Compare commits

...

15 Commits

Author SHA1 Message Date
Jay D Dee
9571f85d53 v3.14.0 2020-05-20 13:56:35 -04:00
Jay D Dee
0e69756634 v3.13.2-segwit-test 2020-05-18 18:17:27 -04:00
Jay D Dee
9653bca1e2 v3.13.1.1 2020-05-17 19:21:37 -04:00
Jay D Dee
1c0719e8a4 v3.13.1 2020-05-10 21:34:55 -04:00
Jay D Dee
8b4b4dc613 v3.13.0.1 2020-05-07 17:57:04 -04:00
Jay D Dee
e76feaced8 v3.13.0 2020-05-06 00:53:43 -04:00
Jay D Dee
5e088d00d0 v3.12.8.2 2020-04-24 21:18:56 -04:00
Jay D Dee
972d4d70db v3.12.8.1 2020-04-17 16:12:45 -04:00
Jay D Dee
e96a6bd699 v3.12.8 2020-04-09 12:56:18 -04:00
Jay D Dee
fb9163185a v3.12.7 2020-03-20 16:30:12 -04:00
Jay D Dee
6e8b8ed34f v3.12.6.1 2020-03-07 14:11:06 -05:00
Jay D Dee
c0aadbcc99 v3.12.6 2020-03-05 18:43:20 -05:00
Jay D Dee
3da149418a v3.12.5 2020-03-01 13:18:17 -05:00
Jay D Dee
720610cce5 v3.12.4.6 2020-02-28 18:20:32 -05:00
Jay D Dee
cedcf4d070 v3.12.4.5 2020-02-28 02:42:22 -05:00
117 changed files with 3723 additions and 1650 deletions

View File

@@ -163,6 +163,7 @@ cpuminer_SOURCES = \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/hmac-sha256-hash-4way.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \
@@ -256,6 +257,7 @@ cpuminer_SOURCES = \
algo/x16/hex.c \
algo/x16/x21s-4way.c \
algo/x16/x21s.c \
algo/x16/minotaur.c \
algo/x17/x17-gate.c \
algo/x17/x17.c \
algo/x17/x17-4way.c \

View File

@@ -37,25 +37,25 @@ Requirements
------------
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
Intel Core2 and newer and AMD equivalents. In order to take advantage of AES_NI
optimizations a CPU with AES_NI is required. This includes Intel Westmere
and newer and AMD equivalents. Further optimizations are available on some
algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
Intel Core2 and newer and AMD equivalents. Further optimizations are available
on some algoritms for CPUs with AES, AVX, AVX2, SHA, AVX512 and VAES.
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
performance.
ARM CPUs are not supported.
ARM and Aarch64 CPUs are not supported.
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
Centos, are known to work and have all dependencies in their repositories.
Others may work but may require more effort. Older versions such as Centos 6
don't work due to missing features.
2. 64 bit Linux or Windows OS. Ubuntu and Fedora based distributions,
including Mint and Centos, are known to work and have all dependencies
in their repositories. Others may work but may require more effort. Older
versions such as Centos 6 don't work due to missing features.
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
MacOS, OSx and Android are not supported.
3. Stratum pool. Some algos may work wallet mining using getwork or GBT. YMMV.
3. Stratum pool supporting stratum+tcp:// or stratum+ssl:// protocols or
RPC getwork using http:// or https://.
GBT is YMMV.
Supported Algorithms
--------------------
@@ -93,6 +93,7 @@ Supported Algorithms
lyra2z
lyra2z330 Lyra2 330 rows, Zoin (ZOI)
m7m Magi (XMG)
minotaur Ringcoin (RNG)
myr-gr Myriad-Groestl
neoscrypt NeoScrypt(128, 2, 1)
nist5 Nist5
@@ -152,6 +153,27 @@ Supported Algorithms
yespower-b2b generic yespower + blake2b
zr5 Ziftr
Many variations of scrypt based algos can be mine by specifying their
parameters:
scryptn2: --algo scrypt --param-n 1048576
cpupower: --algo yespower --param-key "CPUpower: The number of CPU working or available for proof-of-work mining"
power2b: --algo yespower-b2b --param-n 2048 --param-r 32 --param-key "Now I am become Death, the destroyer of worlds"
sugarchain: --algo yespower --param-n 2048 -param-r 32 --param-key "Satoshi Nakamoto 31/Oct/2008 Proof-of-work is essentially one-CPU-one-vote"
yespoweriots: --algo yespower --param-n 2048 --param-key "Iots is committed to the development of IOT"
yespowerlitb: --algo yespower --param-n 2048 --param-r 32 --param-key "LITBpower: The number of LITB working or available for proof-of-work mini"
yespoweric: --algo yespower --param-n 2048 --param-r 32 --param-key "IsotopeC"
yespowerurx: --algo yespower --param-n 2048 --param-r 32 --param-key "UraniumX"
yespowerltncg: --algo yespower --param-n 2048 --param-r 32 --param-key "LTNCGYES"
Errata
------

View File

@@ -1,8 +1,8 @@
This file is included in the Windows binary package. Compile instructions
for Linux and Windows can be found in RELEASE_NOTES.
cpuminer is a console program that is executed from a DOS command prompt.
There is no GUI and no mouse support.
cpuminer is a console program that is executed from a DOS or Powershell
prompt. There is no GUI and no mouse support.
Miner programs are often flagged as malware by antivirus programs. This is
a false positive, they are flagged simply because they are cryptocurrency
@@ -15,8 +15,8 @@ the features listed at cpuminer startup to ensure you are mining at
optimum speed using the best available features.
Architecture names and compile options used are only provided for Intel
Core series. Budget CPUs like Pentium and Celeron are often missing the
latest features.
Core series. Budget CPUs like Pentium and Celeron are often missing some
features.
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
@@ -31,14 +31,29 @@ https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/List_of_AMD_CPU_microarchitectures
Exe name Compile flags Arch name
Exe file name Compile flags Arch name
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell, Skylake, Coffeelake
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen "-march=znver1" AMD Ryzen, Threadripper
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell*
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen.exe "-march=znver1" AMD Ryzen, Threadripper
cpuminer-avx512-sha-vaes.exe "-march=icelake-client" Icelake*
* Haswell includes Broadwell, Skylake, Kabylake, Coffeelake & Cometlake.
Icelake is only available on some laptops. Mining with a laptop is not
recommended. The icelake build is included in anticipation of Intel eventually
releasing a desktop CPU with a microarchitecture newer than Skylake.
Notes about included DLL files:
Downloading DLL files from alternative sources presents an inherent
security risk if their source is unknown. All DLL files included have
been copied from the Ubuntu-20.04 instalation or compiled by me from
source code obtained from the author's official repository. The exact
procedure is documented in the build instructions for Windows:
https://github.com/JayDDee/cpuminer-opt/wiki/Compiling-from-source
If you like this software feel free to donate:

View File

@@ -65,8 +65,130 @@ If not what makes it happen or not happen?
Change Log
----------
v3.14.0
Changes to solo mining:
- segwit is supported by getblocktemplate,
- longpolling is not working and is disabled,
- Periodic Report log is output,
- New Block log includes TTF estimates,
- Stratum thread no longer created when using getwork or GBT.
Fixed BUG log mining sha256d.
v3.13.1.1
Fixed Windows crash mining minotaur algo.
Fixed GCC 10 compile again.
Added -fno-common to testing to be consistent with GCC 10 default.
v3.13.1
Added minotaur algo for Ringcoin.
v3.13.0.1
Issue #262: Fixed xevan AVX2 invalid shares.
v3.13.0
Updated Windows binaries compiled with GCC 9. Included DLLs also updated.
Icelake build (cpuminer-avx512-sha-vaes.exe) now included in Windows
binaries package.
No source code changes.
v3.12.8.2
Fixed x12 AVX2 rejects.
Fixed phi AVX2 crash.
v3.12.8.1
Issue #261: Fixed yescryptr8g invalid shares.
v3.12.8
Yespower sha256 prehash made thread safe.
Rewrote diff conversion functions from scratch to be simpler and use
long double (float80) and int128 arithmetic for improved accuracy and
precision.
Some code cleanup and assorted small changes.
v3.12.7
Issue #257: fixed a file descriptor leak which caused the CPU temperature
and frequency query to report zeros after mining for a couple of hours.
Issue #253: stale share reduction for yescrypt, sonoa.
v3.12.6.1
Issue #252: Fixed SSL mining (stratum+tcps://)
Issue #254 Fixed benchmark.
Issue #253: Implemented stale share reduction for yespower, x25x, x22i, x21s,
x16*, scryptn2, more to come.
v3.12.6
Issue #246: improved stale share detection for getwork.
Improved precision of target_to_diff conversion from 4 digits to 20+.
Display hash and target debug data for all rejected shares.
A graphical representation of CPU affinity is displayed when using --threads.
Added highest and lowest accepted share to summary log.
Other small changes to logs to improve consistency and clarity.
v3.12.5
Issues #246 & #251: fixed incorrect share diff for stratum and getwork,
fixed incorrect target diff for getwork. Stats should now be correct for
getwork as well as stratum.
Issue #252: Fixed stratum+tcps not using curl ssl.
Getwork: reduce stale blocks, faster response to new work.
Added ntime to new job/work logs.
README.md now lists the parameters for yespower variations that don't have
a specific algo name.
v3.12.4.6
Issue #246: fixed getwork repeated new block logs with same height. New work
for the same block is now reported as "New work" instead of "New block".
Also added a check that work is new before generating "New work" log.
Added target diff to getwork new block log.
Changed share ratio in share result log to simple fraction, no longer %.
Added debug log to display mininginfo, use -D.
v3.12.4.5
Issue #246: better stale share detection for getwork, and enhanced logging
of stale shares for stratum & getwork.
Issue #251: fixed incorrect share difficulty and share ratio in share
result log.
Changed submit log to include share diff and block height.
Small cosmetic changes to logs.
v3.12.4.4
Issue #246: Fixed net hashrate in getwork block log,
removed duplicate getwork block log,
other small tweaks to stats logs for getwork.

