mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Compare commits
12 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
e7dbd27636 | ||
![]() |
0155cd1bfe | ||
![]() |
53259692eb | ||
![]() |
9afa0d9820 | ||
![]() |
2dcc4821b6 | ||
![]() |
200b06f369 | ||
![]() |
f1f9e821a2 | ||
![]() |
6431c25293 | ||
![]() |
e1742be8c4 | ||
![]() |
38c6f23b66 | ||
![]() |
1b288b1209 | ||
![]() |
f7865ae9f9 |
27
Makefile.am
27
Makefile.am
@@ -41,8 +41,8 @@ cpuminer_SOURCES = \
|
||||
algo/jh/sph_jh.c \
|
||||
algo/keccak/sph_keccak.c \
|
||||
algo/keccak/keccak.c\
|
||||
algo/sha3/sph_sha2.c \
|
||||
algo/sha3/sph_sha2big.c \
|
||||
algo/sha/sph_sha2.c \
|
||||
algo/sha/sph_sha2big.c \
|
||||
algo/shabal/sph_shabal.c \
|
||||
algo/whirlpool/sph_whirlpool.c\
|
||||
crypto/blake2s.c \
|
||||
@@ -81,23 +81,13 @@ cpuminer_SOURCES = \
|
||||
algo/groestl/myr-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl.c \
|
||||
algo/groestl/aes_ni/hash-groestl256.c \
|
||||
algo/groestl/sse2/grso.c \
|
||||
algo/groestl/sse2/grso-asm.c \
|
||||
algo/haval/haval.c \
|
||||
algo/haval/haval.c\
|
||||
algo/heavy/heavy.c \
|
||||
algo/heavy/bastion.c \
|
||||
algo/hmq1725.c \
|
||||
algo/hodl/hodl.cpp \
|
||||
algo/hodl/hodl-gate.c \
|
||||
algo/hodl/hodl_arith_uint256.cpp \
|
||||
algo/hodl/hodl_uint256.cpp \
|
||||
algo/hodl/hash.cpp \
|
||||
algo/hodl/hmac_sha512.cpp \
|
||||
algo/hodl/sha256.cpp \
|
||||
algo/hodl/sha512.cpp \
|
||||
algo/hodl/utilstrencodings.cpp \
|
||||
algo/hodl/hodl-wolf.c \
|
||||
algo/hodl/aes.c \
|
||||
algo/hodl/hodl-gate.c \
|
||||
algo/hodl/hodl-wolf.c \
|
||||
algo/hodl/sha512_avx.c \
|
||||
algo/hodl/sha512_avx2.c \
|
||||
algo/lbry.c \
|
||||
@@ -108,7 +98,7 @@ cpuminer_SOURCES = \
|
||||
algo/lyra2/lyra2rev2.c \
|
||||
algo/lyra2/lyra2re.c \
|
||||
algo/lyra2/zcoin.c \
|
||||
algo/lyra2/zoin.c \
|
||||
algo/lyra2/lyra2z330.c \
|
||||
algo/keccak/sse2/keccak.c \
|
||||
algo/m7m.c \
|
||||
algo/neoscrypt.c \
|
||||
@@ -120,8 +110,8 @@ cpuminer_SOURCES = \
|
||||
algo/ripemd/sph_ripemd.c \
|
||||
algo/scrypt.c \
|
||||
algo/scryptjane/scrypt-jane.c \
|
||||
algo/sha2/sha2.c \
|
||||
algo/sha2/sha256t.c \
|
||||
algo/sha/sha2.c \
|
||||
algo/sha/sha256t.c \
|
||||
algo/simd/sse2/nist.c \
|
||||
algo/simd/sse2/vector.c \
|
||||
algo/skein/skein.c \
|
||||
@@ -129,6 +119,7 @@ cpuminer_SOURCES = \
|
||||
algo/s3.c \
|
||||
algo/tiger/sph_tiger.c \
|
||||
algo/timetravel.c \
|
||||
algo/timetravel10.c \
|
||||
algo/veltor.c \
|
||||
algo/whirlpool/whirlpool.c \
|
||||
algo/whirlpool/whirlpoolx.c \
|
||||
|
20
README.md
20
README.md
@@ -23,13 +23,15 @@ Supported Algorithms
|
||||
blakecoin blake256r8
|
||||
blake2s Blake-2 S
|
||||
bmw BMW 256
|
||||
c11 Flax
|
||||
c11 Chaincoin
|
||||
cryptolight Cryptonight-light
|
||||
cryptonight cryptonote, Monero (XMR)
|
||||
decred
|
||||
deep Deepcoin (DCN)
|
||||
dmd-gr Diamond-Groestl
|
||||
drop Dropcoin
|
||||
fresh Fresh
|
||||
groestl groestl
|
||||
groestl Groestl coin
|
||||
heavy Heavy
|
||||
hmq1725 Espers
|
||||
hodl Hodlcoin
|
||||
@@ -37,9 +39,9 @@ Supported Algorithms
|
||||
lbry LBC, LBRY Credits
|
||||
luffa Luffa
|
||||
lyra2re lyra2
|
||||
lyra2rev2 lyrav2
|
||||
lyra2rev2 lyrav2, Vertcoin
|
||||
lyra2z Zcoin (XZC)
|
||||
lyra2zoin Zoin (ZOI)
|
||||
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
|
||||
m7m Magi (XMG)
|
||||
myr-gr Myriad-Groestl
|
||||
neoscrypt NeoScrypt(128, 2, 1)
|
||||
@@ -51,7 +53,8 @@ Supported Algorithms
|
||||
scrypt scrypt(1024, 1, 1) (default)
|
||||
scrypt:N scrypt(N, 1, 1)
|
||||
scryptjane:nf
|
||||
sha256d SHA-256d
|
||||
sha256d Double SHA-256
|
||||
sha256t Triple SHA-256, Onecoin (OC)
|
||||
shavite3 Shavite3
|
||||
skein Skein+Sha (Skeincoin)
|
||||
skein2 Double Skein (Woodcoin)
|
||||
@@ -60,7 +63,7 @@ Supported Algorithms
|
||||
veltor
|
||||
whirlpool
|
||||
whirlpoolx
|
||||
x11 X11
|
||||
x11 Dash
|
||||
x11evo Revolvercoin
|
||||
x11gost sib (SibCoin)
|
||||
x13 X13
|
||||
@@ -94,6 +97,11 @@ may work wallet mining but there are no guarantees.
|
||||
Errata
|
||||
------
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
cpuminer-opt does not work mining Decred algo at Nicehash and produces
|
||||
only "invalid extranonce2 size" rejects.
|
||||
|
||||
|
271
RELEASE_NOTES
271
RELEASE_NOTES
@@ -1,8 +1,182 @@
|
||||
Compile instruction for Linux and Windows are at the bottom of this file.
|
||||
cpuminer-opt now supports HW SHA acceleration available on AMD Ryzen CPUs.
|
||||
This feature requires recent SW including GCC version 5 or higher and
|
||||
openssl version 1.1 or higher. It may also require using "-march=znver1"
|
||||
compile flag.
|
||||
|
||||
HW SHA support is only available when compiled from source, Windows binaries
|
||||
are not yet available.
|
||||
|
||||
Compile Instructions
|
||||
--------------------
|
||||
|
||||
Requirements:
|
||||
|
||||
Intel Core2 or newer, or AMD Steamroller or newer CPU.
|
||||
64 bit Linux or Windows operating system.
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The following command should install everything you need on Debian based
|
||||
distributions such as Ubuntu:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake
|
||||
|
||||
|
||||
build-essential (for Ubuntu, Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
pthreads
|
||||
zlib
|
||||
|
||||
SHA support on AMD Ryzen CPUs requires gcc version 5 or higher and openssl 1.1
|
||||
or higher. Additional compile options may also be required such as
|
||||
"-march-znver1" or "-msha".
|
||||
|
||||
Extract cpuminer source.
|
||||
|
||||
tar xvzf cpuminer-opt-x.y.z.tar.gz
|
||||
cd cpuminer-opt-x.y.z
|
||||
|
||||
Run ./build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo -o url -u username -p password
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw_w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt.
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run winbuild.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
|
||||
make
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
Users are recommended to use an unoptimized miner such as cpuminer-multi.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
||||
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.6.4
|
||||
|
||||
Added support for Bitcore (BTX) using the timetravel10 algo, optimized for
|
||||
AES and AVX2.
|
||||
"-a bitcore" works as an alias and is less typing that "-a timetravel10".
|
||||
|
||||
v3.6.3
|
||||
|
||||
Fixed all known issues with SHA support on AMD Ryzen CPUs, still no
|
||||
Windows binaries.
|
||||
|
||||
v3.6.2
|
||||
|
||||
SHA accceleration is now supported on AMD Ryzen CPUs when compiled from source,
|
||||
Windows binaries not yet available.
|
||||
Fixed groestl algo.
|
||||
Fixed dmd-gr (Diamond) algo.
|
||||
Fixed lbry compile error on Ryzen.
|
||||
Added SHA support to m7m algo.
|
||||
Hodl support for CPUs without AES has been removed, use legacy version.
|
||||
|
||||
v3.6.1
|
||||
|
||||
Fixed data alignment issue that broke lyra2rev2 AVX2 on Windows.
|
||||
Added preliminary support for HW accelerated SHA.
|
||||
Solo mining most algos should now work, cryptonight confirmed exception.
|
||||
|
||||
v3.6.0
|
||||
|
||||
Preliminary support for solo mining using getwork.
|
||||
|
||||
v3.5.13
|
||||
|
||||
Found more speed in Cubehash, algo improvement depends on chain length,
|
||||
deep +8%, timetravel +1% , xevan +1%
|
||||
Fixed a getwork bug, solo mining is not yet supported but testing is encouraged
|
||||
|
||||
v3.5.12
|
||||
|
||||
New algo sha256t for Onecoin (OC), 29% faster than ocminer version.
|
||||
lyra2zoin algo renamed to lyra2z330, lyra2zoin and zoin still work
|
||||
as aliases.
|
||||
|
||||
v3.5.11
|
||||
|
||||
Fixed hmq1725 crash on Ubuntu 16.04
|
||||
Fixed compile error in hodl.cpp with gcc 6.3
|
||||
Fixed x11 crash on Windows with AVX2
|
||||
|
||||
v3.5.10
|
||||
|
||||
Some AVX2 optimizations introduced for Luffa, shorter chained algos such
|
||||
as Qubit and Deep should see the biggest gains, but many other algos should
|
||||
also see improvement, longer chains like xevan not so much.
|
||||
Rewrite of Groestl AES, now 100% vectorized, small improvement.
|
||||
build.sh and winbuild.sh initialize with distclean instead of clean.
|
||||
Implemented a workaround for a compile error in hodl code when compiling
|
||||
with gcc 6.3.
|
||||
|
||||
V3.5.9
|
||||
|
||||
Reduced stack usage for hmq1725 and small speedup.
|
||||
@@ -168,98 +342,3 @@ AVX2 optimizations improving many algos:
|
||||
- x17 +2.8%
|
||||
- qubit +8.4%
|
||||
|
||||
|
||||
Compile Instructions
|
||||
--------------------
|
||||
|
||||
Building on linux prerequisites:
|
||||
|
||||
It is assumed users know how to install packages on their system and
|
||||
be able to compile standard source packages. This is basic Linux and
|
||||
beyond the scope of cpuminer-opt.
|
||||
|
||||
Make sure you have the basic development packages installed.
|
||||
Here is a good start:
|
||||
|
||||
http://askubuntu.com/questions/457526/how-to-install-cpuminer-in-ubuntu
|
||||
|
||||
Install any additional dependencies needed by cpuminer-opt. The list below
|
||||
are some of the ones that may not be in the default install and need to
|
||||
be installed manually. There may be others, read the error messages they
|
||||
will give a clue as to the missing package.
|
||||
|
||||
The folliwing command should install everything you need on Debian based
|
||||
packages:
|
||||
|
||||
sudo apt-get install build-essential libssl-dev libcurl4-openssl-dev libjansson-dev libgmp-dev automake
|
||||
|
||||
Building on Linux, see below for Windows.
|
||||
|
||||
Dependencies
|
||||
|
||||
build-essential (for Ubuntu, Development Tools package group on Fedora)
|
||||
automake
|
||||
libjansson-dev
|
||||
libgmp-dev
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
pthreads
|
||||
zlib
|
||||
|
||||
tar xvzf [file.tar.gz]
|
||||
cd [file]
|
||||
|
||||
Run build.sh to build on Linux or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11" ./configure --with-curl
|
||||
make
|
||||
|
||||
Start mining.
|
||||
|
||||
./cpuminer -a algo ...
|
||||
|
||||
Building on Windows prerequisites:
|
||||
|
||||
msys
|
||||
mingw_w64
|
||||
Visual C++ redistributable 2008 X64
|
||||
openssl, not sure about this
|
||||
|
||||
Install msys and mingw_w64, only needed once.
|
||||
|
||||
Unpack msys into C:\msys or your preferred directory.
|
||||
|
||||
Install mingw__w64 from win-builds.
|
||||
Follow instructions, check "msys or cygwin" and "x86_64" and accept default
|
||||
existing msys instalation.
|
||||
|
||||
Open a msys shell by double clicking on msys.bat.
|
||||
Note that msys shell uses linux syntax for file specifications, "C:\" is
|
||||
mounted at "/c/".
|
||||
|
||||
Add mingw bin directory to PATH variable
|
||||
PATH="/c/msys/opt/windows_64/bin/:$PATH"
|
||||
|
||||
Instalation complete, compile cpuminer-opt
|
||||
|
||||
Unpack cpuminer-opt source files using tar from msys shell, or using 7zip
|
||||
or similar Windows program.
|
||||
|
||||
In msys shell cd to miner directory.
|
||||
cd /c/path/to/cpuminer-opt
|
||||
|
||||
Run winbuild.sh to build on Windows or execute the following commands.
|
||||
|
||||
./autogen.sh
|
||||
CFLAGS="-O3 -march=native -Wall" CXXFLAGS="$CFLAGS -std=gnu++11 -fpermissive" ./configure --with-curl
|
||||
make
|
||||
|
||||
The following tips may be useful for older AMD CPUs.
|
||||
|
||||
Some users with AMD CPUs without AES_NI have reported problems compiling
|
||||
with build.sh or "-march=native". Problems have included compile errors
|
||||
and poor performance. These users are recommended to compile manually
|
||||
specifying "-march=btver1" on the configure command line.
|
||||
|
||||
Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
|
173
algo-gate-api.c
173
algo-gate-api.c
@@ -98,17 +98,12 @@ void null_hash_suw()
|
||||
{
|
||||
applog(LOG_WARNING,"SWERR: null_hash_suw unsafe null function");
|
||||
};
|
||||
void null_hash_alt()
|
||||
{
|
||||
applog(LOG_WARNING,"SWERR: null_hash_alt unsafe null function");
|
||||
};
|
||||
|
||||
void init_algo_gate( algo_gate_t* gate )
|
||||
{
|
||||
gate->miner_thread_init = (void*)&return_true;
|
||||
gate->scanhash = (void*)&null_scanhash;
|
||||
gate->hash = (void*)&null_hash;
|
||||
gate->hash_alt = (void*)&null_hash_alt;
|
||||
gate->hash_suw = (void*)&null_hash_suw;
|
||||
gate->get_new_work = (void*)&std_get_new_work;
|
||||
gate->get_nonceptr = (void*)&std_get_nonceptr;
|
||||
@@ -119,11 +114,11 @@ void init_algo_gate( algo_gate_t* gate )
|
||||
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
|
||||
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
|
||||
gate->set_target = (void*)&std_set_target;
|
||||
gate->work_decode = (void*)&std_work_decode;
|
||||
gate->submit_getwork_result = (void*)&std_submit_getwork_result;
|
||||
gate->build_extraheader = (void*)&std_build_extraheader;
|
||||
gate->set_work_data_endian = (void*)&do_nothing;
|
||||
gate->calc_network_diff = (void*)&std_calc_network_diff;
|
||||
// gate->prevent_dupes = (void*)&return_false;
|
||||
gate->ready_to_mine = (void*)&std_ready_to_mine;
|
||||
gate->resync_threads = (void*)&do_nothing;
|
||||
gate->do_this_thread = (void*)&return_true;
|
||||
@@ -155,62 +150,64 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wimplicit-function-declaration"
|
||||
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_zcoin_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_S3: register_s3_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_sib_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
case ALGO_ARGON2: register_argon2_algo ( gate ); break;
|
||||
case ALGO_AXIOM: register_axiom_algo ( gate ); break;
|
||||
case ALGO_BASTION: register_bastion_algo ( gate ); break;
|
||||
case ALGO_BLAKE: register_blake_algo ( gate ); break;
|
||||
case ALGO_BLAKECOIN: register_blakecoin_algo ( gate ); break;
|
||||
// case ALGO_BLAKE2B: register_blake2b_algo ( gate ); break;
|
||||
case ALGO_BLAKE2S: register_blake2s_algo ( gate ); break;
|
||||
case ALGO_C11: register_c11_algo ( gate ); break;
|
||||
case ALGO_CRYPTOLIGHT: register_cryptolight_algo ( gate ); break;
|
||||
case ALGO_CRYPTONIGHT: register_cryptonight_algo ( gate ); break;
|
||||
case ALGO_DECRED: register_decred_algo ( gate ); break;
|
||||
case ALGO_DEEP: register_deep_algo ( gate ); break;
|
||||
case ALGO_DMD_GR: register_dmd_gr_algo ( gate ); break;
|
||||
case ALGO_DROP: register_drop_algo ( gate ); break;
|
||||
case ALGO_FRESH: register_fresh_algo ( gate ); break;
|
||||
case ALGO_GROESTL: register_groestl_algo ( gate ); break;
|
||||
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
|
||||
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
|
||||
case ALGO_HODL: register_hodl_algo ( gate ); break;
|
||||
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
|
||||
case ALGO_LBRY: register_lbry_algo ( gate ); break;
|
||||
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
|
||||
case ALGO_LYRA2RE: register_lyra2re_algo ( gate ); break;
|
||||
case ALGO_LYRA2REV2: register_lyra2rev2_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z: register_zcoin_algo ( gate ); break;
|
||||
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
|
||||
case ALGO_M7M: register_m7m_algo ( gate ); break;
|
||||
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
|
||||
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
|
||||
case ALGO_NIST5: register_nist5_algo ( gate ); break;
|
||||
case ALGO_PENTABLAKE: register_pentablake_algo ( gate ); break;
|
||||
case ALGO_PLUCK: register_pluck_algo ( gate ); break;
|
||||
case ALGO_QUARK: register_quark_algo ( gate ); break;
|
||||
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
|
||||
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
|
||||
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
|
||||
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
|
||||
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
|
||||
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
|
||||
case ALGO_SKEIN: register_skein_algo ( gate ); break;
|
||||
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
|
||||
case ALGO_S3: register_s3_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL: register_timetravel_algo ( gate ); break;
|
||||
case ALGO_TIMETRAVEL10: register_timetravel10_algo( gate ); break;
|
||||
case ALGO_VANILLA: register_vanilla_algo ( gate ); break;
|
||||
case ALGO_VELTOR: register_veltor_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOL: register_whirlpool_algo ( gate ); break;
|
||||
case ALGO_WHIRLPOOLX: register_whirlpoolx_algo ( gate ); break;
|
||||
case ALGO_X11: register_x11_algo ( gate ); break;
|
||||
case ALGO_X11EVO: register_x11evo_algo ( gate ); break;
|
||||
case ALGO_X11GOST: register_sib_algo ( gate ); break;
|
||||
case ALGO_X13: register_x13_algo ( gate ); break;
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
case ALGO_ZR5: register_zr5_algo ( gate ); break;
|
||||
|
||||
// restore warnings
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -244,6 +241,7 @@ bool register_json_rpc2( algo_gate_t *gate )
|
||||
gate->nonce_index = JR2_NONCE_INDEX;
|
||||
jsonrpc_2 = true; // still needed
|
||||
opt_extranonce = false;
|
||||
// have_gbt = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -256,41 +254,42 @@ void exec_hash_function( int algo, void *output, const void *pdata )
|
||||
gate.hash( output, pdata, 0 );
|
||||
}
|
||||
|
||||
// an algo can have multiple aliases but the aliases must be unique
|
||||
|
||||
#define PROPER (1)
|
||||
#define ALIAS (0)
|
||||
|
||||
// The only difference between the alias and the proper algo name is the
|
||||
// proper name s the one that is defined in ALGO_NAMES, there may be
|
||||
// proper name is the one that is defined in ALGO_NAMES. There may be
|
||||
// multiple aliases that map to the same proper name.
|
||||
// New aliases can be added anywhere in the array as long as NULL is last.
|
||||
// Alphabetic order of alias is recommended.
|
||||
const char* const algo_alias_map[][2] =
|
||||
{
|
||||
// alias proper
|
||||
{ "blake256r8", "blakecoin" },
|
||||
{ "blake256r8vnl", "vanilla" },
|
||||
{ "sia", "blake2b" },
|
||||
{ "blake256r14", "blake" },
|
||||
{ "cryptonote", "cryptonight" },
|
||||
{ "cryptonight-light", "cryptolight" },
|
||||
{ "dmd-gr", "groestl" },
|
||||
{ "droplp", "drop" },
|
||||
{ "espers", "hmq1725" },
|
||||
{ "flax", "c11" },
|
||||
{ "jane", "scryptjane" },
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myriad", "myr-gr" },
|
||||
{ "neo", "neoscrypt" },
|
||||
{ "sib", "x11gost" },
|
||||
{ "yes", "yescrypt" },
|
||||
{ "ziftr", "zr5" },
|
||||
{ "zcoin", "lyra2z" },
|
||||
{ "zoin", "lyra2z330" },
|
||||
{ NULL, NULL }
|
||||
{ "bitcore", "timetravel10" },
|
||||
{ "blake256r8", "blakecoin" },
|
||||
{ "blake256r8vnl", "vanilla" },
|
||||
{ "blake256r14", "blake" },
|
||||
{ "blake256r14dcr", "decred" },
|
||||
{ "cryptonote", "cryptonight" },
|
||||
{ "cryptonight-light", "cryptolight" },
|
||||
{ "diamond", "dmd-gr" },
|
||||
{ "droplp", "drop" },
|
||||
{ "espers", "hmq1725" },
|
||||
{ "flax", "c11" },
|
||||
{ "jane", "scryptjane" },
|
||||
{ "lyra2", "lyra2re" },
|
||||
{ "lyra2v2", "lyra2rev2" },
|
||||
{ "lyra2zoin", "lyra2z330" },
|
||||
{ "myriad", "myr-gr" },
|
||||
{ "neo", "neoscrypt" },
|
||||
// { "sia", "blake2b" },
|
||||
{ "sib", "x11gost" },
|
||||
{ "timetravel8", "timetravel" },
|
||||
{ "yes", "yescrypt" },
|
||||
{ "ziftr", "zr5" },
|
||||
{ "zcoin", "lyra2z" },
|
||||
{ "zoin", "lyra2z330" },
|
||||
{ NULL, NULL }
|
||||
};
|
||||
|
||||
// if arg is a valid alias for a known algo it is updated with the proper name.
|
||||
|
@@ -86,10 +86,11 @@
|
||||
typedef uint32_t set_t;
|
||||
|
||||
#define EMPTY_SET 0
|
||||
#define SSE2_OPT 1
|
||||
#define AES_OPT 2
|
||||
#define AVX_OPT 4
|
||||
#define AVX2_OPT 8
|
||||
#define SSE2_OPT 1
|
||||
#define AES_OPT 2
|
||||
#define AVX_OPT 4
|
||||
#define AVX2_OPT 8
|
||||
#define SHA_OPT 16
|
||||
|
||||
// return set containing all elements from sets a & b
|
||||
inline set_t set_union ( set_t a, set_t b ) { return a | b; }
|
||||
@@ -110,7 +111,6 @@ int ( *scanhash ) ( int, struct work*, uint32_t, uint64_t* );
|
||||
|
||||
// optional unsafe, must be overwritten if algo uses function
|
||||
void ( *hash ) ( void*, const void*, uint32_t ) ;
|
||||
void ( *hash_alt ) ( void*, const void*, uint32_t );
|
||||
void ( *hash_suw ) ( void*, const void* );
|
||||
|
||||
//optional, safe to use default in most cases
|
||||
@@ -130,7 +130,6 @@ void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
|
||||
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
|
||||
void ( *set_work_data_endian ) ( struct work* );
|
||||
double ( *calc_network_diff ) ( struct work* );
|
||||
//bool ( *prevent_dupes ) ( struct work*, struct stratum_ctx*, int );
|
||||
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
|
||||
void ( *resync_threads ) ( struct work* );
|
||||
bool ( *do_this_thread ) ( int );
|
||||
@@ -185,7 +184,6 @@ int null_scanhash();
|
||||
|
||||
// displays warning
|
||||
void null_hash ();
|
||||
void null_hash_alt();
|
||||
void null_hash_suw();
|
||||
|
||||
// optional safe targets, default listed first unless noted.
