( k01, mm_rotr256hi_1x32( k13, k00, 1 ) );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = _mm_xor_si128( k02, mm_rotr256hi_1x32( k00, k01, 1 ) );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = _mm_xor_si128( k03, mm_rotr256hi_1x32( k01, k02, 1 ) );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p0 = _mm_xor_si128( p0, x );
k10 = _mm_xor_si128( k10, mm_rotr256hi_1x32( k02, k03, 1 ) );
x = _mm_xor_si128( p3, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = _mm_xor_si128( k11, mm_rotr256hi_1x32( k03, k10, 1 ) );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = _mm_xor_si128( k12, mm_rotr256hi_1x32( k10, k11, 1 ) );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = _mm_xor_si128( k13, mm_rotr256hi_1x32( k11, k12, 1 ) );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p2 = _mm_xor_si128( p2, x );
}
// round 13
k00 = mm_rotr_1x32( _mm_aesenc_si128( k00, m128_zero ) );
k00 = _mm_xor_si128( k00, k13 );
x = _mm_xor_si128( p0, k00 );
x = _mm_aesenc_si128( x, m128_zero );
k01 = mm_rotr_1x32( _mm_aesenc_si128( k01, m128_zero ) );
k01 = _mm_xor_si128( k01, k00 );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, m128_zero );
k02 = mm_rotr_1x32( _mm_aesenc_si128( k02, m128_zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, m128_zero );
k03 = mm_rotr_1x32( _mm_aesenc_si128( k03, m128_zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, m128_zero );
p3 = _mm_xor_si128( p3, x );
k10 = mm_rotr_1x32( _mm_aesenc_si128( k10, m128_zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p2, k10 );
x = _mm_aesenc_si128( x, m128_zero );
k11 = mm_rotr_1x32( _mm_aesenc_si128( k11, m128_zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, m128_zero );
k12 = mm_rotr_1x32( _mm_aesenc_si128( k12, m128_zero ) );
k12 = _mm_xor_si128( k12, _mm_xor_si128( k11, _mm_set_epi32(
~sc->count2, sc->count3, sc->count0, sc->count1 ) ) );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, m128_zero );
k13 = mm_rotr_1x32( _mm_aesenc_si128( k13, m128_zero ) );
k13 = _mm_xor_si128( k13, k12 );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, m128_zero );
p1 = _mm_xor_si128( p1, x );
h[0] = _mm_xor_si128( h[0], p2 );
h[1] = _mm_xor_si128( h[1], p3 );
h[2] = _mm_xor_si128( h[2], p0 );
h[3] = _mm_xor_si128( h[3], p1 );
}
#endif
static void
shavite_big_aesni_init( sph_shavite_big_context *sc, const sph_u32 *iv )
{
memcpy( sc->h, iv, sizeof sc->h );
sc->ptr = 0;
sc->count0 = 0;
sc->count1 = 0;
sc->count2 = 0;
sc->count3 = 0;
}
static void
shavite_big_aesni_core( sph_shavite_big_context *sc, const void *data,
size_t len )
{
unsigned char *buf;
size_t ptr;
buf = sc->buf;
ptr = sc->ptr;
while (len > 0) {
size_t clen;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
clen = len;
memcpy(buf + ptr, data, clen);
data = (const unsigned char *)data + clen;
ptr += clen;
len -= clen;
if (ptr == sizeof sc->buf) {
if ((sc->count0 = SPH_T32(sc->count0 + 1024)) == 0) {
sc->count1 = SPH_T32(sc->count1 + 1);
if (sc->count1 == 0) {
sc->count2 = SPH_T32(sc->count2 + 1);
if (sc->count2 == 0) {
sc->count3 = SPH_T32(
sc->count3 + 1);
}
}
}
c512(sc, buf);
ptr = 0;
}
}
sc->ptr = ptr;
}
static void
shavite_big_aesni_close( sph_shavite_big_context *sc, unsigned ub, unsigned n,
void *dst, size_t out_size_w32 )
{
unsigned char *buf;
size_t ptr, u;
unsigned z;
sph_u32 count0, count1, count2, count3;
buf = sc->buf;
ptr = sc->ptr;
count0 = (sc->count0 += SPH_T32(ptr << 3) + n);
count1 = sc->count1;
count2 = sc->count2;
count3 = sc->count3;
z = 0x80 >> n;
z = ((ub & -z) | z) & 0xFF;
if (ptr == 0 && n == 0) {
buf[0] = 0x80;
memset(buf + 1, 0, 109);
sc->count0 = sc->count1 = sc->count2 = sc->count3 = 0;
} else if (ptr < 110) {
buf[ptr ++] = z;
memset(buf + ptr, 0, 110 - ptr);
} else {
buf[ptr ++] = z;
memset(buf + ptr, 0, 128 - ptr);
c512(sc, buf);
memset(buf, 0, 110);
sc->count0 = sc->count1 = sc->count2 = sc->count3 = 0;
}
sph_enc32le(buf + 110, count0);
sph_enc32le(buf + 114, count1);
sph_enc32le(buf + 118, count2);
sph_enc32le(buf + 122, count3);
buf[126] = (unsigned char) (out_size_w32 << 5);
buf[127] = (unsigned char) (out_size_w32 >> 3);
c512(sc, buf);
for (u = 0; u < out_size_w32; u ++)
sph_enc32le((unsigned char *)dst + (u << 2), sc->h[u]);
}
void
sph_shavite512_aesni_init(void *cc)
{
shavite_big_aesni_init(cc, IV512);
}
void
sph_shavite512_aesni(void *cc, const void *data, size_t len)
{
shavite_big_aesni_core(cc, data, len);
}
void
sph_shavite512_aesni_close(void *cc, void *dst)
{
shavite_big_aesni_close(cc, 0, 0, dst, 16);
}
void
sph_shavite512_aesni_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst)
{
shavite_big_aesni_close(cc, ub, n, dst, 16);
}
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -1731,21 +1731,21 @@ sph_shavite384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
/* see sph_shavite.h */
void
sph_shavite512_init(void *cc)
sph_shavite512_sw_init(void *cc)
{
shavite_big_init(cc, IV512);
}
/* see sph_shavite.h */
void
sph_shavite512(void *cc, const void *data, size_t len)
sph_shavite512_sw(void *cc, const void *data, size_t len)
{
shavite_big_core(cc, data, len);
}
/* see sph_shavite.h */
void
sph_shavite512_close(void *cc, void *dst)
sph_shavite512_sw_close(void *cc, void *dst)
{
shavite_big_close(cc, 0, 0, dst, 16);
// shavite_big_init(cc, IV512);
@@ -1753,7 +1753,7 @@ sph_shavite512_close(void *cc, void *dst)
/* see sph_shavite.h */
void
sph_shavite512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
sph_shavite512_sw_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
shavite_big_close(cc, ub, n, dst, 16);
// shavite_big_init(cc, IV512);