193
aclocal.m4 vendored
View File

@@ -1,6 +1,6 @@
# generated automatically by aclocal 1.15.1 -*- Autoconf -*-
# generated automatically by aclocal 1.16.1 -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -20,7 +20,7 @@ You have another version of autoconf. It may work, but is not guaranteed to.
If you have problems, you may need to regenerate the build system entirely.
To do so, use the procedure documented by the package, typically 'autoreconf'.])])
# Copyright (C) 2002-2017 Free Software Foundation, Inc.
# Copyright (C) 2002-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -32,10 +32,10 @@ To do so, use the procedure documented by the package, typically 'autoreconf'.])
# generated from the m4 files accompanying Automake X.Y.
# (This private macro should not be called outside this file.)
AC_DEFUN([AM_AUTOMAKE_VERSION],
[am__api_version='1.15'
[am__api_version='1.16'
dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to
dnl require some minimum version. Point them to the right macro.
m4_if([$1], [1.15.1], [],
m4_if([$1], [1.16.1], [],
[AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl
])
@@ -51,14 +51,14 @@ m4_define([_AM_AUTOCONF_VERSION], [])
# Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced.
# This function is AC_REQUIREd by AM_INIT_AUTOMAKE.
AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION],
[AM_AUTOMAKE_VERSION([1.15.1])dnl
[AM_AUTOMAKE_VERSION([1.16.1])dnl
m4_ifndef([AC_AUTOCONF_VERSION],
[m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl
_AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))])
# Figure out how to run the assembler. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -78,7 +78,7 @@ _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl
# AM_AUX_DIR_EXPAND -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -130,7 +130,7 @@ am_aux_dir=`cd "$ac_aux_dir" && pwd`
# AM_CONDITIONAL -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -161,7 +161,7 @@ AC_CONFIG_COMMANDS_PRE(
Usually this means the macro was only invoked conditionally.]])
fi])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -352,13 +352,12 @@ _AM_SUBST_NOTMAKE([am__nodep])dnl
# Generate code to set up dependency tracking. -*- Autoconf -*-
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# _AM_OUTPUT_DEPENDENCY_COMMANDS
# ------------------------------
AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
@@ -366,49 +365,41 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# Older Autoconf quotes --file arguments for eval, but not when files
# are listed without --file. Let's play safe and only enable the eval
# if we detect the quoting.
case $CONFIG_FILES in
*\'*) eval set x "$CONFIG_FILES" ;;
*) set x $CONFIG_FILES ;;
esac
# TODO: see whether this extra hack can be removed once we start
# requiring Autoconf 2.70 or later.
AS_CASE([$CONFIG_FILES],
[*\'*], [eval set x "$CONFIG_FILES"],
[*], [set x $CONFIG_FILES])
shift
for mf
# Used to flag and report bootstrapping failures.
am_rc=0
for am_mf
do
# Strip MF so we end up with the name of the file.
mf=`echo "$mf" | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile or not.
# We used to match only the files named 'Makefile.in', but
# some people rename them; so instead we look at the file content.
# Grep'ing the first line is not enough: some people post-process
# each Makefile.in and add a new line on top of each file to say so.
# Grep'ing the whole file is not good either: AIX grep has a line
am_mf=`AS_ECHO(["$am_mf"]) | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile which includes
# dependency-tracking related rules and includes.
# Grep'ing the whole file directly is not great: AIX grep has a line
# limit of 2048, but all sed's we know have understand at least 4000.
if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then
dirpart=`AS_DIRNAME("$mf")`
else
continue
fi
# Extract the definition of DEPDIR, am__include, and am__quote
# from the Makefile without running 'make'.
DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"`
test -z "$DEPDIR" && continue
am__include=`sed -n 's/^am__include = //p' < "$mf"`
test -z "$am__include" && continue
am__quote=`sed -n 's/^am__quote = //p' < "$mf"`
# Find all dependency output files, they are included files with
# $(DEPDIR) in their names. We invoke sed twice because it is the
# simplest approach to changing $(DEPDIR) to its actual value in the
# expansion.
for file in `sed -n "
s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \
sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do
# Make sure the directory exists.
test -f "$dirpart/$file" && continue
fdir=`AS_DIRNAME(["$file"])`
AS_MKDIR_P([$dirpart/$fdir])
# echo "creating $dirpart/$file"
echo '# dummy' > "$dirpart/$file"
done
sed -n 's,^am--depfiles:.*,X,p' "$am_mf" | grep X >/dev/null 2>&1 \
|| continue
am_dirpart=`AS_DIRNAME(["$am_mf"])`
am_filepart=`AS_BASENAME(["$am_mf"])`
AM_RUN_LOG([cd "$am_dirpart" \
&& sed -e '/# am--include-marker/d' "$am_filepart" \
| $MAKE -f - am--depfiles]) || am_rc=$?
done
if test $am_rc -ne 0; then
AC_MSG_FAILURE([Something went wrong bootstrapping makefile fragments
for automatic dependency tracking. Try re-running configure with the
'--disable-dependency-tracking' option to at least be able to build
the package (albeit without support for automatic dependency tracking).])
fi
AS_UNSET([am_dirpart])
AS_UNSET([am_filepart])
AS_UNSET([am_mf])
AS_UNSET([am_rc])
rm -f conftest-deps.mk
}
])# _AM_OUTPUT_DEPENDENCY_COMMANDS
@@ -417,18 +408,17 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# -----------------------------
# This macro should only be invoked once -- use via AC_REQUIRE.
#
# This code is only required when automatic dependency tracking
# is enabled. FIXME. This creates each '.P' file that we will
# need in order to bootstrap the dependency handling code.
# This code is only required when automatic dependency tracking is enabled.
# This creates each '.Po' and '.Plo' makefile fragment that we'll need in
# order to bootstrap the dependency handling code.
AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS],
[AC_CONFIG_COMMANDS([depfiles],
[test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS],
[AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"])
])
[AMDEP_TRUE="$AMDEP_TRUE" MAKE="${MAKE-make}"])])
# Do all the work for Automake. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -515,8 +505,8 @@ AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl
AC_REQUIRE([AC_PROG_MKDIR_P])dnl
# For better backward compatibility. To be removed once Automake 1.9.x
# dies out for good. For more background, see:
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
AC_SUBST([mkdir_p], ['$(MKDIR_P)'])
# We need awk for the "check" target (and possibly the TAP driver). The
# system "awk" is bad on some platforms.
@@ -583,7 +573,7 @@ END
Aborting the configuration process, to ensure you take notice of the issue.
You can download and install GNU coreutils to get an 'rm' implementation
that behaves properly: <http://www.gnu.org/software/coreutils/>.
that behaves properly: <https://www.gnu.org/software/coreutils/>.
If you want to complete the configuration process using your problematic
'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM
@@ -625,7 +615,7 @@ for _am_header in $config_headers :; do
done
echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -646,7 +636,7 @@ if test x"${install_sh+set}" != xset; then
fi
AC_SUBST([install_sh])])
# Copyright (C) 2003-2017 Free Software Foundation, Inc.
# Copyright (C) 2003-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -668,7 +658,7 @@ AC_SUBST([am__leading_dot])])
# Add --enable-maintainer-mode option to configure. -*- Autoconf -*-
# From Jim Meyering
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -703,7 +693,7 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# Check to see how 'make' treats includes. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -711,49 +701,42 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# AM_MAKE_INCLUDE()
# -----------------
# Check to see how make treats includes.
# Check whether make has an 'include' directive that can support all
# the idioms we need for our automatic dependency tracking code.
AC_DEFUN([AM_MAKE_INCLUDE],
[am_make=${MAKE-make}
cat > confinc << 'END'
[AC_MSG_CHECKING([whether ${MAKE-make} supports the include directive])
cat > confinc.mk << 'END'
am__doit:
@echo this is the am__doit target
@echo this is the am__doit target >confinc.out
.PHONY: am__doit
END
# If we don't find an include directive, just comment out the code.
AC_MSG_CHECKING([for style of include used by $am_make])
am__include="#"
am__quote=
_am_result=none
# First try GNU make style include.
echo "include confinc" > confmf
# Ignore all kinds of additional output from 'make'.
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=include
am__quote=
_am_result=GNU
;;
esac
# Now try BSD make style include.
if test "$am__include" = "#"; then
echo '.include "confinc"' > confmf
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=.include
am__quote="\""
_am_result=BSD
;;
esac
fi
AC_SUBST([am__include])
AC_SUBST([am__quote])
AC_MSG_RESULT([$_am_result])
rm -f confinc confmf
])
# BSD make does it like this.
echo '.include "confinc.mk" # ignored' > confmf.BSD
# Other make implementations (GNU, Solaris 10, AIX) do it like this.
echo 'include confinc.mk # ignored' > confmf.GNU
_am_result=no
for s in GNU BSD; do
AM_RUN_LOG([${MAKE-make} -f confmf.$s && cat confinc.out])
AS_CASE([$?:`cat confinc.out 2>/dev/null`],
['0:this is the am__doit target'],
[AS_CASE([$s],
[BSD], [am__include='.include' am__quote='"'],
[am__include='include' am__quote=''])])
if test "$am__include" != "#"; then
_am_result="yes ($s style)"
break
fi
done
rm -f confinc.* confmf.*
AC_MSG_RESULT([${_am_result}])
AC_SUBST([am__include])])
AC_SUBST([am__quote])])
# Fake the existence of programs that GNU maintainers use. -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -792,7 +775,7 @@ fi
# Helper functions for option handling. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -821,7 +804,7 @@ AC_DEFUN([_AM_SET_OPTIONS],
AC_DEFUN([_AM_IF_OPTION],
[m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -868,7 +851,7 @@ AC_LANG_POP([C])])
# For backward compatibility.
AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -887,7 +870,7 @@ AC_DEFUN([AM_RUN_LOG],
# Check to make sure that the build environment is sane. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -968,7 +951,7 @@ AC_CONFIG_COMMANDS_PRE(
rm -f conftest.file
])
# Copyright (C) 2009-2017 Free Software Foundation, Inc.
# Copyright (C) 2009-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1028,7 +1011,7 @@ AC_SUBST([AM_BACKSLASH])dnl
_AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl
])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1056,7 +1039,7 @@ fi
INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s"
AC_SUBST([INSTALL_STRIP_PROGRAM])])
# Copyright (C) 2006-2017 Free Software Foundation, Inc.
# Copyright (C) 2006-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1075,7 +1058,7 @@ AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)])
# Check how to create a tarball. -*- Autoconf -*-
# Copyright (C) 2004-2017 Free Software Foundation, Inc.
# Copyright (C) 2004-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,

View File

@@ -90,33 +90,59 @@ void algo_not_implemented()
}
// default null functions
// deprecated, use generic as default
int null_scanhash()
{
applog(LOG_WARNING,"SWERR: undefined scanhash function in algo_gate");
return 0;
}
void null_hash()
// Default generic scanhash can be used in many cases.
int scanhash_generic( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
edata[19] = n;
if ( likely( algo_gate.hash( hash, edata, thr_id ) ) )
if ( unlikely( valid_hash( hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
int null_hash()
{
applog(LOG_WARNING,"SWERR: null_hash unsafe null function");
};
void null_hash_suw()
{
applog(LOG_WARNING,"SWERR: null_hash_suw unsafe null function");
return 0;
};
void init_algo_gate( algo_gate_t* gate )
{
gate->miner_thread_init = (void*)&return_true;
gate->scanhash = (void*)&null_scanhash;
gate->scanhash = (void*)&scanhash_generic;
gate->hash = (void*)&null_hash;
gate->hash_suw = (void*)&null_hash_suw;
gate->get_new_work = (void*)&std_get_new_work;
gate->work_decode = (void*)&std_le_work_decode;
gate->decode_extra_data = (void*)&do_nothing;
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
gate->malloc_txs_request = (void*)&std_malloc_txs_request;
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
@@ -184,6 +210,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_LYRA2Z: register_lyra2z_algo ( gate ); break;
case ALGO_LYRA2Z330: register_lyra2z330_algo ( gate ); break;
case ALGO_M7M: register_m7m_algo ( gate ); break;
case ALGO_MINOTAUR: register_minotaur_algo ( gate ); break;
case ALGO_MYR_GR: register_myriad_algo ( gate ); break;
case ALGO_NEOSCRYPT: register_neoscrypt_algo ( gate ); break;
case ALGO_NIST5: register_nist5_algo ( gate ); break;
@@ -230,11 +257,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_X22I: register_x22i_algo ( gate ); break;
case ALGO_X25X: register_x25x_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_05_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_05_algo ( gate ); break;
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
@@ -261,7 +283,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
// restore warnings
#pragma GCC diagnostic pop
// run the alternate hash function for a specific algo
void exec_hash_function( int algo, void *output, const void *pdata )
{
algo_gate_t gate;

View File

@@ -75,7 +75,7 @@
// my hack at creating a set data type using bit masks. Set inclusion,
// exclusion union and intersection operations are provided for convenience. In // some cases it may be desireable to use boolean algebra directly on the
// data to perfomr set operations. Sets can be represented as single
// data to perform set operations. Sets can be represented as single
// elements, a bitwise OR of multiple elements, a bitwise OR of multiple
// set variables or constants, or combinations of the above.
// Examples:
@@ -110,12 +110,13 @@ inline bool set_excl ( set_t a, set_t b ) { return (a & b) == 0; }
typedef struct
{
// mandatory functions, must be overwritten
// Mandatory functions, one of these is mandatory. If the default scanhash
// is used a custom hash function must be registered, with a custom scanhash
// the hash function is not necessary.
int ( *scanhash ) ( struct work*, uint32_t, uint64_t*, struct thr_info* );
// optional unsafe, must be overwritten if algo uses function
void ( *hash ) ( void*, const void*, uint32_t ) ;
void ( *hash_suw ) ( void*, const void* );
//int ( *hash ) ( void*, const void*, uint32_t ) ;
int ( *hash ) ( void*, const void*, int );
//optional, safe to use default in most cases
@@ -123,9 +124,6 @@ void ( *hash_suw ) ( void*, const void* );
// threads.
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
@@ -165,7 +163,9 @@ bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
// No longer needed
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
@@ -209,20 +209,21 @@ void four_way_not_tested();
#define JR2_WORK_CMP_INDEX_2 43
#define JR2_WORK_CMP_SIZE_2 33
// allways returns failure
// deprecated, use generic instead
int null_scanhash();
// Default generic, may be used in many cases.
int scanhash_generic( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
// displays warning
void null_hash ();
void null_hash_suw();
int null_hash ();
// optional safe targets, default listed first unless noted.
void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *work );
void sha256d_gen_merkle_root( char *merkle_root, struct stratum_ctx *sctx );
void SHA256_gen_merkle_root ( char *merkle_root, struct stratum_ctx *sctx );
@@ -250,10 +251,6 @@ void std_build_block_header( struct work* g_work, uint32_t version,
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );
json_t* std_longpoll_rpc_call( CURL *curl, int *err, char *lp_url );
//json_t* jr2_longpoll_rpc_call( CURL *curl, int *err );
//bool std_stratum_handle_response( json_t *val );
//bool jr2_stratum_handle_response( json_t *val );
bool std_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
int thr_id );
@@ -272,11 +269,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate );
// compiler warnings but that's just more work for devs adding new algos.
bool register_algo( algo_gate_t *gate );
// Overrides a common set of functions used by RPC2 and other RPC2-specific
// init. Called by algo's register function before initializing algo-specific
// functions and data.
//bool register_json_rpc2( algo_gate_t *gate );
// use this to call the hash function of an algo directly, ie util.c test.
void exec_hash_function( int algo, void *output, const void *pdata );

View File

@@ -48,7 +48,7 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -107,7 +107,7 @@ int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
if ( (hash+i)[7] <= HTarget && fulltest( hash+i, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;

View File

@@ -45,7 +45,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -100,7 +100,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -49,7 +49,7 @@ int scanhash_blake2s_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -104,7 +104,7 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -157,7 +157,7 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -49,7 +49,7 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -108,7 +108,7 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -62,7 +62,7 @@ int scanhash_decred_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[DECRED_NONCE_INDEX] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -105,7 +105,7 @@ int scanhash_pentablake_4way( struct work *work,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n + i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;

View File

@@ -46,7 +46,7 @@ int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -99,7 +99,7 @@ int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -53,7 +53,7 @@ int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -143,7 +143,7 @@ int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -226,7 +226,7 @@ int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -129,7 +129,7 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -45,7 +45,7 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -97,7 +97,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ))
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -52,7 +52,7 @@ int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -111,7 +111,7 @@ int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -245,7 +245,7 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
@@ -394,7 +394,7 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -76,7 +76,7 @@ int scanhash_lyra2h_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);

View File

@@ -200,7 +200,7 @@ int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
@@ -342,7 +342,7 @@ int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -469,7 +469,7 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -165,7 +165,7 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -284,7 +284,7 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -386,7 +386,7 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );

View File

@@ -124,7 +124,7 @@ int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
@@ -222,7 +222,7 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -301,7 +301,7 @@ int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );

View File

@@ -68,7 +68,7 @@ bool lyra2z330_thread_init()
bool register_lyra2z330_algo( algo_gate_t* gate )
{
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2z330_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z330;
gate->hash = (void*)&lyra2z330_hash;

View File

@@ -302,7 +302,7 @@ int scanhash_phi2_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -483,7 +483,7 @@ int scanhash_phi2_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
edata[ 19 ] += 4;

View File

@@ -311,7 +311,7 @@ bool register_m7m_algo( algo_gate_t *gate )
{
gate->optimizations = SHA_OPT;
init_m7m_ctx();
gate->scanhash = (void*)scanhash_m7m_hash;
gate->scanhash = (void*)&scanhash_m7m_hash;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;