|
||||
|
11
algo/axiom.c
11
algo/axiom.c
@@ -6,11 +6,11 @@
|
||||
|
||||
#include "algo/shabal/sph_shabal.h"
|
||||
|
||||
static __thread uint32_t _ALIGN(128) M[65536][8];
|
||||
static __thread uint32_t _ALIGN(64) M[65536][8];
|
||||
|
||||
void axiomhash(void *output, const void *input)
|
||||
{
|
||||
sph_shabal256_context ctx;
|
||||
sph_shabal256_context ctx __attribute__ ((aligned (64)));
|
||||
const int N = 65536;
|
||||
|
||||
sph_shabal256_init(&ctx);
|
||||
@@ -34,7 +34,7 @@ void axiomhash(void *output, const void *input)
|
||||
sph_shabal256(&ctx, M[p], 32);
|
||||
sph_shabal256(&ctx, M[j], 32);
|
||||
#else
|
||||
uint8_t _ALIGN(128) hash[64];
|
||||
uint8_t _ALIGN(64) hash[64];
|
||||
memcpy(hash, M[p], 32);
|
||||
memcpy(&hash[32], M[j], 32);
|
||||
sph_shabal256(&ctx, hash, 64);
|
||||
@@ -49,8 +49,8 @@ int scanhash_axiom(int thr_id, struct work *work,
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(128) hash64[8];
|
||||
uint32_t _ALIGN(128) endiandata[20];
|
||||
uint32_t _ALIGN(64) hash64[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
@@ -82,7 +82,6 @@ bool register_axiom_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_axiom;
|
||||
gate->hash = (void*)&axiomhash;
|
||||
gate->hash_alt = (void*)&axiomhash;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
return true;
|
||||
}
|
||||
|
@@ -1,203 +0,0 @@
|
||||
#include <ccminer-config.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdbool.h>
|
||||
#include <inttypes.h>
|
||||
#include <unistd.h>
|
||||
#include <math.h>
|
||||
#include <sys/time.h>
|
||||
#include <time.h>
|
||||
#include <signal.h>
|
||||
#include <curl/curl.h>
|
||||
#include <miner.h>
|
||||
|
||||
#include "sia-rpc.h"
|
||||
|
||||
static bool sia_debug_diff = false;
|
||||
|
||||
extern int share_result(int result, int pooln, double sharediff, const char *reason);
|
||||
|
||||
/* compute nbits to get the network diff */
|
||||
static void calc_network_diff(struct work *work)
|
||||
{
|
||||
uint32_t nbits = work->data[11]; // unsure if correct
|
||||
uint32_t bits = (nbits & 0xffffff);
|
||||
int16_t shift = (swab32(nbits) & 0xff); // 0x1c = 28
|
||||
|
||||
uint64_t diffone = 0x0000FFFF00000000ull;
|
||||
double d = (double)0x0000ffff / (double)bits;
|
||||
|
||||
for (int m=shift; m < 29; m++) d *= 256.0;
|
||||
for (int m=29; m < shift; m++) d /= 256.0;
|
||||
if (sia_debug_diff)
|
||||
applog(LOG_DEBUG, "net diff: %f -> shift %u, bits %08x", d, shift, bits);
|
||||
|
||||
net_diff = d;
|
||||
}
|
||||
|
||||
// ---- SIA LONGPOLL --------------------------------------------------------------------------------
|
||||
|
||||
struct data_buffer {
|
||||
void *buf;
|
||||
size_t len;
|
||||
};
|
||||
|
||||
static size_t sia_data_cb(const void *ptr, size_t size, size_t nmemb,
|
||||
void *user_data)
|
||||
{
|
||||
struct data_buffer *db = (struct data_buffer *)user_data;
|
||||
size_t len = size * nmemb;
|
||||
size_t oldlen, newlen;
|
||||
void *newmem;
|
||||
static const uchar zero = 0;
|
||||
|
||||
oldlen = db->len;
|
||||
newlen = oldlen + len;
|
||||
|
||||
newmem = realloc(db->buf, newlen + 1);
|
||||
if (!newmem)
|
||||
return 0;
|
||||
|
||||
db->buf = newmem;
|
||||
db->len = newlen;
|
||||
memcpy((char*)db->buf + oldlen, ptr, len);
|
||||
memcpy((char*)db->buf + newlen, &zero, 1); /* null terminate */
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
char* sia_getheader(CURL *curl, struct pool_infos *pool)
|
||||
{
|
||||
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
|
||||
struct data_buffer all_data = { 0 };
|
||||
struct curl_slist *headers = NULL;
|
||||
char data[256] = { 0 };
|
||||
char url[512];
|
||||
|
||||
// nanopool
|
||||
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s", //&longpoll
|
||||
pool->url, pool->user, pool->pass);
|
||||
|
||||
if (opt_protocol)
|
||||
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url);
|
||||
curl_easy_setopt(curl, CURLOPT_POST, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TIMEOUT, opt_timeout);
|
||||
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
|
||||
|
||||
headers = curl_slist_append(headers, "Accept: application/octet-stream");
|
||||
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
|
||||
headers = curl_slist_append(headers, "User-Agent: Sia-Agent"); // required for now
|
||||
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
|
||||
// headers = curl_slist_append(headers, "X-Mining-Extensions: longpoll");
|
||||
|
||||
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
|
||||
|
||||
int rc = curl_easy_perform(curl);
|
||||
if (rc && strlen(curl_err_str)) {
|
||||
applog(LOG_WARNING, "%s", curl_err_str);
|
||||
}
|
||||
|
||||
if (all_data.len >= 112)
|
||||
cbin2hex(data, (const char*) all_data.buf, 112);
|
||||
if (opt_protocol || all_data.len != 112)
|
||||
applog(LOG_DEBUG, "received %d bytes: %s", (int) all_data.len, data);
|
||||
|
||||
curl_slist_free_all(headers);
|
||||
|
||||
return rc == 0 && all_data.len ? strdup(data) : NULL;
|
||||
}
|
||||
|
||||
bool sia_work_decode(const char *hexdata, struct work *work)
|
||||
{
|
||||
uint8_t target[32];
|
||||
if (!work) return false;
|
||||
|
||||
hex2bin((uchar*)target, &hexdata[0], 32);
|
||||
swab256(work->target, target);
|
||||
work->targetdiff = target_to_diff(work->target);
|
||||
|
||||
hex2bin((uchar*)work->data, &hexdata[64], 80);
|
||||
// high 16 bits of the 64 bits nonce
|
||||
work->data[9] = rand() << 16;
|
||||
|
||||
// use work ntime as job id
|
||||
cbin2hex(work->job_id, (const char*)&work->data[10], 4);
|
||||
calc_network_diff(work);
|
||||
|
||||
if (stratum_diff != work->targetdiff) {
|
||||
stratum_diff = work->targetdiff;
|
||||
applog(LOG_WARNING, "Pool diff set to %g", stratum_diff);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool sia_submit(CURL *curl, struct pool_infos *pool, struct work *work)
|
||||
{
|
||||
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
|
||||
struct data_buffer all_data = { 0 };
|
||||
struct curl_slist *headers = NULL;
|
||||
char buf[256] = { 0 };
|
||||
char url[512];
|
||||
|
||||
if (opt_protocol)
|
||||
applog_hex(work->data, 80);
|
||||
//applog_hex(&work->data[8], 16);
|
||||
//applog_hex(&work->data[10], 4);
|
||||
|
||||
// nanopool
|
||||
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s",
|
||||
pool->url, pool->user, pool->pass);
|
||||
|
||||
if (opt_protocol)
|
||||
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url);
|
||||
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
|
||||
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_TIMEOUT, 10);
|
||||
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
|
||||
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
|
||||
|
||||
memcpy(buf, work->data, 80);
|
||||
curl_easy_setopt(curl, CURLOPT_POST, 1);
|
||||
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, 80);
|
||||
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, (void*) buf);
|
||||
|
||||
// headers = curl_slist_append(headers, "Content-Type: application/octet-stream");
|
||||
// headers = curl_slist_append(headers, "Content-Length: 80");
|
||||
headers = curl_slist_append(headers, "Accept:"); // disable Accept hdr
|
||||
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
|
||||
headers = curl_slist_append(headers, "User-Agent: Sia-Agent");
|
||||
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
|
||||
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
|
||||
|
||||
int res = curl_easy_perform(curl) == 0;
|
||||
long errcode;
|
||||
CURLcode c = curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &errcode);
|
||||
if (errcode != 204) {
|
||||
if (strlen(curl_err_str))
|
||||
applog(LOG_ERR, "submit err %ld %s", errcode, curl_err_str);
|
||||
res = 0;
|
||||
}
|
||||
share_result(res, work->pooln, work->sharediff[0], res ? NULL : (char*) all_data.buf);
|
||||
|
||||
curl_slist_free_all(headers);
|
||||
return true;
|
||||
}
|
||||
|
||||
// ---- END SIA LONGPOLL ----------------------------------------------------------------------------
|
@@ -1,6 +0,0 @@
|
||||
#include <miner.h>
|
||||
|
||||
char* sia_getheader(CURL *curl, struct pool_infos *pool);
|
||||
bool sia_work_decode(const char *hexdata, struct work *work);
|
||||
bool sia_submit(CURL *curl, struct pool_infos *pool, struct work *work);
|
||||
|
@@ -21,7 +21,7 @@ void blakehash(void *state, const void *input)
|
||||
{
|
||||
sph_blake256_context ctx;
|
||||
|
||||
uint8_t hash[64];
|
||||
uint8_t hash[64] __attribute__ ((aligned (32)));
|
||||
uint8_t *ending = (uint8_t*) input;
|
||||
ending += 64;
|
||||
|
||||
@@ -100,7 +100,6 @@ bool register_blake_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_blake;
|
||||
gate->hash = (void*)&blakehash;
|
||||
gate->hash_alt = (void*)&blakehash;
|
||||
gate->get_max64 = (void*)&blake_get_max64;
|
||||
return true;
|
||||
}
|
||||
|
@@ -10,6 +10,7 @@
|
||||
|
||||
#include "algo/blake/sph_blake2b.h"
|
||||
|
||||
|
||||
static __thread sph_blake2b_ctx s_midstate;
|
||||
static __thread sph_blake2b_ctx s_ctx;
|
||||
#define MIDLEN 76
|
||||
@@ -18,7 +19,7 @@ static __thread sph_blake2b_ctx s_ctx;
|
||||
void blake2b_hash(void *output, const void *input)
|
||||
{
|
||||
uint8_t _ALIGN(A) hash[32];
|
||||
sph_blake2b_ctx ctx;
|
||||
sph_blake2b_ctx ctx __attribute__ ((aligned (64)));
|
||||
|
||||
sph_blake2b_init(&ctx, 32, NULL, 0);
|
||||
sph_blake2b_update(&ctx, input, 80);
|
||||
@@ -44,7 +45,6 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
// const uint32_t first_nonce = pdata[19];
|
||||
const uint32_t first_nonce = pdata[8];
|
||||
|
||||
uint32_t n = first_nonce;
|
||||
@@ -59,7 +59,6 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
//memcpy(&s_ctx, &s_midstate, sizeof(blake2b_ctx));
|
||||
|
||||
do {
|
||||
// be32enc(&endiandata[19], n);
|
||||
be32enc(&endiandata[8], n);
|
||||
//blake2b_hash_end(vhashcpu, endiandata);
|
||||
blake2b_hash(vhashcpu, endiandata);
|
||||
@@ -67,7 +66,6 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
if (vhashcpu[7] < Htarg && fulltest(vhashcpu, ptarget)) {
|
||||
work_set_target_ratio(work, vhashcpu);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
// pdata[19] = n;
|
||||
pdata[8] = n;
|
||||
return 1;
|
||||
}
|
||||
@@ -75,7 +73,6 @@ int scanhash_blake2b( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
// pdata[19] = n;
|
||||
pdata[8] = n;
|
||||
|
||||
return 0;
|
||||
@@ -173,8 +170,8 @@ void blake2b_get_new_work( struct work* work, struct work* g_work, int thr_id,
|
||||
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
|
||||
|
||||
if ( memcmp( &work->data[ wkcmp_off ], &g_work->data[ wkcmp_off ], wkcmp_sz )
|
||||
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) )
|
||||
|| strcmp( work->job_id, g_work->job_id ) )
|
||||
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr )
|
||||
|| strcmp( work->job_id, g_work->job_id ) ) )
|
||||
{
|
||||
work_free( work );
|
||||
work_copy( work, g_work );
|
||||
|
@@ -13,7 +13,7 @@ static __thread blake2s_state s_ctx;
|
||||
void blake2s_hash(void *output, const void *input)
|
||||
{
|
||||
unsigned char _ALIGN(64) hash[BLAKE2S_OUTBYTES];
|
||||
blake2s_state blake2_ctx;
|
||||
blake2s_state blake2_ctx __attribute__ ((aligned (64)));
|
||||
|
||||
blake2s_init(&blake2_ctx, BLAKE2S_OUTBYTES);
|
||||
blake2s_update(&blake2_ctx, input, 80);
|
||||
|
@@ -30,7 +30,7 @@ static void blake_midstate_init( const void* input )
|
||||
void blakecoinhash( void *state, const void *input )
|
||||
{
|
||||
sph_blake256_context ctx;
|
||||
uint8_t hash[64];
|
||||
uint8_t hash[64] __attribute__ ((aligned (32)));
|
||||
uint8_t *ending = (uint8_t*) input + 64;
|
||||
|
||||
// copy cached midstate
|
||||
@@ -93,10 +93,12 @@ int scanhash_blakecoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
void blakecoin_gen_merkle_root ( char* merkle_root, struct stratum_ctx* sctx )
|
||||
{
|
||||
SHA256( sctx->job.coinbase, (int)sctx->job.coinbase_size, merkle_root );
|
||||
}
|
||||
*/
|
||||
|
||||
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
|
||||
int64_t blakecoin_get_max64 ()
|
||||
@@ -109,7 +111,6 @@ bool register_vanilla_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_blakecoin;
|
||||
gate->hash = (void*)&blakecoinhash;
|
||||
gate->hash_alt = (void*)&blakecoinhash;
|
||||
gate->get_max64 = (void*)&blakecoin_get_max64;
|
||||
blakecoin_init( &blake_init_ctx );
|
||||
return true;
|
||||
|
@@ -5,6 +5,8 @@
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
#ifndef min
|
||||
#define min(a,b) (a>b ? b : a)
|
||||
@@ -27,7 +29,7 @@ static __thread bool ctx_midstate_done = false;
|
||||
void decred_hash(void *state, const void *input)
|
||||
{
|
||||
#define MIDSTATE_LEN 128
|
||||
sph_blake256_context ctx;
|
||||
sph_blake256_context ctx __attribute__ ((aligned (64)));
|
||||
|
||||
uint8_t *ending = (uint8_t*) input;
|
||||
ending += MIDSTATE_LEN;
|
||||
@@ -53,8 +55,8 @@ void decred_hash_simple(void *state, const void *input)
|
||||
|
||||
int scanhash_decred(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t _ALIGN(128) endiandata[48];
|
||||
uint32_t _ALIGN(128) hash32[8];
|
||||
uint32_t _ALIGN(64) endiandata[48];
|
||||
uint32_t _ALIGN(64) hash32[8];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
@@ -195,6 +197,7 @@ void decred_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
#define min(a,b) (a>b ? (b) :(a))
|
||||
|
||||
void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
@@ -244,21 +247,6 @@ void decred_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
|
||||
#undef min
|
||||
|
||||
/*
|
||||
bool decred_prevent_dupes( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id )
|
||||
{
|
||||
return false;
|
||||
if ( have_stratum && strcmp(stratum->job.job_id, work->job_id) )
|
||||
// need to regen g_work..
|
||||
return true;
|
||||
// extradata: prevent duplicates
|
||||
work->data[ DECRED_XNONCE_INDEX ] += 1;
|
||||
work->data[ DECRED_XNONCE_INDEX + 1 ] |= thr_id;
|
||||
return false;
|
||||
}
|
||||
*/
|
||||
|
||||
bool decred_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
|
||||
int thr_id )
|
||||
{
|
||||
@@ -282,14 +270,11 @@ bool register_decred_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_decred;
|
||||
gate->hash = (void*)&decred_hash;
|
||||
gate->hash_alt = (void*)&decred_hash;
|
||||
gate->get_nonceptr = (void*)&decred_get_nonceptr;
|
||||
gate->get_max64 = (void*)&get_max64_0x3fffffLL;
|
||||
gate->display_extra_data = (void*)&decred_decode_extradata;
|
||||
gate->build_stratum_request = (void*)&decred_be_build_stratum_request;
|
||||
// gate->gen_merkle_root = (void*)&decred_gen_merkle_root;
|
||||
gate->build_extraheader = (void*)&decred_build_extraheader;
|
||||
// gate->prevent_dupes = (void*)&decred_prevent_dupes;
|
||||
gate->ready_to_mine = (void*)&decred_ready_to_mine;
|
||||
gate->nbits_index = DECRED_NBITS_INDEX;
|
||||
gate->ntime_index = DECRED_NTIME_INDEX;
|
||||
|
@@ -42,7 +42,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BLAKE-224.
|
||||
|
@@ -31,7 +31,7 @@
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
#include "sph_blake2b.h"
|
||||
|
||||
// Cyclic right rotation.
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for BMW-224.
|
||||
|
@@ -42,7 +42,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for CubeHash-224.
|
||||
|
@@ -9,11 +9,7 @@
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#include "cubehash_sse2.h"
|
||||
#include "algo/sha3/sha3-defs.h"
|
||||
|
||||
//enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 };
|
||||
|
||||
//#if defined(OPTIMIZE_SSE2)
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
|
||||
static void transform( cubehashParam *sp )
|
||||
{
|
||||
@@ -143,72 +139,71 @@ int cubehashInit(cubehashParam *sp, int hashbitlen, int rounds, int blockbytes)
|
||||
if ( blockbytes <= 0 || blockbytes >= 256)
|
||||
blockbytes = CUBEHASH_BLOCKBYTES;
|
||||
|
||||
sp->hashbitlen = hashbitlen;
|
||||
sp->rounds = rounds;
|
||||
sp->blockbytes = blockbytes;
|
||||
// all sizes of __m128i
|
||||
sp->hashlen = hashbitlen/128;
|
||||
sp->blocksize = blockbytes/16;
|
||||
sp->rounds = rounds;
|
||||
sp->pos = 0;
|
||||
|
||||
for ( i = 0; i < 8; ++i )
|
||||
sp->x[i] = _mm_set_epi32(0, 0, 0, 0);
|
||||
sp->x[0] = _mm_set_epi32(0, sp->rounds, sp->blockbytes, hashbitlen / 8);
|
||||
|
||||
sp->x[0] = _mm_set_epi32( 0, rounds, blockbytes, hashbitlen / 8 );
|
||||
|
||||
for ( i = 0; i < 10; ++i )
|
||||
transform(sp);
|
||||
sp->pos = 0;
|
||||
// sp->pos = 0;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
int
|
||||
cubehashReset(cubehashParam *sp)
|
||||
{
|
||||
return cubehashInit(sp, sp->hashbitlen, sp->rounds, sp->blockbytes);
|
||||
}
|
||||
|
||||
int cubehashUpdate( cubehashParam *sp, const byte *data, size_t size )
|
||||
{
|
||||
uint64_t databitlen = 8 * size;
|
||||
const int len = size / 16;
|
||||
const __m128i* in = (__m128i*)data;
|
||||
int i;
|
||||
|
||||
/* caller promises us that previous data had integral number of bytes */
|
||||
/* so sp->pos is a multiple of 8 */
|
||||
// It is assumed data is aligned to 256 bits and is a multiple of 128 bits.
|
||||
// Current usage sata is either 64 or 80 bytes.
|
||||
|
||||
while ( databitlen >= 8 )
|
||||
for ( i = 0; i < len; i++ )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
data += 1;
|
||||
databitlen -= 8;
|
||||
sp->pos += 8;
|
||||
if ( sp->pos == 8 * sp->blockbytes )
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
{
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
if ( databitlen > 0 )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
sp->pos += databitlen;
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
int cubehashDigest( cubehashParam *sp, byte *digest )
|
||||
{
|
||||
__m128i* hash = (__m128i*)digest;
|
||||
int i;
|
||||
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) );
|
||||
transform(sp);
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ],
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 ) );
|
||||
transform( sp );
|
||||
|
||||
sp->x[7] = _mm_xor_si128(sp->x[7], _mm_set_epi32(1, 0, 0, 0));
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
|
||||
for ( i = 0; i < sp->hashbitlen / 8; ++i )
|
||||
digest[i] = ((unsigned char *) sp->x)[i];
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->x[i];
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
@@ -216,48 +211,45 @@ int cubehashDigest( cubehashParam *sp, byte *digest )
|
||||
int cubehashUpdateDigest( cubehashParam *sp, byte *digest,
|
||||
const byte *data, size_t size )
|
||||
{
|
||||
uint64_t databitlen = 8 * size;
|
||||
int hashlen128 = sp->hashbitlen/128;
|
||||
const int len = size / 16;
|
||||
const __m128i* in = (__m128i*)data;
|
||||
__m128i* hash = (__m128i*)digest;
|
||||
int i;
|
||||
|
||||
/* caller promises us that previous data had integral number of bytes */
|
||||
/* so sp->pos is a multiple of 8 */
|
||||
// It is assumed data is aligned to 256 bits and is a multiple of 128 bits.
|
||||
// Current usage sata is either 64 or 80 bytes.
|
||||
|
||||
while ( databitlen >= 8 )
|
||||
for ( i = 0; i < len; i++ )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
data += 1;
|
||||
databitlen -= 8;
|
||||
sp->pos += 8;
|
||||
if ( sp->pos == 8 * sp->blockbytes )
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ], in[i] );
|
||||
sp->pos++;
|
||||
if ( sp->pos == sp->blocksize )
|
||||
{
|
||||
transform(sp);
|
||||
sp->pos = 0;
|
||||
transform( sp );
|
||||
sp->pos = 0;
|
||||
}
|
||||
}
|
||||
if ( databitlen > 0 )
|
||||
{
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= *data;
|
||||
sp->pos += databitlen;
|
||||
}
|
||||
|
||||
( (unsigned char *)sp->x )[sp->pos/8] ^= ( 128 >> (sp->pos % 8) );
|
||||
// pos is zero for 64 byte data, 1 for 80 byte data.
|
||||
sp->x[ sp->pos ] = _mm_xor_si128( sp->x[ sp->pos ],
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 ) );
|
||||
transform( sp );
|
||||
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32(1,0,0,0) );
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
transform(sp);
|
||||
sp->x[7] = _mm_xor_si128( sp->x[7], _mm_set_epi32( 1,0,0,0 ) );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
transform( sp );
|
||||
|
||||
for ( i = 0; i < hashlen128; i++ )
|
||||
( (__m128i*)digest )[i] = ( (__m128i*)sp->x )[i];
|
||||
for ( i = 0; i < sp->hashlen; i++ )
|
||||
hash[i] = sp->x[i];
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
@@ -3,58 +3,35 @@
|
||||
|
||||
#include "compat.h"
|
||||
#include <stdint.h>
|
||||
#include "algo/sha3/sha3-defs.h"
|
||||
//#include <beecrypt/beecrypt.h>
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
|
||||
//#if defined(__SSE2__)
|
||||
#define OPTIMIZE_SSE2
|
||||
//#endif
|
||||
|
||||
#if defined(OPTIMIZE_SSE2)
|
||||
#include <emmintrin.h>
|
||||
#endif
|
||||
|
||||
/*!\brief Holds all the parameters necessary for the CUBEHASH algorithm.
|
||||
* \ingroup HASH_cubehash_m
|
||||
*/
|
||||
|
||||
struct _cubehashParam
|
||||
//#endif
|
||||
{
|
||||
int hashbitlen;
|
||||
int hashlen; // __m128i
|
||||
int rounds;
|
||||
int blockbytes;
|
||||
int pos; /* number of bits read into x from current block */
|
||||
#if defined(OPTIMIZE_SSE2)
|
||||
__m128i _ALIGN(256) x[8];
|
||||
#else
|
||||
uint32_t x[32];
|
||||
#endif
|
||||
int blocksize; // __m128i
|
||||
int pos; // number of __m128i read into x from current block
|
||||
__m128i _ALIGN(256) x[8]; // aligned for __m256i
|
||||
};
|
||||
|
||||
//#ifndef __cplusplus
|
||||
typedef struct _cubehashParam cubehashParam;
|
||||
//#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*!\var cubehash256
|
||||
* \brief Holds the full API description of the CUBEHASH algorithm.
|
||||
*/
|
||||
//extern BEECRYPTAPI const hashFunction cubehash256;
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashInit(cubehashParam* sp, int hashbitlen, int rounds, int blockbytes);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashReset(cubehashParam* sp);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashUpdate(cubehashParam* sp, const byte *data, size_t size);
|
||||
|
||||
//BEECRYPTAPI
|
||||
int cubehashDigest(cubehashParam* sp, byte *digest);
|
||||
|
||||
int cubehashUpdateDigest( cubehashParam *sp, byte *digest, const byte *data,
|
||||
|
@@ -245,8 +245,6 @@ bool register_drop_algo( algo_gate_t* gate )
|
||||
algo_not_tested();
|
||||
gate->scanhash = (void*)&scanhash_drop;
|
||||
gate->hash = (void*)&droplp_hash_pok;
|
||||
gate->hash_alt = (void*)&droplp_hash_pok;
|
||||
gate->hash_suw = (void*)&droplp_hash_pok;
|
||||
gate->get_new_work = (void*)&drop_get_new_work;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
|
||||
|
@@ -22,7 +22,7 @@
|
||||
#endif
|
||||
|
||||
|
||||
#include "algo/sha3/sha3_common.h"
|
||||
#include "algo/sha/sha3_common.h"
|
||||
|
||||
#include <emmintrin.h>
|
||||
|
||||
|
@@ -16,7 +16,7 @@
|
||||
#ifndef VPERM_H
|
||||
#define VPERM_H
|
||||
|
||||
#include "algo/sha3/sha3_common.h"
|
||||
#include "algo/sha/sha3_common.h"
|
||||
#include <tmmintrin.h>
|
||||
|
||||
/*
|
||||
|
@@ -71,7 +71,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#define AES_BIG_ENDIAN 0
|
||||
#include "algo/sha3/aes_helper.c"
|
||||
#include "algo/sha/aes_helper.c"
|
||||
|
||||
#if SPH_ECHO_64
|
||||
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-224.
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for ECHO-224.
|
||||
|
@@ -131,7 +131,6 @@ bool register_fresh_algo( algo_gate_t* gate )
|
||||
algo_not_tested();
|
||||
gate->scanhash = (void*)&scanhash_fresh;
|
||||
gate->hash = (void*)&freshhash;
|
||||
gate->hash_alt = (void*)&freshhash;
|
||||
gate->set_target = (void*)&fresh_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
|
@@ -2,7 +2,7 @@
|
||||
#define SPH_FUGUE_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for GOST-256.
|
||||
|
@@ -13,8 +13,8 @@
|
||||
|
||||
/* global constants */
|
||||
__m128i ROUND_CONST_Lx;
|
||||
__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
//__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
//__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
__m128i TRANSP_MASK;
|
||||
@@ -22,11 +22,9 @@ __m128i SUBSH_MASK[8];
|
||||
__m128i ALL_1B;
|
||||
__m128i ALL_FF;
|
||||
|
||||
|
||||
#define tos(a) #a
|
||||
#define tostr(a) tos(a)
|
||||
|
||||
|
||||
/* xmm[i] will be multiplied by 2
|
||||
* xmm[j] will be lost
|
||||
* xmm[k] has to be all 0x1b */
|
||||
@@ -153,352 +151,6 @@ __m128i ALL_FF;
|
||||
b1 = _mm_xor_si128(b1, a4);\
|
||||
}/*MixBytes*/
|
||||
|
||||
#if (LENGTH <= 256)
|
||||
|
||||
#define SET_CONSTANTS(){\
|
||||
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
|
||||
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
|
||||
SUBSH_MASK[0] = _mm_set_epi32(0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00);\
|
||||
SUBSH_MASK[1] = _mm_set_epi32(0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801);\
|
||||
SUBSH_MASK[2] = _mm_set_epi32(0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02);\
|
||||
SUBSH_MASK[3] = _mm_set_epi32(0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03);\
|
||||
SUBSH_MASK[4] = _mm_set_epi32(0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04);\
|
||||
SUBSH_MASK[5] = _mm_set_epi32(0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05);\
|
||||
SUBSH_MASK[6] = _mm_set_epi32(0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906);\
|
||||
SUBSH_MASK[7] = _mm_set_epi32(0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07);\
|
||||
for(i = 0; i < ROUNDS512; i++)\
|
||||
{\
|
||||
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
|
||||
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
|
||||
}\
|
||||
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
|
||||
}while(0); \
|
||||
|
||||
/* one round
|
||||
* i = round number
|
||||
* a0-a7 = input rows
|
||||
* b0-b7 = output rows
|
||||
*/
|
||||
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
|
||||
/* AddRoundConstant */\
|
||||
b1 = ROUND_CONST_Lx;\
|
||||
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
|
||||
a1 = _mm_xor_si128(a1, b1);\
|
||||
a2 = _mm_xor_si128(a2, b1);\
|
||||
a3 = _mm_xor_si128(a3, b1);\
|
||||
a4 = _mm_xor_si128(a4, b1);\
|
||||
a5 = _mm_xor_si128(a5, b1);\
|
||||
a6 = _mm_xor_si128(a6, b1);\
|
||||
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
|
||||
\
|
||||
/* ShiftBytes + SubBytes (interleaved) */\
|
||||
b0 = _mm_xor_si128(b0, b0);\
|
||||
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
|
||||
a0 = _mm_aesenclast_si128(a0, b0);\
|
||||
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
|
||||
a1 = _mm_aesenclast_si128(a1, b0);\
|
||||
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
|
||||
a2 = _mm_aesenclast_si128(a2, b0);\
|
||||
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
|
||||
a3 = _mm_aesenclast_si128(a3, b0);\
|
||||
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
|
||||
a4 = _mm_aesenclast_si128(a4, b0);\
|
||||
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
|
||||
a5 = _mm_aesenclast_si128(a5, b0);\
|
||||
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
|
||||
a6 = _mm_aesenclast_si128(a6, b0);\
|
||||
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
|
||||
a7 = _mm_aesenclast_si128(a7, b0);\
|
||||
\
|
||||
/* MixBytes */\
|
||||
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
|
||||
\
|
||||
}
|
||||
|
||||
/* 10 rounds, P and Q in parallel */
|
||||
#define ROUNDS_P_Q(){\
|
||||
ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
|
||||
ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
|
||||
}
|
||||
|
||||
/* Matrix Transpose Step 1
|
||||
* input is a 512-bit state with two columns in one xmm
|
||||
* output is a 512-bit state with two rows in one xmm
|
||||
* inputs: i0-i3
|
||||
* outputs: i0, o1-o3
|
||||
* clobbers: t0
|
||||
*/
|
||||
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
|
||||
t0 = TRANSP_MASK;\
|
||||
\
|
||||
i0 = _mm_shuffle_epi8(i0, t0);\
|
||||
i1 = _mm_shuffle_epi8(i1, t0);\
|
||||
i2 = _mm_shuffle_epi8(i2, t0);\
|
||||
i3 = _mm_shuffle_epi8(i3, t0);\
|
||||
\
|
||||
o1 = i0;\
|
||||
t0 = i2;\
|
||||
\
|
||||
i0 = _mm_unpacklo_epi16(i0, i1);\
|
||||
o1 = _mm_unpackhi_epi16(o1, i1);\
|
||||
i2 = _mm_unpacklo_epi16(i2, i3);\
|
||||
t0 = _mm_unpackhi_epi16(t0, i3);\
|
||||
\
|
||||
i0 = _mm_shuffle_epi32(i0, 216);\
|
||||
o1 = _mm_shuffle_epi32(o1, 216);\
|
||||
i2 = _mm_shuffle_epi32(i2, 216);\
|
||||
t0 = _mm_shuffle_epi32(t0, 216);\
|
||||
\
|
||||
o2 = i0;\
|
||||
o3 = o1;\
|
||||
\
|
||||
i0 = _mm_unpacklo_epi32(i0, i2);\
|
||||
o1 = _mm_unpacklo_epi32(o1, t0);\
|
||||
o2 = _mm_unpackhi_epi32(o2, i2);\
|
||||
o3 = _mm_unpackhi_epi32(o3, t0);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Step 2
|
||||
* input are two 512-bit states with two rows in one xmm
|
||||
* output are two 512-bit states with one row of each state in one xmm
|
||||
* inputs: i0-i3 = P, i4-i7 = Q
|
||||
* outputs: (i0, o1-o7) = (P|Q)
|
||||
* possible reassignments: (output reg = input reg)
|
||||
* * i1 -> o3-7
|
||||
* * i2 -> o5-7
|
||||
* * i3 -> o7
|
||||
* * i4 -> o3-7
|
||||
* * i5 -> o6-7
|
||||
*/
|
||||
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
|
||||
o1 = i0;\
|
||||
o2 = i1;\
|
||||
i0 = _mm_unpacklo_epi64(i0, i4);\
|
||||
o1 = _mm_unpackhi_epi64(o1, i4);\
|
||||
o3 = i1;\
|
||||
o4 = i2;\
|
||||
o2 = _mm_unpacklo_epi64(o2, i5);\
|
||||
o3 = _mm_unpackhi_epi64(o3, i5);\
|
||||
o5 = i2;\
|
||||
o6 = i3;\
|
||||
o4 = _mm_unpacklo_epi64(o4, i6);\
|
||||
o5 = _mm_unpackhi_epi64(o5, i6);\
|
||||
o7 = i3;\
|
||||
o6 = _mm_unpacklo_epi64(o6, i7);\
|
||||
o7 = _mm_unpackhi_epi64(o7, i7);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Inverse Step 2
|
||||
* input are two 512-bit states with one row of each state in one xmm
|
||||
* output are two 512-bit states with two rows in one xmm
|
||||
* inputs: i0-i7 = (P|Q)
|
||||
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
|
||||
*/
|
||||
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
|
||||
o0 = i0;\
|
||||
i0 = _mm_unpacklo_epi64(i0, i1);\
|
||||
o0 = _mm_unpackhi_epi64(o0, i1);\
|
||||
o1 = i2;\
|
||||
i2 = _mm_unpacklo_epi64(i2, i3);\
|
||||
o1 = _mm_unpackhi_epi64(o1, i3);\
|
||||
o2 = i4;\
|
||||
i4 = _mm_unpacklo_epi64(i4, i5);\
|
||||
o2 = _mm_unpackhi_epi64(o2, i5);\
|
||||
o3 = i6;\
|
||||
i6 = _mm_unpacklo_epi64(i6, i7);\
|
||||
o3 = _mm_unpackhi_epi64(o3, i7);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Output Step 2
|
||||
* input is one 512-bit state with two rows in one xmm
|
||||
* output is one 512-bit state with one row in the low 64-bits of one xmm
|
||||
* inputs: i0,i2,i4,i6 = S
|
||||
* outputs: (i0-7) = (0|S)
|
||||
*/
|
||||
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
|
||||
t0 = _mm_xor_si128(t0, t0);\
|
||||
i1 = i0;\
|
||||
i3 = i2;\
|
||||
i5 = i4;\
|
||||
i7 = i6;\
|
||||
i0 = _mm_unpacklo_epi64(i0, t0);\
|
||||
i1 = _mm_unpackhi_epi64(i1, t0);\
|
||||
i2 = _mm_unpacklo_epi64(i2, t0);\
|
||||
i3 = _mm_unpackhi_epi64(i3, t0);\
|
||||
i4 = _mm_unpacklo_epi64(i4, t0);\
|
||||
i5 = _mm_unpackhi_epi64(i5, t0);\
|
||||
i6 = _mm_unpacklo_epi64(i6, t0);\
|
||||
i7 = _mm_unpackhi_epi64(i7, t0);\
|
||||
}/**/
|
||||
|
||||
/* Matrix Transpose Output Inverse Step 2
|
||||
* input is one 512-bit state with one row in the low 64-bits of one xmm
|
||||
* output is one 512-bit state with two rows in one xmm
|
||||
* inputs: i0-i7 = (0|S)
|
||||
* outputs: (i0, i2, i4, i6) = S
|
||||
*/
|
||||
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
|
||||
i0 = _mm_unpacklo_epi64(i0, i1);\
|
||||
i2 = _mm_unpacklo_epi64(i2, i3);\
|
||||
i4 = _mm_unpacklo_epi64(i4, i5);\
|
||||
i6 = _mm_unpacklo_epi64(i6, i7);\
|
||||
endif\
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
|
||||
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
/* load IV into registers xmm12 - xmm15 */
|
||||
xmm12 = chaining[0];
|
||||
xmm13 = chaining[1];
|
||||
xmm14 = chaining[2];
|
||||
xmm15 = chaining[3];
|
||||
|
||||
/* transform chaining value from column ordering into row ordering */
|
||||
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
|
||||
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
|
||||
|
||||
/* store transposed IV */
|
||||
chaining[0] = xmm12;
|
||||
chaining[1] = xmm2;
|
||||
chaining[2] = xmm6;
|
||||
chaining[3] = xmm7;
|
||||
}
|
||||
|
||||
void TF512(u64* h, u64* m)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
static __m128i TEMP1;
|
||||
static __m128i TEMP2;
|
||||
|
||||
#ifdef IACA_TRACE
|
||||
IACA_START;
|
||||
#endif
|
||||
|
||||
/* load message into registers xmm12 - xmm15 */
|
||||
xmm12 = message[0];
|
||||
xmm13 = message[1];
|
||||
xmm14 = message[2];
|
||||
xmm15 = message[3];
|
||||
|
||||
/* transform message M from column ordering into row ordering */
|
||||
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
|
||||
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
|
||||
|
||||
/* load previous chaining value */
|
||||
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
|
||||
xmm8 = chaining[0];
|
||||
xmm0 = chaining[1];
|
||||
xmm4 = chaining[2];
|
||||
xmm5 = chaining[3];
|
||||
|
||||
/* xor message to CV get input of P */
|
||||
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
|
||||
xmm8 = _mm_xor_si128(xmm8, xmm12);
|
||||
xmm0 = _mm_xor_si128(xmm0, xmm2);
|
||||
xmm4 = _mm_xor_si128(xmm4, xmm6);
|
||||
xmm5 = _mm_xor_si128(xmm5, xmm7);
|
||||
|
||||
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
|
||||
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
|
||||
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
|
||||
Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
|
||||
|
||||
/* compute the two permutations P and Q in parallel */
|
||||
ROUNDS_P_Q();
|
||||
|
||||
/* unpack again to get two rows of P or two rows of Q in one xmm register */
|
||||
Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
|
||||
|
||||
/* xor output of P and Q */
|
||||
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
|
||||
xmm0 = _mm_xor_si128(xmm0, xmm8);
|
||||
xmm1 = _mm_xor_si128(xmm1, xmm10);
|
||||
xmm2 = _mm_xor_si128(xmm2, xmm12);
|
||||
xmm3 = _mm_xor_si128(xmm3, xmm14);
|
||||
|
||||
/* xor CV (feed-forward) */
|
||||
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
|
||||
xmm0 = _mm_xor_si128(xmm0, (chaining[0]));
|
||||
xmm1 = _mm_xor_si128(xmm1, (chaining[1]));
|
||||
xmm2 = _mm_xor_si128(xmm2, (chaining[2]));
|
||||
xmm3 = _mm_xor_si128(xmm3, (chaining[3]));
|
||||
|
||||
/* store CV */
|
||||
chaining[0] = xmm0;
|
||||
chaining[1] = xmm1;
|
||||
chaining[2] = xmm2;
|
||||
chaining[3] = xmm3;
|
||||
|
||||
#ifdef IACA_TRACE
|
||||
IACA_END;
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
void OF512(u64* h)
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
static __m128i TEMP1;
|
||||
static __m128i TEMP2;
|
||||
|
||||
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
|
||||
xmm8 = chaining[0];
|
||||
xmm10 = chaining[1];
|
||||
xmm12 = chaining[2];
|
||||
xmm14 = chaining[3];
|
||||
|
||||
/* there are now 2 rows of the CV in one xmm register */
|
||||
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
|
||||
/* result: the 8 input rows of P in xmm8 - xmm15 */
|
||||
Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
|
||||
|
||||
/* compute the permutation P */
|
||||
/* result: the output of P(CV) in xmm8 - xmm15 */
|
||||
ROUNDS_P_Q();
|
||||
|
||||
/* unpack again to get two rows of P in one xmm register */
|
||||
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
|
||||
Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
|
||||
|
||||
/* xor CV to P output (feed-forward) */
|
||||
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
|
||||
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
|
||||
xmm10 = _mm_xor_si128(xmm10, (chaining[1]));
|
||||
xmm12 = _mm_xor_si128(xmm12, (chaining[2]));
|
||||
xmm14 = _mm_xor_si128(xmm14, (chaining[3]));
|
||||
|
||||
/* transform state back from row ordering into column ordering */
|
||||
/* result: final hash value in xmm9, xmm11 */
|
||||
Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
|
||||
|
||||
/* we only need to return the truncated half of the state */
|
||||
chaining[2] = xmm9;
|
||||
chaining[3] = xmm11;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if (LENGTH > 256)
|
||||
|
||||
#define SET_CONSTANTS(){\
|
||||
ALL_FF = _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);\
|
||||
@@ -768,9 +420,8 @@ void OF512(u64* h)
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT(u64* h)
|
||||
void INIT( __m128i* chaining )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
@@ -798,10 +449,8 @@ void INIT(u64* h)
|
||||
chaining[7] = xmm15;
|
||||
}
|
||||
|
||||
void TF1024(u64* h, u64* m)
|
||||
void TF1024( __m128i* chaining, const __m128i* message )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i QTEMP[8];
|
||||
@@ -914,9 +563,8 @@ void TF1024(u64* h, u64* m)
|
||||
return;
|
||||
}
|
||||
|
||||
void OF1024(u64* h)
|
||||
void OF1024( __m128i* chaining )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
@@ -961,5 +609,3 @@ void OF1024(u64* h)
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -15,8 +15,8 @@
|
||||
__m128i ROUND_CONST_Lx;
|
||||
__m128i ROUND_CONST_L0[ROUNDS512];
|
||||
__m128i ROUND_CONST_L7[ROUNDS512];
|
||||
__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
//__m128i ROUND_CONST_P[ROUNDS1024];
|
||||
//__m128i ROUND_CONST_Q[ROUNDS1024];
|
||||
__m128i TRANSP_MASK;
|
||||
__m128i SUBSH_MASK[8];
|
||||
__m128i ALL_1B;
|
||||
@@ -351,9 +351,8 @@ __m128i ALL_FF;
|
||||
}/**/
|
||||
|
||||
|
||||
void INIT256(u64* h)
|
||||
void INIT256( __m128i* chaining )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
|
||||
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
|
||||
|
||||
@@ -374,10 +373,8 @@ void INIT256(u64* h)
|
||||
chaining[3] = xmm7;
|
||||
}
|
||||
|
||||
void TF512(u64* h, u64* m)
|
||||
void TF512( __m128i* chaining, __m128i* message )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
__m128i* const message = (__m128i*) m;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
@@ -449,9 +446,8 @@ void TF512(u64* h, u64* m)
|
||||
return;
|
||||
}
|
||||
|
||||
void OF512(u64* h)
|
||||
void OF512( __m128i* chaining )
|
||||
{
|
||||
__m128i* const chaining = (__m128i*) h;
|
||||
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
||||
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
|
||||
static __m128i TEMP0;
|
||||
|
@@ -6,6 +6,9 @@
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
// Optimized for hash and data length that are integrals of __m128i
|
||||
|
||||
|
||||
#include <memory.h>
|
||||
#include "hash-groestl.h"
|
||||
#include "miner.h"
|
||||
@@ -49,196 +52,191 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void Transform( hashState_groestl *ctx, const u8 *in, unsigned long long len )
|
||||
{
|
||||
/* increment block counter */
|
||||
ctx->block_counter += len/SIZE;
|
||||
/* digest message, one block at a time */
|
||||
for ( ; len >= SIZE; len -= SIZE, in += SIZE )
|
||||
TF1024( (u64*)ctx->chaining, (u64*)in );
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void OutputTransformation( hashState_groestl *ctx )
|
||||
{
|
||||
/* determine variant */
|
||||
OF1024( (u64*)ctx->chaining );
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* initialise context */
|
||||
HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
|
||||
{
|
||||
u8 i = 0;
|
||||
int i;
|
||||
|
||||
ctx->hashlen = hashlen;
|
||||
|
||||
SET_CONSTANTS();
|
||||
|
||||
for ( i = 0; i < SIZE / 8; i++ )
|
||||
ctx->chaining[i] = 0;
|
||||
for ( i = 0; i < SIZE; i++ )
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG((u64)LENGTH);
|
||||
for ( i = 0; i < SIZE512; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT(ctx->chaining);
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/*
|
||||
HashReturn_gr init_groestl( hashState_groestl* ctx )
|
||||
{
|
||||
return Xinit_groestl( ctx, 64 );
|
||||
}
|
||||
*/
|
||||
|
||||
HashReturn_gr reinit_groestl( hashState_groestl* ctx )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < SIZE / 8; i++ )
|
||||
ctx->chaining[i] = 0;
|
||||
for ( i = 0; i < SIZE; i++ )
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG( (u64)LENGTH );
|
||||
INIT( ctx->chaining );
|
||||
for ( i = 0; i < SIZE512; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT(ctx->chaining);
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
//// midstate is broken
|
||||
// To use midstate:
|
||||
// 1. midstate must process all full blocks.