View File

@@ -77,9 +77,9 @@ extern "C"{
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
unsigned char buf[64] __attribute__ ((aligned (64)));
sph_u32 h[8] __attribute__ ((aligned (32)));
size_t ptr;
sph_u32 h[8];
sph_u32 count0, count1;
#endif
} sph_shavite_small_context;
@@ -108,9 +108,9 @@ typedef sph_shavite_small_context sph_shavite256_context;
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
unsigned char buf[128] __attribute__ ((aligned (64)));
sph_u32 h[16] __attribute__ ((aligned (32)));;
size_t ptr;
sph_u32 h[16];
sph_u32 count0, count1, count2, count3;
#endif
} sph_shavite_big_context;
@@ -262,51 +262,37 @@ void sph_shavite384_close(void *cc, void *dst);
void sph_shavite384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize a SHAvite-512 context. This process performs no memory allocation.
*
* @param cc the SHAvite-512 context (pointer to a
* <code>sph_shavite512_context</code>)
*/
void sph_shavite512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the SHAvite-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_shavite512(void *cc, const void *data, size_t len);
/**
* Terminate the current SHAvite-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHAvite-512 context
* @param dst the destination buffer
*/
void sph_shavite512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHAvite-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_shavite512_addbits_and_close(
// Always define sw but only define aesni when available
// Define fptrs for aesni or sw, not both.
void sph_shavite512_sw_init(void *cc);
void sph_shavite512_sw(void *cc, const void *data, size_t len);
void sph_shavite512_sw_close(void *cc, void *dst);
void sph_shavite512_sw_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __AES__
void sph_shavite512_aesni_init(void *cc);
void sph_shavite512_aesni(void *cc, const void *data, size_t len);
void sph_shavite512_aesni_close(void *cc, void *dst);
void sph_shavite512_aesni_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define sph_shavite512_init sph_shavite512_aesni_init
#define sph_shavite512 sph_shavite512_aesni
#define sph_shavite512_close sph_shavite512_aesni_close
#define sph_shavite512_addbits_and_close \
sph_shavite512_aesni_addbits_and_close
#else
#define sph_shavite512_init sph_shavite512_sw_init
#define sph_shavite512 sph_shavite512_sw
#define sph_shavite512_close sph_shavite512_sw_close
#define sph_shavite512_addbits_and_close \
sph_shavite512_sw_addbits_and_close
#endif
#ifdef __cplusplus
}
#endif

Some files were not shown because too many files have changed in this diff Show More