View File

@@ -108,7 +108,7 @@ int scanhash_nist5_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -196,7 +196,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -223,7 +223,7 @@ int scanhash_anime_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -383,7 +383,7 @@ int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -596,7 +596,7 @@ int scanhash_hmq1725_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -1018,7 +1018,7 @@ int scanhash_hmq1725_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -235,7 +235,7 @@ int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -408,7 +408,7 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -106,13 +106,13 @@ int scanhash_deep_2way( struct work *work,uint32_t max_nonce,
if ( fulltest( hash, ptarget) && !opt_benchmark )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( !( (hash+8)[7] & mask ) )
if ( fulltest( hash+8, ptarget) && !opt_benchmark )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -153,7 +153,7 @@ int scanhash_qubit_4way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart );
@@ -255,13 +255,13 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash, ptarget) && !opt_benchmark ) )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( unlikely( ( (hash+8))[7] <= Htarg ) )
if ( likely( fulltest( hash+8, ptarget) && !opt_benchmark ) )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -132,7 +132,7 @@ int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -251,7 +251,7 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -424,7 +424,7 @@ static bool scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
}
#ifdef HAVE_SHA256_4WAY
static bool scrypt_1024_1_1_256_4way(const uint32_t *input,
static int scrypt_1024_1_1_256_4way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
@@ -440,7 +440,8 @@ static bool scrypt_1024_1_1_256_4way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = input[k * 20 + i];
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[4 * i + k] = midstate[i];
@@ -448,6 +449,8 @@ static bool scrypt_1024_1_1_256_4way(const uint32_t *input,
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W);
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
X[k * 32 + i] = W[4 * i + k];
@@ -457,6 +460,8 @@ static bool scrypt_1024_1_1_256_4way(const uint32_t *input,
scrypt_core(X + 2 * 32, V, N);
scrypt_core(X + 3 * 32, V, N);
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = X[k * 32 + i];
@@ -466,13 +471,14 @@ static bool scrypt_1024_1_1_256_4way(const uint32_t *input,
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[k * 8 + i] = W[4 * i + k];
return true;
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#ifdef HAVE_SCRYPT_3WAY
static bool scrypt_1024_1_1_256_3way(const uint32_t *input,
static int scrypt_1024_1_1_256_3way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
@@ -490,22 +496,23 @@ static bool scrypt_1024_1_1_256_3way(const uint32_t *input,
HMAC_SHA256_80_init(input + 20, tstate + 8, ostate + 8);
HMAC_SHA256_80_init(input + 40, tstate + 16, ostate + 16);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0);
PBKDF2_SHA256_80_128(tstate + 8, ostate + 8, input + 20, X + 32);
PBKDF2_SHA256_80_128(tstate + 16, ostate + 16, input + 40, X + 64);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
scrypt_core_3way(X, V, N);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0);
PBKDF2_SHA256_128_32(tstate + 8, ostate + 8, X + 32, output + 8);
PBKDF2_SHA256_128_32(tstate + 16, ostate + 16, X + 64, output + 16);
return true;
return 1;
}
#ifdef HAVE_SHA256_4WAY
@@ -526,7 +533,8 @@ static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[128 * j + 4 * i + k] = input[80 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[32 * j + 4 * i + k] = midstate[i];
@@ -535,13 +543,13 @@ static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
HMAC_SHA256_80_init_4way(W + 128, tstate + 32, ostate + 32);
HMAC_SHA256_80_init_4way(W + 256, tstate + 64, ostate + 64);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_4way(tstate + 32, ostate + 32, W + 128, W + 128);
PBKDF2_SHA256_80_128_4way(tstate + 64, ostate + 64, W + 256, W + 256);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
@@ -553,7 +561,7 @@ static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
scrypt_core_3way(X + 2 * 96, V, N);
scrypt_core_3way(X + 3 * 96, V, N);
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
@@ -568,16 +576,17 @@ static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[32 * j + k * 8 + i] = W[128 * j + 4 * i + k];
return true;
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#endif /* HAVE_SCRYPT_3WAY */
#ifdef HAVE_SCRYPT_6WAY
static bool scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
static int scrypt_1024_1_1_256_24way( const uint32_t *input,
uint32_t *output, uint32_t *midstate,
unsigned char *scratchpad, int N, int thrid )
{
uint32_t _ALIGN(128) tstate[24 * 8];
uint32_t _ALIGN(128) ostate[24 * 8];
@@ -586,55 +595,60 @@ static bool scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *V;
int i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
V = (uint32_t *)( ( (uintptr_t)(scratchpad) + 63 ) & ~ (uintptr_t)(63) );
for (j = 0; j < 3; j++)
for (i = 0; i < 20; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 20; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = input[8 * 20 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
tstate[8 * 8 * j + 8 * i + k] = midstate[i];
HMAC_SHA256_80_init_8way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_8way(W + 256, tstate + 64, ostate + 64);
HMAC_SHA256_80_init_8way(W + 512, tstate + 128, ostate + 128);
HMAC_SHA256_80_init_8way( W + 0, tstate + 0, ostate + 0 );
HMAC_SHA256_80_init_8way( W + 256, tstate + 64, ostate + 64 );
HMAC_SHA256_80_init_8way( W + 512, tstate + 128, ostate + 128 );
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_80_128_8way(tstate + 128, ostate + 128, W + 512, W + 512);
PBKDF2_SHA256_80_128_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_80_128_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_80_128_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
X[8 * 32 * j + k * 32 + i] = W[8 * 32 * j + 8 * i + k];
scrypt_core_6way(X + 0 * 32, V, N);
scrypt_core_6way(X + 6 * 32, V, N);
scrypt_core_6way(X + 12 * 32, V, N);
scrypt_core_6way(X + 18 * 32, V, N);
scrypt_core_6way( X + 0 * 32, V, N );
scrypt_core_6way( X + 6 * 32, V, N );
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
scrypt_core_6way( X + 12 * 32, V, N );
scrypt_core_6way( X + 18 * 32, V, N );
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = X[8 * 32 * j + k * 32 + i];
PBKDF2_SHA256_128_32_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_128_32_8way(tstate + 128, ostate + 128, W + 512, W + 512);
PBKDF2_SHA256_128_32_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_128_32_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_128_32_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
output[8 * 8 * j + k * 8 + i] = W[8 * 32 * j + 8 * i + k];
return true;
return 1;
}
#endif /* HAVE_SCRYPT_6WAY */
@@ -699,12 +713,13 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
if ( rc )
for ( i = 0; i < throughput; i++ )
{
if ( unlikely( valid_hash( hash + i * 8, ptarget ) ) )
if ( unlikely( valid_hash( hash + i * 8, ptarget ) ) )
{
pdata[19] = data[i * 20 + 19];
submit_lane_solution( work, hash, mythr, i );
submit_solution( work, hash + i * 8, mythr );
}
}
}
} while ( likely( ( n < ( max_nonce - throughput ) ) && !(*restart) ) );
*hashes_done = n - pdata[19];

View File

@@ -0,0 +1,440 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copywright 2020 JayDDee246@gmail.com
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
// HMAC 4-way SSE2
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
hmac_sha256_4way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_4way_context ctx;
hmac_sha256_4way_init( &ctx, K, Klen );
hmac_sha256_4way_update( &ctx, in, len );
hmac_sha256_4way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_4way_init( hmac_sha256_4way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*4] __attribute__ ((aligned (64)));
unsigned char khash[32*4] __attribute__ ((aligned (64)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_4way_init( &ctx->ictx );
sha256_4way_update( &ctx->ictx, K, Klen );
sha256_4way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_4way_init( &ctx->ictx );
memset( pad, 0x36, 64*4 );
for ( i = 0; i < Klen; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_4way_init( &ctx->octx );
memset( pad, 0x5c, 64*4 );
for ( i = 0; i < Klen/4; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
void
hmac_sha256_4way_update( hmac_sha256_4way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_4way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_4way_close( hmac_sha256_4way_context *ctx, void *digest )
{
unsigned char ihash[32*4] __attribute__ ((aligned (64)));
/* Finish the inner SHA256 operation. */
sha256_4way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_4way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_4way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_4way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*4];
uint8_t _ALIGN(128) U[32*4];
__m128i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_4way_init( &PShctx, passwd, passwdlen );
hmac_sha256_4way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_4way_context) );
hmac_sha256_4way_update( &hctx, &ivec, 4 );
hmac_sha256_4way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*4 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_4way_init( &hctx, passwd, passwdlen );
hmac_sha256_4way_update( &hctx, U, 32 );
hmac_sha256_4way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m128i( T, k ) = _mm_xor_si128( casti_m128i( T, k ),
casti_m128i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*4 ], T, clen*4 );
}
}
#if defined(__AVX2__)
// HMAC 8-way AVX2
void
hmac_sha256_8way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_8way_context ctx;
hmac_sha256_8way_init( &ctx, K, Klen );
hmac_sha256_8way_update( &ctx, in, len );
hmac_sha256_8way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_8way_init( hmac_sha256_8way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*8] __attribute__ ((aligned (128)));
unsigned char khash[32*8] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_8way_init( &ctx->ictx );
sha256_8way_update( &ctx->ictx, K, Klen );
sha256_8way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_8way_init( &ctx->ictx );
memset( pad, 0x36, 64*8);
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_8way_init( &ctx->octx );
memset( pad, 0x5c, 64*8 );
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_8way_update( hmac_sha256_8way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_8way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_8way_close( hmac_sha256_8way_context *ctx, void *digest )
{
unsigned char ihash[32*8] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_8way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_8way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_8way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_8way( uint8_t *buf, size_t dkLen, const uint8_t *passwd,
size_t passwdlen, const uint8_t *salt, size_t saltlen,
uint64_t c )
{
hmac_sha256_8way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*8];
uint8_t _ALIGN(128) U[32*8];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_8way_init( &PShctx, passwd, passwdlen );
// saltlen can be odd number of bytes
hmac_sha256_8way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
__m256i ivec = _mm256_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_8way_context) );
hmac_sha256_8way_update( &hctx, &ivec, 4 );
hmac_sha256_8way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*8 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_8way_init( &hctx, passwd, passwdlen );
hmac_sha256_8way_update( &hctx, U, 32 );
hmac_sha256_8way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m256i( T, k ) = _mm256_xor_si256( casti_m256i( T, k ),
casti_m256i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*8 ], T, clen*8 );
}
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// HMAC 16-way AVX512
void
hmac_sha256_16way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_16way_context ctx;
hmac_sha256_16way_init( &ctx, K, Klen );
hmac_sha256_16way_update( &ctx, in, len );
hmac_sha256_16way_close( &ctx, digest );
}
void
hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*16] __attribute__ ((aligned (128)));
unsigned char khash[32*16] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_16way_init( &ctx->ictx );
sha256_16way_update( &ctx->ictx, K, Klen );
sha256_16way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_16way_init( &ctx->ictx );
memset( pad, 0x36, 64*16 );
for ( i = 0; i < Klen; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_16way_init( &ctx->octx );
memset( pad, 0x5c, 64*16 );
for ( i = 0; i < Klen/4; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_16way_update( hmac_sha256_16way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_16way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_16way_close( hmac_sha256_16way_context *ctx, void *digest )
{
unsigned char ihash[32*16] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_16way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_16way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_16way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_16way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_16way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*16];
uint8_t _ALIGN(128) U[32*16];
__m512i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_16way_init( &PShctx, passwd, passwdlen );
hmac_sha256_16way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm512_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_16way_context) );
hmac_sha256_16way_update( &hctx, &ivec, 4 );
hmac_sha256_16way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*16 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_16way_init( &hctx, passwd, passwdlen );
hmac_sha256_16way_update( &hctx, U, 32 );
hmac_sha256_16way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m512i( T, k ) = _mm512_xor_si512( casti_m512i( T, k ),
casti_m512i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*16 ], T, clen*16 );
}
}
#endif // AVX512
#endif // AVX2

View File

@@ -0,0 +1,107 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copyright 2020 JayDDee@gmailcom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef HMAC_SHA256_4WAY_H__
#define HMAC_SHA256_4WAY_H__
// Tested only 8-way with null pers
#include <sys/types.h>
#include <stdint.h>
#include "simd-utils.h"
#include "sha-hash-4way.h"
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
sha256_4way_context octx;
} hmac_sha256_4way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_4way_init( hmac_sha256_4way_context *, const void *, size_t );
void hmac_sha256_4way_update( hmac_sha256_4way_context *, const void *,
size_t );
void hmac_sha256_4way_close( hmac_sha256_4way_context *, void* );
void hmac_sha256_4way_full( void*, const void *, size_t Klen, const void *,
size_t len );
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX2__)
typedef struct _hmac_sha256_8way_context
{
sha256_8way_context ictx;
sha256_8way_context octx;
} hmac_sha256_8way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_8way_init( hmac_sha256_8way_context *, const void *, size_t );
void hmac_sha256_8way_update( hmac_sha256_8way_context *, const void *,
size_t );
void hmac_sha256_8way_close( hmac_sha256_8way_context *, void* );
void hmac_sha256_8way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct _hmac_sha256_16way_context
{
sha256_16way_context ictx;
sha256_16way_context octx;
} hmac_sha256_16way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_16way_init( hmac_sha256_16way_context *,
const void *, size_t );
void hmac_sha256_16way_update( hmac_sha256_16way_context *, const void *,
size_t );
void hmac_sha256_16way_close( hmac_sha256_16way_context *, void* );
void hmac_sha256_16way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_16way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX512
#endif // AVX2
#endif // HMAC_SHA256_4WAY_H__

View File

@@ -81,16 +81,17 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x36;
memset( pad + Klen, 0x36, 64 - Klen );
SHA256_Update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init( &ctx->octx );
memset(pad, 0x5c, 64);
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x5c;
memset( pad + Klen, 0x5c, 64 - Klen );
SHA256_Update( &ctx->octx, pad, 64 );
}
@@ -161,7 +162,13 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */
for ( k = 0; k < 32; k++ )
// _mm256_xor_si256( *(__m256i*)T, *(__m256i*)U );
// _mm_xor_si128( ((__m128i*)T)[0], ((__m128i*)U)[0] );
// _mm_xor_si128( ((__m128i*)T)[1], ((__m128i*)U)[1] );
// for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
}

View File

@@ -58,6 +58,7 @@ void sha256_4way_init( sha256_4way_context *sc );
void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
#endif // SSE2
@@ -75,6 +76,7 @@ typedef struct {
void sha256_8way_init( sha256_8way_context *sc );
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len );
void sha256_8way_close( sha256_8way_context *sc, void *dst );
void sha256_8way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -92,6 +94,7 @@ typedef struct {
void sha256_16way_init( sha256_16way_context *sc );
void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len );
void sha256_16way_close( sha256_16way_context *sc, void *dst );
void sha256_16way_full( void *dst, const void *data, size_t len );
#endif // AVX512
@@ -110,6 +113,7 @@ void sha512_4way_init( sha512_4way_context *sc);
void sha512_4way_update( sha512_4way_context *sc, const void *data,
size_t len );
void sha512_4way_close( sha512_4way_context *sc, void *dst );
void sha512_4way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -128,6 +132,7 @@ void sha512_8way_init( sha512_8way_context *sc);
void sha512_8way_update( sha512_8way_context *sc, const void *data,
size_t len );
void sha512_8way_close( sha512_8way_context *sc, void *dst );
void sha512_8way_full( void *dst, const void *data, size_t len );
#endif // AVX512