|
||||
// 2. tail must be less than a full block and may not straddle a
|
||||
// block boundary.
|
||||
// 3. midstate and tail each must be multiples of 128 bits.
|
||||
// 4. For best performance midstate length is a multiple of block size.
|
||||
// 5. Midstate will work at reduced impact than full hash, if total hash
|
||||
// (midstate + tail) is less than 1 block.
|
||||
// This, unfortunately, is the case with all current users.
|
||||
// 6. the morefull blocks the bigger the gain
|
||||
|
||||
/* update state with databitlen bits of input */
|
||||
HashReturn_gr update_groestl( hashState_groestl* ctx,
|
||||
const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
// use only for midstate precalc
|
||||
HashReturn_gr update_groestl( hashState_groestl* ctx, const void* input,
|
||||
DataLength_gr databitlen )
|
||||
{
|
||||
int i;
|
||||
const int msglen = (int)(databitlen/8);
|
||||
__m128i* in = (__m128i*)input;
|
||||
const int len = (int)databitlen / 128; // bits to __m128i
|
||||
const int blocks = len / SIZE512; // __M128i to blocks
|
||||
int rem = ctx->rem_ptr;
|
||||
int i;
|
||||
|
||||
/* digest bulk of message */
|
||||
Transform( ctx, input, msglen );
|
||||
ctx->blk_count = blocks;
|
||||
ctx->databitlen = databitlen;
|
||||
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
// digest any full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
|
||||
// adjust buf_ptr to last block
|
||||
ctx->buf_ptr = blocks * SIZE512;
|
||||
|
||||
return SUCCESS_GR;
|
||||
// copy any remaining data to buffer for final hash, it may already
|
||||
// contain data from a previous update for a midstate precalc
|
||||
for ( i = 0; i < len % SIZE512; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
// adjust rem_ptr for possible new data
|
||||
ctx->rem_ptr += i;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/* finalise: process remaining data (including padding), perform
|
||||
output transformation, and write hash result to 'output' */
|
||||
HashReturn_gr final_groestl( hashState_groestl* ctx,
|
||||
BitSequence_gr* output )
|
||||
// deprecated do not use
|
||||
HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
|
||||
{
|
||||
int i, j;
|
||||
const int len = (int)ctx->databitlen / 128; // bits to __m128i
|
||||
const int blocks = ctx->blk_count + 1; // adjust for final block
|
||||
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE512 - hashlen_m128i; // where in buffer
|
||||
int i;
|
||||
|
||||
// this will pad up to 120 bytes
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
// first pad byte = 0x80, last pad byte = block count
|
||||
// everything in between is zero
|
||||
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
if ( rem_ptr == len - 1 )
|
||||
{
|
||||
// only 128 bits left in buffer, all padding at once
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i = rem_ptr + 1; i < SIZE512 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
|
||||
/* digest final padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation( ctx );
|
||||
// add length padding, second last byte is zero unless blocks > 255
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
|
||||
0, 0 ,0,0, 0,0,0,0 );
|
||||
}
|
||||
|
||||
// store hash result in output
|
||||
for ( i = ( SIZE - ctx->hashlen) / 16, j = 0; i < SIZE / 16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining , i );
|
||||
// digest final padding block and do output transform
|
||||
TF1024( ctx->chaining, ctx->buffer );
|
||||
OF1024( ctx->chaining );
|
||||
|
||||
return SUCCESS_GR;
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i];
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx,
|
||||
BitSequence_gr* output, const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
|
||||
const void* input, DataLength_gr databitlen )
|
||||
{
|
||||
const int inlen = (int)(databitlen/8); // need bytes
|
||||
int i, j;
|
||||
const int len = (int)databitlen / 128;
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE512 - hashlen_m128i;
|
||||
int rem = ctx->rem_ptr;
|
||||
int blocks = len / SIZE512;
|
||||
__m128i* in = (__m128i*)input;
|
||||
int i;
|
||||
|
||||
/* digest bulk of message */
|
||||
Transform( ctx, input, inlen );
|
||||
// --- update ---
|
||||
|
||||
/* store remaining data in buffer */
|
||||
i = ( inlen / SIZE ) * SIZE;
|
||||
while ( i < inlen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
// digest any full blocks, process directly from input
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
|
||||
ctx->buf_ptr = blocks * SIZE512;
|
||||
|
||||
// start of final
|
||||
// copy any remaining data to buffer, it may already contain data
|
||||
// from a previous update for a midstate precalc
|
||||
for ( i = 0; i < len % SIZE512; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
i += rem; // use i as rem_ptr in final
|
||||
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
//--- final ---
|
||||
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
memset( ctx->buffer + ctx->buf_ptr, 0, SIZE - ctx->buf_ptr );
|
||||
|
||||
/* digest first padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
blocks++; // adjust for final block
|
||||
|
||||
// this will pad up to 120 bytes
|
||||
memset( ctx->buffer + ctx->buf_ptr, 0, SIZE - ctx->buf_ptr - LENGTHFIELDLEN );
|
||||
if ( i == len -1 )
|
||||
{
|
||||
// only 128 bits left in buffer, all padding at once
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i += 1; i < SIZE512 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while (ctx->buf_ptr > SIZE - LENGTHFIELDLEN)
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
// add length padding, second last byte is zero unless blocks > 255
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
|
||||
0, 0 ,0,0, 0,0,0,0 );
|
||||
}
|
||||
|
||||
/* digest final padding block */
|
||||
Transform( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation( ctx );
|
||||
// digest final padding block and do output transform
|
||||
TF1024( ctx->chaining, ctx->buffer );
|
||||
OF1024( ctx->chaining );
|
||||
|
||||
// store hash result in output
|
||||
for ( i = ( SIZE - ctx->hashlen) / 16, j = 0; i < SIZE / 16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining , i );
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/* hash bit sequence */
|
||||
|
@@ -9,6 +9,8 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#if defined(_WIN64) || defined(__WINDOWS__)
|
||||
#include <windows.h>
|
||||
@@ -24,22 +26,22 @@
|
||||
/* some sizes (number of bytes) */
|
||||
#define ROWS (8)
|
||||
#define LENGTHFIELDLEN (ROWS)
|
||||
#define COLS512 (8)
|
||||
//#define COLS512 (8)
|
||||
#define COLS1024 (16)
|
||||
#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
#define ROUNDS512 (10)
|
||||
//#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE_1024 ((ROWS)*(COLS1024))
|
||||
//#define ROUNDS512 (10)
|
||||
#define ROUNDS1024 (14)
|
||||
|
||||
#if LENGTH<=256
|
||||
#define COLS (COLS512)
|
||||
#define SIZE (SIZE512)
|
||||
#define ROUNDS (ROUNDS512)
|
||||
#else
|
||||
//#if LENGTH<=256
|
||||
//#define COLS (COLS512)
|
||||
//#define SIZE (SIZE512)
|
||||
//#define ROUNDS (ROUNDS512)
|
||||
//#else
|
||||
#define COLS (COLS1024)
|
||||
#define SIZE (SIZE1024)
|
||||
//#define SIZE (SIZE1024)
|
||||
#define ROUNDS (ROUNDS1024)
|
||||
#endif
|
||||
//#endif
|
||||
|
||||
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
|
||||
|
||||
@@ -61,31 +63,29 @@ typedef unsigned char BitSequence_gr;
|
||||
typedef unsigned long long DataLength_gr;
|
||||
typedef enum { SUCCESS_GR = 0, FAIL_GR = 1, BAD_HASHBITLEN_GR = 2} HashReturn_gr;
|
||||
|
||||
// Use area128 overlay for buffer to facilitate fast copying
|
||||
#define SIZE512 (SIZE_1024/16)
|
||||
|
||||
typedef struct {
|
||||
__attribute__ ((aligned (32))) u64 chaining[SIZE/8]; // actual state
|
||||
__attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; // data buffer
|
||||
u64 block_counter; /* message block counter */
|
||||
int hashlen; // bytes
|
||||
int buf_ptr; /* data buffer pointer */
|
||||
__attribute__ ((aligned (64))) __m128i chaining[SIZE512];
|
||||
__attribute__ ((aligned (64))) __m128i buffer[SIZE512];
|
||||
int hashlen; // byte
|
||||
int blk_count; // SIZE_m128i
|
||||
int buf_ptr; // __m128i offset
|
||||
int rem_ptr;
|
||||
int databitlen; // bits
|
||||
} hashState_groestl;
|
||||
|
||||
//HashReturn_gr init_groestl( hashState_groestl* );
|
||||
|
||||
HashReturn_gr init_groestl( hashState_groestl*, int );
|
||||
|
||||
HashReturn_gr reinit_groestl( hashState_groestl* );
|
||||
|
||||
HashReturn_gr update_groestl( hashState_groestl*, const BitSequence_gr*,
|
||||
HashReturn_gr update_groestl( hashState_groestl*, const void*,
|
||||
DataLength_gr );
|
||||
|
||||
HashReturn_gr final_groestl( hashState_groestl*, BitSequence_gr* );
|
||||
HashReturn_gr final_groestl( hashState_groestl*, void* );
|
||||
|
||||
HashReturn_gr hash_groestl( int, const BitSequence_gr*, DataLength_gr,
|
||||
BitSequence_gr* );
|
||||
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl*,
|
||||
BitSequence_gr*, const BitSequence_gr*, DataLength_gr );
|
||||
HashReturn_gr update_and_final_groestl( hashState_groestl*, void*,
|
||||
const void*, DataLength_gr );
|
||||
|
||||
#endif /* __hash_h */
|
||||
|
@@ -49,187 +49,201 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void Transform256(hashState_groestl256 *ctx,
|
||||
const u8 *in,
|
||||
unsigned long long len) {
|
||||
/* increment block counter */
|
||||
ctx->block_counter += len/SIZE;
|
||||
|
||||
/* digest message, one block at a time */
|
||||
for (; len >= SIZE; len -= SIZE, in += SIZE)
|
||||
TF512((u64*)ctx->chaining, (u64*)in);
|
||||
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void OutputTransformation256(hashState_groestl256 *ctx) {
|
||||
/* determine variant */
|
||||
OF512((u64*)ctx->chaining);
|
||||
|
||||
asm volatile ("emms");
|
||||
}
|
||||
|
||||
/* initialise context */
|
||||
HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
|
||||
{
|
||||
u8 i = 0;
|
||||
int i;
|
||||
|
||||
ctx->hashlen = hashlen;
|
||||
|
||||
SET_CONSTANTS();
|
||||
|
||||
for (i=0; i<SIZE/8; i++)
|
||||
ctx->chaining[i] = 0;
|
||||
for (i=0; i<SIZE; i++)
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = U64BIG((u64)256);
|
||||
|
||||
INIT256(ctx->chaining);
|
||||
|
||||
/* set other variables */
|
||||
for ( i = 0; i < SIZE256; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT256( ctx->chaining );
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
|
||||
HashReturn_gr reinit_groestl256(hashState_groestl256* ctx)
|
||||
{
|
||||
int i;
|
||||
for (i=0; i<SIZE/8; i++)
|
||||
ctx->chaining[i] = 0;
|
||||
for (i=0; i<SIZE; i++)
|
||||
ctx->buffer[i] = 0;
|
||||
|
||||
if (ctx->chaining == NULL || ctx->buffer == NULL)
|
||||
return FAIL_GR;
|
||||
|
||||
/* set initial value */
|
||||
ctx->chaining[COLS-1] = 256;
|
||||
|
||||
for ( i = 0; i < SIZE256; i++ )
|
||||
{
|
||||
ctx->chaining[i] = _mm_setzero_si128();
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
}
|
||||
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
|
||||
INIT256(ctx->chaining);
|
||||
|
||||
/* set other variables */
|
||||
ctx->buf_ptr = 0;
|
||||
ctx->block_counter = 0;
|
||||
ctx->rem_ptr = 0;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr update_groestl256( hashState_groestl256* ctx,
|
||||
const BitSequence_gr* input, DataLength_gr databitlen )
|
||||
// Use this only for midstate and never for cryptonight
|
||||
HashReturn_gr update_groestl256( hashState_groestl256* ctx, const void* input,
|
||||
DataLength_gr databitlen )
|
||||
{
|
||||
const int msglen = (int)(databitlen/8); // bytes
|
||||
int i;
|
||||
__m128i* in = (__m128i*)input;
|
||||
const int len = (int)databitlen / 128; // bits to __m128i
|
||||
const int blocks = len / SIZE256; // __M128i to blocks
|
||||
int rem = ctx->rem_ptr;
|
||||
int i;
|
||||
|
||||
/* digest bulk of message */
|
||||
Transform256( ctx, input, msglen );
|
||||
ctx->blk_count = blocks;
|
||||
ctx->databitlen = databitlen;
|
||||
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
// digest any full blocks
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF512( ctx->chaining, &in[ i * SIZE256 ] );
|
||||
// adjust buf_ptr to last block
|
||||
ctx->buf_ptr = blocks * SIZE256;
|
||||
|
||||
return SUCCESS_GR;
|
||||
// Copy any remainder to buffer
|
||||
for ( i = 0; i < len % SIZE256; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
// adjust rem_ptr for new data
|
||||
ctx->rem_ptr += i;
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr final_groestl256( hashState_groestl256* ctx,
|
||||
BitSequence_gr* output )
|
||||
// don't use this at all
|
||||
HashReturn_gr final_groestl256( hashState_groestl256* ctx, void* output )
|
||||
{
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
const int len = (int)ctx->databitlen / 128; // bits to __m128i
|
||||
const int blocks = ctx->blk_count + 1; // adjust for final block
|
||||
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE256 - hashlen_m128i; // where in buffer
|
||||
int i;
|
||||
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
// first pad byte = 0x80, last pad byte = block count
|
||||
// everything in between is zero
|
||||
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
if ( rem_ptr == len - 1 )
|
||||
{
|
||||
// all padding at once
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
// add zero padding
|
||||
for ( i = rem_ptr + 1; i < SIZE256 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
// add length padding
|
||||
// cheat since we know the block count is trivial, good if block < 256
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0 );
|
||||
}
|
||||
|
||||
/* digest final padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation256( ctx );
|
||||
// digest final padding block and do output transform
|
||||
TF512( ctx->chaining, ctx->buffer );
|
||||
OF512( ctx->chaining );
|
||||
|
||||
/* store hash result in output */
|
||||
for ( int i = ( (SIZE - ctx->hashlen) / 16 ), j = 0; i < SIZE/16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining, i );
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i];
|
||||
|
||||
return SUCCESS_GR;
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256* ctx,
|
||||
BitSequence_gr* output, const BitSequence_gr* input,
|
||||
DataLength_gr databitlen )
|
||||
void* output, const void* input, DataLength_gr databitlen )
|
||||
{
|
||||
const int msglen = (int)(databitlen/8); // bytes
|
||||
int i, j;
|
||||
const int len = (int)databitlen / 128;
|
||||
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
|
||||
const int hash_offset = SIZE256 - hashlen_m128i;
|
||||
int rem = ctx->rem_ptr;
|
||||
int blocks = len / SIZE256;
|
||||
__m128i* in = (__m128i*)input;
|
||||
int i;
|
||||
|
||||
/* digest bulk of message */
|
||||
Transform256( ctx, input, msglen );
|
||||
// --- update ---
|
||||
|
||||
/* store remaining data in buffer */
|
||||
i = ( msglen / SIZE ) * SIZE;
|
||||
while ( i < msglen )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = input[i++];
|
||||
// digest any full blocks, process directly from input
|
||||
for ( i = 0; i < blocks; i++ )
|
||||
TF512( ctx->chaining, &in[ i * SIZE256 ] );
|
||||
ctx->buf_ptr = blocks * SIZE256;
|
||||
|
||||
// start of final
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
|
||||
// cryptonight has 200 byte input, an odd number of __m128i
|
||||
// remainder is only 8 bytes, ie u64.
|
||||
if ( databitlen % 128 !=0 )
|
||||
{
|
||||
// must be cryptonight, copy 64 bits of data
|
||||
*(uint64_t*)(ctx->buffer) = *(uint64_t*)(&in[ ctx->buf_ptr ] );
|
||||
i = -1; // signal for odd length
|
||||
}
|
||||
else
|
||||
{
|
||||
// Copy any remaining data to buffer for final transform
|
||||
for ( i = 0; i < len % SIZE256; i++ )
|
||||
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
|
||||
i += rem; // use i as rem_ptr in final
|
||||
}
|
||||
|
||||
/* pad with '0'-bits */
|
||||
if ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
/* padding requires two blocks */
|
||||
while ( ctx->buf_ptr < SIZE )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
/* digest first padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
ctx->buf_ptr = 0;
|
||||
}
|
||||
while ( ctx->buf_ptr < SIZE - LENGTHFIELDLEN )
|
||||
ctx->buffer[(int)ctx->buf_ptr++] = 0;
|
||||
//--- final ---
|
||||
|
||||
/* length padding */
|
||||
ctx->block_counter++;
|
||||
ctx->buf_ptr = SIZE;
|
||||
while ( ctx->buf_ptr > SIZE - LENGTHFIELDLEN )
|
||||
{
|
||||
ctx->buffer[(int)--ctx->buf_ptr] = (u8)ctx->block_counter;
|
||||
ctx->block_counter >>= 8;
|
||||
}
|
||||
// adjust for final block
|
||||
blocks++;
|
||||
|
||||
/* digest final padding block */
|
||||
Transform256( ctx, ctx->buffer, SIZE );
|
||||
/* perform output transformation */
|
||||
OutputTransformation256( ctx );
|
||||
if ( i == len - 1 )
|
||||
{
|
||||
// all padding at once
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
|
||||
0, 0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
else
|
||||
{
|
||||
if ( i == -1 )
|
||||
{
|
||||
// cryptonight odd length
|
||||
((uint64_t*)ctx->buffer)[ 1 ] = 0x80ull;
|
||||
// finish the block with zero and length padding as normal
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// add first padding
|
||||
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
|
||||
0,0,0,0, 0,0,0,0x80 );
|
||||
}
|
||||
// add zero padding
|
||||
for ( i += 1; i < SIZE256 - 1; i++ )
|
||||
ctx->buffer[i] = _mm_setzero_si128();
|
||||
// add length padding
|
||||
// cheat since we know the block count is trivial, good if block < 256
|
||||
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
|
||||
0, 0,0,0, 0,0,0,0 );
|
||||
}
|
||||
|
||||
/* store hash result in output */
|
||||
for ( i = ( (SIZE - ctx->hashlen) / 16 ), j = 0; i < SIZE/16; i++, j++ )
|
||||
casti_m128i( output, j ) = casti_m128i( ctx->chaining, i );
|
||||
// digest final padding block and do output transform
|
||||
TF512( ctx->chaining, ctx->buffer );
|
||||
OF512( ctx->chaining );
|
||||
|
||||
return SUCCESS_GR;
|
||||
// store hash result in output
|
||||
for ( i = 0; i < hashlen_m128i; i++ )
|
||||
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
|
||||
|
||||
return SUCCESS_GR;
|
||||
}
|
||||
|
||||
/* hash bit sequence */
|
||||
|
@@ -9,6 +9,7 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <immintrin.h>
|
||||
#include <stdio.h>
|
||||
#if defined(_WIN64) || defined(__WINDOWS__)
|
||||
#include <windows.h>
|
||||
@@ -40,23 +41,21 @@ typedef crypto_uint64 u64;
|
||||
#include IACA_MARKS
|
||||
#endif
|
||||
|
||||
//#ifndef LENGTH
|
||||
//#define LENGTH (256)
|
||||
//#endif
|
||||
#define LENGTH (256)
|
||||
|
||||
/* some sizes (number of bytes) */
|
||||
#define ROWS (8)
|
||||
#define LENGTHFIELDLEN (ROWS)
|
||||
#define COLS512 (8)
|
||||
#define COLS1024 (16)
|
||||
#define SIZE512 ((ROWS)*(COLS512))
|
||||
#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
//#define COLS1024 (16)
|
||||
#define SIZE_512 ((ROWS)*(COLS512))
|
||||
//#define SIZE1024 ((ROWS)*(COLS1024))
|
||||
#define ROUNDS512 (10)
|
||||
#define ROUNDS1024 (14)
|
||||
//#define ROUNDS1024 (14)
|
||||
|
||||
//#if LENGTH<=256
|
||||
#define COLS (COLS512)
|
||||
#define SIZE (SIZE512)
|
||||
//#define SIZE (SIZE512)
|
||||
#define ROUNDS (ROUNDS512)
|
||||
//#else
|
||||
//#define COLS (COLS1024)
|
||||
@@ -89,28 +88,34 @@ typedef enum
|
||||
BAD_HASHBITLEN_GR = 2
|
||||
} HashReturn_gr;
|
||||
|
||||
#define SIZE256 (SIZE_512/16)
|
||||
|
||||
typedef struct {
|
||||
__attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
|
||||
__attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
|
||||
u64 block_counter; /* message block counter */
|
||||
__attribute__ ((aligned (32))) __m128i chaining[SIZE256];
|
||||
__attribute__ ((aligned (32))) __m128i buffer[SIZE256];
|
||||
// __attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
|
||||
// __attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
|
||||
// u64 block_counter; /* message block counter */
|
||||
int hashlen; // bytes
|
||||
int blk_count;
|
||||
int buf_ptr; /* data buffer pointer */
|
||||
int rem_ptr;
|
||||
int databitlen;
|
||||
} hashState_groestl256;
|
||||
|
||||
HashReturn_gr init_groestl256( hashState_groestl256*, int );
|
||||
|
||||
HashReturn_gr reinit_groestl( hashState_groestl256* );
|
||||
HashReturn_gr reinit_groestl256( hashState_groestl256* );
|
||||
|
||||
HashReturn_gr update_groestl( hashState_groestl256*, const BitSequence_gr*,
|
||||
HashReturn_gr update_groestl256( hashState_groestl256*, const void*,
|
||||
DataLength_gr );
|
||||
|
||||
HashReturn_gr final_groestl( hashState_groestl256*, BitSequence_gr* );
|
||||
HashReturn_gr final_groestl256( hashState_groestl256*, void* );
|
||||
|
||||
HashReturn_gr hash_groestl( int, const BitSequence_gr*, DataLength_gr,
|
||||
HashReturn_gr hash_groestli256( int, const BitSequence_gr*, DataLength_gr,
|
||||
BitSequence_gr* );
|
||||
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256*,
|
||||
BitSequence_gr*, const BitSequence_gr*,
|
||||
DataLength_gr );
|
||||
HashReturn_gr update_and_final_groestl256( hashState_groestl256*, void*,
|
||||
const void*, DataLength_gr );
|
||||
|
||||
#endif /* __hash_h */
|
||||
|
@@ -15,7 +15,7 @@
|
||||
typedef struct
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512_context groestl;
|
||||
sph_groestl512_context groestl1, groestl2;
|
||||
#else
|
||||
hashState_groestl groestl1, groestl2;
|
||||
#endif
|
||||
@@ -27,43 +27,42 @@ static groestl_ctx_holder groestl_ctx;
|
||||
void init_groestl_ctx()
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512_init( &groestl_ctx.groestl );
|
||||
sph_groestl512_init( &groestl_ctx.groestl1 );
|
||||
sph_groestl512_init( &groestl_ctx.groestl2 );
|
||||
#else
|
||||
init_groestl( &groestl_ctx.groestl1, 64 );
|
||||
init_groestl( &groestl_ctx.groestl2, 64 );
|
||||
#endif
|
||||
}
|
||||
|
||||
void groestlhash(void *output, const void *input)
|
||||
void groestlhash( void *output, const void *input )
|
||||
{
|
||||
uint32_t _ALIGN(32) hash[16];
|
||||
groestl_ctx_holder ctx;
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
groestl_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &groestl_ctx, sizeof(groestl_ctx) );
|
||||
|
||||
// memset(&hash[0], 0, sizeof(hash));
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512(&ctx.groestl1, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl1, hash);
|
||||
|
||||
sph_groestl512(&ctx.groestl, hash, 64);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512(&ctx.groestl2, hash, 64);
|
||||
sph_groestl512_close(&ctx.groestl2, hash);
|
||||
#else
|
||||
update_groestl( &ctx.groestl1, (char*)input, 640 );
|
||||
final_groestl( &ctx.groestl1,(char*)hash);
|
||||
update_and_final_groestl( &ctx.groestl1, (char*)hash,
|
||||
(const char*)input, 640 );
|
||||
|
||||
update_groestl( &ctx.groestl2, (char*)hash, 512 );
|
||||
final_groestl( &ctx.groestl2, (char*)hash);
|
||||
update_and_final_groestl( &ctx.groestl2, (char*)hash,
|
||||
(const char*)hash, 512 );
|
||||
#endif
|
||||
memcpy(output, hash, 32);
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_groestl(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
int scanhash_groestl( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
@@ -74,7 +73,7 @@ int scanhash_groestl(int thr_id, struct work *work,
|
||||
|
||||
do {
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[8];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
be32enc(&endiandata[19], nonce);
|
||||
groestlhash(hash, endiandata);
|
||||
|
||||
@@ -106,10 +105,16 @@ bool register_groestl_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_groestl;
|
||||
gate->hash = (void*)&groestlhash;
|
||||
gate->hash_alt = (void*)&groestlhash;
|
||||
gate->set_target = (void*)&groestl_set_target;
|
||||
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
||||
bool register_dmd_gr_algo( algo_gate_t* gate )
|
||||
{
|
||||
register_groestl_algo( gate );
|
||||
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -11,7 +11,12 @@
|
||||
#else
|
||||
#include "aes_ni/hash-groestl.h"
|
||||
#endif
|
||||
#include "algo/sha3/sph_sha2.h"
|
||||
|
||||
#if defined __SHA__
|
||||
#include <openssl/sha.h>
|
||||
#else
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
#ifdef NO_AES_NI
|
||||
@@ -19,7 +24,11 @@ typedef struct {
|
||||
#else
|
||||
hashState_groestl groestl;
|
||||
#endif
|
||||
sph_sha256_context sha;
|
||||
#if defined __SHA__
|
||||
SHA256_CTX sha;
|
||||
#else
|
||||
sph_sha256_context sha;
|
||||
#endif
|
||||
} myrgr_ctx_holder;
|
||||
|
||||
myrgr_ctx_holder myrgr_ctx;
|
||||
@@ -31,37 +40,44 @@ void init_myrgr_ctx()
|
||||
#else
|
||||
init_groestl (&myrgr_ctx.groestl, 64 );
|
||||
#endif
|
||||
sph_sha256_init(&myrgr_ctx.sha);
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &myrgr_ctx.sha );
|
||||
#else
|
||||
sph_sha256_init( &myrgr_ctx.sha );
|
||||
#endif
|
||||
}
|
||||
|
||||
void myriadhash(void *output, const void *input)
|
||||
void myriadhash( void *output, const void *input )
|
||||
{
|
||||
myrgr_ctx_holder ctx;
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
|
||||
uint32_t _ALIGN(32) hash[16];
|
||||
myrgr_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &myrgr_ctx, sizeof(myrgr_ctx) );
|
||||
uint32_t hash[16] __attribute__ ((aligned (64)));
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512(&ctx.groestl, input, 80);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
#else
|
||||
update_groestl( &ctx.groestl, (char*)input, 640 );
|
||||
final_groestl( &ctx.groestl, (char*)hash);
|
||||
update_and_final_groestl( &ctx.groestl, (char*)input,
|
||||
(const char*)input, 640 );
|
||||
#endif
|
||||
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
#if defined __SHA__
|
||||
SHA256_Update( &ctx.sha, hash, 64 );
|
||||
SHA256_Final( (unsigned char*) hash, &ctx.sha );
|
||||
#else
|
||||
sph_sha256(&ctx.sha, hash, 64);
|
||||
sph_sha256_close(&ctx.sha, hash);
|
||||
#endif
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_myriad(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
int scanhash_myriad( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
|
||||
@@ -72,7 +88,7 @@ int scanhash_myriad(int thr_id, struct work *work,
|
||||
|
||||
do {
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[8];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
be32enc(&endiandata[19], nonce);
|
||||
myriadhash(hash, endiandata);
|
||||
|
||||
@@ -92,11 +108,10 @@ int scanhash_myriad(int thr_id, struct work *work,
|
||||
|
||||
bool register_myriad_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SHA_OPT;
|
||||
init_myrgr_ctx();
|
||||
gate->scanhash = (void*)&scanhash_myriad;
|
||||
gate->hash = (void*)&myriadhash;
|
||||
gate->hash_alt = (void*)&myriadhash;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -40,7 +40,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for Groestl-224.