View File

@@ -479,8 +479,8 @@ static inline void sha256d_ms(uint32_t *hash, uint32_t *W,
void sha256d_ms_4way(uint32_t *hash, uint32_t *data,
const uint32_t *midstate, const uint32_t *prehash);
static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
static inline int scanhash_sha256d_4way( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -492,6 +492,7 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
int i, j;
memcpy(data, pdata + 16, 64);
@@ -521,10 +522,8 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
if (swab32(hash[4 * 7 + i]) <= Htarg) {
pdata[19] = data[4 * 3 + i];
sha256d_80_swap(hash, pdata);
if (fulltest(hash, ptarget)) {
*hashes_done = n - first_nonce + 1;
return 1;
}
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
}
}
} while (n < max_nonce && !work_restart[thr_id].restart);
@@ -541,8 +540,8 @@ static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
void sha256d_ms_8way(uint32_t *hash, uint32_t *data,
const uint32_t *midstate, const uint32_t *prehash);
static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
static inline int scanhash_sha256d_8way( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -554,6 +553,7 @@ static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
int i, j;
memcpy(data, pdata + 16, 64);
@@ -583,10 +583,8 @@ static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
if (swab32(hash[8 * 7 + i]) <= Htarg) {
pdata[19] = data[8 * 3 + i];
sha256d_80_swap(hash, pdata);
if (fulltest(hash, ptarget)) {
*hashes_done = n - first_nonce + 1;
return 1;
}
if ( fulltest( hash, ptarget ) && !opt_benchmark )
submit_solution( work, hash, mythr );
}
}
} while (n < max_nonce && !work_restart[thr_id].restart);
@@ -614,13 +612,11 @@ int scanhash_sha256d( struct work *work,
#ifdef HAVE_SHA256_8WAY
if (sha256_use_8way())
return scanhash_sha256d_8way(thr_id, work,
max_nonce, hashes_done);
return scanhash_sha256d_8way( work, max_nonce, hashes_done, mythr );
#endif
#ifdef HAVE_SHA256_4WAY
if (sha256_use_4way())
return scanhash_sha256d_4way(thr_id, work,
max_nonce, hashes_done);
return scanhash_sha256d_4way( work, max_nonce, hashes_done, mythr );
#endif
memcpy(data, pdata + 16, 64);
@@ -657,7 +653,7 @@ int scanhash_SHA256d( struct work *work, const uint32_t max_nonce,
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
memcpy( data, pdata, 80 );

View File

@@ -330,6 +330,14 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
mm128_block_bswap_32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
}
#if defined(__AVX2__)
// SHA-256 8 way
@@ -498,6 +506,10 @@ void sha256_8way_init( sha256_8way_context *sc )
*/
}
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -564,6 +576,13 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -791,6 +810,14 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
}
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__

View File

@@ -85,7 +85,7 @@ int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -173,7 +173,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -78,7 +78,7 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -161,7 +161,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -65,7 +65,7 @@ int scanhash_skein_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -162,7 +162,7 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -731,7 +731,7 @@ void skein512_8way_full( skein512_8way_context *sc, void *out, const void *data,
void
skein512_8way_prehash64( skein512_8way_context *sc, const void *data )
{
__m512i *vdata = (__m512*)data;
__m512i *vdata = (__m512i*)data;
__m512i *buf = sc->buf;
buf[0] = vdata[0];
buf[1] = vdata[1];
@@ -1099,6 +1099,7 @@ skein512_4way_final16( skein512_4way_context *sc, void *out, const void *data )
casti_m256i( out, 7 ) = h7;
}
// Broken for 80 bytes, use prehash.
void
skein256_4way_update(void *cc, const void *data, size_t len)
{

View File

@@ -53,7 +53,7 @@ int scanhash_skein2_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -115,7 +115,7 @@ int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -279,7 +279,7 @@ int scanhash_c11_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
@@ -459,7 +459,7 @@ int scanhash_c11_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -221,7 +221,7 @@ int scanhash_timetravel_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -256,7 +256,7 @@ int scanhash_timetravel10_4way( struct work *work,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -128,7 +128,7 @@ int scanhash_tribus_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart);
@@ -213,7 +213,7 @@ int scanhash_tribus_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart);

View File

@@ -279,7 +279,7 @@ int scanhash_x11_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -469,7 +469,7 @@ int scanhash_x11_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -269,7 +269,7 @@ int scanhash_x11evo_4way( struct work* work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -312,7 +312,7 @@ int scanhash_x11gost_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
@@ -498,7 +498,7 @@ int scanhash_x11gost_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -170,6 +170,9 @@ void x12_8way_hash( void *state, const void *input )
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhashA );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhashB );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
@@ -263,7 +266,7 @@ int scanhash_x12_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -363,6 +366,18 @@ void x12_4way_hash( void *state, const void *input )
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
@@ -431,7 +446,7 @@ int scanhash_x12_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -208,7 +208,7 @@ int scanhash_phi1612_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart );
@@ -251,8 +251,12 @@ void phi1612_4way_hash( void *state, const void *input )
memcpy( &ctx, &phi1612_4way_ctx, sizeof(phi1612_4way_ctx) );
// Skein parallel 4way
skein512_4way_update( &ctx.skein, input, 80 );
skein512_4way_close( &ctx.skein, vhash );
// skein 4way is broken for 80 bytes
// skein512_4way_update( &ctx.skein, input, 80 );
// skein512_4way_close( &ctx.skein, vhash );
skein512_4way_prehash64( &ctx.skein, input );
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
// JH
jh512_4way_update( &ctx.jh, vhash, 64 );
@@ -344,7 +348,7 @@ int scanhash_phi1612_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -125,7 +125,7 @@ int scanhash_skunk_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( hash+(i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -237,7 +237,7 @@ int scanhash_skunk_4way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( hash+(i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -319,7 +319,7 @@ int scanhash_x13_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -531,7 +531,7 @@ int scanhash_x13_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -321,7 +321,7 @@ int scanhash_x13bcd_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -541,7 +541,7 @@ int scanhash_x13bcd_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -246,7 +246,7 @@ int scanhash_x13sm3_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -129,7 +129,7 @@ int scanhash_polytimos_4way( struct work *work, uint32_t max_nonce,
if( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;

View File

@@ -108,7 +108,7 @@ int scanhash_veltor_4way( struct work *work, uint32_t max_nonce,
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -324,7 +324,7 @@ int scanhash_x14_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -534,7 +534,7 @@ int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -364,7 +364,7 @@ int scanhash_x15_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
submit_solution( work, hash, mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -592,7 +592,7 @@ int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
submit_solution( work, hash, mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -77,7 +77,7 @@ typedef union _hex_context_overlay hex_context_overlay;
static __thread x16r_context_overlay hex_ctx;
void hex_hash( void* output, const void* input )
int hex_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x16r_context_overlay ctx;
@@ -214,11 +214,15 @@ void hex_hash( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
algo = (uint8_t)hash[0] % X16R_HASH_FUNC_COUNT;
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
return 1;
}
int scanhash_hex( struct work *work, uint32_t max_nonce,
@@ -286,8 +290,7 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
hex_hash( hash32, edata );
if ( hex_hash( hash32, edata, thr_id ) );
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
be32enc( &pdata[19], nonce );

258
algo/x16/minotaur.c Normal file
View File

@@ -0,0 +1,258 @@
// Minotaur hash
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/echo/sph_echo.h"
#include "algo/groestl/sph_groestl.h"
#endif
// Config
#define MINOTAUR_ALGO_COUNT 16
typedef struct TortureNode TortureNode;
typedef struct TortureGarden TortureGarden;
// Graph of hash algos plus SPH contexts
struct TortureGarden {
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_echo512_context echo;
sph_groestl512_context groestl;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
struct TortureNode {
unsigned int algo;
TortureNode *childLeft;
TortureNode *childRight;
} nodes[22];
} __attribute__ ((aligned (64)));
// Get a 64-byte hash for given 64-byte input, using given TortureGarden contexts and given algo index
static void get_hash( void *output, const void *input, TortureGarden *garden,
unsigned int algo )
{
unsigned char hash[64] __attribute__ ((aligned (64)));
switch (algo) {
case 0:
sph_blake512_init(&garden->blake);
sph_blake512(&garden->blake, input, 64);
sph_blake512_close(&garden->blake, hash);
break;
case 1:
sph_bmw512_init(&garden->bmw);
sph_bmw512(&garden->bmw, input, 64);
sph_bmw512_close(&garden->bmw, hash);
break;
case 2:
cubehashInit( &garden->cube, 512, 16, 32 );
cubehashUpdateDigest( &garden->cube, (byte*)hash,
(const byte*)input, 64 );
break;
case 3:
#if defined(__AES__)
echo_full( &garden->echo, (BitSequence *)hash, 512,
(const BitSequence *)input, 64 );
#else
sph_echo512_init(&garden->echo);
sph_echo512(&garden->echo, input, 64);
sph_echo512_close(&garden->echo, hash);
#endif
break;
case 4:
sph_fugue512_init(&garden->fugue);
sph_fugue512(&garden->fugue, input, 64);
sph_fugue512_close(&garden->fugue, hash);
break;
case 5:
#if defined(__AES__)
groestl512_full( &garden->groestl, (char*)hash, (char*)input, 512 );
#else
sph_groestl512_init(&garden->groestl);
sph_groestl512(&garden->groestl, input, 64);
sph_groestl512_close(&garden->groestl, hash);
#endif
break;
case 6:
sph_hamsi512_init(&garden->hamsi);
sph_hamsi512(&garden->hamsi, input, 64);
sph_hamsi512_close(&garden->hamsi, hash);
break;
case 7:
SHA512_Init( &garden->sha512 );
SHA512_Update( &garden->sha512, input, 64 );
SHA512_Final( (unsigned char*)hash, &garden->sha512 );
break;
case 8:
sph_jh512_init(&garden->jh);
sph_jh512(&garden->jh, input, 64);
sph_jh512_close(&garden->jh, hash);
break;
case 9:
sph_keccak512_init(&garden->keccak);
sph_keccak512(&garden->keccak, input, 64);
sph_keccak512_close(&garden->keccak, hash);
break;
case 10:
init_luffa( &garden->luffa, 512 );
update_and_final_luffa( &garden->luffa, (BitSequence*)hash,
(const BitSequence*)input, 64 );
break;
case 11:
sph_shabal512_init(&garden->shabal);
sph_shabal512(&garden->shabal, input, 64);
sph_shabal512_close(&garden->shabal, hash);
break;
case 12:
sph_shavite512_init(&garden->shavite);
sph_shavite512(&garden->shavite, input, 64);
sph_shavite512_close(&garden->shavite, hash);
break;
case 13:
init_sd( &garden->simd, 512 );
update_final_sd( &garden->simd, (BitSequence *)hash,
(const BitSequence*)input, 512 );
break;
case 14:
sph_skein512_init(&garden->skein);
sph_skein512(&garden->skein, input, 64);
sph_skein512_close(&garden->skein, hash);
break;
case 15:
sph_whirlpool_init(&garden->whirlpool);
sph_whirlpool(&garden->whirlpool, input, 64);
sph_whirlpool_close(&garden->whirlpool, hash);
break;
}
// Output the hash
memcpy(output, hash, 64);
}
// Recursively traverse a given torture garden starting with a given hash and given node within the garden. The hash is overwritten with the final hash.
static void traverse_garden( TortureGarden *garden, void *hash,
TortureNode *node )
{
unsigned char partialHash[64] __attribute__ ((aligned (64)));
get_hash(partialHash, hash, garden, node->algo);
if ( partialHash[63] % 2 == 0 )
{ // Last byte of output hash is even
if ( node->childLeft != NULL )
traverse_garden( garden, partialHash, node->childLeft );
}
else
{ // Last byte of output hash is odd
if ( node->childRight != NULL )
traverse_garden( garden, partialHash, node->childRight );
}
memcpy( hash, partialHash, 64 );
}
// Associate child nodes with a parent node
static inline void link_nodes( TortureNode *parent, TortureNode *childLeft,
TortureNode *childRight )
{
parent->childLeft = childLeft;
parent->childRight = childRight;
}
static __thread TortureGarden garden;
bool initialize_torture_garden()
{
// Create torture garden nodes. Note that both sides of 19 and 20 lead to 21, and 21 has no children (to make traversal complete).
link_nodes(&garden.nodes[0], &garden.nodes[1], &garden.nodes[2]);
link_nodes(&garden.nodes[1], &garden.nodes[3], &garden.nodes[4]);
link_nodes(&garden.nodes[2], &garden.nodes[5], &garden.nodes[6]);
link_nodes(&garden.nodes[3], &garden.nodes[7], &garden.nodes[8]);
link_nodes(&garden.nodes[4], &garden.nodes[9], &garden.nodes[10]);
link_nodes(&garden.nodes[5], &garden.nodes[11], &garden.nodes[12]);
link_nodes(&garden.nodes[6], &garden.nodes[13], &garden.nodes[14]);
link_nodes(&garden.nodes[7], &garden.nodes[15], &garden.nodes[16]);
link_nodes(&garden.nodes[8], &garden.nodes[15], &garden.nodes[16]);
link_nodes(&garden.nodes[9], &garden.nodes[15], &garden.nodes[16]);
link_nodes(&garden.nodes[10], &garden.nodes[15], &garden.nodes[16]);
link_nodes(&garden.nodes[11], &garden.nodes[17], &garden.nodes[18]);
link_nodes(&garden.nodes[12], &garden.nodes[17], &garden.nodes[18]);
link_nodes(&garden.nodes[13], &garden.nodes[17], &garden.nodes[18]);
link_nodes(&garden.nodes[14], &garden.nodes[17], &garden.nodes[18]);
link_nodes(&garden.nodes[15], &garden.nodes[19], &garden.nodes[20]);
link_nodes(&garden.nodes[16], &garden.nodes[19], &garden.nodes[20]);
link_nodes(&garden.nodes[17], &garden.nodes[19], &garden.nodes[20]);
link_nodes(&garden.nodes[18], &garden.nodes[19], &garden.nodes[20]);
link_nodes(&garden.nodes[19], &garden.nodes[21], &garden.nodes[21]);
link_nodes(&garden.nodes[20], &garden.nodes[21], &garden.nodes[21]);
garden.nodes[21].childLeft = NULL;
garden.nodes[21].childRight = NULL;
return true;
}
// Produce a 32-byte hash from 80-byte input data
int minotaur_hash( void *output, const void *input )
{
unsigned char hash[64] __attribute__ ((aligned (64)));
// Find initial sha512 hash
SHA512_Init( &garden.sha512 );
SHA512_Update( &garden.sha512, input, 80 );
SHA512_Final( (unsigned char*) hash, &garden.sha512 );
// Assign algos to torture garden nodes based on initial hash
for ( int i = 0; i < 22; i++ )
garden.nodes[i].algo = hash[i] % MINOTAUR_ALGO_COUNT;
// Send the initial hash through the torture garden
traverse_garden( &garden, hash, &garden.nodes[0] );
memcpy( output, hash, 32 );
return 1;
}
bool register_minotaur_algo( algo_gate_t* gate )
{
gate->hash = (void*)&minotaur_hash;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&initialize_torture_garden;
return true;
};

View File

@@ -80,7 +80,7 @@ void x16r_8way_prehash( void *vdata, void *pdata )
// Called by wrapper hash function to optionally continue hashing and
// convert to final hash.
void x16r_8way_hash_generic( void* output, const void* input )
int x16r_8way_hash_generic( void* output, const void* input, int thrid )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -424,6 +424,9 @@ void x16r_8way_hash_generic( void* output, const void* input )
hash7, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
@@ -435,14 +438,17 @@ void x16r_8way_hash_generic( void* output, const void* input )
memcpy( output+320, hash5, 64 );
memcpy( output+384, hash6, 64 );
memcpy( output+448, hash7, 64 );
return 1;
}
// x16-r,-s,-rt wrapper called directly by scanhash to repackage 512 bit
// hash to 256 bit final hash.
void x16r_8way_hash( void* output, const void* input )
int x16r_8way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*8] __attribute__ ((aligned (128)));
x16r_8way_hash_generic( hash, input );
if ( !x16r_8way_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
@@ -452,7 +458,9 @@ void x16r_8way_hash( void* output, const void* input )
memcpy( output+160, hash+320, 32 );
memcpy( output+192, hash+384, 32 );
memcpy( output+224, hash+448, 32 );
}
return 1;
}
// x16r only
int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
@@ -492,13 +500,12 @@ int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_8way_hash( hash, vdata );
if( x16r_8way_hash( hash, vdata, thr_id ) );
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -565,7 +572,7 @@ void x16r_4way_prehash( void *vdata, void *pdata )
}
}
void x16r_4way_hash_generic( void* output, const void* input )
int x16r_4way_hash_generic( void* output, const void* input, int thrid )
{
uint32_t vhash[20*4] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -794,23 +801,31 @@ void x16r_4way_hash_generic( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
return 1;
}
void x16r_4way_hash( void* output, const void* input )
int x16r_4way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*4] __attribute__ ((aligned (64)));
x16r_4way_hash_generic( hash, input );
if ( !x16r_4way_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
return 1;
}
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
@@ -849,12 +864,12 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_4way_hash( hash, vdata );
if ( x16r_4way_hash( hash, vdata, thr_id ) );
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -131,8 +131,8 @@ typedef union _x16r_8way_context_overlay x16r_8way_context_overlay;
extern __thread x16r_8way_context_overlay x16r_ctx;
void x16r_8way_prehash( void *, void * );
void x16r_8way_hash_generic( void *, const void * );
void x16r_8way_hash( void *, const void * );
int x16r_8way_hash_generic( void *, const void *, int );
int x16r_8way_hash( void *, const void *, int );
int scanhash_x16r_8way( struct work *, uint32_t ,
uint64_t *, struct thr_info * );
extern __thread x16r_8way_context_overlay x16r_ctx;
@@ -166,8 +166,8 @@ typedef union _x16r_4way_context_overlay x16r_4way_context_overlay;
extern __thread x16r_4way_context_overlay x16r_ctx;
void x16r_4way_prehash( void *, void * );
void x16r_4way_hash_generic( void *, const void * );
void x16r_4way_hash( void *, const void * );
int x16r_4way_hash_generic( void *, const void *, int );
int x16r_4way_hash( void *, const void *, int );
int scanhash_x16r_4way( struct work *, uint32_t,
uint64_t *, struct thr_info * );
extern __thread x16r_4way_context_overlay x16r_ctx;
@@ -205,26 +205,26 @@ typedef union _x16r_context_overlay x16r_context_overlay;
extern __thread x16r_context_overlay x16_ctx;
void x16r_prehash( void *, void * );
void x16r_hash_generic( void *, const void * );
void x16r_hash( void *, const void * );
int x16r_hash_generic( void *, const void *, int );
int x16r_hash( void *, const void *, int );
int scanhash_x16r( struct work *, uint32_t, uint64_t *, struct thr_info * );
// x16Rv2
#if defined(X16RV2_8WAY)
void x16rv2_8way_hash( void *state, const void *input );
int x16rv2_8way_hash( void *state, const void *input, int thrid );
int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X16RV2_4WAY)
void x16rv2_4way_hash( void *state, const void *input );
int x16rv2_4way_hash( void *state, const void *input, int thrid );
int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void x16rv2_hash( void *state, const void *input );
int x16rv2_hash( void *state, const void *input, int thr_id );
int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
@@ -254,21 +254,21 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
// x21s
#if defined(X16R_8WAY)
void x21s_8way_hash( void *state, const void *input );
int x21s_8way_hash( void *state, const void *input, int thrid );
int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_8way_thread_init();
#elif defined(X16R_4WAY)
void x21s_4way_hash( void *state, const void *input );
int x21s_4way_hash( void *state, const void *input, int thrid );
int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_4way_thread_init();
#else
void x21s_hash( void *state, const void *input );
int x21s_hash( void *state, const void *input, int thr_id );
int scanhash_x21s( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_thread_init();

View File

@@ -48,7 +48,7 @@ void x16r_prehash( void *edata, void *pdata )
}
}
void x16r_hash_generic( void* output, const void* input )
int x16r_hash_generic( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x16r_context_overlay ctx;
@@ -178,18 +178,24 @@ void x16r_hash_generic( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
in = (void*) hash;
size = 64;
}
memcpy( output, hash, 64 );
return true;
}
void x16r_hash( void* output, const void* input )
int x16r_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64] __attribute__ ((aligned (64)));
x16r_hash_generic( hash, input );
if ( !x16r_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output, hash, 32 );
return 1;
}
int scanhash_x16r( struct work *work, uint32_t max_nonce,
@@ -223,8 +229,7 @@ int scanhash_x16r( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( x16r_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );

View File

@@ -41,13 +41,12 @@ int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_8way_hash( hash, vdata );
if ( x16r_8way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -95,12 +94,12 @@ int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_4way_hash( hash, vdata );
if ( x16r_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -36,8 +36,7 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( x16r_hash( hash32, edata, thr_id ) )
if ( valid_hash( hash32, ptarget ) && !bench )
{
pdata[19] = bswap_32( nonce );

View File

@@ -65,7 +65,7 @@ union _x16rv2_8way_context_overlay
typedef union _x16rv2_8way_context_overlay x16rv2_8way_context_overlay;
static __thread x16rv2_8way_context_overlay x16rv2_ctx;
void x16rv2_8way_hash( void* output, const void* input )
int x16rv2_8way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[24*8] __attribute__ ((aligned (128)));
uint32_t hash0[24] __attribute__ ((aligned (64)));
@@ -563,6 +563,9 @@ void x16rv2_8way_hash( void* output, const void* input )
hash7, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
@@ -574,6 +577,7 @@ void x16rv2_8way_hash( void* output, const void* input )
memcpy( output+160, hash5, 32 );
memcpy( output+192, hash6, 32 );
memcpy( output+224, hash7, 32 );
return 1;
}
int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
@@ -669,13 +673,12 @@ int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16rv2_8way_hash( hash, vdata );
if ( x16rv2_8way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -718,7 +721,7 @@ inline void padtiger512( uint32_t* hash )
for ( int i = 6; i < 16; i++ ) hash[i] = 0;
}
void x16rv2_4way_hash( void* output, const void* input )
int x16rv2_4way_hash( void* output, const void* input, int thrid )
{
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
@@ -1023,12 +1026,16 @@ void x16rv2_4way_hash( void* output, const void* input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
return 1;
}
int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
@@ -1119,12 +1126,12 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
do
{
x16rv2_4way_hash( hash, vdata );
if ( x16rv2_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -67,7 +67,7 @@ inline void padtiger512(uint32_t* hash) {
for (int i = (24/4); i < (64/4); i++) hash[i] = 0;
}
void x16rv2_hash( void* output, const void* input )
int x16rv2_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x16rv2_context_overlay ctx;
@@ -180,10 +180,14 @@ void x16rv2_hash( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
return 1;
}
int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
@@ -221,8 +225,7 @@ int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x16rv2_hash( hash32, edata );
if ( x16rv2_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );

View File

@@ -30,7 +30,7 @@ union _x21s_8way_context_overlay
typedef union _x21s_8way_context_overlay x21s_8way_context_overlay;
void x21s_8way_hash( void* output, const void* input )
int x21s_8way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint8_t shash[64*8] __attribute__ ((aligned (64)));
@@ -44,7 +44,8 @@ void x21s_8way_hash( void* output, const void* input )
uint32_t *hash7 = (uint32_t*)( shash+448 );
x21s_8way_context_overlay ctx;
x16r_8way_hash_generic( shash, input );
if ( !x16r_8way_hash_generic( shash, input, thrid ) )
return 0;
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
@@ -124,6 +125,8 @@ void x21s_8way_hash( void* output, const void* input )
sha256_8way_init( &ctx.sha256 );
sha256_8way_update( &ctx.sha256, vhash, 64 );
sha256_8way_close( &ctx.sha256, output );
return 1;
}
int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
@@ -166,8 +169,7 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_8way_hash( hash, vdata );
if ( x21s_8way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
{
@@ -175,7 +177,7 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -215,7 +217,7 @@ union _x21s_4way_context_overlay
typedef union _x21s_4way_context_overlay x21s_4way_context_overlay;
void x21s_4way_hash( void* output, const void* input )
int x21s_4way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[16*4] __attribute__ ((aligned (64)));
uint8_t shash[64*4] __attribute__ ((aligned (64)));
@@ -225,8 +227,9 @@ void x21s_4way_hash( void* output, const void* input )
uint32_t *hash2 = (uint32_t*)( shash+128 );
uint32_t *hash3 = (uint32_t*)( shash+192 );
x16r_4way_hash_generic( shash, input );
if ( !x16r_4way_hash_generic( shash, input, thrid ) )
return 0;
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
haval256_5_4way_init( &ctx.haval );
@@ -299,6 +302,8 @@ void x21s_4way_hash( void* output, const void* input )
dintrlv_4x32( output, output+32, output+64,output+96, vhash, 256 );
#endif
return 1;
}
int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
@@ -337,12 +342,12 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_4way_hash( hash, vdata );
if ( x21s_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -27,12 +27,13 @@ union _x21s_context_overlay
};
typedef union _x21s_context_overlay x21s_context_overlay;
void x21s_hash( void* output, const void* input )
int x21s_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x21s_context_overlay ctx;
x16r_hash_generic( hash, input );
if ( !x16r_hash_generic( hash, input, thrid ) )
return 0;
sph_haval256_5_init( &ctx.haval );
sph_haval256_5( &ctx.haval, (const void*) hash, 64) ;
@@ -54,6 +55,8 @@ void x21s_hash( void* output, const void* input )
SHA256_Final( (unsigned char*)hash, &ctx.sha256 );
memcpy( output, hash, 32 );
return 1;
}
int scanhash_x21s( struct work *work, uint32_t max_nonce,
@@ -87,8 +90,7 @@ int scanhash_x21s( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x21s_hash( hash32, edata );
if ( x21s_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );

View File

@@ -58,7 +58,7 @@ union _sonoa_8way_context_overlay
typedef union _sonoa_8way_context_overlay sonoa_8way_context_overlay;
void sonoa_8way_hash( void *state, const void *input )
int sonoa_8way_hash( void *state, const void *input, int thrid )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
@@ -186,6 +186,7 @@ void sonoa_8way_hash( void *state, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
// 2
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -301,6 +302,7 @@ void sonoa_8way_hash( void *state, const void *input )
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
if ( work_restart[thrid].restart ) return 0;
// 3
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -430,6 +432,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_fugue512_full( &ctx.fugue, hash6, hash6, 64 );
sph_fugue512_full( &ctx.fugue, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 4
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -627,6 +630,7 @@ void sonoa_8way_hash( void *state, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
// 5
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -779,6 +783,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 6
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -947,6 +952,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 7
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -1108,6 +1114,8 @@ void sonoa_8way_hash( void *state, const void *input )
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhashA, 64 );
haval256_5_8way_close( &ctx.haval, state );
return 1;
}
int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
@@ -1133,8 +1141,7 @@ int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
do
{
sonoa_8way_hash( hash, vdata );
if ( sonoa_8way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 8; lane++ )
if unlikely( ( hashd7[ lane ] <= targ32 ) )
{
@@ -1142,7 +1149,7 @@ int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -1179,7 +1186,7 @@ union _sonoa_4way_context_overlay
typedef union _sonoa_4way_context_overlay sonoa_4way_context_overlay;
void sonoa_4way_hash( void *state, const void *input )
int sonoa_4way_hash( void *state, const void *input, int thrid )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
@@ -1243,6 +1250,7 @@ void sonoa_4way_hash( void *state, const void *input )
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 2
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1302,6 +1310,7 @@ void sonoa_4way_hash( void *state, const void *input )
hamsi512_4way_update( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
if ( work_restart[thrid].restart ) return 0;
// 3
bmw512_4way_init( &ctx.bmw );
@@ -1366,6 +1375,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 4
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1462,6 +1472,7 @@ void sonoa_4way_hash( void *state, const void *input )
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, 64 );
if ( work_restart[thrid].restart ) return 0;
// 5
rintrlv_2x128_4x64( vhash, vhashA, vhashB, 512 );
@@ -1546,6 +1557,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 6
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1638,6 +1650,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 7
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1728,6 +1741,8 @@ void sonoa_4way_hash( void *state, const void *input )
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhashB, 64 );
haval256_5_4way_close( &ctx.haval, state );
return 1;
}
int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
@@ -1752,8 +1767,7 @@ int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
do
{
sonoa_4way_hash( hash, vdata );
if ( sonoa_4way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hashd7[ lane ] <= targ32 ) )
{
@@ -1761,7 +1775,7 @@ int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -10,7 +10,7 @@ bool register_sonoa_algo( algo_gate_t* gate )
gate->hash = (void*)&sonoa_4way_hash;
#else
init_sonoa_ctx();
gate->scanhash = (void*)&scanhash_sonoa;
// gate->scanhash = (void*)&scanhash_sonoa;
gate->hash = (void*)&sonoa_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;