|
||||
|
@@ -1,133 +0,0 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _BRG_ENDIAN_H
|
||||
#define _BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __sun )
|
||||
# include <sys/isa_defs.h>
|
||||
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined( _AIX )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
@@ -1,231 +0,0 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
(a few lines added by Soeren S. Thomsen, October 2008)
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef _BRG_TYPES_H
|
||||
#define _BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# include <stddef.h>
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 )
|
||||
# include <stdint.h>
|
||||
# define ptrint_t intptr_t
|
||||
#else
|
||||
# define ptrint_t int
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI8
|
||||
# define BRG_UI8
|
||||
# if UCHAR_MAX == 255u
|
||||
typedef unsigned char uint_8t;
|
||||
# else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI16
|
||||
# define BRG_UI16
|
||||
# if USHRT_MAX == 65535u
|
||||
typedef unsigned short uint_16t;
|
||||
# else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI32
|
||||
# define BRG_UI32
|
||||
# if UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
typedef unsigned int uint_32t;
|
||||
# elif ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
typedef unsigned long uint_32t;
|
||||
# elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
# else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI64
|
||||
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( __MVS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned int long long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##u
|
||||
typedef unsigned int uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ul
|
||||
typedef unsigned long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined( BRG_UI64 )
|
||||
# if defined( NEED_UINT_64T )
|
||||
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to detect and set the memory alignment of pointers.
|
||||
Note that offsets are in bytes.
|
||||
|
||||
ALIGN_OFFSET(x,n) return the positive or zero offset of
|
||||
the memory addressed by the pointer 'x'
|
||||
from an address that is aligned on an
|
||||
'n' byte boundary ('n' is a power of 2)
|
||||
|
||||
ALIGN_FLOOR(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not higher than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
|
||||
ALIGN_CEIL(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not lower than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
*/
|
||||
|
||||
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
|
||||
#define ALIGN_FLOOR(x,n) ((uint_8t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
|
||||
#define ALIGN_CEIL(x,n) ((uint_8t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8. NOTE that the
|
||||
buffer size is in bytes but the type length is in bits
|
||||
|
||||
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
UNIT_CAST(x,size) casts a variable to a type of
|
||||
length 'size' bits
|
||||
|
||||
UPTR_CAST(x,size) casts a pointer to a pointer to a
|
||||
varaiable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define UI_TYPE(size) uint_##size##t
|
||||
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
|
||||
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
|
||||
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
|
||||
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
|
||||
|
||||
/* Added by Soeren S. Thomsen (begin) */
|
||||
#define u8 uint_8t
|
||||
#define u32 uint_32t
|
||||
#define u64 uint_64t
|
||||
/* (end) */
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@@ -1,10 +0,0 @@
|
||||
#ifndef GRSOASM_H
|
||||
#define GRSOASM_H
|
||||
|
||||
#include "grso.h"
|
||||
|
||||
void grsoP1024ASM (u64 *x) ;
|
||||
|
||||
void grsoQ1024ASM (u64 *x) ;
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@@ -1,11 +0,0 @@
|
||||
#ifndef GRSOASM_H
|
||||
#define GRSOASM_H
|
||||
/* really same as the mmx asm.h */
|
||||
/* made just in case something must be changed */
|
||||
#include "grso.h"
|
||||
|
||||
void grsoP1024ASM (u64 *x) ;
|
||||
|
||||
void grsoQ1024ASM (u64 *x) ;
|
||||
|
||||
#endif
|
@@ -1,110 +0,0 @@
|
||||
/* hash.c January 2011
|
||||
*
|
||||
* Groestl-512 implementation with inline assembly containing mmx and
|
||||
* sse instructions. Optimized for Opteron.
|
||||
* Authors: Krystian Matusiewicz and Soeren S. Thomsen
|
||||
*
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
//#include "grso.h"
|
||||
//#include "grso-asm.h"
|
||||
// #include "grsotab.h"
|
||||
|
||||
#define DECL_GRS
|
||||
|
||||
/* load initial constants */
|
||||
#define GRS_I \
|
||||
do { \
|
||||
int i; \
|
||||
/* set initial value */ \
|
||||
for (i = 0; i < grsoCOLS-1; i++) sts_grs.grsstate[i] = 0; \
|
||||
sts_grs.grsstate[grsoCOLS-1] = grsoU64BIG((u64)(8*grsoDIGESTSIZE)); \
|
||||
\
|
||||
/* set other variables */ \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
sts_grs.grsblock_counter = 0; \
|
||||
} while (0); \
|
||||
|
||||
/* load hash */
|
||||
#define GRS_U \
|
||||
do { \
|
||||
unsigned char* in = hash; \
|
||||
unsigned long long index = 0; \
|
||||
\
|
||||
/* if the buffer contains data that has not yet been digested, first \
|
||||
add data to buffer until full */ \
|
||||
if (sts_grs.grsbuf_ptr) { \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE && index < 64) { \
|
||||
hashbuf[(int)sts_grs.grsbuf_ptr++] = in[index++]; \
|
||||
} \
|
||||
if (sts_grs.grsbuf_ptr < grsoSIZE) continue; \
|
||||
\
|
||||
/* digest buffer */ \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
} \
|
||||
\
|
||||
/* digest bulk of message */ \
|
||||
grsoTransform(&sts_grs, in+index, 64-index); \
|
||||
index += ((64-index)/grsoSIZE)*grsoSIZE; \
|
||||
\
|
||||
/* store remaining data in buffer */ \
|
||||
while (index < 64) { \
|
||||
hashbuf[(int)sts_grs.grsbuf_ptr++] = in[index++]; \
|
||||
} \
|
||||
\
|
||||
} while (0);
|
||||
|
||||
/* groestl512 hash loaded */
|
||||
/* hash = groestl512(loaded) */
|
||||
#define GRS_C \
|
||||
do { \
|
||||
char *out = hash; \
|
||||
int i, j = 0; \
|
||||
unsigned char *s = (unsigned char*)sts_grs.grsstate; \
|
||||
\
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0x80; \
|
||||
\
|
||||
/* pad with '0'-bits */ \
|
||||
if (sts_grs.grsbuf_ptr > grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
/* padding requires two blocks */ \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE) { \
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0; \
|
||||
} \
|
||||
/* digest first padding block */ \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
sts_grs.grsbuf_ptr = 0; \
|
||||
} \
|
||||
while (sts_grs.grsbuf_ptr < grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
hashbuf[sts_grs.grsbuf_ptr++] = 0; \
|
||||
} \
|
||||
\
|
||||
/* length padding */ \
|
||||
sts_grs.grsblock_counter++; \
|
||||
sts_grs.grsbuf_ptr = grsoSIZE; \
|
||||
while (sts_grs.grsbuf_ptr > grsoSIZE-grsoLENGTHFIELDLEN) { \
|
||||
hashbuf[--sts_grs.grsbuf_ptr] = (unsigned char)sts_grs.grsblock_counter; \
|
||||
sts_grs.grsblock_counter >>= 8; \
|
||||
} \
|
||||
\
|
||||
/* digest final padding block */ \
|
||||
grsoTransform(&sts_grs, hashbuf, grsoSIZE); \
|
||||
/* perform output transformation */ \
|
||||
grsoOutputTransformation(&sts_grs); \
|
||||
\
|
||||
/* store hash result in output */ \
|
||||
for (i = grsoSIZE-grsoDIGESTSIZE; i < grsoSIZE; i++,j++) { \
|
||||
out[j] = s[i]; \
|
||||
} \
|
||||
\
|
||||
/* zeroise relevant variables and deallocate memory */ \
|
||||
for (i = 0; i < grsoCOLS; i++) { \
|
||||
sts_grs.grsstate[i] = 0; \
|
||||
} \
|
||||
for (i = 0; i < grsoSIZE; i++) { \
|
||||
hashbuf[i] = 0; \
|
||||
} \
|
||||
} while (0);
|
||||
|
||||
|
@@ -1,57 +0,0 @@
|
||||
/* hash.c January 2011
|
||||
*
|
||||
* Groestl-512 implementation with inline assembly containing mmx and
|
||||
* sse instructions. Optimized for Opteron.
|
||||
* Authors: Krystian Matusiewicz and Soeren S. Thomsen
|
||||
*
|
||||
* This code is placed in the public domain
|
||||
*/
|
||||
|
||||
#include "algo/groestl/sse2/grso-asm.h"
|
||||
#include "algo/groestl/sse2/grso.h"
|
||||
#include "algo/groestl/sse2/grsotab.h"
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void grsoTransform(grsoState *ctx,
|
||||
const unsigned char *in,
|
||||
unsigned long long len) {
|
||||
u64 y[grsoCOLS+2] __attribute__ ((aligned (16)));
|
||||
u64 z[grsoCOLS+2] __attribute__ ((aligned (16)));
|
||||
u64 *m, *h = (u64*)ctx->grsstate;
|
||||
int i;
|
||||
|
||||
/* increment block counter */
|
||||
ctx->grsblock_counter += len/grsoSIZE;
|
||||
|
||||
/* digest message, one block at a time */
|
||||
for (; len >= grsoSIZE; len -= grsoSIZE, in += grsoSIZE) {
|
||||
m = (u64*)in;
|
||||
for (i = 0; i < grsoCOLS; i++) {
|
||||
y[i] = m[i];
|
||||
z[i] = m[i] ^ h[i];
|
||||
}
|
||||
|
||||
grsoQ1024ASM(y);
|
||||
grsoP1024ASM(z);
|
||||
|
||||
/* h' == h + Q(m) + P(h+m) */
|
||||
for (i = 0; i < grsoCOLS; i++) {
|
||||
h[i] ^= z[i] ^ y[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void grsoOutputTransformation(grsoState *ctx) {
|
||||
u64 z[grsoCOLS] __attribute__ ((aligned (16)));
|
||||
int j;
|
||||
|
||||
for (j = 0; j < grsoCOLS; j++) {
|
||||
z[j] = ctx->grsstate[j];
|
||||
}
|
||||
grsoP1024ASM(z);
|
||||
for (j = 0; j < grsoCOLS; j++) {
|
||||
ctx->grsstate[j] ^= z[j];
|
||||
}
|
||||
}
|
||||
|
@@ -1,62 +0,0 @@
|
||||
#ifndef __hash_h
|
||||
#define __hash_h
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "brg_endian.h"
|
||||
#include "brg_types.h"
|
||||
|
||||
/* some sizes (number of bytes) */
|
||||
#define grsoROWS 8
|
||||
#define grsoLENGTHFIELDLEN grsoROWS
|
||||
#define grsoCOLS 16
|
||||
#define grsoSIZE (grsoROWS*grsoCOLS)
|
||||
#define grsoDIGESTSIZE 64
|
||||
|
||||
#define grsoROUNDS 14
|
||||
|
||||
#define grsoROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&((u64)0xffffffffffffffffULL))
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
|
||||
#error
|
||||
#endif /* IS_BIG_ENDIAN */
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*n)))
|
||||
#define grsoU64BIG(a) \
|
||||
((grsoROTL64(a, 8) & ((u64)0x000000ff000000ffULL)) | \
|
||||
(grsoROTL64(a,24) & ((u64)0x0000ff000000ff00ULL)) | \
|
||||
(grsoROTL64(a,40) & ((u64)0x00ff000000ff0000ULL)) | \
|
||||
(grsoROTL64(a,56) & ((u64)0xff000000ff000000ULL)))
|
||||
#endif /* IS_LITTLE_ENDIAN */
|
||||
|
||||
typedef struct {
|
||||
u64 grsstate[grsoCOLS]; /* actual state */
|
||||
u64 grsblock_counter; /* message block counter */
|
||||
int grsbuf_ptr; /* data buffer pointer */
|
||||
} grsoState;
|
||||
|
||||
//extern int grsoInit(grsoState* ctx);
|
||||
//extern int grsoUpdate(grsoState* ctx, const unsigned char* in,
|
||||
// unsigned long long len);
|
||||
//extern int grsoUpdateq(grsoState* ctx, const unsigned char* in);
|
||||
//extern int grsoFinal(grsoState* ctx,
|
||||
// unsigned char* out);
|
||||
//
|
||||
//extern int grsohash(unsigned char *out,
|
||||
// const unsigned char *in,
|
||||
// unsigned long long len);
|
||||
|
||||
/* digest up to len bytes of input (full blocks only) */
|
||||
void grsoTransform( grsoState *ctx, const unsigned char *in,
|
||||
unsigned long long len );
|
||||
|
||||
/* given state h, do h <- P(h)+h */
|
||||
void grsoOutputTransformation( grsoState *ctx );
|
||||
|
||||
int grso_init ( grsoState* sts_grs );
|
||||
int grso_update ( grsoState* sts_grs, char* hashbuf, char* hash );
|
||||
int grso_close ( grsoState *sts_grs, char* hashbuf, char* hash );
|
||||
|
||||
|
||||
#endif /* __hash_h */
|
File diff suppressed because one or more lines are too long
@@ -36,7 +36,7 @@
|
||||
#define SPH_HAMSI_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"{
|
||||
|
@@ -66,7 +66,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for HAVAL-128/3.
|
||||
|
@@ -25,7 +25,7 @@
|
||||
|
||||
void bastionhash(void *output, const void *input)
|
||||
{
|
||||
unsigned char _ALIGN(128) hash[64] = { 0 };
|
||||
unsigned char hash[64] __attribute__ ((aligned (64)));
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_echo512_context ctx_echo;
|
||||
@@ -36,7 +36,6 @@ void bastionhash(void *output, const void *input)
|
||||
sph_fugue512_context ctx_fugue;
|
||||
sph_whirlpool_context ctx_whirlpool;
|
||||
sph_shabal512_context ctx_shabal;
|
||||
// sph_skein512_context ctx_skein;
|
||||
sph_hamsi512_context ctx_hamsi;
|
||||
|
||||
unsigned char hashbuf[128] __attribute__ ((aligned (16)));
|
||||
@@ -47,8 +46,10 @@ void bastionhash(void *output, const void *input)
|
||||
HEFTY1(input, 80, hash);
|
||||
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
|
||||
if (hash[0] & 0x8)
|
||||
{
|
||||
@@ -60,9 +61,6 @@ void bastionhash(void *output, const void *input)
|
||||
SKN_I;
|
||||
SKN_U;
|
||||
SKN_C;
|
||||
// sph_skein512_init(&ctx_skein);
|
||||
// sph_skein512(&ctx_skein, hash, 64);
|
||||
// sph_skein512_close(&ctx_skein, hash);
|
||||
}
|
||||
|
||||
sph_whirlpool_init(&ctx_whirlpool);
|
||||
@@ -81,13 +79,17 @@ void bastionhash(void *output, const void *input)
|
||||
sph_echo512_close(&ctx_echo, hash);
|
||||
#else
|
||||
init_echo( &ctx_echo, 512 );
|
||||
update_echo ( &ctx_echo, hash, 512 );
|
||||
final_echo( &ctx_echo, hash );
|
||||
update_final_echo ( &ctx_echo,(BitSequence*)hash,
|
||||
(const BitSequence*)hash, 512 );
|
||||
// update_echo ( &ctx_echo, hash, 512 );
|
||||
// final_echo( &ctx_echo, hash );
|
||||
#endif
|
||||
} else {
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
}
|
||||
|
||||
sph_shabal512_init(&ctx_shabal);
|
||||
@@ -98,9 +100,6 @@ void bastionhash(void *output, const void *input)
|
||||
SKN_I;
|
||||
SKN_U;
|
||||
SKN_C;
|
||||
// sph_skein512_init(&ctx_skein);
|
||||
// sph_skein512(&ctx_skein, hash, 64);
|
||||
// sph_skein512_close(&ctx_skein, hash);
|
||||
|
||||
if (hash[0] & 0x8)
|
||||
{
|
||||
@@ -124,8 +123,10 @@ void bastionhash(void *output, const void *input)
|
||||
sph_hamsi512_close(&ctx_hamsi, hash);
|
||||
} else {
|
||||
init_luffa( &ctx_luffa, 512 );
|
||||
update_luffa( &ctx_luffa, hash, 64 );
|
||||
final_luffa( &ctx_luffa, hash );
|
||||
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)hash, 64 );
|
||||
// update_luffa( &ctx_luffa, hash, 64 );
|
||||
// final_luffa( &ctx_luffa, hash );
|
||||
}
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
@@ -170,7 +171,6 @@ bool register_bastion_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_bastion;
|
||||
gate->hash = (void*)&bastionhash;
|
||||
gate->hash_alt = (void*)&bastionhash;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -20,7 +20,7 @@
|
||||
#include "algo/fugue/sph_fugue.h"
|
||||
#include "algo/shabal/sph_shabal.h"
|
||||
#include "algo/whirlpool/sph_whirlpool.h"
|
||||
#include "algo/sha2/sph-sha2.h"
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include "algo/haval/sph-haval.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
@@ -58,8 +58,8 @@ typedef struct {
|
||||
#endif
|
||||
} hmq1725_ctx_holder;
|
||||
|
||||
static hmq1725_ctx_holder hmq1725_ctx;
|
||||
static __thread sph_bmw512_context hmq_bmw_mid;
|
||||
static hmq1725_ctx_holder hmq1725_ctx __attribute__ ((aligned (64)));
|
||||
static __thread sph_bmw512_context hmq_bmw_mid __attribute__ ((aligned (64)));
|
||||
|
||||
void init_hmq1725_ctx()
|
||||
{
|
||||
@@ -127,13 +127,13 @@ void hmq_bmw512_midstate( const void* input )
|
||||
sph_bmw512( &hmq_bmw_mid, input, 64 );
|
||||
}
|
||||
|
||||
__thread hmq1725_ctx_holder h_ctx;
|
||||
__thread hmq1725_ctx_holder h_ctx __attribute__ ((aligned (64)));
|
||||
|
||||
extern void hmq1725hash(void *state, const void *input)
|
||||
{
|
||||
const uint32_t mask = 24;
|
||||
uint32_t hashA[16] __attribute__((aligned(64)));
|
||||
uint32_t hashB[16] __attribute__((aligned(64)));
|
||||
uint32_t hashA[32] __attribute__((aligned(64)));
|
||||
uint32_t hashB[32] __attribute__((aligned(64)));
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
@@ -307,8 +307,8 @@ extern void hmq1725hash(void *state, const void *input)
|
||||
int scanhash_hmq1725( int thr_id, struct work *work, int32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t endiandata[20] __attribute__((aligned(64)));
|
||||
uint32_t hash64[8] __attribute__((aligned(32)));
|
||||
uint32_t endiandata[32] __attribute__((aligned(64)));
|
||||
uint32_t hash64[8] __attribute__((aligned(64)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t n = pdata[19] - 1;
|
||||
@@ -416,11 +416,10 @@ int scanhash_hmq1725( int thr_id, struct work *work, int32_t max_nonce,
|
||||
bool register_hmq1725_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_hmq1725_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->scanhash = (void*)&scanhash_hmq1725;
|
||||
gate->hash = (void*)&hmq1725hash;
|
||||
gate->hash_alt = (void*)&hmq1725hash;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -1,171 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_PRIMITIVES_BLOCK_H
|
||||
#define BITCOIN_PRIMITIVES_BLOCK_H
|
||||
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
|
||||
/** Nodes collect new transactions into a block, hash them into a hash tree,
|
||||
* and scan through nonce values to make the block's hash satisfy proof-of-work
|
||||
* requirements. When they solve the proof-of-work, they broadcast the block
|
||||
* to everyone and the block is added to the block chain. The first transaction
|
||||
* in the block is a special one that creates a new coin owned by the creator
|
||||
* of the block.
|
||||
*/
|
||||
class CBlockHeader
|
||||
{
|
||||
public:
|
||||
// header
|
||||
static const int32_t CURRENT_VERSION=4;
|
||||
int32_t nVersion;
|
||||
uint256 hashPrevBlock;
|
||||
uint256 hashMerkleRoot;
|
||||
uint32_t nTime;
|
||||
uint32_t nBits;
|
||||
uint32_t nNonce;
|
||||
uint32_t nStartLocation;
|
||||
uint32_t nFinalCalculation;
|
||||
|
||||
CBlockHeader()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(this->nVersion);
|
||||
nVersion = this->nVersion;
|
||||
READWRITE(hashPrevBlock);
|
||||
READWRITE(hashMerkleRoot);
|
||||
READWRITE(nTime);
|
||||
READWRITE(nBits);
|
||||
READWRITE(nNonce);
|
||||
READWRITE(nStartLocation);
|
||||
READWRITE(nFinalCalculation);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
nVersion = CBlockHeader::CURRENT_VERSION;
|
||||
hashPrevBlock.SetNull();
|
||||
hashMerkleRoot.SetNull();
|
||||
nTime = 0;
|
||||
nBits = 0;
|
||||
nNonce = 0;
|
||||
nStartLocation = 0;
|
||||
nFinalCalculation = 0;
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return (nBits == 0);
|
||||
}
|
||||
|
||||
uint256 GetHash() const;
|
||||
uint256 GetMidHash() const;
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad,int nThreads);
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad);
|
||||
|
||||
int64_t GetBlockTime() const
|
||||
{
|
||||
return (int64_t)nTime;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class CBlock : public CBlockHeader
|
||||
{
|
||||
public:
|
||||
// network and disk
|
||||
//std::vector<CTransaction> vtx;
|
||||
std::vector<int> vtx;
|
||||
|
||||
// memory only
|
||||
mutable std::vector<uint256> vMerkleTree;
|
||||
|
||||
CBlock()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
CBlock(const CBlockHeader &header)
|
||||
{
|
||||
SetNull();
|
||||
*((CBlockHeader*)this) = header;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(*(CBlockHeader*)this);
|
||||
READWRITE(vtx);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
CBlockHeader::SetNull();
|
||||
vtx.clear();
|
||||
vMerkleTree.clear();
|
||||
}
|
||||
|
||||
CBlockHeader GetBlockHeader() const
|
||||
{
|
||||
CBlockHeader block;
|
||||
block.nVersion = nVersion;
|
||||
block.hashPrevBlock = hashPrevBlock;
|
||||
block.hashMerkleRoot = hashMerkleRoot;
|
||||
block.nTime = nTime;
|
||||
block.nBits = nBits;
|
||||
block.nNonce = nNonce;
|
||||
block.nStartLocation = nStartLocation;
|
||||
block.nFinalCalculation = nFinalCalculation;
|
||||
return block;
|
||||
}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
|
||||
/** Describes a place in the block chain to another node such that if the
|
||||
* other node doesn't have the same branch, it can find a recent common trunk.
|
||||
* The further back it is, the further before the fork it may be.
|
||||
*/
|
||||
struct CBlockLocator
|
||||
{
|
||||
std::vector<uint256> vHave;
|
||||
|
||||
CBlockLocator() {}
|
||||
|
||||
CBlockLocator(const std::vector<uint256>& vHaveIn)
|
||||
{
|
||||
vHave = vHaveIn;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
if (!(nType & SER_GETHASH))
|
||||
READWRITE(nVersion);
|
||||
READWRITE(vHave);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
vHave.clear();
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return vHave.empty();
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_PRIMITIVES_BLOCK_H
|
@@ -1,70 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_COMMON_H
|
||||
#define BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
#if defined(HAVE_CONFIG_H)
|
||||
#include "bitcoin-config.h"
|
||||
#endif
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
uint16_t static inline ReadLE16(const unsigned char* ptr)
|
||||
{
|
||||
return le16toh(*((uint16_t*)ptr));
|
||||
}
|
||||
|
||||
uint32_t static inline ReadLE32(const unsigned char* ptr)
|
||||
{
|
||||
return le32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadLE64(const unsigned char* ptr)
|
||||
{
|
||||
return le64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteLE16(unsigned char* ptr, uint16_t x)
|
||||
{
|
||||
*((uint16_t*)ptr) = htole16(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htole32(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htole64(x);
|
||||
}
|
||||
|
||||
uint32_t static inline ReadBE32(const unsigned char* ptr)
|
||||
{
|
||||
return be32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadBE64(const unsigned char* ptr)
|
||||
{
|
||||
return be64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteBE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htobe32(x);
|
||||
}
|
||||
|
||||
void static inline WriteBE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htobe64(x);
|
||||
}
|
||||
|
||||
#endif // BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
//#endif
|
@@ -1,83 +0,0 @@
|
||||
// Copyright (c) 2013-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hash.h"
|
||||
#include "common.h"
|
||||
#include "hmac_sha512.h"
|
||||
|
||||
|
||||
inline uint32_t ROTL32(uint32_t x, int8_t r)
|
||||
{
|
||||
return (x << r) | (x >> (32 - r));
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash)
|
||||
{
|
||||
// The following is MurmurHash3 (x86_32), see http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
|
||||
uint32_t h1 = nHashSeed;
|
||||
if (vDataToHash.size() > 0)
|
||||
{
|
||||
const uint32_t c1 = 0xcc9e2d51;
|
||||
const uint32_t c2 = 0x1b873593;
|
||||
|
||||
const int nblocks = vDataToHash.size() / 4;
|
||||
|
||||
//----------
|
||||
// body
|
||||
const uint8_t* blocks = &vDataToHash[0] + nblocks * 4;
|
||||
|
||||
for (int i = -nblocks; i; i++) {
|
||||
uint32_t k1 = ReadLE32(blocks + i*4);
|
||||
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
|
||||
h1 ^= k1;
|
||||
h1 = ROTL32(h1, 13);
|
||||
h1 = h1 * 5 + 0xe6546b64;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
const uint8_t* tail = (const uint8_t*)(&vDataToHash[0] + nblocks * 4);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
|
||||
switch (vDataToHash.size() & 3) {
|
||||
case 3:
|
||||
k1 ^= tail[2] << 16;
|
||||
case 2:
|
||||
k1 ^= tail[1] << 8;
|
||||
case 1:
|
||||
k1 ^= tail[0];
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
h1 ^= k1;
|
||||
};
|
||||
}
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
h1 ^= vDataToHash.size();
|
||||
h1 ^= h1 >> 16;
|
||||
h1 *= 0x85ebca6b;
|
||||
h1 ^= h1 >> 13;
|
||||
h1 *= 0xc2b2ae35;
|
||||
h1 ^= h1 >> 16;
|
||||
|
||||
return h1;
|
||||
}
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
|
||||
{
|
||||
unsigned char num[4];
|
||||
num[0] = (nChild >> 24) & 0xFF;
|
||||
num[1] = (nChild >> 16) & 0xFF;
|
||||
num[2] = (nChild >> 8) & 0xFF;
|
||||
num[3] = (nChild >> 0) & 0xFF;
|
||||
CHMAC_SHA512(chainCode.begin(), chainCode.size()).Write(&header, 1).Write(data, 32).Write(num, 4).Finalize(output);
|
||||
}
|
||||
|
176
algo/hodl/hash.h
176
algo/hodl/hash.h
@@ -1,176 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_HASH_H
|
||||
#define BITCOIN_HASH_H
|
||||
|
||||
#include <iostream>
|
||||
//#include "ripemd160.h"
|
||||
#include "sha256.h"
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
//#include "version.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
static const int PROTOCOL_VERSION = 70002;
|
||||
|
||||
typedef uint256 ChainCode;
|
||||
|
||||
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
|
||||
class CHash256 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
sha.Reset().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash256& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash256& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
|
||||
/*
|
||||
class CHash160 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
CRIPEMD160().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash160& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash160& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
*/
|
||||
|
||||
/** Compute the 256-bit hash of an object. */
|
||||
template<typename T1>
|
||||
inline uint256 Hash(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of two objects. */
|
||||
template<typename T1, typename T2>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of three objects. */
|
||||
template<typename T1, typename T2, typename T3>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end,
|
||||
const T3 p3begin, const T3 p3end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** Compute the 160-bit hash an object. */
|
||||
/*
|
||||
template<typename T1>
|
||||
inline uint160 Hash160(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static unsigned char pblank[1] = {};
|
||||
uint160 result;
|
||||
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
*/
|
||||
/** Compute the 160-bit hash of a vector. */
|
||||
/*
|
||||
inline uint160 Hash160(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
return Hash160(vch.begin(), vch.end());
|
||||
}
|
||||
*/
|
||||
|
||||
/** A writer stream (for serialization) that computes a 256-bit hash. */
|
||||
class CHashWriter
|
||||
{
|
||||
private:
|
||||
CHash256 ctx;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CHashWriter& write(const char *pch, size_t size) {
|
||||
ctx.Write((const unsigned char*)pch, size);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
// invalidates the object
|
||||
uint256 GetHash() {
|
||||
uint256 result;
|
||||
ctx.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CHashWriter& operator<<(const T& obj) {
|
||||
// Serialize to this stream
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
};
|
||||
|
||||
/** Compute the 256-bit hash of an object's serialization. */
|
||||
template<typename T>
|
||||
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
|
||||
{
|
||||
CHashWriter ss(nType, nVersion);
|
||||
ss << obj;
|
||||
return ss.GetHash();
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
|
||||
|
||||
#endif // BITCOIN_HASH_H
|
@@ -1,33 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hmac_sha512.h"
|
||||
#include <string.h>
|
||||
|
||||
CHMAC_SHA512::CHMAC_SHA512(const unsigned char* key, size_t keylen)
|
||||
{
|
||||
unsigned char rkey[128];
|
||||
if (keylen <= 128) {
|
||||
memcpy(rkey, key, keylen);
|
||||
memset(rkey + keylen, 0, 128 - keylen);
|
||||
} else {
|
||||
CSHA512().Write(key, keylen).Finalize(rkey);
|
||||
memset(rkey + 64, 0, 64);
|
||||
}
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c;
|
||||
outer.Write(rkey, 128);
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c ^ 0x36;
|
||||
inner.Write(rkey, 128);
|
||||
}
|
||||
|
||||
void CHMAC_SHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
unsigned char temp[64];
|
||||
inner.Finalize(temp);
|
||||
outer.Write(temp, 64).Finalize(hash);
|
||||
}
|
@@ -1,32 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
#define BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
|
||||
#include "sha512.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for HMAC-SHA-512. */
|
||||
class CHMAC_SHA512
|
||||
{
|
||||
private:
|
||||
CSHA512 outer;
|
||||
CSHA512 inner;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CHMAC_SHA512(const unsigned char* key, size_t keylen);
|
||||
CHMAC_SHA512& Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
inner.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_HMAC_SHA512_H
|
@@ -4,7 +4,7 @@
|
||||
#include "miner.h"
|
||||
//#include "algo-gate-api.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl.h"
|
||||
//#include "hodl.h"
|
||||
#include "hodl-wolf.h"
|
||||
|
||||
#define HODL_NSTARTLOC_INDEX 20
|
||||
@@ -98,9 +98,11 @@ int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
GetPsuedoRandomData( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl( thr_id, work, max_nonce, hashes_done );
|
||||
applog( LOG_ERR, "Only CPUs with AES are supported, use legacy version.");
|
||||
return false;
|
||||
// GetPsuedoRandomData( hodl_scratchbuf, work->data, thr_id );
|
||||
// pthread_barrier_wait( &hodl_barrier );
|
||||
// return scanhash_hodl( thr_id, work, max_nonce, hashes_done );
|
||||
#else
|
||||
GenRandomGarbage( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
|
@@ -13,35 +13,41 @@
|
||||
void GenerateGarbageCore(CacheEntry *Garbage, int ThreadID, int ThreadCount, void *MidHash)
|
||||
{
|
||||
#ifdef __AVX__
|
||||
uint64_t* TempBufs[SHA512_PARALLEL_N];
|
||||
uint64_t* TempBufs[SHA512_PARALLEL_N] ;
|
||||
uint64_t* desination[SHA512_PARALLEL_N];
|
||||
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
for ( int i=0; i<SHA512_PARALLEL_N; ++i )
|
||||
{
|
||||
TempBufs[i] = (uint64_t*)malloc(32);
|
||||
memcpy(TempBufs[i], MidHash, 32);
|
||||
}
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N) {
|
||||
for(int j=0; j<SHA512_PARALLEL_N; ++j) {
|
||||
((uint32_t*)TempBufs[j])[0] = i + j;
|
||||
desination[j] = (uint64_t*)((uint8_t *)Garbage + ((i+j) * GARBAGE_CHUNK_SIZE));
|
||||
for ( uint32_t i = StartChunk;
|
||||
i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N )
|
||||
{
|
||||
for ( int j=0; j<SHA512_PARALLEL_N; ++j )
|
||||
{
|
||||
( (uint32_t*)TempBufs[j] )[0] = i + j;
|
||||
desination[j] = (uint64_t*)( (uint8_t *)Garbage + ( (i+j)
|
||||
* GARBAGE_CHUNK_SIZE ) );
|
||||
}
|
||||
sha512Compute32b_parallel(TempBufs, desination);
|
||||
sha512Compute32b_parallel( TempBufs, desination );
|
||||
}
|
||||
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
free(TempBufs[i]);
|
||||
}
|
||||
for ( int i=0; i<SHA512_PARALLEL_N; ++i )
|
||||
free( TempBufs[i] );
|
||||
#else
|
||||
uint32_t TempBuf[8];
|
||||
memcpy(TempBuf, MidHash, 32);
|
||||
memcpy( TempBuf, MidHash, 32 );
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i)
|
||||
for ( uint32_t i = StartChunk;
|
||||
i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i )
|
||||
{
|
||||
TempBuf[0] = i;
|
||||
SHA512((uint8_t *)TempBuf, 32, ((uint8_t *)Garbage) + (i * GARBAGE_CHUNK_SIZE));
|
||||
SHA512( ( uint8_t *)TempBuf, 32,
|
||||
( (uint8_t *)Garbage ) + ( i * GARBAGE_CHUNK_SIZE ) );
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@@ -1,168 +0,0 @@
|
||||
#include "miner.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "block.h"
|
||||
#include <sstream>
|
||||
#include "tinyformat.h"
|
||||
#include <unordered_map>
|
||||
#include "hash.h"
|
||||
#include <openssl/aes.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/sha.h>
|
||||
|
||||
#define BEGIN(a) ((char*)&(a))
|
||||
#define END(a) ((char*)&((&(a))[1]))
|
||||
#define PSUEDORANDOM_DATA_SIZE 30 //2^30 = 1GB
|
||||
#define PSUEDORANDOM_DATA_CHUNK_SIZE 6 //2^6 = 64 bytes //must be same as SHA512_DIGEST_LENGTH 64
|
||||
#define L2CACHE_TARGET 12 // 2^12 = 4096 bytes
|
||||
#define AES_ITERATIONS 15
|
||||
|
||||
void SHA512Filler(char *mainMemoryPsuedoRandomData, int threadNumber, uint256 midHash){
|
||||
//Generate psuedo random data to store in main memory
|
||||
uint32_t chunks=(1<<(PSUEDORANDOM_DATA_SIZE-PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^(30-6) = 16 mil
|
||||
uint32_t chunkSize=(1<<(PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^6 = 64 bytes
|
||||
unsigned char hash_tmp[sizeof(midHash)];
|
||||
memcpy((char*)&hash_tmp[0], (char*)&midHash, sizeof(midHash) );
|
||||
uint32_t* index = (uint32_t*)hash_tmp;
|
||||
// uint32_t chunksToProcess=chunks/totalThreads;
|
||||
uint32_t chunksToProcess = chunks / opt_n_threads;
|
||||
uint32_t startChunk=threadNumber*chunksToProcess;
|
||||
for( uint32_t i = startChunk; i < startChunk+chunksToProcess; i++){
|
||||
//This changes the first character of hash_tmp
|
||||
*index = i;
|
||||
SHA512((unsigned char*)hash_tmp, sizeof(hash_tmp), (unsigned char*)&(mainMemoryPsuedoRandomData[i*chunkSize]));
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
// max_nonce is not used by this function
|
||||
int scanhash_hodl( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
unsigned char *mainMemoryPsuedoRandomData = hodl_scratchbuf;
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
//retreive target
|
||||
std::stringstream s;
|
||||
for (int i = 7; i>=0; i--)
|
||||
s << strprintf("%08x", ptarget[i]);
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock=uint256S(p.str());
|
||||
pblock.hashMerkleRoot=uint256S(m.str());
|
||||
uint256 hashTarget=uint256S(s.str());
|
||||
int collisions=0;
|
||||
uint256 hash;
|
||||
|
||||
//Begin AES Search
|
||||
//Allocate temporary memory
|
||||
uint32_t cacheMemorySize = (1<<L2CACHE_TARGET); //2^12 = 4096 bytes
|
||||
uint32_t comparisonSize=(1<<(PSUEDORANDOM_DATA_SIZE-L2CACHE_TARGET)); //2^(30-12) = 256K
|
||||
unsigned char *cacheMemoryOperatingData;
|
||||
unsigned char *cacheMemoryOperatingData2;
|
||||
cacheMemoryOperatingData=new unsigned char[cacheMemorySize+16];
|
||||
cacheMemoryOperatingData2=new unsigned char[cacheMemorySize];
|
||||
//Create references to data as 32 bit arrays
|
||||
uint32_t* cacheMemoryOperatingData32 = (uint32_t*)cacheMemoryOperatingData;
|
||||
uint32_t* cacheMemoryOperatingData322 = (uint32_t*)cacheMemoryOperatingData2;
|
||||
|
||||
//Search for pattern in psuedorandom data
|
||||
unsigned char key[32] = {0};
|
||||
unsigned char iv[AES_BLOCK_SIZE];
|
||||
int outlen1, outlen2;
|
||||
|
||||
//Iterate over the data
|
||||
// int searchNumber=comparisonSize/totalThreads;
|
||||
int searchNumber = comparisonSize / opt_n_threads;
|
||||
int startLoc=threadNumber*searchNumber;
|
||||
EVP_CIPHER_CTX ctx;
|
||||
for(int32_t k = startLoc;k<startLoc+searchNumber && !work_restart[threadNumber].restart;k++){
|
||||
//copy data to first l2 cache
|
||||
memcpy((char*)&cacheMemoryOperatingData[0], (char*)&mainMemoryPsuedoRandomData[k*cacheMemorySize], cacheMemorySize);
|
||||
for(int j=0;j<AES_ITERATIONS;j++){
|
||||
//use last 4 bytes of first cache as next location
|
||||
uint32_t nextLocation = cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
//Copy data from indicated location to second l2 cache -
|
||||
memcpy((char*)&cacheMemoryOperatingData2[0], (char*)&mainMemoryPsuedoRandomData[nextLocation*cacheMemorySize], cacheMemorySize);
|
||||
//XOR location data into second cache
|
||||
for(uint32_t i = 0; i < cacheMemorySize/4; i++)
|
||||
cacheMemoryOperatingData322[i] = cacheMemoryOperatingData32[i] ^ cacheMemoryOperatingData322[i];
|
||||
memcpy(key,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-32],32);
|
||||
memcpy(iv,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-AES_BLOCK_SIZE],AES_BLOCK_SIZE);
|
||||
EVP_EncryptInit(&ctx, EVP_aes_256_cbc(), key, iv);
|
||||
EVP_EncryptUpdate(&ctx, cacheMemoryOperatingData, &outlen1, cacheMemoryOperatingData2, cacheMemorySize);
|
||||
EVP_EncryptFinal(&ctx, cacheMemoryOperatingData + outlen1, &outlen2);
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
}
|
||||
//use last X bits as solution
|
||||
uint32_t solution=cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
if(solution<1000){
|
||||
uint32_t proofOfCalculation=cacheMemoryOperatingData32[(cacheMemorySize/4)-2];
|
||||
pblock.nStartLocation = k;
|
||||
pblock.nFinalCalculation = proofOfCalculation;
|
||||
hash = Hash(BEGIN(pblock.nVersion), END(pblock.nFinalCalculation));
|
||||
collisions++;
|
||||
if (UintToArith256(hash) <= UintToArith256(hashTarget) && !work_restart[threadNumber].restart){
|
||||
pdata[21] = swab32(pblock.nFinalCalculation);
|
||||
pdata[20] = swab32(pblock.nStartLocation);
|
||||
*hashes_done = collisions;
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
*hashes_done = collisions;
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData, uint32_t *pdata,
|
||||
int thr_id )
|
||||
{
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock= uint256S(p.str());
|
||||
pblock.hashMerkleRoot= uint256S(m.str());
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
uint256 midHash = Hash(BEGIN(pblock.nVersion), END(pblock.nNonce));
|
||||
SHA512Filler( mainMemoryPsuedoRandomData, thr_id, midHash);
|
||||
}
|
@@ -1,11 +0,0 @@
|
||||
extern int scanhash_hodl( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
extern void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData,
|
||||
uint32_t *pdata, int thr_id );
|
||||
|
||||
void hodl_set_target( struct work* work, double diff );
|
||||
|
||||
void hodl_copy_workdata( struct work* work, struct work* g_work );
|
||||
|
||||
|
@@ -1,258 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include "common.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>::base_uint(const std::string& str)
|
||||
{
|
||||
SetHex(str);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i + k + 1 < WIDTH && shift != 0)
|
||||
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
|
||||
if (i + k < WIDTH)
|
||||
pn[i + k] |= (a.pn[i] << shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i - k - 1 >= 0 && shift != 0)
|
||||
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
|
||||
if (i - k >= 0)
|
||||
pn[i - k] |= (a.pn[i] >> shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
uint64_t n = carry + (uint64_t)b32 * pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> a = *this;
|
||||
*this = 0;
|
||||
for (int j = 0; j < WIDTH; j++) {
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i + j < WIDTH; i++) {
|
||||
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
|
||||
pn[i + j] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> div = b; // make a copy, so we can shift.
|
||||
base_uint<BITS> num = *this; // make a copy, so we can subtract.
|
||||
*this = 0; // the quotient.
|
||||
int num_bits = num.bits();
|
||||
int div_bits = div.bits();
|
||||
if (div_bits == 0)
|
||||
throw uint_error("Division by zero");
|
||||
if (div_bits > num_bits) // the result is certainly 0.
|
||||
return *this;
|
||||
int shift = num_bits - div_bits;
|
||||
div <<= shift; // shift so that div and num align.
|
||||
while (shift >= 0) {
|
||||
if (num >= div) {
|
||||
num -= div;
|
||||
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
|
||||
}
|
||||
div >>= 1; // shift back.
|
||||
shift--;
|
||||
}
|
||||
// num now contains the remainder of the division.
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 0; i--) {
|
||||
if (pn[i] < b.pn[i])
|
||||
return -1;
|
||||
if (pn[i] > b.pn[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
bool base_uint<BITS>::EqualTo(uint64_t b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 2; i--) {
|
||||
if (pn[i])
|
||||
return false;
|
||||
}
|
||||
if (pn[1] != (b >> 32))
|
||||
return false;
|
||||
if (pn[0] != (b & 0xfffffffful))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
double base_uint<BITS>::getdouble() const
|
||||
{
|
||||
double ret = 0.0;
|
||||
double fact = 1.0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
ret += fact * pn[i];
|
||||
fact *= 4294967296.0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::GetHex() const
|
||||
{
|
||||
return ArithToUint256(*this).GetHex();
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
*this = UintToArith256(uint256S(psz));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
unsigned int base_uint<BITS>::bits() const
|
||||
{
|
||||
for (int pos = WIDTH - 1; pos >= 0; pos--) {
|
||||
if (pn[pos]) {
|
||||
for (int bits = 31; bits > 0; bits--) {
|
||||
if (pn[pos] & 1 << bits)
|
||||
return 32 * pos + bits + 1;
|
||||
}
|
||||
return 32 * pos + 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_uint<256>
|
||||
template base_uint<256>::base_uint(const std::string&);
|
||||
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
|
||||
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
|
||||
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
|
||||
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
|
||||
template bool base_uint<256>::EqualTo(uint64_t) const;
|
||||
template double base_uint<256>::getdouble() const;
|
||||
template std::string base_uint<256>::GetHex() const;
|
||||
template std::string base_uint<256>::ToString() const;
|
||||
template void base_uint<256>::SetHex(const char*);
|
||||
template void base_uint<256>::SetHex(const std::string&);
|
||||
template unsigned int base_uint<256>::bits() const;
|
||||
|
||||
// This implementation directly uses shifts instead of going
|
||||
// through an intermediate MPI representation.
|
||||
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
|
||||
{
|
||||
int nSize = nCompact >> 24;
|
||||
uint32_t nWord = nCompact & 0x007fffff;
|
||||
if (nSize <= 3) {
|
||||
nWord >>= 8 * (3 - nSize);
|
||||
*this = nWord;
|
||||
} else {
|
||||
*this = nWord;
|
||||
*this <<= 8 * (nSize - 3);
|
||||
}
|
||||
if (pfNegative)
|
||||
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
|
||||
if (pfOverflow)
|
||||
*pfOverflow = nWord != 0 && ((nSize > 34) ||
|
||||
(nWord > 0xff && nSize > 33) ||
|
||||
(nWord > 0xffff && nSize > 32));
|
||||
return *this;
|
||||
}
|
||||
|
||||
uint32_t arith_uint256::GetCompact(bool fNegative) const
|
||||
{
|
||||
int nSize = (bits() + 7) / 8;
|
||||
uint32_t nCompact = 0;
|
||||
if (nSize <= 3) {
|
||||
nCompact = GetLow64() << 8 * (3 - nSize);
|
||||
} else {
|
||||
arith_uint256 bn = *this >> 8 * (nSize - 3);
|
||||
nCompact = bn.GetLow64();
|
||||
}
|
||||
// The 0x00800000 bit denotes the sign.
|
||||
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
|
||||
if (nCompact & 0x00800000) {
|
||||
nCompact >>= 8;
|
||||
nSize++;
|
||||
}
|
||||
assert((nCompact & ~0x007fffff) == 0);
|
||||
assert(nSize < 256);
|
||||
nCompact |= nSize << 24;
|
||||
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
|
||||
return nCompact;
|
||||
}
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &a)
|
||||
{
|
||||
uint256 b;
|
||||
for(int x=0; x<a.WIDTH; ++x)
|
||||
WriteLE32(b.begin() + x*4, a.pn[x]);
|
||||
return b;
|
||||
}
|
||||
arith_uint256 UintToArith256(const uint256 &a)
|
||||
{
|
||||
arith_uint256 b;
|
||||
for(int x=0; x<b.WIDTH; ++x)
|
||||
b.pn[x] = ReadLE32(a.begin() + x*4);
|
||||
return b;
|
||||
}
|
@@ -1,290 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_ARITH_UINT256_H
|
||||
#define BITCOIN_ARITH_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class uint256;
|
||||
|
||||
class uint_error : public std::runtime_error {
|
||||
public:
|
||||
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
|
||||
};
|
||||
|
||||
/** Template base class for unsigned big integers. */
|
||||
template<unsigned int BITS>
|
||||
class base_uint
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/32 };
|
||||
uint32_t pn[WIDTH];
|
||||
public:
|
||||
|
||||
base_uint()
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
base_uint(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
}
|
||||
|
||||
base_uint& operator=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
explicit base_uint(const std::string& str);
|
||||
|
||||
bool operator!() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (pn[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
const base_uint operator~() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
const base_uint operator-() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
ret++;
|
||||
return ret;
|
||||
}
|
||||
|
||||
double getdouble() const;
|
||||
|
||||
base_uint& operator=(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] ^= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator&=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] &= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] |= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(uint64_t b)
|
||||
{
|
||||
pn[0] ^= (unsigned int)b;
|
||||
pn[1] ^= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(uint64_t b)
|
||||
{
|
||||
pn[0] |= (unsigned int)b;
|
||||
pn[1] |= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator<<=(unsigned int shift);
|
||||
base_uint& operator>>=(unsigned int shift);
|
||||
|
||||
base_uint& operator+=(const base_uint& b)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
{
|
||||
uint64_t n = carry + pn[i] + b.pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(const base_uint& b)
|
||||
{
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator+=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator*=(uint32_t b32);
|
||||
base_uint& operator*=(const base_uint& b);
|
||||
base_uint& operator/=(const base_uint& b);
|
||||
|
||||
base_uint& operator++()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (++pn[i] == 0 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator++(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
++(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
base_uint& operator--()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator--(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
--(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int CompareTo(const base_uint& b) const;
|
||||
bool EqualTo(uint64_t b) const;
|
||||
|
||||
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
|
||||
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
|
||||
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
|
||||
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
|
||||
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
|
||||
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
|
||||
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
|
||||
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
|
||||
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
|
||||
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
|
||||
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
|
||||
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
|
||||
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
|
||||
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
|
||||
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
|
||||
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
|
||||
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
|
||||
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(pn);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the position of the highest bit set plus one, or zero if the
|
||||
* value is zero.
|
||||
*/
|
||||
unsigned int bits() const;
|
||||
|
||||
uint64_t GetLow64() const
|
||||
{
|
||||
assert(WIDTH >= 2);
|
||||
return pn[0] | (uint64_t)pn[1] << 32;
|
||||
}
|
||||
};
|
||||
|
||||
/** 256-bit unsigned big integer. */
|
||||
class arith_uint256 : public base_uint<256> {
|
||||
public:
|
||||
arith_uint256() {}
|
||||
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
|
||||
arith_uint256(uint64_t b) : base_uint<256>(b) {}
|
||||
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
|
||||
|
||||
/**
|
||||
* The "compact" format is a representation of a whole
|
||||
* number N using an unsigned 32bit number similar to a
|
||||
* floating point format.
|
||||
* The most significant 8 bits are the unsigned exponent of base 256.
|
||||
* This exponent can be thought of as "number of bytes of N".
|
||||
* The lower 23 bits are the mantissa.
|
||||
* Bit number 24 (0x800000) represents the sign of N.
|
||||
* N = (-1^sign) * mantissa * 256^(exponent-3)
|
||||
*
|
||||
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
|
||||
* MPI uses the most significant bit of the first byte as sign.
|
||||
* Thus 0x1234560000 is compact (0x05123456)
|
||||
* and 0xc0de000000 is compact (0x0600c0de)
|
||||
*
|
||||
* Bitcoin only uses this "compact" format for encoding difficulty
|
||||
* targets, which are unsigned 256bit quantities. Thus, all the
|
||||
* complexities of the sign bit and using base 256 are probably an
|
||||
* implementation accident.
|
||||
*/
|
||||
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
|
||||
uint32_t GetCompact(bool fNegative = false) const;
|
||||
|
||||
friend uint256 ArithToUint256(const arith_uint256 &);
|
||||
friend arith_uint256 UintToArith256(const uint256 &);
|
||||
};
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &);
|
||||
arith_uint256 UintToArith256(const uint256 &);
|
||||
|
||||
#endif // BITCOIN_ARITH_UINT256_H
|
@@ -1,145 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_blob<BITS>::base_blob(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
assert(vch.size() == sizeof(data));
|
||||
memcpy(data, &vch[0], sizeof(data));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::GetHex() const
|
||||
{
|
||||
char psz[sizeof(data) * 2 + 1];
|
||||
for (unsigned int i = 0; i < sizeof(data); i++)
|
||||
sprintf(psz + i * 2, "%02x", data[sizeof(data) - i - 1]);
|
||||
return std::string(psz, psz + sizeof(data) * 2);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
// skip leading spaces
|
||||
while (isspace(*psz))
|
||||
psz++;
|
||||
|
||||
// skip 0x
|
||||
if (psz[0] == '0' && tolower(psz[1]) == 'x')
|
||||
psz += 2;
|
||||
|
||||
// hex string to uint
|
||||
const char* pbegin = psz;
|
||||
while (::HexDigit(*psz) != -1)
|
||||
psz++;
|
||||
psz--;
|
||||
unsigned char* p1 = (unsigned char*)data;
|
||||
unsigned char* pend = p1 + WIDTH;
|
||||
while (psz >= pbegin && p1 < pend) {
|
||||
*p1 = ::HexDigit(*psz--);
|
||||
if (psz >= pbegin) {
|
||||
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
|
||||
p1++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_blob<160>
|
||||
template base_blob<160>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<160>::GetHex() const;
|
||||
template std::string base_blob<160>::ToString() const;
|
||||
template void base_blob<160>::SetHex(const char*);
|
||||
template void base_blob<160>::SetHex(const std::string&);
|
||||
|
||||
// Explicit instantiations for base_blob<256>
|
||||
template base_blob<256>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<256>::GetHex() const;
|
||||
template std::string base_blob<256>::ToString() const;
|
||||
template void base_blob<256>::SetHex(const char*);
|
||||
template void base_blob<256>::SetHex(const std::string&);
|
||||
|
||||
static void inline HashMix(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
a -= c;
|
||||
a ^= ((c << 4) | (c >> 28));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 6) | (a >> 26));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 8) | (b >> 24));
|
||||
b += a;
|
||||
a -= c;
|
||||
a ^= ((c << 16) | (c >> 16));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 19) | (a >> 13));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 4) | (b >> 28));
|
||||
b += a;
|
||||
}
|
||||
|
||||
static void inline HashFinal(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
c ^= b;
|
||||
c -= ((b << 14) | (b >> 18));
|
||||
a ^= c;
|
||||
a -= ((c << 11) | (c >> 21));
|
||||
b ^= a;
|
||||
b -= ((a << 25) | (a >> 7));
|
||||
c ^= b;
|
||||
c -= ((b << 16) | (b >> 16));
|
||||
a ^= c;
|
||||
a -= ((c << 4) | (c >> 28));
|
||||
b ^= a;
|
||||
b -= ((a << 14) | (a >> 18));
|
||||
c ^= b;
|
||||
c -= ((b << 24) | (b >> 8));
|
||||
}
|
||||
|
||||
uint64_t uint256::GetHash(const uint256& salt) const
|
||||
{
|
||||
uint32_t a, b, c;
|
||||
const uint32_t *pn = (const uint32_t*)data;
|
||||
const uint32_t *salt_pn = (const uint32_t*)salt.data;
|
||||
a = b = c = 0xdeadbeef + WIDTH;
|
||||
|
||||
a += pn[0] ^ salt_pn[0];
|
||||
b += pn[1] ^ salt_pn[1];
|
||||
c += pn[2] ^ salt_pn[2];
|
||||
HashMix(a, b, c);
|
||||
a += pn[3] ^ salt_pn[3];
|
||||
b += pn[4] ^ salt_pn[4];
|
||||
c += pn[5] ^ salt_pn[5];
|
||||
HashMix(a, b, c);
|
||||
a += pn[6] ^ salt_pn[6];
|
||||
b += pn[7] ^ salt_pn[7];
|
||||
HashFinal(a, b, c);
|
||||
|
||||
return ((((uint64_t)b) << 32) | c);
|
||||
}
|
||||
|
@@ -1,158 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_UINT256_H
|
||||
#define BITCOIN_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
/** Template base class for fixed-sized opaque blobs. */
|
||||
template<unsigned int BITS>
|
||||
class base_blob
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/8 };
|
||||
uint8_t data[WIDTH];
|
||||
public:
|
||||
base_blob()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
explicit base_blob(const std::vector<unsigned char>& vch);
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (data[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
friend inline bool operator==(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) == 0; }
|
||||
friend inline bool operator!=(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) != 0; }
|
||||
friend inline bool operator<(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) < 0; }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned char* begin()
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
unsigned char* end()
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
const unsigned char* begin() const
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
const unsigned char* end() const
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int nType, int nVersion) const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int nType, int nVersion) const
|
||||
{
|
||||
s.write((char*)data, sizeof(data));
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int nType, int nVersion)
|
||||
{
|
||||
s.read((char*)data, sizeof(data));
|
||||
}
|
||||
};
|
||||
|
||||
/** 160-bit opaque blob.
|
||||
* @note This type is called uint160 for historical reasons only. It is an opaque
|
||||
* blob of 160 bits and has no integer operations.
|
||||
*/
|
||||
class uint160 : public base_blob<160> {
|
||||
public:
|
||||
uint160() {}
|
||||
uint160(const base_blob<160>& b) : base_blob<160>(b) {}
|
||||
explicit uint160(const std::vector<unsigned char>& vch) : base_blob<160>(vch) {}
|
||||
};
|
||||
|
||||
/** 256-bit opaque blob.
|
||||
* @note This type is called uint256 for historical reasons only. It is an
|
||||
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
|
||||
* those are required.
|
||||
*/
|
||||
class uint256 : public base_blob<256> {
|
||||
public:
|
||||
uint256() {}
|
||||
uint256(const base_blob<256>& b) : base_blob<256>(b) {}
|
||||
explicit uint256(const std::vector<unsigned char>& vch) : base_blob<256>(vch) {}
|
||||
|
||||
/** A cheap hash function that just returns 64 bits from the result, it can be
|
||||
* used when the contents are considered uniformly random. It is not appropriate
|
||||
* when the value can easily be influenced from outside as e.g. a network adversary could
|
||||
* provide values to trigger worst-case behavior.
|
||||
* @note The result of this function is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetCheapHash() const
|
||||
{
|
||||
uint64_t result;
|
||||
memcpy((void*)&result, (void*)data, 8);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** A more secure, salted hash function.
|
||||
* @note This hash is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetHash(const uint256& salt) const;
|
||||
};
|
||||
|
||||
/* uint256 from const char *.
|
||||
* This is a separate function because the constructor uint256(const char*) can result
|
||||
* in dangerously catching uint256(0).
|
||||
*/
|
||||
inline uint256 uint256S(const char *str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
/* uint256 from std::string.
|
||||
* This is a separate function because the constructor uint256(const std::string &str) can result
|
||||
* in dangerously catching uint256(0) via std::string(const char*).
|
||||
*/
|
||||
inline uint256 uint256S(const std::string& str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
|
||||
#endif // BITCOIN_UINT256_H
|
@@ -1,155 +0,0 @@
|
||||
/* Macros to swap the order of bytes in integer values.
|
||||
Copyright (C) 1997-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#if !defined _BYTESWAP_H && !defined _NETINET_IN_H && !defined _ENDIAN_H
|
||||
# error "Never use <bits/byteswap.h> directly; include <byteswap.h> instead."
|
||||
#endif
|
||||
|
||||
#ifndef _BITS_BYTESWAP_H
|
||||
#define _BITS_BYTESWAP_H 1
|
||||
|
||||
#include <features.h>
|
||||
#include <bits/types.h>
|
||||
#include <bits/wordsize.h>
|
||||
|
||||
/* Swap bytes in 16 bit value. */
|
||||
#define __bswap_constant_16(x) \
|
||||
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
|
||||
|
||||
/* Get __bswap_16. */
|
||||
#include <bits/byteswap-16.h>
|
||||
|
||||
/* Swap bytes in 32 bit value. */
|
||||
#define __bswap_constant_32(x) \
|
||||
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
|
||||
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
|
||||
|
||||
#ifdef __GNUC__
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __builtin_bswap32 (__bsx);
|
||||
}
|
||||
# elif __GNUC__ >= 2
|
||||
# if __WORDSIZE == 64 || (defined __i486__ || defined __pentium__ \
|
||||
|| defined __pentiumpro__ || defined __pentium4__ \
|
||||
|| defined __k8__ || defined __athlon__ \
|
||||
|| defined __k6__ || defined __nocona__ \
|
||||
|| defined __core2__ || defined __geode__ \
|
||||
|| defined __amdfam10__)
|
||||
/* To swap the bytes in a word the i486 processors and up provide the
|
||||
`bswap' opcode. On i386 we have to use three instructions. */
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("rorw $8, %w0;" \
|
||||
"rorl $16, %0;" \
|
||||
"rorw $8, %w0" \
|
||||
: "=r" (__v) \
|
||||
: "0" (__x) \
|
||||
: "cc"); \
|
||||
__v; }))
|
||||
# endif
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __x = (x); __bswap_constant_32 (__x); }))
|
||||
# endif
|
||||
#else
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __bswap_constant_32 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if __GNUC_PREREQ (2, 0)
|
||||
/* Swap bytes in 64 bit value. */
|
||||
# define __bswap_constant_64(x) \
|
||||
(__extension__ ((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56)))
|
||||
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __builtin_bswap64 (__bsx);
|
||||
}
|
||||
# elif __WORDSIZE == 64
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ __uint64_t __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_64 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %q0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ union { __extension__ __uint64_t __ll; \
|
||||
unsigned int __l[2]; } __w, __r; \
|
||||
if (__builtin_constant_p (x)) \
|
||||
__r.__ll = __bswap_constant_64 (x); \
|
||||
else \
|
||||
{ \
|
||||
__w.__ll = (x); \
|
||||
__r.__l[0] = __bswap_32 (__w.__l[1]); \
|
||||
__r.__l[1] = __bswap_32 (__w.__l[0]); \
|
||||
} \
|
||||
__r.__ll; }))
|
||||
# endif
|
||||
#else
|
||||
# define __bswap_constant_64(x) \
|
||||
((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56))
|
||||
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __bswap_constant_64 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _BITS_BYTESWAP_H */
|
@@ -1,103 +0,0 @@
|
||||
/* Copyright (C) 1992-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
// cloned from /usr/endian.h and modified
|
||||
|
||||
|
||||
|
||||
#ifndef _ENDIAN_H
|
||||
#define _ENDIAN_H 1
|
||||
|
||||
//#include <features.h>
|
||||
|
||||
/* Definitions for byte order, according to significance of bytes,
|
||||
from low addresses to high addresses. The value is what you get by
|
||||
putting '4' in the most significant byte, '3' in the second most
|
||||
significant byte, '2' in the second least significant byte, and '1'
|
||||
in the least significant byte, and then writing down one digit for
|
||||
each byte, starting with the byte at the lowest address at the left,
|
||||
and proceeding to the byte with the highest address at the right. */
|
||||
|
||||
#define __LITTLE_ENDIAN 1234
|
||||
#define __BIG_ENDIAN 4321
|
||||
#define __PDP_ENDIAN 3412
|
||||
|
||||
/* This file defines `__BYTE_ORDER' for the particular machine. */
|
||||
//#include <bits/endian.h>
|
||||
#define __BYTE_ORDER __LITTLE_ENDIAN
|
||||
|
||||
/* Some machines may need to use a different endianness for floating point
|
||||
values. */
|
||||
#ifndef __FLOAT_WORD_ORDER
|
||||
# define __FLOAT_WORD_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#ifdef __USE_BSD
|
||||
# define LITTLE_ENDIAN __LITTLE_ENDIAN
|
||||
# define BIG_ENDIAN __BIG_ENDIAN
|
||||
# define PDP_ENDIAN __PDP_ENDIAN
|
||||
# define BYTE_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) LO, HI
|
||||
#elif __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) HI, LO
|
||||
#endif
|
||||
|
||||
|
||||
#if defined __USE_BSD && !defined __ASSEMBLER__
|
||||
/* Conversion interfaces. */
|
||||
//# include <bits/byteswap.h>
|
||||
#include "my-byteswap.h"
|
||||
|
||||
|
||||
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define htobe16(x) __bswap_16 (x)
|
||||
# define htole16(x) (x)
|
||||
# define be16toh(x) __bswap_16 (x)
|
||||
# define le16toh(x) (x)
|
||||
|
||||
# define htobe32(x) __bswap_32 (x)
|
||||
# define htole32(x) (x)
|
||||
# define be32toh(x) __bswap_32 (x)
|
||||
# define le32toh(x) (x)
|
||||
|
||||
# define htobe64(x) __bswap_64 (x)
|
||||
# define htole64(x) (x)
|
||||
# define be64toh(x) __bswap_64 (x)
|
||||
# define le64toh(x) (x)
|
||||
|
||||
# else
|
||||
# define htobe16(x) (x)
|
||||
# define htole16(x) __bswap_16 (x)
|
||||
# define be16toh(x) (x)
|
||||
# define le16toh(x) __bswap_16 (x)
|
||||
|
||||
# define htobe32(x) (x)
|
||||
# define htole32(x) __bswap_32 (x)
|
||||
# define be32toh(x) (x)
|
||||
# define le32toh(x) __bswap_32 (x)
|
||||
|
||||
# define htobe64(x) (x)
|
||||
# define htole64(x) __bswap_64 (x)
|
||||
# define be64toh(x) (x)
|
||||
# define le64toh(x) __bswap_64 (x)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif /* endian.h */
|
@@ -1,862 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_SERIALIZE_H
|
||||
#define BITCOIN_SERIALIZE_H
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <ios>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
class CScript;
|
||||
|
||||
static const unsigned int MAX_SIZE = 0x02000000;
|
||||
|
||||
/**
|
||||
* Used to bypass the rule against non-const reference to temporary
|
||||
* where it makes sense with wrappers such as CFlatData or CTxDB
|
||||
*/
|
||||
template<typename T>
|
||||
inline T& REF(const T& val)
|
||||
{
|
||||
return const_cast<T&>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Used to acquire a non-const pointer "this" to generate bodies
|
||||
* of const serialization operations from a template
|
||||
*/
|
||||
template<typename T>
|
||||
inline T* NCONST_PTR(const T* val)
|
||||
{
|
||||
return const_cast<T*>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get begin pointer of vector (non-const version).