View File

@@ -14,19 +14,19 @@ bool register_sonoa_algo( algo_gate_t* gate );
#if defined(SONOA_8WAY)
void sonoa_8way_hash( void *state, const void *input );
int sonoa_8way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(SONOA_4WAY)
void sonoa_4way_hash( void *state, const void *input );
int sonoa_4way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void sonoa_hash( void *state, const void *input );
int sonoa_hash( void *state, const void *input, int thrid );
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_sonoa_ctx();

View File

@@ -83,27 +83,27 @@ void init_sonoa_ctx()
sph_haval256_5_init(&sonoa_ctx.haval);
};
void sonoa_hash( void *state, const void *input )
int sonoa_hash( void *state, const void *input, int thrid )
{
uint8_t hash[128] __attribute__ ((aligned (64)));
sonoa_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sonoa_ctx, sizeof(sonoa_ctx) );
sonoa_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sonoa_ctx, sizeof(sonoa_ctx) );
sph_blake512(&ctx.blake, input, 80);
sph_blake512(&ctx.blake, input, 80);
sph_blake512_close(&ctx.blake, hash);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512(&ctx.skein, hash, 64);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512(&ctx.jh, hash, 64);
@@ -112,484 +112,461 @@ void sonoa_hash( void *state, const void *input )
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
update_final_sd( &ctx.simd, (BitSequence *)hash,
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
update_final_echo ( &ctx.echo, (BitSequence *)hash,
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_close(&ctx.shabal, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_haval256_5(&ctx.haval,(const void*) hash, 64);
sph_haval256_5_close(&ctx.haval, hash);
sph_haval256_5(&ctx.haval,(const void*) hash, 64);
sph_haval256_5_close(&ctx.haval, hash);
memcpy(state, hash, 32);
}
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
edata[19] = n;
sonoa_hash( hash64, edata );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
return 1;
}
#endif

View File

@@ -57,7 +57,7 @@ union _x17_8way_context_overlay
} __attribute__ ((aligned (64)));
typedef union _x17_8way_context_overlay x17_8way_context_overlay;
void x17_8way_hash( void *state, const void *input )
int x17_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
@@ -230,6 +230,8 @@ void x17_8way_hash( void *state, const void *input )
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhashA, 64 );
haval256_5_8way_close( &ctx.haval, state );
return 1;
}
int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
@@ -264,7 +266,7 @@ int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -300,7 +302,7 @@ union _x17_4way_context_overlay
};
typedef union _x17_4way_context_overlay x17_4way_context_overlay;
void x17_4way_hash( void *state, const void *input )
int x17_4way_hash( void *state, const void *input )
{
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
uint64_t vhashA[8*4] __attribute__ ((aligned (64)));
@@ -399,6 +401,8 @@ void x17_4way_hash( void *state, const void *input )
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhashB, 64 );
haval256_5_4way_close( &ctx.haval, state );
return 1;
}
int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
@@ -432,7 +436,7 @@ int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -9,7 +9,6 @@ bool register_x17_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_x17_4way;
gate->hash = (void*)&x17_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x17;
gate->hash = (void*)&x17_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;

View File

@@ -14,20 +14,18 @@ bool register_x17_algo( algo_gate_t* gate );
#if defined(X17_8WAY)
void x17_8way_hash( void *state, const void *input );
int x17_8way_hash( void *state, const void *input );
int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X17_4WAY)
void x17_4way_hash( void *state, const void *input );
int x17_4way_hash( void *state, const void *input );
int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void x17_hash( void *state, const void *input );
int scanhash_x17( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
int x17_hash( void *state, const void *input, int thr_id );
#endif

View File

@@ -56,7 +56,7 @@ union _x17_context_overlay
};
typedef union _x17_context_overlay x17_context_overlay;
void x17_hash(void *output, const void *input)
int x17_hash(void *output, const void *input, int thr_id )
{
// unsigned char hash[64 * 4] __attribute__((aligned(64))) = {0};
unsigned char hash[64] __attribute__((aligned(64)));
@@ -143,36 +143,8 @@ void x17_hash(void *output, const void *input)
sph_haval256_5_init(&ctx.haval);
sph_haval256_5( &ctx.haval, (const void*)hash, 64 );
sph_haval256_5_close( &ctx.haval, output );
}
int scanhash_x17( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
edata[19] = n;
x17_hash( hash64, edata );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
return 1;
}
#endif

View File

@@ -57,7 +57,7 @@ union _xevan_8way_context_overlay
} __attribute__ ((aligned (64)));
typedef union _xevan_8way_context_overlay xevan_8way_context_overlay;
void xevan_8way_hash( void *output, const void *input )
int xevan_8way_hash( void *output, const void *input )
{
uint64_t vhash[16<<3] __attribute__ ((aligned (128)));
uint64_t vhashA[16<<3] __attribute__ ((aligned (64)));
@@ -395,6 +395,8 @@ void xevan_8way_hash( void *output, const void *input )
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhashA, dataLen );
haval256_5_8way_close( &ctx.haval, output );
return 1;
}
int scanhash_xevan_8way( struct work *work, uint32_t max_nonce,
@@ -429,7 +431,7 @@ int scanhash_xevan_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -465,7 +467,7 @@ union _xevan_4way_context_overlay
};
typedef union _xevan_4way_context_overlay xevan_4way_context_overlay;
void xevan_4way_hash( void *output, const void *input )
int xevan_4way_hash( void *output, const void *input )
{
uint64_t hash0[16] __attribute__ ((aligned (64)));
uint64_t hash1[16] __attribute__ ((aligned (64)));
@@ -540,10 +542,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, 64 );
sph_fugue512_full( &ctx.fugue, hash1, hash1, 64 );
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
// Parallel 4way 32 bit
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -637,10 +639,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, 64 );
sph_fugue512_full( &ctx.fugue, hash1, hash1, 64 );
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -666,6 +668,8 @@ void xevan_4way_hash( void *output, const void *input )
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhashA, dataLen );
haval256_5_4way_close( &ctx.haval, output );
return 1;
}
int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
@@ -699,7 +703,7 @@ int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -10,7 +10,6 @@ bool register_xevan_algo( algo_gate_t* gate )
gate->hash = (void*)&xevan_4way_hash;
#else
init_xevan_ctx();
gate->scanhash = (void*)&scanhash_xevan;
gate->hash = (void*)&xevan_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;

View File

@@ -14,14 +14,12 @@ bool register_xevan_algo( algo_gate_t* gate );
#if defined(XEVAN_8WAY)
void xevan_8way_hash( void *state, const void *input );
int xevan_8way_hash( void *state, const void *input );
int scanhash_xevan_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(XEVAN_4WAY)
void xevan_4way_hash( void *state, const void *input );
int xevan_4way_hash( void *state, const void *input );
int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
@@ -29,11 +27,7 @@ int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
#else
void xevan_hash( void *state, const void *input );
int scanhash_xevan( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
int xevan_hash( void *state, const void *input, int trh_id );
void init_xevan_ctx();
#endif

View File

@@ -83,7 +83,7 @@ void init_xevan_ctx()
#endif
};
void xevan_hash(void *output, const void *input)
int xevan_hash(void *output, const void *input, int thr_id )
{
uint32_t _ALIGN(64) hash[32]; // 128 bytes required
const int dataLen = 128;
@@ -218,36 +218,8 @@ void xevan_hash(void *output, const void *input)
sph_haval256_5_close(&ctx.haval, hash);
memcpy(output, hash, 32);
}
int scanhash_xevan( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
edata[19] = n;
xevan_hash( hash64, edata );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
return 1;
}
#endif

View File

@@ -62,7 +62,7 @@ union _x22i_8way_ctx_overlay
};
typedef union _x22i_8way_ctx_overlay x22i_8way_ctx_overlay;
void x22i_8way_hash( void *output, const void *input )
int x22i_8way_hash( void *output, const void *input, int thrid )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
@@ -129,6 +129,8 @@ void x22i_8way_hash( void *output, const void *input )
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
if ( work_restart[thrid].restart ) return 0;
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
luffa512_4way_full( &ctx.luffa, vhashA, vhashA, 64 );
@@ -214,6 +216,8 @@ void x22i_8way_hash( void *output, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
@@ -346,6 +350,8 @@ void x22i_8way_hash( void *output, const void *input )
sph_tiger (&ctx.tiger, (const void*) hash7, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA7);
if ( work_restart[thrid].restart ) return 0;
memset( hash0, 0, 64 );
memset( hash1, 0, 64 );
memset( hash2, 0, 64 );
@@ -399,6 +405,8 @@ void x22i_8way_hash( void *output, const void *input )
sha256_8way_init( &ctx.sha256 );
sha256_8way_update( &ctx.sha256, vhash, 64 );
sha256_8way_close( &ctx.sha256, output );
return 1;
}
int scanhash_x22i_8way( struct work *work, uint32_t max_nonce,
@@ -428,8 +436,7 @@ int scanhash_x22i_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x22i_8way_hash( hash, vdata );
if ( x22i_8way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( ( hashd7[ lane ] <= targ32 ) && !bench ) )
{
@@ -437,7 +444,7 @@ int scanhash_x22i_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -486,7 +493,7 @@ int scanhash_x22i_8way( struct work* work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -524,7 +531,7 @@ union _x22i_4way_ctx_overlay
};
typedef union _x22i_4way_ctx_overlay x22i_ctx_overlay;
void x22i_4way_hash( void *output, const void *input )
int x22i_4way_hash( void *output, const void *input, int thrid )
{
uint64_t hash0[8*4] __attribute__ ((aligned (64)));
uint64_t hash1[8*4] __attribute__ ((aligned (64)));
@@ -563,6 +570,8 @@ void x22i_4way_hash( void *output, const void *input )
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
if ( work_restart[thrid].restart ) return false;
rintrlv_4x64_2x128( vhashA, vhashB, vhash, 512 );
luffa512_2way_full( &ctx.luffa, vhashA, vhashA, 64 );
@@ -591,6 +600,8 @@ void x22i_4way_hash( void *output, const void *input )
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
if ( work_restart[thrid].restart ) return false;
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
@@ -636,6 +647,8 @@ void x22i_4way_hash( void *output, const void *input )
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64_512( &hash0[24], &hash1[24], &hash2[24], &hash3[24], vhash );
if ( work_restart[thrid].restart ) return false;
ComputeSingleSWIFFTX((unsigned char*)hash0, (unsigned char*)hashA0);
ComputeSingleSWIFFTX((unsigned char*)hash1, (unsigned char*)hashA1);
ComputeSingleSWIFFTX((unsigned char*)hash2, (unsigned char*)hashA2);
@@ -668,6 +681,8 @@ void x22i_4way_hash( void *output, const void *input )
sph_tiger (&ctx.tiger, (const void*) hash3, 64);
sph_tiger_close(&ctx.tiger, (void*) hashA3);
if ( work_restart[thrid].restart ) return false;
memset( hash0, 0, 64 );
memset( hash1, 0, 64 );
memset( hash2, 0, 64 );
@@ -700,8 +715,9 @@ void x22i_4way_hash( void *output, const void *input )
sha256_4way_init( &ctx.sha256 );
sha256_4way_update( &ctx.sha256, vhash, 64 );
sha256_4way_close( &ctx.sha256, output );
}
return 1;
}
int scanhash_x22i_4way( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
@@ -729,8 +745,7 @@ int scanhash_x22i_4way( struct work* work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x22i_4way_hash( hash, vdata );
if ( x22i_4way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hashd7[ lane ] <= targ32 && !bench ) )
{
@@ -738,7 +753,7 @@ int scanhash_x22i_4way( struct work* work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -16,19 +16,19 @@ bool register_x22i_algo( algo_gate_t* gate );
#if defined(X22I_8WAY)
void x22i_8way_hash( void *state, const void *input );
int x22i_8way_hash( void *state, const void *input, int thrid );
int scanhash_x22i_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X22I_4WAY)
void x22i_4way_hash( void *state, const void *input );
int x22i_4way_hash( void *state, const void *input, int thrid );
int scanhash_x22i_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void x22i_hash( void *state, const void *input );
int x22i_hash( void *state, const void *input, int thrid );
int scanhash_x22i( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
@@ -44,19 +44,19 @@ bool register_x25i_algo( algo_gate_t* gate );
#if defined(X25X_8WAY)
void x25x_8way_hash( void *state, const void *input );
int x25x_8way_hash( void *state, const void *input, int thrid );
int scanhash_x25x_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X25X_4WAY)
void x25x_4way_hash( void *state, const void *input );
int x25x_4way_hash( void *state, const void *input, int thrid );
int scanhash_x25x_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void x25x_hash( void *state, const void *input );
int x25x_hash( void *state, const void *input, int thrif );
int scanhash_x25x( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );

View File

@@ -59,7 +59,7 @@ union _x22i_context_overlay
};
typedef union _x22i_context_overlay x22i_context_overlay;
void x22i_hash( void *output, const void *input )
int x22i_hash( void *output, const void *input, int thrid )
{
unsigned char hash[64 * 4] __attribute__((aligned(64))) = {0};
unsigned char hash2[65] __attribute__((aligned(64))) = {0};
@@ -95,6 +95,8 @@ void x22i_hash( void *output, const void *input )
sph_keccak512(&ctx.keccak, (const void*) hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
if ( work_restart[thrid].restart ) return 0;
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
@@ -121,6 +123,8 @@ void x22i_hash( void *output, const void *input )
sph_echo512_close( &ctx.echo, hash );
#endif
if ( work_restart[thrid].restart ) return 0;
sph_hamsi512_init(&ctx.hamsi);
sph_hamsi512(&ctx.hamsi, (const void*) hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
@@ -143,6 +147,8 @@ void x22i_hash( void *output, const void *input )
ComputeSingleSWIFFTX((unsigned char*)hash, (unsigned char*)hash2);
if ( work_restart[thrid].restart ) return 0;
memset(hash, 0, 64);
sph_haval256_5_init(&ctx.haval);
sph_haval256_5(&ctx.haval,(const void*) hash2, 64);
@@ -165,6 +171,8 @@ void x22i_hash( void *output, const void *input )
SHA256_Final( (unsigned char*) hash, &ctx.sha256 );
memcpy(output, hash, 32);
return 1;
}
int scanhash_x22i( struct work *work, uint32_t max_nonce,
@@ -188,7 +196,7 @@ int scanhash_x22i( struct work *work, uint32_t max_nonce,
do
{
edata[19] = n;
x22i_hash( hash64, edata );
if ( x22i_hash( hash64, edata, thr_id ) );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );

View File

@@ -94,7 +94,7 @@ union _x25x_8way_ctx_overlay
};
typedef union _x25x_8way_ctx_overlay x25x_8way_ctx_overlay;
void x25x_8way_hash( void *output, const void *input )
int x25x_8way_hash( void *output, const void *input, int thrid )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
unsigned char hash0[25][64] __attribute__((aligned(64))) = {0};
@@ -179,13 +179,15 @@ void x25x_8way_hash( void *output, const void *input )
jh512_8way_close( &ctx.jh, vhash );
dintrlv_8x64_512( hash0[4], hash1[4], hash2[4], hash3[4],
hash4[4], hash5[4], hash6[4], hash7[4], vhash );
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0[5], hash1[5], hash2[5], hash3[5],
hash4[5], hash5[5], hash6[5], hash7[5], vhash );
if ( work_restart[thrid].restart ) return 0;
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
luffa_4way_init( &ctx.luffa, 512 );
@@ -261,6 +263,7 @@ void x25x_8way_hash( void *output, const void *input )
intrlv_8x64_512( vhash, hash0[10], hash1[10], hash2[10], hash3[10],
hash4[10], hash5[10], hash6[10], hash7[10] );
#else
init_echo( &ctx.echo, 512 );
@@ -292,6 +295,8 @@ void x25x_8way_hash( void *output, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
@@ -407,6 +412,8 @@ void x25x_8way_hash( void *output, const void *input )
sph_tiger (&ctx.tiger, (const void*) hash7[17], 64);
sph_tiger_close(&ctx.tiger, (void*) hash7[18]);
if ( work_restart[thrid].restart ) return 0;
intrlv_2x256( vhash, hash0[18], hash1[18], 256 );
LYRA2X_2WAY( vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash0[19], hash1[19], vhash, 256 );
@@ -468,6 +475,8 @@ void x25x_8way_hash( void *output, const void *input )
laneHash(512, (const BitSequence*)hash6[22], 512, (BitSequence*)hash6[23]);
laneHash(512, (const BitSequence*)hash7[22], 512, (BitSequence*)hash7[23]);
if ( work_restart[thrid].restart ) return 0;
x25x_shuffle( hash0 );
x25x_shuffle( hash1 );
x25x_shuffle( hash2 );
@@ -528,6 +537,8 @@ void x25x_8way_hash( void *output, const void *input )
blake2s_8way_init( &ctx.blake2s, 32 );
blake2s_8way_full_blocks( &ctx.blake2s, output, vhashX, 64*24 );
return 1;
}
int scanhash_x25x_8way( struct work *work, uint32_t max_nonce,
@@ -557,7 +568,7 @@ int scanhash_x25x_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x25x_8way_hash( hash, vdata );
if ( x25x_8way_hash( hash, vdata, thr_id ) );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( ( hashd7[ lane ] <= targ32 ) && !bench ) )
@@ -566,7 +577,7 @@ int scanhash_x25x_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -614,7 +625,7 @@ int scanhash_x25x_8way( struct work* work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -654,7 +665,7 @@ union _x25x_4way_ctx_overlay
};
typedef union _x25x_4way_ctx_overlay x25x_4way_ctx_overlay;
void x25x_4way_hash( void *output, const void *input )
int x25x_4way_hash( void *output, const void *input, int thrid )
{
uint64_t vhash[8*4] __attribute__ ((aligned (128)));
unsigned char hash0[25][64] __attribute__((aligned(64))) = {0};
@@ -686,6 +697,8 @@ void x25x_4way_hash( void *output, const void *input )
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64_512( hash0[4], hash1[4], hash2[4], hash3[4], vhash );
if ( work_restart[thrid].restart ) return 0;
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
@@ -738,6 +751,8 @@ void x25x_4way_hash( void *output, const void *input )
intrlv_4x64_512( vhash, hash0[10], hash1[10], hash2[10], hash3[10] );
if ( work_restart[thrid].restart ) return 0;
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
@@ -819,6 +834,8 @@ void x25x_4way_hash( void *output, const void *input )
LYRA2RE( (void*)hash3[19], 32, (const void*)hash3[18], 32,
(const void*)hash3[18], 32, 1, 4, 4 );
if ( work_restart[thrid].restart ) return 0;
sph_gost512_init(&ctx.gost);
sph_gost512 (&ctx.gost, (const void*) hash0[19], 64);
sph_gost512_close(&ctx.gost, (void*) hash0[20]);
@@ -850,6 +867,8 @@ void x25x_4way_hash( void *output, const void *input )
laneHash(512, (const BitSequence*)hash2[22], 512, (BitSequence*)hash2[23]);
laneHash(512, (const BitSequence*)hash3[22], 512, (BitSequence*)hash3[23]);
if ( work_restart[thrid].restart ) return 0;
x25x_shuffle( hash0 );
x25x_shuffle( hash1 );
x25x_shuffle( hash2 );
@@ -882,6 +901,8 @@ void x25x_4way_hash( void *output, const void *input )
blake2s_4way_init( &ctx.blake2s, 32 );
blake2s_4way_full_blocks( &ctx.blake2s, output, vhashX, 64*24 );
return 1;
}
int scanhash_x25x_4way( struct work* work, uint32_t max_nonce,
@@ -910,8 +931,7 @@ int scanhash_x25x_4way( struct work* work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x25x_4way_hash( hash, vdata );
if ( x25x_4way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hashd7[ lane ] <= targ32 && !bench ) )
{
@@ -919,7 +939,7 @@ int scanhash_x25x_4way( struct work* work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -64,7 +64,7 @@ union _x25x_context_overlay
};
typedef union _x25x_context_overlay x25x_context_overlay;
void x25x_hash( void *output, const void *input )
int x25x_hash( void *output, const void *input, int thrid )
{
unsigned char hash[25][64] __attribute__((aligned(64))) = {0};
x25x_context_overlay ctx;
@@ -99,6 +99,8 @@ void x25x_hash( void *output, const void *input )
sph_keccak512(&ctx.keccak, (const void*) &hash[4], 64);
sph_keccak512_close(&ctx.keccak, &hash[5]);
if ( work_restart[thrid].restart ) return 0;
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)&hash[6],
(const BitSequence*)&hash[5], 64 );
@@ -125,7 +127,9 @@ void x25x_hash( void *output, const void *input )
sph_echo512_close( &ctx.echo, &hash[10] );
#endif
sph_hamsi512_init(&ctx.hamsi);
if ( work_restart[thrid].restart ) return 0;
sph_hamsi512_init(&ctx.hamsi);
sph_hamsi512(&ctx.hamsi, (const void*) &hash[10], 64);
sph_hamsi512_close(&ctx.hamsi, &hash[11]);
@@ -151,6 +155,8 @@ void x25x_hash( void *output, const void *input )
sph_haval256_5(&ctx.haval,(const void*) &hash[16], 64);
sph_haval256_5_close(&ctx.haval,&hash[17]);
if ( work_restart[thrid].restart ) return 0;
sph_tiger_init(&ctx.tiger);
sph_tiger (&ctx.tiger, (const void*) &hash[17], 64);
sph_tiger_close(&ctx.tiger, (void*) &hash[18]);
@@ -199,6 +205,8 @@ void x25x_hash( void *output, const void *input )
blake2s_simple( (uint8_t*)&hash[24], (const void*)(&hash[0]), 64 * 24 );
memcpy(output, &hash[24], 32);
return 1;
}
int scanhash_x25x( struct work *work, uint32_t max_nonce,
@@ -222,7 +230,7 @@ int scanhash_x25x( struct work *work, uint32_t max_nonce,
do
{
edata[19] = n;
x25x_hash( hash64, edata );
if ( x25x_hash( hash64, edata, thr_id ) );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );

View File

@@ -31,6 +31,7 @@
#undef HUGEPAGE_SIZE
#endif
/*
static __inline uint32_t
le32dec(const void *pp)
{
@@ -50,6 +51,7 @@ le32enc(void *pp, uint32_t x)
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
*/
static void *
alloc_region(yescrypt_region_t * region, size_t size)
@@ -154,7 +156,7 @@ int yescrypt_init_shared(yescrypt_shared_t * shared, const uint8_t * param, size
if (yescrypt_kdf(&dummy, shared1,
param, paramlen, NULL, 0, N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
salt, sizeof(salt), 0 ) )
goto out;
half1 = half2 = *shared;
@@ -166,19 +168,19 @@ int yescrypt_init_shared(yescrypt_shared_t * shared, const uint8_t * param, size
if (p > 1 && yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_2,
salt, sizeof(salt)))
salt, sizeof(salt), 0 ))
goto out;
if (yescrypt_kdf(&half2, &half1.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
salt, sizeof(salt), 0))
goto out;
if (yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
buf, buflen))
buf, buflen, 0))
goto out;
shared->mask1 = mask;

View File

@@ -1149,7 +1149,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen,
uint64_t N, uint32_t r, uint32_t p, uint32_t t, yescrypt_flags_t flags,
uint8_t * buf, size_t buflen)
uint8_t * buf, size_t buflen, int thrid )
{
uint8_t _ALIGN(128) sha256[32];
yescrypt_region_t tmp;
@@ -1157,6 +1157,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
size_t B_size, V_size, XY_size, need;
uint8_t * B, * S;
salsa20_blk_t * V, * XY;
int retval = 1;
/*
* YESCRYPT_PARALLEL_SMIX is a no-op at p = 1 for its intended purpose,
@@ -1312,6 +1313,12 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
if (t || flags)
memcpy(sha256, B, sizeof(sha256));
@@ -1339,9 +1346,21 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
}
}
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
/*
* Except when computing classic scrypt, allow all computation so far
* to be performed on the client. The final steps below match those of
@@ -1370,9 +1389,10 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
}
}
out:
if (free_region(&tmp))
return -1;
/* Success! */
return 0;
return retval;
}

View File

@@ -106,7 +106,8 @@ static const uint8_t* decode64_uint32(uint32_t* dst, uint32_t dstbits, const uin
}
uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
const uint8_t* passwd, size_t passwdlen, const uint8_t* setting, uint8_t* buf, size_t buflen)
const uint8_t* passwd, size_t passwdlen, const uint8_t* setting,
uint8_t* buf, size_t buflen, int thrid )
{
uint8_t hash[HASH_SIZE];
const uint8_t * src, * salt;
@@ -210,7 +211,9 @@ uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
return NULL;
}
if (yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen, N, r, p, 0, flags, hash, sizeof(hash))) {
if ( yescrypt_kdf( shared, local, passwd, passwdlen, salt, saltlen, N, r, p,
0, flags, hash, sizeof(hash), thrid ) == -1 )
{
printf("died10 ...");
fflush(stdout);
return NULL;
@@ -237,7 +240,7 @@ uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
return buf;
}
uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting)
uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting, int thrid )
{
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1 + HASH_LEN + 1];
yescrypt_shared_t shared;
@@ -252,7 +255,7 @@ uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting)
return NULL;
}
retval = yescrypt_r(&shared, &local,
passwd, 80, setting, buf, sizeof(buf));
passwd, 80, setting, buf, sizeof(buf), thrid );
//printf("hashse='%s'\n", (char *)retval);
if (yescrypt_free_local(&local)) {
yescrypt_free_shared(&shared);
@@ -329,7 +332,7 @@ uint8_t* yescrypt_gensalt(uint32_t N_log2, uint32_t r, uint32_t p, yescrypt_flag
static int yescrypt_bsty(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
uint8_t * buf, size_t buflen, int thrid )
{
static __thread int initialized = 0;
static __thread yescrypt_shared_t shared;
@@ -349,7 +352,7 @@ static int yescrypt_bsty(const uint8_t * passwd, size_t passwdlen,
}
retval = yescrypt_kdf(&shared, &local,
passwd, passwdlen, salt, saltlen, N, r, p, 0, YESCRYPT_FLAGS,
buf, buflen);
buf, buflen, thrid );
#if 0
if (yescrypt_free_local(&local)) {
yescrypt_free_shared(&shared);
@@ -370,16 +373,16 @@ char *yescrypt_client_key = NULL;
int yescrypt_client_key_len = 0;
/* main hash 80 bytes input */
void yescrypt_hash( const char *input, char *output, uint32_t len )
int yescrypt_hash( const char *input, char *output, uint32_t len, int thrid )
{
yescrypt_bsty( (uint8_t*)input, len, (uint8_t*)input, len, YESCRYPT_N,
YESCRYPT_R, YESCRYPT_P, (uint8_t*)output, 32 );
return yescrypt_bsty( (uint8_t*)input, len, (uint8_t*)input, len, YESCRYPT_N,
YESCRYPT_R, YESCRYPT_P, (uint8_t*)output, 32, thrid );
}
/* for util.c test */
void yescrypthash(void *output, const void *input)
int yescrypthash(void *output, const void *input, int thrid)
{
yescrypt_hash((char*) input, (char*) output, 80);
return yescrypt_hash((char*) input, (char*) output, 80, thrid);
}
int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
@@ -392,13 +395,13 @@ int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
do {
yescrypt_hash((char*) endiandata, (char*) vhash, 80);
if ( yescrypt_hash((char*) endiandata, (char*) vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
@@ -442,7 +445,7 @@ bool register_yescrypt_algo( algo_gate_t* gate )
YESCRYPT_P = 1;
applog( LOG_NOTICE,"Yescrypt parameters: N= %d, R= %d.", YESCRYPT_N,
applog( LOG_NOTICE,"Yescrypt parameters: N= %d, R= %d", YESCRYPT_N,
YESCRYPT_R );
if ( yescrypt_client_key )
applog( LOG_NOTICE,"Key= \"%s\"\n", yescrypt_client_key );