|
||||
* @note These functions avoid the undefined case of indexing into an empty
|
||||
* vector, as well as that of indexing after the end of the vector.
|
||||
*/
|
||||
template <class T, class TAl>
|
||||
inline T* begin_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get begin pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* begin_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get end pointer of vector (non-const version) */
|
||||
template <class T, class TAl>
|
||||
inline T* end_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
/** Get end pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* end_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
|
||||
/*
|
||||
* Lowest-level serialization and conversion.
|
||||
* @note Sizes of these types are verified in the tests
|
||||
*/
|
||||
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
|
||||
{
|
||||
s.write((char*)&obj, 1);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
|
||||
{
|
||||
obj = htole16(obj);
|
||||
s.write((char*)&obj, 2);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
|
||||
{
|
||||
obj = htole32(obj);
|
||||
s.write((char*)&obj, 4);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
|
||||
{
|
||||
obj = htole64(obj);
|
||||
s.write((char*)&obj, 8);
|
||||
}
|
||||
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
|
||||
{
|
||||
uint8_t obj;
|
||||
s.read((char*)&obj, 1);
|
||||
return obj;
|
||||
}
|
||||
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
|
||||
{
|
||||
uint16_t obj;
|
||||
s.read((char*)&obj, 2);
|
||||
return le16toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
|
||||
{
|
||||
uint32_t obj;
|
||||
s.read((char*)&obj, 4);
|
||||
return le32toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
|
||||
{
|
||||
uint64_t obj;
|
||||
s.read((char*)&obj, 8);
|
||||
return le64toh(obj);
|
||||
}
|
||||
inline uint64_t ser_double_to_uint64(double x)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline uint32_t ser_float_to_uint32(float x)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline double ser_uint64_to_double(uint64_t y)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
inline float ser_uint32_to_float(uint32_t y)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Templates for serializing to anything that looks like a stream,
|
||||
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
|
||||
//
|
||||
|
||||
enum
|
||||
{
|
||||
// primary actions
|
||||
SER_NETWORK = (1 << 0),
|
||||
SER_DISK = (1 << 1),
|
||||
SER_GETHASH = (1 << 2),
|
||||
};
|
||||
|
||||
#define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action))
|
||||
|
||||
/**
|
||||
* Implement three methods for serializable objects. These are actually wrappers over
|
||||
* "SerializationOp" template, which implements the body of each class' serialization
|
||||
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
|
||||
* added as members.
|
||||
*/
|
||||
#define ADD_SERIALIZE_METHODS \
|
||||
size_t GetSerializeSize(int nType, int nVersion) const { \
|
||||
CSizeComputer s(nType, nVersion); \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
return s.size(); \
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Serialize(Stream& s, int nType, int nVersion) const { \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Unserialize(Stream& s, int nType, int nVersion) { \
|
||||
SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic Types
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(char a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(uint8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(uint16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(int32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(uint32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(int64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(uint64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(float a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(double a, int, int=0) { return 8; }
|
||||
|
||||
template<typename Stream> inline void Serialize(Stream& s, char a, int, int=0) { ser_writedata8(s, a); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Serialize(Stream& s, int8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, float a, int, int=0) { ser_writedata32(s, ser_float_to_uint32(a)); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, double a, int, int=0) { ser_writedata64(s, ser_double_to_uint64(a)); }
|
||||
|
||||
template<typename Stream> inline void Unserialize(Stream& s, char& a, int, int=0) { a = ser_readdata8(s); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, float& a, int, int=0) { a = ser_uint32_to_float(ser_readdata32(s)); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, double& a, int, int=0) { a = ser_uint64_to_double(ser_readdata64(s)); }
|
||||
|
||||
inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; ser_writedata8(s, f); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, bool& a, int, int=0) { char f=ser_readdata8(s); a=f; }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Compact Size
|
||||
* size < 253 -- 1 byte
|
||||
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
|
||||
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
|
||||
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
|
||||
*/
|
||||
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253) return sizeof(unsigned char);
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
|
||||
else return sizeof(unsigned char) + sizeof(uint64_t);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void WriteCompactSize(Stream& os, uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253)
|
||||
{
|
||||
ser_writedata8(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max())
|
||||
{
|
||||
ser_writedata8(os, 253);
|
||||
ser_writedata16(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max())
|
||||
{
|
||||
ser_writedata8(os, 254);
|
||||
ser_writedata32(os, nSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
ser_writedata8(os, 255);
|
||||
ser_writedata64(os, nSize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
uint64_t ReadCompactSize(Stream& is)
|
||||
{
|
||||
uint8_t chSize = ser_readdata8(is);
|
||||
uint64_t nSizeRet = 0;
|
||||
if (chSize < 253)
|
||||
{
|
||||
nSizeRet = chSize;
|
||||
}
|
||||
else if (chSize == 253)
|
||||
{
|
||||
nSizeRet = ser_readdata16(is);
|
||||
if (nSizeRet < 253)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else if (chSize == 254)
|
||||
{
|
||||
nSizeRet = ser_readdata32(is);
|
||||
if (nSizeRet < 0x10000u)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else
|
||||
{
|
||||
nSizeRet = ser_readdata64(is);
|
||||
if (nSizeRet < 0x100000000ULL)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
if (nSizeRet > (uint64_t)MAX_SIZE)
|
||||
throw std::ios_base::failure("ReadCompactSize(): size too large");
|
||||
return nSizeRet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
|
||||
* The high bit in each byte signifies whether another digit follows. To make
|
||||
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
|
||||
* Thus, the byte sequence a[] with length len, where all but the last byte
|
||||
* has bit 128 set, encodes the number:
|
||||
*
|
||||
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
|
||||
*
|
||||
* Properties:
|
||||
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
|
||||
* * Every integer has exactly one encoding
|
||||
* * Encoding does not depend on size of original integer type
|
||||
* * No redundancy: every (infinite) byte sequence corresponds to a list
|
||||
* of encoded integers.
|
||||
*
|
||||
* 0: [0x00] 256: [0x81 0x00]
|
||||
* 1: [0x01] 16383: [0xFE 0x7F]
|
||||
* 127: [0x7F] 16384: [0xFF 0x00]
|
||||
* 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F]
|
||||
* 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F]
|
||||
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
|
||||
*/
|
||||
|
||||
template<typename I>
|
||||
inline unsigned int GetSizeOfVarInt(I n)
|
||||
{
|
||||
int nRet = 0;
|
||||
while(true) {
|
||||
nRet++;
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
}
|
||||
return nRet;
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
void WriteVarInt(Stream& os, I n)
|
||||
{
|
||||
unsigned char tmp[(sizeof(n)*8+6)/7];
|
||||
int len=0;
|
||||
while(true) {
|
||||
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
len++;
|
||||
}
|
||||
do {
|
||||
ser_writedata8(os, tmp[len]);
|
||||
} while(len--);
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
I ReadVarInt(Stream& is)
|
||||
{
|
||||
I n = 0;
|
||||
while(true) {
|
||||
unsigned char chData = ser_readdata8(is);
|
||||
n = (n << 7) | (chData & 0x7F);
|
||||
if (chData & 0x80)
|
||||
n++;
|
||||
else
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
|
||||
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
|
||||
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
|
||||
|
||||
/**
|
||||
* Wrapper for serializing arrays and POD.
|
||||
*/
|
||||
class CFlatData
|
||||
{
|
||||
protected:
|
||||
char* pbegin;
|
||||
char* pend;
|
||||
public:
|
||||
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
|
||||
template <class T, class TAl>
|
||||
explicit CFlatData(std::vector<T,TAl> &v)
|
||||
{
|
||||
pbegin = (char*)begin_ptr(v);
|
||||
pend = (char*)end_ptr(v);
|
||||
}
|
||||
char* begin() { return pbegin; }
|
||||
const char* begin() const { return pbegin; }
|
||||
char* end() { return pend; }
|
||||
const char* end() const { return pend; }
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return pend - pbegin;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
s.write(pbegin, pend - pbegin);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
s.read(pbegin, pend - pbegin);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
class CVarInt
|
||||
{
|
||||
protected:
|
||||
I &n;
|
||||
public:
|
||||
CVarInt(I& nIn) : n(nIn) { }
|
||||
|
||||
unsigned int GetSerializeSize(int, int) const {
|
||||
return GetSizeOfVarInt<I>(n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream &s, int, int) const {
|
||||
WriteVarInt<Stream,I>(s, n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int) {
|
||||
n = ReadVarInt<Stream,I>(s);
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t Limit>
|
||||
class LimitedString
|
||||
{
|
||||
protected:
|
||||
std::string& string;
|
||||
public:
|
||||
LimitedString(std::string& string) : string(string) {}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
size_t size = ReadCompactSize(s);
|
||||
if (size > Limit) {
|
||||
throw std::ios_base::failure("String length limit exceeded");
|
||||
}
|
||||
string.resize(size);
|
||||
if (size != 0)
|
||||
s.read((char*)&string[0], size);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
WriteCompactSize(s, string.size());
|
||||
if (!string.empty())
|
||||
s.write((char*)&string[0], string.size());
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return GetSizeOfCompactSize(string.size()) + string.size();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
|
||||
|
||||
/**
|
||||
* Forward declarations
|
||||
*/
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C> unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str, int, int=0);
|
||||
|
||||
/**
|
||||
* vector
|
||||
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
|
||||
*/
|
||||
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename T, typename A, typename V> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename T, typename A> inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Serialize(Stream& os, const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Unserialize(Stream& is, CScript& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T> unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A> unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A> unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* If none of the specialized versions above matched, default to calling member function.
|
||||
* "int nType" is changed to "long nType" to keep from getting an ambiguous overload error.
|
||||
* The compiler will only cast int to long if none of the other templates matched.
|
||||
* Thanks to Boost serialization for this idea.
|
||||
*/
|
||||
template<typename T>
|
||||
inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion)
|
||||
{
|
||||
return a.GetSerializeSize((int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Serialize(Stream& os, const T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Serialize(os, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Unserialize(Stream& is, T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Unserialize(is, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C>
|
||||
unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]);
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Serialize(Stream& os, const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
WriteCompactSize(os, str.size());
|
||||
if (!str.empty())
|
||||
os.write((char*)&str[0], str.size() * sizeof(str[0]));
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Unserialize(Stream& is, std::basic_string<C>& str, int, int)
|
||||
{
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
str.resize(nSize);
|
||||
if (nSize != 0)
|
||||
is.read((char*)&str[0], nSize * sizeof(str[0]));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* vector
|
||||
*/
|
||||
template<typename T, typename A>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T, typename A, typename V>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
nSize += GetSerializeSize((*vi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename T, typename A>
|
||||
inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize_impl(v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
if (!v.empty())
|
||||
os.write((char*)&v[0], v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
::Serialize(os, (*vi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize_impl(os, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
// Limit size per read so bogus size value won't cause out of memory
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
while (i < nSize)
|
||||
{
|
||||
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
|
||||
v.resize(i + blk);
|
||||
is.read((char*)&v[i], blk * sizeof(T));
|
||||
i += blk;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
unsigned int nMid = 0;
|
||||
while (nMid < nSize)
|
||||
{
|
||||
nMid += 5000000 / sizeof(T);
|
||||
if (nMid > nSize)
|
||||
nMid = nSize;
|
||||
v.resize(nMid);
|
||||
for (; i < nMid; i++)
|
||||
Unserialize(is, v[i], nType, nVersion);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize_impl(is, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize((const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& os, const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, (const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& is, CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, (std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T>
|
||||
unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, item.first, nType, nVersion);
|
||||
Serialize(os, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, item.first, nType, nVersion);
|
||||
Unserialize(is, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
nSize += GetSerializeSize((*mi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
Serialize(os, (*mi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
std::pair<K, T> item;
|
||||
Unserialize(is, item, nType, nVersion);
|
||||
mi = m.insert(mi, item);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
nSize += GetSerializeSize((*it), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
Serialize(os, (*it), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::set<K, Pred, A>::iterator it = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
K key;
|
||||
Unserialize(is, key, nType, nVersion);
|
||||
it = m.insert(it, key);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
|
||||
*/
|
||||
struct CSerActionSerialize
|
||||
{
|
||||
bool ForRead() const { return false; }
|
||||
};
|
||||
struct CSerActionUnserialize
|
||||
{
|
||||
bool ForRead() const { return true; }
|
||||
};
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action)
|
||||
{
|
||||
::Serialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action)
|
||||
{
|
||||
::Unserialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class CSizeComputer
|
||||
{
|
||||
protected:
|
||||
size_t nSize;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CSizeComputer& write(const char *psz, size_t nSize)
|
||||
{
|
||||
this->nSize += nSize;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CSizeComputer& operator<<(const T& obj)
|
||||
{
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return nSize;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_SERIALIZE_H
|
@@ -1,187 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha256.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-256 implementation.
|
||||
namespace sha256
|
||||
{
|
||||
uint32_t inline Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint32_t inline Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint32_t inline Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); }
|
||||
uint32_t inline Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); }
|
||||
uint32_t inline sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); }
|
||||
uint32_t inline sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); }
|
||||
|
||||
/** One round of SHA-256. */
|
||||
void inline Round(uint32_t a, uint32_t b, uint32_t c, uint32_t& d, uint32_t e, uint32_t f, uint32_t g, uint32_t& h, uint32_t k, uint32_t w)
|
||||
{
|
||||
uint32_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint32_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667ul;
|
||||
s[1] = 0xbb67ae85ul;
|
||||
s[2] = 0x3c6ef372ul;
|
||||
s[3] = 0xa54ff53aul;
|
||||
s[4] = 0x510e527ful;
|
||||
s[5] = 0x9b05688cul;
|
||||
s[6] = 0x1f83d9abul;
|
||||
s[7] = 0x5be0cd19ul;
|
||||
}
|
||||
|
||||
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
|
||||
void Transform(uint32_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = ReadBE32(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = ReadBE32(chunk + 4));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = ReadBE32(chunk + 8));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = ReadBE32(chunk + 12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = ReadBE32(chunk + 16));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = ReadBE32(chunk + 20));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = ReadBE32(chunk + 24));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = ReadBE32(chunk + 28));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = ReadBE32(chunk + 32));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = ReadBE32(chunk + 36));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = ReadBE32(chunk + 40));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = ReadBE32(chunk + 44));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = ReadBE32(chunk + 48));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = ReadBE32(chunk + 52));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = ReadBE32(chunk + 56));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = ReadBE32(chunk + 60));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha256
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-256
|
||||
|
||||
CSHA256::CSHA256() : bytes(0)
|
||||
{
|
||||
sha256::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 64;
|
||||
if (bufsize && bufsize + len >= 64) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 64 - bufsize);
|
||||
bytes += 64 - bufsize;
|
||||
data += 64 - bufsize;
|
||||
sha256::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 64) {
|
||||
// Process full chunks directly from the source.
|
||||
sha256::Transform(s, data);
|
||||
bytes += 64;
|
||||
data += 64;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[64] = {0x80};
|
||||
unsigned char sizedesc[8];
|
||||
WriteBE64(sizedesc, bytes << 3);
|
||||
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
|
||||
Write(sizedesc, 8);
|
||||
WriteBE32(hash, s[0]);
|
||||
WriteBE32(hash + 4, s[1]);
|
||||
WriteBE32(hash + 8, s[2]);
|
||||
WriteBE32(hash + 12, s[3]);
|
||||
WriteBE32(hash + 16, s[4]);
|
||||
WriteBE32(hash + 20, s[5]);
|
||||
WriteBE32(hash + 24, s[6]);
|
||||
WriteBE32(hash + 28, s[7]);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha256::Initialize(s);
|
||||
return *this;
|
||||
}
|
@@ -1,28 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA256_H
|
||||
#define BITCOIN_CRYPTO_SHA256_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-256. */
|
||||
class CSHA256
|
||||
{
|
||||
private:
|
||||
uint32_t s[8];
|
||||
unsigned char buf[64];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 32;
|
||||
|
||||
CSHA256();
|
||||
CSHA256& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA256& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA256_H
|
@@ -1,205 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha512.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-512 implementation.
|
||||
namespace sha512
|
||||
{
|
||||
uint64_t inline Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint64_t inline Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint64_t inline Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); }
|
||||
uint64_t inline Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); }
|
||||
uint64_t inline sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); }
|
||||
uint64_t inline sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); }
|
||||
|
||||
/** One round of SHA-512. */
|
||||
void inline Round(uint64_t a, uint64_t b, uint64_t c, uint64_t& d, uint64_t e, uint64_t f, uint64_t g, uint64_t& h, uint64_t k, uint64_t w)
|
||||
{
|
||||
uint64_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint64_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint64_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667f3bcc908ull;
|
||||
s[1] = 0xbb67ae8584caa73bull;
|
||||
s[2] = 0x3c6ef372fe94f82bull;
|
||||
s[3] = 0xa54ff53a5f1d36f1ull;
|
||||
s[4] = 0x510e527fade682d1ull;
|
||||
s[5] = 0x9b05688c2b3e6c1full;
|
||||
s[6] = 0x1f83d9abfb41bd6bull;
|
||||
s[7] = 0x5be0cd19137e2179ull;
|
||||
}
|
||||
|
||||
/** Perform one SHA-512 transformation, processing a 128-byte chunk. */
|
||||
void Transform(uint64_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98d728ae22ull, w0 = ReadBE64(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x7137449123ef65cdull, w1 = ReadBE64(chunk + 8));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcfec4d3b2full, w2 = ReadBE64(chunk + 16));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba58189dbbcull, w3 = ReadBE64(chunk + 24));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25bf348b538ull, w4 = ReadBE64(chunk + 32));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1b605d019ull, w5 = ReadBE64(chunk + 40));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4af194f9bull, w6 = ReadBE64(chunk + 48));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5da6d8118ull, w7 = ReadBE64(chunk + 56));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98a3030242ull, w8 = ReadBE64(chunk + 64));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b0145706fbeull, w9 = ReadBE64(chunk + 72));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be4ee4b28cull, w10 = ReadBE64(chunk + 80));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3d5ffb4e2ull, w11 = ReadBE64(chunk + 88));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74f27b896full, w12 = ReadBE64(chunk + 96));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe3b1696b1ull, w13 = ReadBE64(chunk + 104));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a725c71235ull, w14 = ReadBE64(chunk + 112));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174cf692694ull, w15 = ReadBE64(chunk + 120));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc77ac9c65ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f592b0275ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa6ea6e483ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da831153b5ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152ee66dfabull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d2db43210ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c898fb213full, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7beef0ee4ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc5ac42aedull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d139d95b3dfull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a73548baf63deull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb3c77b2a8ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e47edaee6ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c851482353bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a14cf10364ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664bbc423001ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70d0f89791ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a30654be30ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774cdf8eeb99ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5e19b48a8ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3c5c95a63ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4ae3418acbull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f7763e373ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee5defb2fcull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f43172f60ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814a1f0ab72ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc702081a6439ecull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0xeada7dd6cde0eb1eull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0xf57d4f7fee6ed178ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x06f067aa72176fbaull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x0a637dc5a2c898a6ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x113f9804bef90daeull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x1b710b35131c471bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x28db77f523047d84ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x32caab7b40c72493ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x3c9ebe0a15c9bebcull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x431d67c49c100d4cull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5fcb6fab3ad6faecull, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x6c44198c4a475817ull, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha512
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-512
|
||||
|
||||
CSHA512::CSHA512() : bytes(0)
|
||||
{
|
||||
sha512::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 128;
|
||||
if (bufsize && bufsize + len >= 128) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 128 - bufsize);
|
||||
bytes += 128 - bufsize;
|
||||
data += 128 - bufsize;
|
||||
sha512::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 128) {
|
||||
// Process full chunks directly from the source.
|
||||
sha512::Transform(s, data);
|
||||
data += 128;
|
||||
bytes += 128;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[128] = {0x80};
|
||||
unsigned char sizedesc[16] = {0x00};
|
||||
WriteBE64(sizedesc + 8, bytes << 3);
|
||||
Write(pad, 1 + ((239 - (bytes % 128)) % 128));
|
||||
Write(sizedesc, 16);
|
||||
WriteBE64(hash, s[0]);
|
||||
WriteBE64(hash + 8, s[1]);
|
||||
WriteBE64(hash + 16, s[2]);
|
||||
WriteBE64(hash + 24, s[3]);
|
||||
WriteBE64(hash + 32, s[4]);
|
||||
WriteBE64(hash + 40, s[5]);
|
||||
WriteBE64(hash + 48, s[6]);
|
||||
WriteBE64(hash + 56, s[7]);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha512::Initialize(s);
|
||||
return *this;
|
||||
}
|
@@ -1,28 +0,0 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA512_H
|
||||
#define BITCOIN_CRYPTO_SHA512_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-512. */
|
||||
class CSHA512
|
||||
{
|
||||
private:
|
||||
uint64_t s[8];
|
||||
unsigned char buf[128];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CSHA512();
|
||||
CSHA512& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA512& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA512_H
|
File diff suppressed because it is too large
Load Diff
@@ -1,497 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "utilstrencodings.h"
|
||||
#include "tinyformat.h"
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <errno.h>
|
||||
#include <limits>
|
||||
|
||||
using namespace std;
|
||||
|
||||
string SanitizeString(const string& str)
|
||||
{
|
||||
/**
|
||||
* safeChars chosen to allow simple messages/URLs/email addresses, but avoid anything
|
||||
* even possibly remotely dangerous like & or >
|
||||
*/
|
||||
static string safeChars("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890 .,;_/:?@()");
|
||||
string strResult;
|
||||
for (std::string::size_type i = 0; i < str.size(); i++)
|
||||
{
|
||||
if (safeChars.find(str[i]) != std::string::npos)
|
||||
strResult.push_back(str[i]);
|
||||
}
|
||||
return strResult;
|
||||
}
|
||||
|
||||
const signed char p_util_hexdigit[256] =
|
||||
{ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
0,1,2,3,4,5,6,7,8,9,-1,-1,-1,-1,-1,-1,
|
||||
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, };
|
||||
|
||||
signed char HexDigit(char c)
|
||||
{
|
||||
return p_util_hexdigit[(unsigned char)c];
|
||||
}
|
||||
|
||||
bool IsHex(const string& str)
|
||||
{
|
||||
for(std::string::const_iterator it(str.begin()); it != str.end(); ++it)
|
||||
{
|
||||
if (HexDigit(*it) < 0)
|
||||
return false;
|
||||
}
|
||||
return (str.size() > 0) && (str.size()%2 == 0);
|
||||
}
|
||||
|
||||
vector<unsigned char> ParseHex(const char* psz)
|
||||
{
|
||||
// convert hex dump to vector
|
||||
vector<unsigned char> vch;
|
||||
while (true)
|
||||
{
|
||||
while (isspace(*psz))
|
||||
psz++;
|
||||
signed char c = HexDigit(*psz++);
|
||||
if (c == (signed char)-1)
|
||||
break;
|
||||
unsigned char n = (c << 4);
|
||||
c = HexDigit(*psz++);
|
||||
if (c == (signed char)-1)
|
||||
break;
|
||||
n |= c;
|
||||
vch.push_back(n);
|
||||
}
|
||||
return vch;
|
||||
}
|
||||
|
||||
vector<unsigned char> ParseHex(const string& str)
|
||||
{
|
||||
return ParseHex(str.c_str());
|
||||
}
|
||||
|
||||
string EncodeBase64(const unsigned char* pch, size_t len)
|
||||
{
|
||||
static const char *pbase64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
|
||||
string strRet="";
|
||||
strRet.reserve((len+2)/3*4);
|
||||
|
||||
int mode=0, left=0;
|
||||
const unsigned char *pchEnd = pch+len;
|
||||
|
||||
while (pch<pchEnd)
|
||||
{
|
||||
int enc = *(pch++);
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits
|
||||
strRet += pbase64[enc >> 2];
|
||||
left = (enc & 3) << 4;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have two bits
|
||||
strRet += pbase64[left | (enc >> 4)];
|
||||
left = (enc & 15) << 2;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have four bits
|
||||
strRet += pbase64[left | (enc >> 6)];
|
||||
strRet += pbase64[enc & 63];
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (mode)
|
||||
{
|
||||
strRet += pbase64[left];
|
||||
strRet += '=';
|
||||
if (mode == 1)
|
||||
strRet += '=';
|
||||
}
|
||||
|
||||
return strRet;
|
||||
}
|
||||
|
||||
string EncodeBase64(const string& str)
|
||||
{
|
||||
return EncodeBase64((const unsigned char*)str.c_str(), str.size());
|
||||
}
|
||||
|
||||
vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid)
|
||||
{
|
||||
static const int decode64_table[256] =
|
||||
{
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, 62, -1, -1, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1,
|
||||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 26, 27, 28,
|
||||
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
|
||||
49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
|
||||
};
|
||||
|
||||
if (pfInvalid)
|
||||
*pfInvalid = false;
|
||||
|
||||
vector<unsigned char> vchRet;
|
||||
vchRet.reserve(strlen(p)*3/4);
|
||||
|
||||
int mode = 0;
|
||||
int left = 0;
|
||||
|
||||
while (1)
|
||||
{
|
||||
int dec = decode64_table[(unsigned char)*p];
|
||||
if (dec == -1) break;
|
||||
p++;
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits and get 6
|
||||
left = dec;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have 6 bits and keep 4
|
||||
vchRet.push_back((left<<2) | (dec>>4));
|
||||
left = dec & 15;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have 4 bits and get 6, we keep 2
|
||||
vchRet.push_back((left<<4) | (dec>>2));
|
||||
left = dec & 3;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have 2 bits and get 6
|
||||
vchRet.push_back((left<<6) | dec);
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pfInvalid)
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // 4n base64 characters processed: ok
|
||||
break;
|
||||
|
||||
case 1: // 4n+1 base64 character processed: impossible
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 2: // 4n+2 base64 characters processed: require '=='
|
||||
if (left || p[0] != '=' || p[1] != '=' || decode64_table[(unsigned char)p[2]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 3: // 4n+3 base64 characters processed: require '='
|
||||
if (left || p[0] != '=' || decode64_table[(unsigned char)p[1]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return vchRet;
|
||||
}
|
||||
|
||||
string DecodeBase64(const string& str)
|
||||
{
|
||||
vector<unsigned char> vchRet = DecodeBase64(str.c_str());
|
||||
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
|
||||
}
|
||||
|
||||
string EncodeBase32(const unsigned char* pch, size_t len)
|
||||
{
|
||||
static const char *pbase32 = "abcdefghijklmnopqrstuvwxyz234567";
|
||||
|
||||
string strRet="";
|
||||
strRet.reserve((len+4)/5*8);
|
||||
|
||||
int mode=0, left=0;
|
||||
const unsigned char *pchEnd = pch+len;
|
||||
|
||||
while (pch<pchEnd)
|
||||
{
|
||||
int enc = *(pch++);
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits
|
||||
strRet += pbase32[enc >> 3];
|
||||
left = (enc & 7) << 2;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have three bits
|
||||
strRet += pbase32[left | (enc >> 6)];
|
||||
strRet += pbase32[(enc >> 1) & 31];
|
||||
left = (enc & 1) << 4;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have one bit
|
||||
strRet += pbase32[left | (enc >> 4)];
|
||||
left = (enc & 15) << 1;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have four bits
|
||||
strRet += pbase32[left | (enc >> 7)];
|
||||
strRet += pbase32[(enc >> 2) & 31];
|
||||
left = (enc & 3) << 3;
|
||||
mode = 4;
|
||||
break;
|
||||
|
||||
case 4: // we have two bits
|
||||
strRet += pbase32[left | (enc >> 5)];
|
||||
strRet += pbase32[enc & 31];
|
||||
mode = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static const int nPadding[5] = {0, 6, 4, 3, 1};
|
||||
if (mode)
|
||||
{
|
||||
strRet += pbase32[left];
|
||||
for (int n=0; n<nPadding[mode]; n++)
|
||||
strRet += '=';
|
||||
}
|
||||
|
||||
return strRet;
|
||||
}
|
||||
|
||||
string EncodeBase32(const string& str)
|
||||
{
|
||||
return EncodeBase32((const unsigned char*)str.c_str(), str.size());
|
||||
}
|
||||
|
||||
vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid)
|
||||
{
|
||||
static const int decode32_table[256] =
|
||||
{
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 26, 27, 28, 29, 30, 31, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 0, 1, 2,
|
||||
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
|
||||
23, 24, 25, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
|
||||
};
|
||||
|
||||
if (pfInvalid)
|
||||
*pfInvalid = false;
|
||||
|
||||
vector<unsigned char> vchRet;
|
||||
vchRet.reserve((strlen(p))*5/8);
|
||||
|
||||
int mode = 0;
|
||||
int left = 0;
|
||||
|
||||
while (1)
|
||||
{
|
||||
int dec = decode32_table[(unsigned char)*p];
|
||||
if (dec == -1) break;
|
||||
p++;
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits and get 5
|
||||
left = dec;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have 5 bits and keep 2
|
||||
vchRet.push_back((left<<3) | (dec>>2));
|
||||
left = dec & 3;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have 2 bits and keep 7
|
||||
left = left << 5 | dec;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have 7 bits and keep 4
|
||||
vchRet.push_back((left<<1) | (dec>>4));
|
||||
left = dec & 15;
|
||||
mode = 4;
|
||||
break;
|
||||
|
||||
case 4: // we have 4 bits, and keep 1
|
||||
vchRet.push_back((left<<4) | (dec>>1));
|
||||
left = dec & 1;
|
||||
mode = 5;
|
||||
break;
|
||||
|
||||
case 5: // we have 1 bit, and keep 6
|
||||
left = left << 5 | dec;
|
||||
mode = 6;
|
||||
break;
|
||||
|
||||
case 6: // we have 6 bits, and keep 3
|
||||
vchRet.push_back((left<<2) | (dec>>3));
|
||||
left = dec & 7;
|
||||
mode = 7;
|
||||
break;
|
||||
|
||||
case 7: // we have 3 bits, and keep 0
|
||||
vchRet.push_back((left<<5) | dec);
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pfInvalid)
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // 8n base32 characters processed: ok
|
||||
break;
|
||||
|
||||
case 1: // 8n+1 base32 characters processed: impossible
|
||||
case 3: // +3
|
||||
case 6: // +6
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 2: // 8n+2 base32 characters processed: require '======'
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || p[4] != '=' || p[5] != '=' || decode32_table[(unsigned char)p[6]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 4: // 8n+4 base32 characters processed: require '===='
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || decode32_table[(unsigned char)p[4]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 5: // 8n+5 base32 characters processed: require '==='
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || decode32_table[(unsigned char)p[3]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 7: // 8n+7 base32 characters processed: require '='
|
||||
if (left || p[0] != '=' || decode32_table[(unsigned char)p[1]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return vchRet;
|
||||
}
|
||||
|
||||
string DecodeBase32(const string& str)
|
||||
{
|
||||
vector<unsigned char> vchRet = DecodeBase32(str.c_str());
|
||||
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
|
||||
}
|
||||
|
||||
bool ParseInt32(const std::string& str, int32_t *out)
|
||||
{
|
||||
char *endp = NULL;
|
||||
errno = 0; // strtol will not set errno if valid
|
||||
long int n = strtol(str.c_str(), &endp, 10);
|
||||
if(out) *out = (int)n;
|
||||
// Note that strtol returns a *long int*, so even if strtol doesn't report a over/underflow
|
||||
// we still have to check that the returned value is within the range of an *int32_t*. On 64-bit
|
||||
// platforms the size of these types may be different.
|
||||
return endp && *endp == 0 && !errno &&
|
||||
n >= std::numeric_limits<int32_t>::min() &&
|
||||
n <= std::numeric_limits<int32_t>::max();
|
||||
}
|
||||
|
||||
std::string FormatParagraph(const std::string in, size_t width, size_t indent)
|
||||
{
|
||||
std::stringstream out;
|
||||
size_t col = 0;
|
||||
size_t ptr = 0;
|
||||
while(ptr < in.size())
|
||||
{
|
||||
// Find beginning of next word
|
||||
ptr = in.find_first_not_of(' ', ptr);
|
||||
if (ptr == std::string::npos)
|
||||
break;
|
||||
// Find end of next word
|
||||
size_t endword = in.find_first_of(' ', ptr);
|
||||
if (endword == std::string::npos)
|
||||
endword = in.size();
|
||||
// Add newline and indentation if this wraps over the allowed width
|
||||
if (col > 0)
|
||||
{
|
||||
if ((col + endword - ptr) > width)
|
||||
{
|
||||
out << '\n';
|
||||
for(size_t i=0; i<indent; ++i)
|
||||
out << ' ';
|
||||
col = 0;
|
||||
} else
|
||||
out << ' ';
|
||||
}
|
||||
// Append word
|
||||
out << in.substr(ptr, endword - ptr);
|
||||
col += endword - ptr + 1;
|
||||
ptr = endword;
|
||||
}
|
||||
return out.str();
|
||||
}
|
||||
|
||||
std::string i64tostr(int64_t n)
|
||||
{
|
||||
return strprintf("%d", n);
|
||||
}
|
||||
|
||||
std::string itostr(int n)
|
||||
{
|
||||
return strprintf("%d", n);
|
||||
}
|
||||
|
||||
int64_t atoi64(const char* psz)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _atoi64(psz);
|
||||
#else
|
||||
return strtoll(psz, NULL, 10);
|
||||
#endif
|
||||
}
|
||||
|
||||
int64_t atoi64(const std::string& str)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _atoi64(str.c_str());
|
||||
#else
|
||||
return strtoll(str.c_str(), NULL, 10);
|
||||
#endif
|
||||
}
|
||||
|
||||
int atoi(const std::string& str)
|
||||
{
|
||||
return atoi(str.c_str());
|
||||
}
|
@@ -1,98 +0,0 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
/**
|
||||
* Utilities for converting data from/to strings.
|
||||
*/
|
||||
#ifndef BITCOIN_UTILSTRENCODINGS_H
|
||||
#define BITCOIN_UTILSTRENCODINGS_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define BEGIN(a) ((char*)&(a))
|
||||
#define END(a) ((char*)&((&(a))[1]))
|
||||
#define UBEGIN(a) ((unsigned char*)&(a))
|
||||
#define UEND(a) ((unsigned char*)&((&(a))[1]))
|
||||
#define ARRAYLEN(array) (sizeof(array)/sizeof((array)[0]))
|
||||
|
||||
/** This is needed because the foreach macro can't get over the comma in pair<t1, t2> */
|
||||
#define PAIRTYPE(t1, t2) std::pair<t1, t2>
|
||||
|
||||
std::string SanitizeString(const std::string& str);
|
||||
std::vector<unsigned char> ParseHex(const char* psz);
|
||||
std::vector<unsigned char> ParseHex(const std::string& str);
|
||||
signed char HexDigit(char c);
|
||||
bool IsHex(const std::string& str);
|
||||
std::vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid = NULL);
|
||||
std::string DecodeBase64(const std::string& str);
|
||||
std::string EncodeBase64(const unsigned char* pch, size_t len);
|
||||
std::string EncodeBase64(const std::string& str);
|
||||
std::vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid = NULL);
|
||||
std::string DecodeBase32(const std::string& str);
|
||||
std::string EncodeBase32(const unsigned char* pch, size_t len);
|
||||
std::string EncodeBase32(const std::string& str);
|
||||
|
||||
std::string i64tostr(int64_t n);
|
||||
std::string itostr(int n);
|
||||
int64_t atoi64(const char* psz);
|
||||
int64_t atoi64(const std::string& str);
|
||||
int atoi(const std::string& str);
|
||||
|
||||
/**
|
||||
* Convert string to signed 32-bit integer with strict parse error feedback.
|
||||
* @returns true if the entire string could be parsed as valid integer,
|
||||
* false if not the entire string could be parsed or when overflow or underflow occurred.
|
||||
*/
|
||||
bool ParseInt32(const std::string& str, int32_t *out);
|
||||
|
||||
template<typename T>
|
||||
std::string HexStr(const T itbegin, const T itend, bool fSpaces=false)
|
||||
{
|
||||
std::string rv;
|
||||
static const char hexmap[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
|
||||
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
|
||||
rv.reserve((itend-itbegin)*3);
|
||||
for(T it = itbegin; it < itend; ++it)
|
||||
{
|
||||
unsigned char val = (unsigned char)(*it);
|
||||
if(fSpaces && it != itbegin)
|
||||
rv.push_back(' ');
|
||||
rv.push_back(hexmap[val>>4]);
|
||||
rv.push_back(hexmap[val&15]);
|
||||
}
|
||||
|
||||
return rv;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline std::string HexStr(const T& vch, bool fSpaces=false)
|
||||
{
|
||||
return HexStr(vch.begin(), vch.end(), fSpaces);
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a paragraph of text to a fixed width, adding spaces for
|
||||
* indentation to any added line.
|
||||
*/
|
||||
std::string FormatParagraph(const std::string in, size_t width=79, size_t indent=0);
|
||||
|
||||
/**
|
||||
* Timing-attack-resistant comparison.
|
||||
* Takes time proportional to length
|
||||
* of first argument.
|
||||
*/
|
||||
template <typename T>
|
||||
bool TimingResistantEqual(const T& a, const T& b)
|
||||
{
|
||||
if (b.size() == 0) return a.size() == 0;
|
||||
size_t accumulator = a.size() ^ b.size();
|
||||
for (size_t i = 0; i < a.size(); i++)
|
||||
accumulator |= a[i] ^ b[i%b.size()];
|
||||
return accumulator == 0;
|
||||
}
|
||||
|
||||
#endif // BITCOIN_UTILSTRENCODINGS_H
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for JH-224.
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for Keccak-224.
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
#define QSTATIC static
|
||||
|
||||
|
112
algo/lbry.c
112
algo/lbry.c
@@ -4,11 +4,11 @@
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "sha3/sph_sha2.h"
|
||||
#include "ripemd/sph_ripemd.h"
|
||||
|
||||
//#define DEBUG_ALGO
|
||||
#include "sha/sph_sha2.h"
|
||||
#if defined __SHA__
|
||||
#include <openssl/sha.h>
|
||||
#endif
|
||||
|
||||
#define LBRY_NTIME_INDEX 25
|
||||
#define LBRY_NBITS_INDEX 26
|
||||
@@ -16,62 +16,70 @@
|
||||
#define LBRY_WORK_DATA_SIZE 192
|
||||
#define LBRY_WORK_CMP_SIZE 76 // same as default
|
||||
|
||||
/* Move init out of loop, so init once externally, and then use one single memcpy with that bigger memory block */
|
||||
typedef struct {
|
||||
sph_sha256_context sha256;
|
||||
sph_sha512_context sha512;
|
||||
sph_ripemd160_context ripemd;
|
||||
} lbryhash_context_holder;
|
||||
|
||||
/* no need to copy, because close reinit the context */
|
||||
static lbryhash_context_holder ctx;
|
||||
|
||||
void init_lbry_contexts(void *dummy)
|
||||
{
|
||||
sph_sha256_init(&ctx.sha256);
|
||||
sph_sha512_init(&ctx.sha512);
|
||||
sph_ripemd160_init(&ctx.ripemd);
|
||||
}
|
||||
|
||||
void lbry_hash(void* output, const void* input)
|
||||
{
|
||||
sph_sha256_context ctx_sha256;
|
||||
sph_sha512_context ctx_sha512;
|
||||
sph_ripemd160_context ctx_ripemd;
|
||||
uint32_t _ALIGN(64) hashA[16];
|
||||
uint32_t _ALIGN(64) hashB[16];
|
||||
uint32_t _ALIGN(64) hashC[16];
|
||||
#if defined __SHA__
|
||||
SHA256_CTX ctx_sha256 __attribute__ ((aligned (64)));
|
||||
#else
|
||||
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
|
||||
#endif
|
||||
sph_sha512_context ctx_sha512 __attribute__ ((aligned (64)));
|
||||
sph_ripemd160_context ctx_ripemd __attribute__ ((aligned (64)));
|
||||
uint32_t _ALIGN(64) hashA[16];
|
||||
uint32_t _ALIGN(64) hashB[16];
|
||||
uint32_t _ALIGN(64) hashC[16];
|
||||
|
||||
sph_sha256_init(&ctx_sha256);
|
||||
sph_sha256 (&ctx_sha256, input, 112);
|
||||
sph_sha256_close(&ctx_sha256, hashA);
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, input, 112 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
|
||||
sph_sha256_init(&ctx_sha256);
|
||||
sph_sha256 (&ctx_sha256, hashA, 32);
|
||||
sph_sha256_close(&ctx_sha256, hashA);
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashA, 32 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, input, 112 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha512_init(&ctx_sha512);
|
||||
sph_sha512 (&ctx_sha512, hashA, 32);
|
||||
sph_sha512_close(&ctx_sha512, hashA);
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
#endif
|
||||
|
||||
sph_ripemd160_init(&ctx_ripemd);
|
||||
sph_ripemd160 (&ctx_ripemd, hashA, 32);
|
||||
sph_ripemd160_close(&ctx_ripemd, hashB);
|
||||
sph_sha512_init( &ctx_sha512 );
|
||||
sph_sha512 ( &ctx_sha512, hashA, 32 );
|
||||
sph_sha512_close( &ctx_sha512, hashA );
|
||||
|
||||
sph_ripemd160_init(&ctx_ripemd);
|
||||
sph_ripemd160 (&ctx_ripemd, hashA+8, 32);
|
||||
sph_ripemd160_close(&ctx_ripemd, hashC);
|
||||
sph_ripemd160_init( &ctx_ripemd );
|
||||
sph_ripemd160 ( &ctx_ripemd, hashA, 32 );
|
||||
sph_ripemd160_close( &ctx_ripemd, hashB );
|
||||
|
||||
sph_sha256_init(&ctx_sha256);
|
||||
sph_sha256 (&ctx_sha256, hashB, 20);
|
||||
sph_sha256 (&ctx_sha256, hashC, 20);
|
||||
sph_sha256_close(&ctx_sha256, hashA);
|
||||
sph_ripemd160_init( &ctx_ripemd );
|
||||
sph_ripemd160 ( &ctx_ripemd, hashA+8, 32 );
|
||||
sph_ripemd160_close( &ctx_ripemd, hashC );
|
||||
|
||||
sph_sha256_init(&ctx_sha256);
|
||||
sph_sha256 (&ctx_sha256, hashA, 32);
|
||||
sph_sha256_close(&ctx_sha256, hashA);
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashB, 20 );
|
||||
SHA256_Update( &ctx_sha256, hashC, 20 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
|
||||
memcpy(output, hashA, 32);
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashA, 32 );
|
||||
SHA256_Final( (unsigned char*) hashA, &ctx_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashB, 20 );
|
||||
sph_sha256 ( &ctx_sha256, hashC, 20 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256 ( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
#endif
|
||||
memcpy( output, hashA, 32 );
|
||||
}
|
||||
|
||||
int scanhash_lbry( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -83,8 +91,8 @@ int scanhash_lbry( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
const uint32_t first_nonce = pdata[27];
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
uint32_t hash64[8] __attribute__((aligned(32)));
|
||||
uint32_t endiandata[32];
|
||||
uint32_t hash64[8] __attribute__((aligned(64)));
|
||||
uint32_t endiandata[32] __attribute__ ((aligned (64)));
|
||||
|
||||
uint64_t htmax[] = {
|
||||
0,
|
||||
@@ -211,9 +219,9 @@ int64_t lbry_get_max64() { return 0x1ffffLL; }
|
||||
|
||||
bool register_lbry_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | SHA_OPT;
|
||||
gate->scanhash = (void*)&scanhash_lbry;
|
||||
gate->hash = (void*)&lbry_hash;
|
||||
gate->hash_alt = (void*)&lbry_hash;
|
||||
gate->calc_network_diff = (void*)&lbry_calc_network_diff;
|
||||
gate->get_max64 = (void*)&lbry_get_max64;
|
||||
gate->build_stratum_request = (void*)&lbry_le_build_stratum_request;
|
||||
|
@@ -41,7 +41,7 @@ extern "C"{
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for Luffa-224.
|
||||
|
@@ -25,10 +25,8 @@
|
||||
|
||||
#define MULT2(a0,a1) do \
|
||||
{ \
|
||||
__m128i b; \
|
||||
a0 = _mm_xor_si128( a0, _mm_shuffle_epi32( _mm_and_si128(a1,MASK), 16 ) ); \
|
||||
b = a0; \
|
||||
a0 = _mm_or_si128( _mm_srli_si128(a0,4), _mm_slli_si128(a1,12) ); \
|
||||
__m128i b = _mm_xor_si128( a0, _mm_shuffle_epi32( _mm_and_si128(a1,MASK), 16 ) ); \
|
||||
a0 = _mm_or_si128( _mm_srli_si128(b,4), _mm_slli_si128(a1,12) ); \
|
||||
a1 = _mm_or_si128( _mm_srli_si128(a1,4), _mm_slli_si128(b,12) ); \
|
||||
} while(0)
|
||||
|
||||
@@ -188,13 +186,10 @@
|
||||
#define MIXTON1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3)\
|
||||
NMLTOM1024(r0,r1,r2,r3,s0,s1,s2,s3,p0,p1,p2,p3,q0,q1,q2,q3);
|
||||
|
||||
|
||||
static void rnd512( hashState_luffa *state, __m128i msg1, __m128i msg0 );
|
||||
//static void rnd512( hashState_luffa *state );
|
||||
|
||||
static void finalization512( hashState_luffa *state, uint32 *b );
|
||||
|
||||
|
||||
/* initial values of chaining variables */
|
||||
static const uint32 IV[40] __attribute((aligned(16))) = {
|
||||
0xdbf78465,0x4eaa6fb4,0x44b051e0,0x6d251e69,
|
||||
@@ -300,13 +295,17 @@ HashReturn final_luffa(hashState_luffa *state, BitSequence *hashval)
|
||||
{
|
||||
// transform pad block
|
||||
if ( state->rembytes )
|
||||
{
|
||||
// not empty, data is in buffer
|
||||
rnd512( state, casti_m128i( state->buffer, 1 ),
|
||||
casti_m128i( state->buffer, 0 ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
// empty pad block, constant data
|
||||
rnd512( state, _mm_setzero_si128(),
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ) );
|
||||
rnd512( state, _mm_setzero_si128(),
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ) );
|
||||
}
|
||||
|
||||
finalization512(state, (uint32*) hashval);
|
||||
if ( state->hashbitlen > 512 )
|
||||
@@ -332,13 +331,17 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
|
||||
|
||||
// 16 byte partial block exists for 80 byte len
|
||||
if ( state->rembytes )
|
||||
// remaining 16 data bytes + 16 bytes padding
|
||||
rnd512( state, _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ),
|
||||
{
|
||||
// padding of partial block
|
||||
rnd512( state, _mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ),
|
||||
mm_byteswap_epi32( cast_m128i( data ) ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
// empty pad block
|
||||
rnd512( state, _mm_setzero_si128(),
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ) );
|
||||
rnd512( state, _mm_setzero_si128(),
|
||||
_mm_set_epi8( 0,0,0,0, 0,0,0,0, 0,0,0,0, 0x80,0,0,0 ) );
|
||||
}
|
||||
|
||||
finalization512( state, (uint32*) output );
|
||||
if ( state->hashbitlen > 512 )
|
||||
@@ -358,9 +361,6 @@ static void rnd512( hashState_luffa *state, __m128i msg1, __m128i msg0 )
|
||||
__m128i tmp[2];
|
||||
__m128i x[8];
|
||||
|
||||
// _mm_prefetch( chainv, _MM_HINT_T0 );
|
||||
// _mm_prefetch( chainv + 4, _MM_HINT_T0 );
|
||||
|
||||
t[0] = chainv[0];
|
||||
t[1] = chainv[1];
|
||||
|
||||
@@ -513,25 +513,62 @@ static void rnd512( hashState_luffa *state, __m128i msg1, __m128i msg0 )
|
||||
tmp[0], tmp[1] );
|
||||
STEP_PART2( chainv[8], chainv[9], t[0], t[1], CNS128[30], CNS128[31],
|
||||
tmp[0], tmp[1] );
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/***************************************************/
|
||||
/* Finalization function */
|
||||
/* state: hash context */
|
||||
/* b[8]: hash values */
|
||||
|
||||
#if defined (__AVX2__)
|
||||
|
||||
static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
{
|
||||
uint32 hash[8] __attribute((aligned(64)));
|
||||
__m256i* chainv = (__m256i*)state->chainv;
|
||||
__m256i t;
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
|
||||
rnd512( state, zero, zero );
|
||||
|
||||
t = chainv[0];
|
||||
t = _mm256_xor_si256( t, chainv[1] );
|
||||
t = _mm256_xor_si256( t, chainv[2] );
|
||||
t = _mm256_xor_si256( t, chainv[3] );
|
||||
t = _mm256_xor_si256( t, chainv[4] );
|
||||
|
||||
t = _mm256_shuffle_epi32( t, 27 );
|
||||
|
||||
_mm256_store_si256( (__m256i*)hash, t );
|
||||
|
||||
casti_m256i( b, 0 ) = mm256_byteswap_epi32( casti_m256i( hash, 0 ) );
|
||||
|
||||
rnd512( state, zero, zero );
|
||||
|
||||
t = chainv[0];
|
||||
t = _mm256_xor_si256( t, chainv[1] );
|
||||
t = _mm256_xor_si256( t, chainv[2] );
|
||||
t = _mm256_xor_si256( t, chainv[3] );
|
||||
t = _mm256_xor_si256( t, chainv[4] );
|
||||
t = _mm256_shuffle_epi32( t, 27 );
|
||||
|
||||
_mm256_store_si256( (__m256i*)hash, t );
|
||||
|
||||
casti_m256i( b, 1 ) = mm256_byteswap_epi32( casti_m256i( hash, 0 ) );
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
{
|
||||
uint32 hash[8] __attribute((aligned(64)));
|
||||
__m128i* chainv = state->chainv;
|
||||
__m128i t[2];
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
|
||||
/*---- blank round with m=0 ----*/
|
||||
rnd512( state, _mm_setzero_si128(), _mm_setzero_si128() );
|
||||
|
||||
// _mm_prefetch( b, _MM_HINT_T0 );
|
||||
rnd512( state, zero, zero );
|
||||
|
||||
t[0] = chainv[0];
|
||||
t[1] = chainv[1];
|
||||
@@ -553,7 +590,7 @@ static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
casti_m128i( b, 0 ) = mm_byteswap_epi32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 1 ) = mm_byteswap_epi32( casti_m128i( hash, 1 ) );
|
||||
|
||||
rnd512( state, _mm_setzero_si128(), _mm_setzero_si128() );
|
||||
rnd512( state, zero, zero );
|
||||
|
||||
t[0] = chainv[0];
|
||||
t[1] = chainv[1];
|
||||
@@ -574,8 +611,7 @@ static void finalization512( hashState_luffa *state, uint32 *b )
|
||||
|
||||
casti_m128i( b, 2 ) = mm_byteswap_epi32( casti_m128i( hash, 0 ) );
|
||||
casti_m128i( b, 3 ) = mm_byteswap_epi32( casti_m128i( hash, 1 ) );
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
/***************************************************/
|
||||
|
@@ -19,7 +19,7 @@
|
||||
*/
|
||||
|
||||
#include <emmintrin.h>
|
||||
#include "algo/sha3/sha3-defs.h"
|
||||
#include "algo/sha/sha3-defs.h"
|
||||
/* The length of digests*/
|
||||
#define DIGEST_BIT_LEN_224 224
|
||||
#define DIGEST_BIT_LEN_256 256
|
||||
@@ -46,8 +46,8 @@
|
||||
/*********************************/
|
||||
|
||||
typedef struct {
|
||||
uint32 buffer[8] __attribute((aligned(16)));
|
||||
__m128i chainv[10]; /* Chaining values */
|
||||
uint32 buffer[8] __attribute((aligned(32)));
|
||||
__m128i chainv[10] __attribute((aligned(32))); /* Chaining values */
|
||||
// uint64 bitlen[2]; /* Message length in bits */
|
||||
// uint32 rembitlen; /* Length of buffer data to be hashed */
|
||||
int hashbitlen;
|
||||
|
@@ -49,11 +49,10 @@ void lyra2_blake256_midstate( const void* input )
|
||||
|
||||
void lyra2re_hash(void *state, const void *input)
|
||||
{
|
||||
lyra2re_ctx_holder ctx;
|
||||
lyra2re_ctx_holder ctx __attribute__ ((aligned (64))) ;
|
||||
memcpy(&ctx, &lyra2re_ctx, sizeof(lyra2re_ctx));
|
||||
|
||||
// uint32_t _ALIGN(128) hashA[8], hashB[8];
|
||||
uint8_t _ALIGN(128) hash[32*8];
|
||||
uint8_t _ALIGN(64) hash[32*8];
|
||||
#define hashA hash
|
||||
#define hashB hash+16
|
||||
|
||||
@@ -63,7 +62,6 @@ void lyra2re_hash(void *state, const void *input)
|
||||
memcpy( &ctx.blake, &lyra2_blake_mid, sizeof lyra2_blake_mid );
|
||||
sph_blake256( &ctx.blake, input + midlen, tail );
|
||||
|
||||
// sph_blake256(&ctx.blake, input, 80);
|
||||
sph_blake256_close(&ctx.blake, hashA);
|
||||
|
||||
sph_keccak256(&ctx.keccak, hashA, 32);
|
||||
@@ -91,7 +89,7 @@ int scanhash_lyra2re(int thr_id, struct work *work,
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
uint32_t hash[8] __attribute__((aligned(64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
@@ -161,7 +159,6 @@ bool register_lyra2re_algo( algo_gate_t* gate )
|
||||
// gate->miner_thread_init = (void*)&lyra2re_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2re;
|
||||
gate->hash = (void*)&lyra2re_hash;
|
||||
gate->hash_alt = (void*)&lyra2re_hash;
|
||||
gate->get_max64 = (void*)&lyra2re_get_max64;
|
||||
gate->set_target = (void*)&lyra2re_set_target;
|
||||
return true;
|
||||
|
@@ -48,10 +48,11 @@ void l2v2_blake256_midstate( const void* input )
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input )
|
||||
{
|
||||
lyra2v2_ctx_holder ctx;
|
||||
lyra2v2_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &lyra2v2_ctx, sizeof(lyra2v2_ctx) );
|
||||
uint32_t _ALIGN(128) hashA[8], hashB[8];
|
||||
|
||||
uint8_t hash[128] __attribute__ ((aligned (64)));
|
||||
#define hashA hash
|
||||
#define hashB hash+64
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
@@ -84,8 +85,8 @@ int scanhash_lyra2rev2(int thr_id, struct work *work,
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8] __attribute__((aligned(64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
@@ -124,7 +125,6 @@ void lyra2rev2_set_target( struct work* work, double job_diff )
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
|
||||
bool lyra2rev2_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
@@ -138,7 +138,7 @@ bool lyra2rev2_thread_init()
|
||||
|
||||
#if defined (__AVX2__)
|
||||
memset_zero_m256i( (__m256i*)l2v2_wholeMatrix, i/32 );
|
||||
#elif defined(__AVX__)
|
||||
#elif defined (__AVX__)
|
||||
memset_zero_m128i( (__m128i*)l2v2_wholeMatrix, i/16 );
|
||||
#else
|
||||
memset( l2v2_wholeMatrix, 0, i );
|
||||
@@ -151,10 +151,9 @@ bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
init_lyra2rev2_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
gate->hash_alt = (void*)&lyra2rev2_hash;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -4,22 +4,23 @@
|
||||
#include "lyra2.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
__thread uint64_t* zoin_wholeMatrix;
|
||||
__thread uint64_t* lyra2z330_wholeMatrix;
|
||||
|
||||
void zoin_hash(void *state, const void *input, uint32_t height)
|
||||
void lyra2z330_hash(void *state, const void *input, uint32_t height)
|
||||
{
|
||||
uint32_t _ALIGN(256) hash[16];
|
||||
|
||||
LYRA2Z( zoin_wholeMatrix, hash, 32, input, 80, input, 80, 2, 330, 256);
|
||||
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, input, 80, input, 80,
|
||||
2, 330, 256 );
|
||||
|
||||
memcpy(state, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_zoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
int scanhash_lyra2z330( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t _ALIGN(128) hash[8];
|
||||
uint32_t _ALIGN(128) endiandata[20];
|
||||
uint32_t hash[8] __attribute__ ((aligned (64)));
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
@@ -34,7 +35,7 @@ int scanhash_zoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
zoin_hash( hash, endiandata, work->height );
|
||||
lyra2z330_hash( hash, endiandata, work->height );
|
||||
|
||||
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
|
||||
work_set_target_ratio(work, hash);
|
||||
@@ -51,35 +52,28 @@ int scanhash_zoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
return 0;
|
||||
}
|
||||
|
||||
void zoin_set_target( struct work* work, double job_diff )
|
||||
void lyra2z330_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
/*
|
||||
bool zoin_get_work_height( struct work* work, struct stratum_ctx* sctx )
|
||||
{
|
||||
work->height = sctx->bloc_height;
|
||||
return false;
|
||||
}
|
||||
*/
|
||||
|
||||
bool zoin_thread_init()
|
||||
bool lyra2z330_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 256; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int i = (int64_t)ROW_LEN_BYTES * 330; // nRows;
|
||||
zoin_wholeMatrix = _mm_malloc( i, 64 );
|
||||
lyra2z330_wholeMatrix = _mm_malloc( i, 64 );
|
||||
|
||||
if ( zoin_wholeMatrix == NULL )
|
||||
if ( lyra2z330_wholeMatrix == NULL )
|
||||
return false;
|
||||
|
||||
#if defined (__AVX2__)
|
||||
memset_zero_m256i( (__m256i*)zoin_wholeMatrix, i/32 );
|
||||
memset_zero_m256i( (__m256i*)lyra2z330_wholeMatrix, i/32 );
|
||||
#elif defined(__AVX__)
|
||||
memset_zero_m128i( (__m128i*)zoin_wholeMatrix, i/16 );
|
||||
memset_zero_m128i( (__m128i*)lyra2z330_wholeMatrix, i/16 );
|
||||
#else
|
||||
memset( zoin_wholeMatrix, 0, i );
|
||||
memset( lyra2z330_wholeMatrix, 0, i );
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
@@ -87,13 +81,11 @@ bool zoin_thread_init()
|
||||
bool register_lyra2z330_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&zoin_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_zoin;
|
||||
gate->hash = (void*)&zoin_hash;
|
||||
gate->hash_alt = (void*)&zoin_hash;
|
||||
gate->miner_thread_init = (void*)&lyra2z330_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z330;
|
||||
gate->hash = (void*)&lyra2z330_hash;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&zoin_set_target;
|
||||
// gate->prevent_dupes = (void*)&zoin_get_work_height;
|
||||
gate->set_target = (void*)&lyra2z330_set_target;
|
||||
return true;
|
||||
};
|
||||
|
@@ -22,9 +22,9 @@ void zcoin_midstate( const void* input )
|
||||
//void zcoin_hash(void *state, const void *input, uint32_t height)
|
||||
void zcoin_hash(void *state, const void *input )
|
||||
{
|
||||
uint32_t _ALIGN(256) hash[16];
|
||||
uint32_t _ALIGN(64) hash[16];
|
||||
|
||||
sph_blake256_context ctx_blake;
|
||||
sph_blake256_context ctx_blake __attribute__ ((aligned (64)));
|
||||
|
||||
memcpy( &ctx_blake, &zcoin_blake_mid, sizeof zcoin_blake_mid );
|
||||
sph_blake256( &ctx_blake, input + 64, 16 );
|
||||
@@ -38,8 +38,8 @@ void zcoin_hash(void *state, const void *input )
|
||||
int scanhash_zcoin( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t _ALIGN(128) hash[8];
|
||||
uint32_t _ALIGN(128) endiandata[20];
|
||||
uint32_t _ALIGN(64) hash[8];
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
@@ -115,7 +115,6 @@ bool register_zcoin_algo( algo_gate_t* gate )
|
||||
gate->miner_thread_init = (void*)&zcoin_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_zcoin;
|
||||
gate->hash = (void*)&zcoin_hash;
|
||||
gate->hash_alt = (void*)&zcoin_hash;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&zcoin_set_target;
|
||||
// gate->prevent_dupes = (void*)&zcoin_get_work_height;
|
||||
|
278
algo/m7m.c
278
algo/m7m.c
@@ -8,12 +8,16 @@
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "algo/sha2/sph-sha2.h"
|
||||
#include "algo/sha/sph_sha2.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/haval/sph-haval.h"
|
||||
#include "algo/tiger/sph_tiger.h"
|
||||
#include "algo/whirlpool/sph_whirlpool.h"
|
||||
#include "algo/ripemd/sph_ripemd.h"
|
||||
#if defined __SHA__
|
||||
#include <openssl/sha.h>
|
||||
#endif
|
||||
|
||||
|
||||
#define EPSa DBL_EPSILON
|
||||
#define EPS1 DBL_EPSILON
|
||||
@@ -64,9 +68,7 @@ double GaussianQuad_N2(const double x1, const double x2)
|
||||
double x[6], w[6];
|
||||
//gauleg(a2, b2, x, w);
|
||||
|
||||
// int m;
|
||||
double z1, z, xm, xl, pp, p3, p2, p1;
|
||||
// m=3;
|
||||
xm=0.5*(x2+x1);
|
||||
xl=0.5*(x2-x1);
|
||||
for(int i=1;i<=3;i++)
|
||||
@@ -117,9 +119,12 @@ uint32_t sw2_(int nnounce)
|
||||
return ((uint32_t)(GaussianQuad_N2(0., wmax)*(1.+EPSa)*1.e6));
|
||||
}
|
||||
|
||||
|
||||
typedef struct {
|
||||
#if defined __SHA__
|
||||
SHA256_CTX sha256;
|
||||
#else
|
||||
sph_sha256_context sha256;
|
||||
#endif
|
||||
sph_sha512_context sha512;
|
||||
sph_keccak512_context keccak;
|
||||
sph_whirlpool_context whirlpool;
|
||||
@@ -128,13 +133,15 @@ typedef struct {
|
||||
sph_ripemd160_context ripemd;
|
||||
} m7m_ctx_holder;
|
||||
|
||||
sph_sha256_context m7m_ctx_final_sha256;
|
||||
m7m_ctx_holder m7m_ctx;
|
||||
|
||||
void init_m7m_ctx()
|
||||
{
|
||||
sph_sha256_init( &m7m_ctx_final_sha256 );
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &m7m_ctx.sha256 );
|
||||
#else
|
||||
sph_sha256_init( &m7m_ctx.sha256 );
|
||||
#endif
|
||||
sph_sha512_init( &m7m_ctx.sha512 );
|
||||
sph_keccak512_init( &m7m_ctx.keccak );
|
||||
sph_whirlpool_init( &m7m_ctx.whirlpool );
|
||||
@@ -154,34 +161,41 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t data[32] __attribute__((aligned(128)));
|
||||
uint32_t data[32] __attribute__((aligned(64)));
|
||||
uint32_t *data_p64 = data + (M7_MIDSTATE_LEN / sizeof(data[0]));
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
uint8_t bhash[7][64] __attribute__((aligned(32)));
|
||||
uint32_t hash[8] __attribute__((aligned(64)));
|
||||
uint8_t bhash[7][64] __attribute__((aligned(64)));
|
||||
uint32_t n = pdata[19] - 1;
|
||||
uint32_t usw_, mpzscale;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
char data_str[161], hash_str[65], target_str[65];
|
||||
//uint8_t *bdata = 0;
|
||||
uint8_t bdata[8192];
|
||||
uint8_t bdata[8192] __attribute__ ((aligned (64)));
|
||||
int rc = 0, i, digits;
|
||||
int bytes;
|
||||
size_t p = sizeof(unsigned long), a = 64/p, b = 32/p;
|
||||
|
||||
m7m_ctx_holder ctx1, ctx2;
|
||||
m7m_ctx_holder ctx1, ctx2 __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx1, &m7m_ctx, sizeof(m7m_ctx) );
|
||||
#if defined __SHA__
|
||||
SHA256_CTX ctxf_sha256;
|
||||
#else
|
||||
sph_sha256_context ctxf_sha256;
|
||||
memcpy( &ctxf_sha256, &m7m_ctx_final_sha256, sizeof(ctxf_sha256) );
|
||||
#endif
|
||||
|
||||
memcpy(data, pdata, 80);
|
||||
|
||||
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
|
||||
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
|
||||
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
|
||||
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
|
||||
sph_haval256_5( &ctx1.haval, data, M7_MIDSTATE_LEN );
|
||||
sph_tiger( &ctx1.tiger, data, M7_MIDSTATE_LEN );
|
||||
sph_ripemd160( &ctx1.ripemd, data, M7_MIDSTATE_LEN );
|
||||
#if defined __SHA__
|
||||
SHA256_Update( &ctx1.sha256, data, M7_MIDSTATE_LEN );
|
||||
#else
|
||||
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
|
||||
#endif
|
||||
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
|
||||
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
|
||||
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
|
||||
sph_haval256_5( &ctx1.haval, data, M7_MIDSTATE_LEN );
|
||||
sph_tiger( &ctx1.tiger, data, M7_MIDSTATE_LEN );
|
||||
sph_ripemd160( &ctx1.ripemd, data, M7_MIDSTATE_LEN );
|
||||
|
||||
mpz_t magipi, magisw, product, bns0, bns1;
|
||||
mpf_t magifpi, magifpi0, mpt1, mpt2, mptmp, mpten;
|
||||
@@ -207,9 +221,13 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
|
||||
memcpy( &ctx2, &ctx1, sizeof(m7m_ctx) );
|
||||
|
||||
#if defined __SHA__
|
||||
SHA256_Update( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
SHA256_Final( (unsigned char*) (bhash[0]), &ctx2.sha256 );
|
||||
#else
|
||||
sph_sha256( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_sha256_close( &ctx2.sha256, (void*)(bhash[0]) );
|
||||
|
||||
#endif
|
||||
sph_sha512( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
|
||||
sph_sha512_close( &ctx2.sha512, (void*)(bhash[1]) );
|
||||
|
||||
@@ -243,8 +261,15 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
bytes = mpz_sizeinbase(product, 256);
|
||||
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &ctxf_sha256 );
|
||||
SHA256_Update( &ctxf_sha256, bdata, bytes );
|
||||
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctxf_sha256 );
|
||||
sph_sha256( &ctxf_sha256, bdata, bytes );
|
||||
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
|
||||
#endif
|
||||
|
||||
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
|
||||
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
|
||||
@@ -278,8 +303,15 @@ int scanhash_m7m_hash( int thr_id, struct work* work,
|
||||
mpzscale=bytes;
|
||||
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
#if defined __SHA__
|
||||
SHA256_Init( &ctxf_sha256 );
|
||||
SHA256_Update( &ctxf_sha256, bdata, bytes );
|
||||
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
|
||||
#else
|
||||
sph_sha256_init( &ctxf_sha256 );
|
||||
sph_sha256( &ctxf_sha256, bdata, bytes );
|
||||
sph_sha256_close( &ctxf_sha256, (void*)(hash) );
|
||||
#endif
|
||||
}
|
||||
|
||||
const unsigned char *hash_ = (const unsigned char *)hash;
|
||||
@@ -329,210 +361,6 @@ out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
int scanhash_m7m_hash_t(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
|
||||
uint64_t max_nonce, unsigned long *hashes_done, struct timespec cpu_dec_time)
|
||||
{
|
||||
uint32_t data[32] __attribute__((aligned(128)));
|
||||
uint32_t *data_p64 = data + (M7_MIDSTATE_LEN / sizeof(data[0]));
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
uint8_t bhash[7][64] __attribute__((aligned(32)));
|
||||
uint32_t n = pdata[19] - 1;
|
||||
uint32_t usw_, mpzscale;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
char data_str[161], hash_str[65], target_str[65];
|
||||
//uint8_t *bdata = 0;
|
||||
uint8_t bdata[8192];
|
||||
int rc = 0, i, digits;
|
||||
int bytes;
|
||||
size_t p = sizeof(unsigned long), a = 64/p, b = 32/p;
|
||||
|
||||
memcpy(data, pdata, 80);
|
||||
|
||||
sph_sha256_context ctx_final_sha256;
|
||||
|
||||
sph_sha256_context ctx_sha256;
|
||||
sph_sha512_context ctx_sha512;
|
||||
sph_keccak512_context ctx_keccak;
|
||||
sph_whirlpool_context ctx_whirlpool;
|
||||
sph_haval256_5_context ctx_haval;
|
||||
sph_tiger_context ctx_tiger;
|
||||
sph_ripemd160_context ctx_ripemd;
|
||||
|
||||
sph_sha256_init(&ctx_final_sha256);
|
||||
|
||||
sph_sha256_init(&ctx_sha256);
|
||||
sph_sha256 (&ctx_sha256, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_sha512_init(&ctx_sha512);
|
||||
sph_sha512 (&ctx_sha512, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_keccak512_init(&ctx_keccak);
|
||||
sph_keccak512 (&ctx_keccak, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_whirlpool_init(&ctx_whirlpool);
|
||||
sph_whirlpool (&ctx_whirlpool, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_haval256_5_init(&ctx_haval);
|
||||
sph_haval256_5 (&ctx_haval, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_tiger_init(&ctx_tiger);
|
||||
sph_tiger (&ctx_tiger, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_ripemd160_init(&ctx_ripemd);
|
||||
sph_ripemd160 (&ctx_ripemd, data, M7_MIDSTATE_LEN);
|
||||
|
||||
sph_sha256_context ctx2_sha256;
|
||||
sph_sha512_context ctx2_sha512;
|
||||
sph_keccak512_context ctx2_keccak;
|
||||
sph_whirlpool_context ctx2_whirlpool;
|
||||
sph_haval256_5_context ctx2_haval;
|
||||
sph_tiger_context ctx2_tiger;
|
||||
sph_ripemd160_context ctx2_ripemd;
|
||||
|
||||
mpz_t magipi, magisw, product, bns0, bns1;
|
||||
mpf_t magifpi, magifpi0, mpt1, mpt2, mptmp, mpten;
|
||||
|
||||
mpz_inits(magipi, magisw, bns0, bns1, NULL);
|
||||
mpz_init2(product, 512);
|
||||
|
||||
mp_bitcnt_t prec0 = (long int)((int)((sqrt((double)(INT_MAX))*(1.+EPS))/9000+75)*BITS_PER_DIGIT+16);
|
||||
mpf_set_default_prec(prec0);
|
||||
|
||||
mpf_init(magifpi);
|
||||
mpf_init(magifpi0);
|
||||
mpf_init(mpt1);
|
||||
mpf_init(mpt2);
|
||||
mpf_init(mptmp);
|
||||
mpf_init_set_ui(mpten, 10);
|
||||
mpf_set_str(mpt2, "0.8e3b1a9b359805c2e54c6415037f2e336893b6457f7754f6b4ae045eb6c5f2bedb26a114030846be7", 16);
|
||||
mpf_set_str(magifpi0, "0.b7bfc6837e20bdb22653f1fc419f6bc33ca80eb65b7b0246f7f3b65689560aea1a2f2fd95f254d68c", 16);
|
||||
|
||||
do {
|
||||
data[19] = ++n;
|
||||
memset(bhash, 0, 7 * 64);
|
||||
|
||||
ctx2_sha256 = ctx_sha256;
|
||||
sph_sha256 (&ctx2_sha256, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_sha256_close(&ctx2_sha256, (void*)(bhash[0]));
|
||||
|
||||
ctx2_sha512 = ctx_sha512;
|
||||
sph_sha512 (&ctx2_sha512, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_sha512_close(&ctx2_sha512, (void*)(bhash[1]));
|
||||
|
||||
ctx2_keccak = ctx_keccak;
|
||||
sph_keccak512 (&ctx2_keccak, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_keccak512_close(&ctx2_keccak, (void*)(bhash[2]));
|
||||
|
||||
ctx2_whirlpool = ctx_whirlpool;
|
||||
sph_whirlpool (&ctx2_whirlpool, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_whirlpool_close(&ctx2_whirlpool, (void*)(bhash[3]));
|
||||
|
||||
ctx2_haval = ctx_haval;
|
||||
sph_haval256_5 (&ctx2_haval, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_haval256_5_close(&ctx2_haval, (void*)(bhash[4]));
|
||||
|
||||
ctx2_tiger = ctx_tiger;
|
||||
sph_tiger (&ctx2_tiger, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_tiger_close(&ctx2_tiger, (void*)(bhash[5]));
|
||||
|
||||
ctx2_ripemd = ctx_ripemd;
|
||||
sph_ripemd160 (&ctx2_ripemd, data_p64, 80 - M7_MIDSTATE_LEN);
|
||||
sph_ripemd160_close(&ctx2_ripemd, (void*)(bhash[6]));
|
||||
|
||||
mpz_import(bns0, a, -1, p, -1, 0, bhash[0]);
|
||||
mpz_set(bns1, bns0);
|
||||
mpz_set(product, bns0);
|
||||
for(int i=1; i < 7; i++){
|
||||
mpz_import(bns0, a, -1, p, -1, 0, bhash[i]);
|
||||
mpz_add(bns1, bns1, bns0);
|
||||
mpz_mul(product, product, bns0);
|
||||
}
|
||||
mpz_mul(product, product, bns1);
|
||||
|
||||
mpz_mul(product, product, product);
|
||||
bytes = mpz_sizeinbase(product, 256);
|
||||
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
sph_sha256 (&ctx_final_sha256, bdata, bytes);
|
||||
sph_sha256_close(&ctx_final_sha256, (void*)(hash));
|
||||
|
||||
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
|
||||
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
|
||||
mpf_set_prec_raw(magifpi, prec);
|
||||
mpf_set_prec_raw(mptmp, prec);
|
||||
mpf_set_prec_raw(mpt1, prec);
|
||||
mpf_set_prec_raw(mpt2, prec);
|
||||
|
||||
usw_ = sw2_(n/2);
|
||||
mpzscale = 1;
|
||||
mpz_set_ui(magisw, usw_);
|
||||
|
||||
for(i = 0; i < 5; i++)
|
||||
{
|
||||
mpf_set_d(mpt1, 0.25*mpzscale);
|
||||
mpf_sub(mpt1, mpt1, mpt2);
|
||||
mpf_abs(mpt1, mpt1);
|
||||
mpf_div(magifpi, magifpi0, mpt1);
|
||||
mpf_pow_ui(mptmp, mpten, digits >> 1);
|
||||
mpf_mul(magifpi, magifpi, mptmp);
|
||||
mpz_set_f(magipi, magifpi);
|
||||
mpz_add(magipi,magipi,magisw);
|
||||
mpz_add(product,product,magipi);
|
||||
|
||||
mpz_import(bns0, b, -1, p, -1, 0, (void*)(hash));
|
||||
mpz_add(bns1, bns1, bns0);
|
||||
mpz_mul(product,product,bns1);
|
||||
mpz_cdiv_q (product, product, bns0);
|
||||
|
||||
bytes = mpz_sizeinbase(product, 256);
|
||||
mpzscale=bytes;
|
||||
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
|
||||
|
||||
sph_sha256 (&ctx_final_sha256, bdata, bytes);
|
||||
sph_sha256_close(&ctx_final_sha256, (void*)(hash));
|
||||
}
|
||||
if (n%10 == 0) nanosleep(&cpu_dec_time, NULL);
|
||||
const unsigned char *hash_ = (const unsigned char *)hash;
|
||||
const unsigned char *target_ = (const unsigned char *)ptarget;
|
||||
for (i = 31; i >= 0; i--) {
|
||||
if (hash_[i] != target_[i]) {
|
||||
rc = hash_[i] < target_[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (unlikely(rc)) {
|
||||
if (opt_debug) {
|
||||
bin2hex(hash_str, (unsigned char *)hash, 32);
|
||||
bin2hex(target_str, (unsigned char *)ptarget, 32);
|
||||
bin2hex(data_str, (unsigned char *)data, 80);
|
||||
applog(LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s", thr_id,
|
||||
data_str,
|
||||
hash_str,
|
||||
target_str);
|
||||
}
|
||||
pdata[19] = data[19];
|
||||
goto out;
|
||||
}
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
pdata[19] = n;
|
||||
out:
|
||||
mpf_set_prec_raw(magifpi, prec0);
|
||||
mpf_set_prec_raw(magifpi0, prec0);
|
||||
mpf_set_prec_raw(mptmp, prec0);
|
||||
mpf_set_prec_raw(mpt1, prec0);
|
||||
mpf_set_prec_raw(mpt2, prec0);
|
||||
mpf_clear(magifpi);
|
||||
mpf_clear(magifpi0);
|
||||
mpf_clear(mpten);
|
||||
mpf_clear(mptmp);
|
||||
mpf_clear(mpt1);
|
||||
mpf_clear(mpt2);
|
||||
mpz_clears(magipi, magisw, product, bns0, bns1, NULL);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return rc;
|
||||
}
|
||||
|
||||
void m7m_reverse_endian( struct work *work )
|
||||
{
|
||||
swab32_array( work->data, work->data, 20 );
|
||||
@@ -540,7 +368,7 @@ void m7m_reverse_endian( struct work *work )
|
||||
|
||||
bool register_m7m_algo( algo_gate_t *gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | SHA_OPT;
|
||||
init_m7m_ctx();
|
||||
gate->scanhash = (void*)scanhash_m7m_hash;
|
||||
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
|
||||
|
@@ -1085,7 +1085,6 @@ bool register_neoscrypt_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_neoscrypt;
|
||||
gate->hash = (void*)&neoscrypt;
|
||||
gate->hash_alt = (void*)&neoscrypt;
|
||||
gate->get_max64 = (void*)&get_neoscrypt_max64;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->wait_for_diff = (void*)&neoscrypt_wait_for_diff;
|
||||
|
24
algo/nist5.c
24
algo/nist5.c
@@ -17,10 +17,7 @@
|
||||
#include "algo/skein/sse2/skein.c"
|
||||
#include "algo/jh/sse2/jh_sse2_opt64.h"
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
#include "algo/groestl/sse2/grso.h"
|
||||
#include "algo/groestl/sse2/grso-macro.c"
|
||||
#else
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/groestl/aes_ni/hash-groestl.h"
|
||||
#endif
|
||||
|
||||
@@ -46,14 +43,14 @@ void init_nist5_ctx()
|
||||
void nist5hash(void *output, const void *input)
|
||||
{
|
||||
size_t hashptr;
|
||||
unsigned char hashbuf[128] __attribute__ ((aligned (32)));
|
||||
unsigned char hashbuf[128];
|
||||
sph_u64 hashctA;
|
||||
sph_u64 hashctB;
|
||||
unsigned char hash[128];
|
||||
unsigned char hash[128] __attribute__ ((aligned (64))) ;
|
||||
#define hashA hash
|
||||
#define hashB hash+64
|
||||
|
||||
nist5_ctx_holder ctx;
|
||||
nist5_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &nist5_ctx, sizeof(nist5_ctx) );
|
||||
|
||||
DECL_BLK;
|
||||
@@ -62,15 +59,11 @@ void nist5hash(void *output, const void *input)
|
||||
BLK_C;
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
grsoState sts_grs;
|
||||
GRS_I;
|
||||
GRS_U;
|
||||
GRS_C;
|
||||
// sph_groestl512 (&ctx.groestl, hash, 64);
|
||||
// sph_groestl512_close(&ctx.groestl, hash);
|
||||
sph_groestl512 (&ctx.groestl, hash, 64);
|
||||
sph_groestl512_close(&ctx.groestl, hash);
|
||||
#else
|
||||
update_groestl( &ctx.groestl, (char*)hash,512);
|
||||
final_groestl( &ctx.groestl, (char*)hash);
|
||||
update_and_final_groestl( &ctx.groestl, (char*)hash,
|
||||
(const char*)hash, 512 );
|
||||
#endif
|
||||
|
||||
DECL_JH;
|
||||
@@ -162,7 +155,6 @@ bool register_nist5_algo( algo_gate_t* gate )
|
||||
init_nist5_ctx();
|
||||
gate->scanhash = (void*)&scanhash_nist5;
|
||||
gate->hash = (void*)&nist5hash;
|
||||
gate->hash_alt = (void*)&nist5hash;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -19,10 +19,7 @@
|
||||
#include "algo/skein/sse2/skein.c"
|
||||
#include "algo/jh/sse2/jh_sse2_opt64.h"
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
#include "algo/groestl/sse2/grso.h"
|
||||
#include "algo/groestl/sse2/grso-macro.c"
|
||||
#else
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/groestl/aes_ni/hash-groestl.h"
|
||||
#endif
|
||||
|
||||
@@ -116,17 +113,14 @@ inline static void quarkhash(void *state, const void *input)
|
||||
{
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
grsoState sts_grs;
|
||||
GRS_I;
|
||||
GRS_U;
|
||||
GRS_C;
|
||||
// sph_groestl512_init( &ctx );
|
||||
// sph_groestl512 ( &ctx, hash, 64 );
|
||||
// sph_groestl512_close( &ctx, hash );
|
||||
sph_groestl512_init( &ctx );
|
||||
sph_groestl512 ( &ctx, hash, 64 );
|
||||
sph_groestl512_close( &ctx, hash );
|
||||
#else
|
||||
reinit_groestl( &ctx );
|
||||
update_groestl( &ctx, (char*)hash, 512 );
|
||||
final_groestl( &ctx, (char*)hash );
|
||||
update_and_final_groestl( &ctx, (char*)hash, (char*)hash, 512 );
|
||||
// update_groestl( &ctx, (char*)hash, 512 );
|
||||
// final_groestl( &ctx, (char*)hash );
|
||||
#endif
|
||||
|
||||
} while(0); continue;
|
||||
@@ -179,83 +173,6 @@ inline static void quarkhash(void *state, const void *input)
|
||||
memcpy(state, hash, 32);
|
||||
}
|
||||
|
||||
void quarkhash_alt(void *state, const void *input)
|
||||
{
|
||||
sph_blake512_context ctx_blake1,
|
||||
ctx_blake2;
|
||||
sph_bmw512_context ctx_bmw1,
|
||||
ctx_bmw2;
|
||||
sph_groestl512_context ctx_groestl1,
|
||||
ctx_groestl2;
|
||||
sph_skein512_context ctx_skein1,
|
||||
ctx_skein2;
|
||||
sph_jh512_context ctx_jh1,
|
||||
ctx_jh2;
|
||||
sph_keccak512_context ctx_keccak1,
|
||||
ctx_keccak2;
|
||||
|
||||
sph_blake512_init(&ctx_blake1);
|
||||
sph_bmw512_init(&ctx_bmw1);
|
||||
sph_groestl512_init(&ctx_groestl1);
|
||||
sph_skein512_init(&ctx_skein1);
|
||||
sph_groestl512_init(&ctx_groestl2);
|
||||
sph_jh512_init(&ctx_jh1);
|
||||
sph_blake512_init(&ctx_blake2);
|
||||
sph_bmw512_init(&ctx_bmw2);
|
||||
sph_keccak512_init(&ctx_keccak1);
|
||||
sph_skein512_init(&ctx_skein2);
|
||||
sph_keccak512_init(&ctx_keccak2);
|
||||
sph_jh512_init(&ctx_jh2);
|
||||
|
||||
uint32_t _ALIGN(128) hash[16];
|
||||
uint32_t mask = 8;
|
||||
|
||||
|
||||
sph_blake512 (&ctx_blake1, input, 80);
|
||||
sph_blake512_close (&ctx_blake1, hash); //0
|
||||
|
||||
sph_bmw512 (&ctx_bmw1, hash, 64);
|
||||
sph_bmw512_close(&ctx_bmw1, hash); //1
|
||||
|
||||
if (hash[0] & mask) {
|
||||
sph_groestl512 (&ctx_groestl1, hash, 64);
|
||||
sph_groestl512_close(&ctx_groestl1, hash); //2
|
||||
} else {
|
||||
sph_skein512 (&ctx_skein1, hash, 64);
|
||||
sph_skein512_close(&ctx_skein1, hash); //2
|
||||
}
|
||||
|
||||
sph_groestl512 (&ctx_groestl2, hash, 64);
|
||||
sph_groestl512_close(&ctx_groestl2, hash); //3
|
||||
|
||||
sph_jh512 (&ctx_jh1, hash, 64);
|
||||
sph_jh512_close(&ctx_jh1, hash); //4
|
||||
|
||||
if (hash[0] & mask) {
|
||||
sph_blake512 (&ctx_blake2, hash, 64);
|
||||
sph_blake512_close(&ctx_blake2, hash); //5
|
||||
} else {
|
||||
sph_bmw512 (&ctx_bmw2, hash, 64);
|
||||
sph_bmw512_close(&ctx_bmw2, hash); //5
|
||||
}
|
||||
|
||||
sph_keccak512 (&ctx_keccak1, hash, 64);
|
||||
sph_keccak512_close(&ctx_keccak1, hash); //6
|
||||
|
||||
sph_skein512 (&ctx_skein2, hash, 64);
|
||||
sph_skein512_close(&ctx_skein2, hash); //7
|
||||
|
||||
if (hash[0] & mask) {
|
||||
sph_keccak512 (&ctx_keccak2, hash, 64);
|
||||
sph_keccak512_close(&ctx_keccak2, hash); //8
|
||||
} else {
|
||||
sph_jh512 (&ctx_jh2, hash, 64);
|
||||
sph_jh512_close(&ctx_jh2, hash); //8
|
||||
}
|
||||
|
||||
memcpy(state, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_quark( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
@@ -293,7 +210,6 @@ bool register_quark_algo( algo_gate_t* gate )
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_quark;
|
||||
gate->hash = (void*)&quarkhash;
|
||||
gate->hash_alt = (void*)&quarkhash_alt;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -34,7 +34,7 @@ typedef struct
|
||||
#endif
|
||||
} deep_ctx_holder;
|
||||
|
||||
deep_ctx_holder deep_ctx;
|
||||
deep_ctx_holder deep_ctx __attribute((aligned(64)));
|
||||
static __thread hashState_luffa deep_luffa_mid;
|
||||
|
||||
void init_deep_ctx()
|
||||
@@ -59,7 +59,7 @@ void deep_hash(void *output, const void *input)
|
||||
unsigned char hash[128] __attribute((aligned(64)));
|
||||
#define hashB hash+64
|
||||
|
||||
deep_ctx_holder ctx;
|
||||
deep_ctx_holder ctx __attribute((aligned(64)));
|
||||
memcpy( &ctx, &deep_ctx, sizeof(deep_ctx) );
|
||||
|
||||
const int midlen = 64; // bytes
|
||||
@@ -156,7 +156,6 @@ bool register_deep_algo( algo_gate_t* gate )
|
||||
init_deep_ctx();
|
||||
gate->scanhash = (void*)&scanhash_deep;
|
||||
gate->hash = (void*)&deep_hash;
|
||||
// gate->hash_alt = (void*)&qubithash_alt;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -70,65 +70,32 @@ void qubithash(void *output, const void *input)
|
||||
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
|
||||
(const BitSequence*)input + midlen, tail );
|
||||
|
||||
cubehashUpdate( &ctx.cubehash, (const byte*) hash,64);
|
||||
cubehashDigest( &ctx.cubehash, (byte*)hash);
|
||||
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
|
||||
(const byte*) hash, 64 );
|
||||
|
||||
sph_shavite512( &ctx.shavite, hash, 64);
|
||||
sph_shavite512_close( &ctx.shavite, hash);
|
||||
|
||||
update_sd( &ctx.simd, (const BitSequence *)hash,512);
|
||||
final_sd( &ctx.simd, (BitSequence *)hash);
|
||||
update_final_sd( &ctx.simd, (BitSequence *)hash,
|
||||
(const BitSequence*)hash, 512 );
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_echo512 (&ctx.echo, (const void*) hash, 64);
|
||||
sph_echo512_close(&ctx.echo, (void*) hash);
|
||||
#else
|
||||
update_echo ( &ctx.echo, (const BitSequence *) hash, 512);
|
||||
final_echo( &ctx.echo, (BitSequence *) hash);
|
||||
update_final_echo( &ctx.echo, (BitSequence *) hash,
|
||||
(const BitSequence *) hash, 512 );
|
||||
#endif
|
||||
|
||||
asm volatile ("emms");
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
void qubithash_alt(void *output, const void *input)
|
||||
{
|
||||
sph_luffa512_context ctx_luffa;
|
||||
sph_cubehash512_context ctx_cubehash;
|
||||
sph_shavite512_context ctx_shavite;
|
||||
sph_simd512_context ctx_simd;
|
||||
sph_echo512_context ctx_echo;
|
||||
|
||||
uint8_t hash[64];
|
||||
|
||||
sph_luffa512_init(&ctx_luffa);
|
||||
sph_luffa512 (&ctx_luffa, input, 80);
|
||||
sph_luffa512_close(&ctx_luffa, (void*) hash);
|
||||
|
||||
sph_cubehash512_init(&ctx_cubehash);
|
||||
sph_cubehash512 (&ctx_cubehash, (const void*) hash, 64);
|
||||
sph_cubehash512_close(&ctx_cubehash, (void*) hash);
|
||||
|
||||
sph_shavite512_init(&ctx_shavite);
|
||||
sph_shavite512 (&ctx_shavite, (const void*) hash, 64);
|
||||
sph_shavite512_close(&ctx_shavite, (void*) hash);
|
||||
|
||||
sph_simd512_init(&ctx_simd);
|
||||
sph_simd512 (&ctx_simd, (const void*) hash, 64);
|
||||
sph_simd512_close(&ctx_simd, (void*) hash);
|
||||
|
||||
sph_echo512_init(&ctx_echo);
|
||||
sph_echo512 (&ctx_echo, (const void*) hash, 64);
|
||||
sph_echo512_close(&ctx_echo, (void*) hash);
|
||||
|
||||
memcpy(output, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_qubit(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t endiandata[20] __attribute__((aligned(64)));
|
||||
uint32_t hash64[8] __attribute__((aligned(32)));
|
||||
uint32_t hash64[8] __attribute__((aligned(64)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t n = pdata[19] - 1;
|
||||
@@ -197,7 +164,6 @@ bool register_qubit_algo( algo_gate_t* gate )
|
||||
init_qubit_ctx();
|
||||
gate->scanhash = (void*)&scanhash_qubit;
|
||||
gate->hash = (void*)&qubithash;
|
||||
gate->hash_alt = (void*)&qubithash_alt;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -263,7 +263,7 @@ sph_ripemd_init(void *cc)
|
||||
#define RFUN ripemd_round
|
||||
#define HASH ripemd
|
||||
#define LE32 1
|
||||
#include "algo/sha3/md_helper.c"
|
||||
#include "algo/sha/md_helper.c"
|
||||
#undef RFUN
|
||||
#undef HASH
|
||||
#undef LE32
|
||||
@@ -517,7 +517,7 @@ sph_ripemd128_init(void *cc)
|
||||
#define RFUN ripemd128_round
|
||||
#define HASH ripemd128
|
||||
#define LE32 1
|
||||
#include "algo/sha3/md_helper.c"
|
||||
#include "algo/sha/md_helper.c"
|
||||
#undef RFUN
|
||||
#undef HASH
|
||||
#undef LE32
|
||||
@@ -810,7 +810,7 @@ sph_ripemd160_init(void *cc)
|
||||
#define RFUN ripemd160_round
|
||||
#define HASH ripemd160
|
||||
#define LE32 1
|
||||
#include "algo/sha3/md_helper.c"
|
||||
#include "algo/sha/md_helper.c"
|
||||
#undef RFUN
|
||||
#undef HASH
|
||||
#undef LE32
|
||||
|
@@ -57,7 +57,7 @@
|
||||
#define SPH_RIPEMD_H__
|
||||
|
||||
#include <stddef.h>
|
||||
#include "algo/sha3/sph_types.h"
|
||||
#include "algo/sha/sph_types.h"
|
||||
|
||||
/**
|
||||
* Output size (in bits) for RIPEMD.
|
||||
|
@@ -110,7 +110,6 @@ bool register_s3_algo( algo_gate_t* gate )
|
||||
algo_not_tested();
|
||||
gate->scanhash = (void*)&scanhash_s3;
|
||||
gate->hash = (void*)&s3hash;
|
||||
gate->hash_alt = (void*)&s3hash;
|
||||
// gate->get_max64 = &s3_get_max64;
|
||||
return true;
|
||||
};
|
||||
|
@@ -781,7 +781,6 @@ bool register_scrypt_algo( algo_gate_t* gate )
|
||||
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_scrypt;
|
||||
gate->hash = (void*)&scrypt_1024_1_1_256_24way;
|
||||
gate->hash_alt = (void*)&scrypt_1024_1_1_256_24way;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->get_max64 = (void*)&scrypt_get_max64;
|
||||
|
||||
@@ -789,5 +788,6 @@ bool register_scrypt_algo( algo_gate_t* gate )
|
||||
scratchbuf_size = 1024;
|
||||
else
|
||||
scratchbuf_size = opt_scrypt_n;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -241,7 +241,6 @@ bool register_scryptjane_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_scryptjane;
|
||||
gate->hash = (void*)&scryptjanehash;
|
||||
gate->hash_alt = (void*)&scryptjanehash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
|
||||
|
@@ -640,7 +640,6 @@ int scanhash_sha256d(int thr_id, struct work *work,
|
||||
bool register_sha256d_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->scanhash = (void*)&scanhash_sha256d;
|
||||
gate->hash_alt = (void*)&sha256d;
|
||||
gate->hash = (void*)&sha256d;
|
||||
return true;
|
||||
};
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user