View File

@@ -38,12 +38,13 @@ extern "C" {
#include <stdint.h>
#include <stdlib.h> /* for size_t */
#include <stdbool.h>
#include "miner.h"
//#define __SSE4_1__
void yescrypt_hash(const char* input, char* output, uint32_t len);
int yescrypt_hash(const char* input, char* output, uint32_t len, int thrid );
void yescrypthash(void *output, const void *input);
int yescrypthash(void *output, const void *input, int thrid );
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
@@ -301,7 +302,7 @@ extern int yescrypt_kdf(const yescrypt_shared_t * __shared,
const uint8_t * __salt, size_t __saltlen,
uint64_t __N, uint32_t __r, uint32_t __p, uint32_t __t,
yescrypt_flags_t __flags,
uint8_t * __buf, size_t __buflen);
uint8_t * __buf, size_t __buflen, int thrid);
/**
* yescrypt_r(shared, local, passwd, passwdlen, setting, buf, buflen):
@@ -321,7 +322,7 @@ extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared,
yescrypt_local_t * __local,
const uint8_t * __passwd, size_t __passwdlen,
const uint8_t * __setting,
uint8_t * __buf, size_t __buflen);
uint8_t * __buf, size_t __buflen, int thrid);
/**
* yescrypt(passwd, setting):
@@ -339,7 +340,7 @@ extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared,
*
* MT-unsafe.
*/
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting);
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting, int thrid );
/**
* yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen, buf, buflen):

View File

@@ -79,7 +79,7 @@ int main(int argc, const char * const *argv)
for (i = 0; i < sizeof(src); i++)
src.u8[i] = i * 3;
if (yespower_tls(src.u8, sizeof(src), &params, &dst)) {
if (!yespower_tls(src.u8, sizeof(src), &params, &dst)) {
puts("FAILED");
return 1;
}

View File

@@ -51,9 +51,13 @@ int scanhash_yespower_r8g( struct work *work, uint32_t max_nonce,
be32enc( &endiandata[ i], pdata[ i ]);
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
yespower_tls( (unsigned char *)endiandata, params.perslen,
&params, (yespower_binary_t*)hash );
&params, (yespower_binary_t*)hash, thr_id );
if unlikely( valid_hash( hash, ptarget ) && !opt_benchmark )
{

View File

@@ -0,0 +1,692 @@
/*-
* Copyright 2009 Colin Percival
* Copyright 2013-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*
* This is a proof-of-work focused fork of yescrypt, including reference and
* cut-down implementation of the obsolete yescrypt 0.5 (based off its first
* submission to PHC back in 2014) and a new proof-of-work specific variation
* known as yespower 1.0. The former is intended as an upgrade for
* cryptocurrencies that already use yescrypt 0.5 and the latter may be used
* as a further upgrade (hard fork) by those and other cryptocurrencies. The
* version of algorithm to use is requested through parameters, allowing for
* both algorithms to co-exist in client and miner implementations (such as in
* preparation for a hard-fork).
*
* This is the reference implementation. Its purpose is to provide a simple
* human- and machine-readable specification that implementations intended
* for actual use should be tested against. It is deliberately mostly not
* optimized, and it is not meant to be used in production. Instead, use
* yespower-opt.c.
*/
/*
#warning "This reference implementation is deliberately mostly not optimized. Use yespower-opt.c instead unless you're testing (against) the reference implementation on purpose."
*/
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "algo/sha/hmac-sha256-hash-4way.h"
//#include "sysendian.h"
#include "yespower.h"
#if defined(__AVX2__)
static void blkcpy_8way( __m256i *dst, const __m256i *src, size_t count )
{
do {
*dst++ = *src++;
} while (--count);
}
static void blkxor_8way( __m256i *dst, const __m256i *src, size_t count )
{
do {
*dst++ ^= *src++;
} while (--count);
}
/**
* salsa20(B):
* Apply the Salsa20 core to the provided block.
*/
static void salsa20_8way( __m256i B[16], uint32_t rounds )
{
__m256i x[16];
size_t i;
/* SIMD unshuffle */
for ( i = 0; i < 16; i++ )
x[i * 5 % 16] = B[i];
for ( i = 0; i < rounds; i += 2 )
{
#define R( a, b, c ) mm256_rol_32( _mm256_add_epi32( a, b ), c )
/* Operate on columns */
x[ 4] = _mm256_xor_si256( x[ 4], R( x[ 0], x[12], 7 ) );
x[ 8] = _mm256_xor_si256( x[ 8], R( x[ 4], x[ 0], 9 ) );
x[12] = _mm256_xor_si256( x[12], R( x[ 8], x[ 4], 13 ) );
x[ 0] = _mm256_xor_si256( x[ 0], R( x[12], x[ 8], 18 ) );
x[ 9] = _mm256_xor_si256( x[ 9], R( x[ 5], x[ 1], 7 ) );
x[13] = _mm256_xor_si256( x[13], R( x[ 9], x[ 5], 9 ) );
x[ 1] = _mm256_xor_si256( x[ 1], R( x[13], x[ 9], 13 ) );
x[ 5] = _mm256_xor_si256( x[ 5], R( x[ 1], x[13], 18 ) );
x[14] = _mm256_xor_si256( x[14], R( x[10], x[ 6], 7 ) );
x[ 2] = _mm256_xor_si256( x[ 2], R( x[14], x[10], 9 ) );
x[ 6] = _mm256_xor_si256( x[ 6], R( x[ 2], x[14], 13 ) );
x[10] = _mm256_xor_si256( x[10], R( x[ 6], x[ 2], 18 ) );
x[ 3] = _mm256_xor_si256( x[ 3], R( x[15], x[11], 7 ) );
x[ 7] = _mm256_xor_si256( x[ 7], R( x[ 3], x[15], 9 ) );
x[11] = _mm256_xor_si256( x[11], R( x[ 7], x[ 3], 13 ) );
x[15] = _mm256_xor_si256( x[15], R( x[11], x[ 7], 18 ) );
/* Operate on rows */
x[ 1] = _mm256_xor_si256( x[ 1], R( x[ 0], x[ 3], 7 ) );
x[ 2] = _mm256_xor_si256( x[ 2], R( x[ 1], x[ 0], 9 ) );
x[ 3] = _mm256_xor_si256( x[ 3], R( x[ 2], x[ 1], 13 ) );
x[ 0] = _mm256_xor_si256( x[ 0], R( x[ 3], x[ 2], 18 ) );
x[ 6] = _mm256_xor_si256( x[ 6], R( x[ 5], x[ 4], 7 ) );
x[ 7] = _mm256_xor_si256( x[ 7], R( x[ 6], x[ 5], 9 ) );
x[ 4] = _mm256_xor_si256( x[ 4], R( x[ 7], x[ 6], 13 ) );
x[ 5] = _mm256_xor_si256( x[ 5], R( x[ 4], x[ 7], 18 ) );
x[11] = _mm256_xor_si256( x[11], R( x[10], x[ 9], 7 ) );
x[ 8] = _mm256_xor_si256( x[ 8], R( x[11], x[10], 9 ) );
x[ 9] = _mm256_xor_si256( x[ 9], R( x[ 8], x[11], 13 ) );
x[10] = _mm256_xor_si256( x[10], R( x[ 9], x[ 8], 18 ) );
x[12] = _mm256_xor_si256( x[12], R( x[15], x[14], 7 ) );
x[13] = _mm256_xor_si256( x[13], R( x[12], x[15], 9 ) );
x[14] = _mm256_xor_si256( x[14], R( x[13], x[12], 13 ) );
x[15] = _mm256_xor_si256( x[15], R( x[14], x[13], 18 ) );
#undef R
}
/* SIMD shuffle */
for (i = 0; i < 16; i++)
B[i] = _mm256_add_epi32( B[i], x[i * 5 % 16] );
}
/**
* blockmix_salsa(B):
* Compute B = BlockMix_{salsa20, 1}(B). The input B must be 128 bytes in
* length.
*/
static void blockmix_salsa_8way( __m256i *B, uint32_t rounds )
{
__m256i X[16];
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy_8way( X, &B[16], 16 );
/* 2: for i = 0 to 2r - 1 do */
for ( i = 0; i < 2; i++ )
{
/* 3: X <-- H(X xor B_i) */
blkxor_8way( X, &B[i * 16], 16 );
salsa20_8way( X, rounds );
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy_8way( &B[i * 16], X, 16 );
}
}
/*
* These are tunable, but they must meet certain constraints and are part of
* what defines a yespower version.
*/
#define PWXsimple 2
#define PWXgather 4
/* Version 0.5 */
#define PWXrounds_0_5 6
#define Swidth_0_5 8
/* Version 1.0 */
#define PWXrounds_1_0 3
#define Swidth_1_0 11
/* Derived values. Not tunable on their own. */
#define PWXbytes (PWXgather * PWXsimple * 8)
#define PWXwords (PWXbytes / sizeof(uint32_t))
#define rmin ((PWXbytes + 127) / 128)
/* Runtime derived values. Not tunable on their own. */
#define Swidth_to_Sbytes1(Swidth) ((1 << Swidth) * PWXsimple * 8)
#define Swidth_to_Smask(Swidth) (((1 << Swidth) - 1) * PWXsimple * 8)
typedef struct {
__m256i (*S0)[2], (*S1)[2], (*S2)[2];
__m256i *S;
yespower_version_t version;
uint32_t salsa20_rounds;
uint32_t PWXrounds, Swidth, Sbytes, Smask;
size_t w;
} pwxform_8way_ctx_t __attribute__ ((aligned (128)));
/**
* pwxform(B):
* Transform the provided block using the provided S-boxes.
*/
static void pwxform_8way( __m256i *B, pwxform_8way_ctx_t *ctx )
{
__m256i (*X)[PWXsimple][2] = (__m256i (*)[PWXsimple][2])B;
__m256i (*S0)[2] = ctx->S0, (*S1)[2] = ctx->S1, (*S2)[2] = ctx->S2;
__m256i Smask = _mm256_set1_epi32( ctx->Smask );
size_t w = ctx->w;
size_t i, j, k;
/* 1: for i = 0 to PWXrounds - 1 do */
for ( i = 0; i < ctx->PWXrounds; i++ )
{
/* 2: for j = 0 to PWXgather - 1 do */
for ( j = 0; j < PWXgather; j++ )
{
// Are these pointers or data?
__m256i xl = X[j][0][0];
__m256i xh = X[j][0][1];
__m256i (*p0)[2], (*p1)[2];
// 3: p0 <-- (lo(B_{j,0}) & Smask) / (PWXsimple * 8)
// playing with pointers
/*
p0 = S0 + (xl & Smask) / sizeof(*S0);
// 4: p1 <-- (hi(B_{j,0}) & Smask) / (PWXsimple * 8)
p1 = S1 + (xh & Smask) / sizeof(*S1);
*/
/* 5: for k = 0 to PWXsimple - 1 do */
for ( k = 0; k < PWXsimple; k++ )
{
// shift from 32 bit data to 64 bit data
__m256i x0, x1, s00, s01, s10, s11;
__m128i *p0k = (__m128i*)p0[k];
__m128i *p1k = (__m128i*)p1[k];
s00 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p0k[0] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p0k[2] ), 32 ) );
s01 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p0k[1] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p0k[3] ), 32 ) );
s10 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p1k[0] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p1k[2] ), 32 ) );
s11 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p1k[1] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p1k[3] ), 32 ) );
__m128i *xx = (__m128i*)X[j][k];
x0 = _mm256_mul_epu32( _mm256_cvtepu32_epi64( xx[0] ),
_mm256_cvtepu32_epi64( xx[2] ) );
x1 = _mm256_mul_epu32( _mm256_cvtepu32_epi64( xx[1] ),
_mm256_cvtepu32_epi64( xx[3] ) );
x0 = _mm256_add_epi64( x0, s00 );
x1 = _mm256_add_epi64( x1, s01 );
x0 = _mm256_xor_si256( x0, s10 );
x1 = _mm256_xor_si256( x1, s11 );
X[j][k][0] = x0;
X[j][k][1] = x1;
}
if ( ctx->version != YESPOWER_0_5 &&
( i == 0 || j < PWXgather / 2 ) )
{
if ( j & 1 )
{
for ( k = 0; k < PWXsimple; k++ )
{
S1[w][0] = X[j][k][0];
S1[w][1] = X[j][k][1];
w++;
}
}
else
{
for ( k = 0; k < PWXsimple; k++ )
{
S0[w + k][0] = X[j][k][0];
S0[w + k][1] = X[j][k][1];
}
}
}
}
}
if ( ctx->version != YESPOWER_0_5 )
{
/* 14: (S0, S1, S2) <-- (S2, S0, S1) */
ctx->S0 = S2;
ctx->S1 = S0;
ctx->S2 = S1;
/* 15: w <-- w mod 2^Swidth */
ctx->w = w & ( ( 1 << ctx->Swidth ) * PWXsimple - 1 );
}
}
/**
* blockmix_pwxform(B, ctx, r):
* Compute B = BlockMix_pwxform{salsa20, ctx, r}(B). The input B must be
* 128r bytes in length.
*/
static void blockmix_pwxform_8way( uint32_t *B, pwxform_8way_ctx_t *ctx,
size_t r )
{
__m256i X[PWXwords];
size_t r1, i;
/* Convert 128-byte blocks to PWXbytes blocks */
/* 1: r_1 <-- 128r / PWXbytes */
r1 = 128 * r / PWXbytes;
/* 2: X <-- B'_{r_1 - 1} */
blkcpy_8way( X, &B[ (r1 - 1) * PWXwords ], PWXwords );
/* 3: for i = 0 to r_1 - 1 do */
for ( i = 0; i < r1; i++ )
{
/* 4: if r_1 > 1 */
if ( r1 > 1 )
{
/* 5: X <-- X xor B'_i */
blkxor_8way( X, &B[ i * PWXwords ], PWXwords );
}
/* 7: X <-- pwxform(X) */
pwxform_8way( X, ctx );
/* 8: B'_i <-- X */
blkcpy_8way( &B[ i * PWXwords ], X, PWXwords );
}
/* 10: i <-- floor((r_1 - 1) * PWXbytes / 64) */
i = ( r1 - 1 ) * PWXbytes / 64;
/* 11: B_i <-- H(B_i) */
salsa20_8way( &B[i * 16], ctx->salsa20_rounds );
#if 1 /* No-op with our current pwxform settings, but do it to make sure */
/* 12: for i = i + 1 to 2r - 1 do */
for ( i++; i < 2 * r; i++ )
{
/* 13: B_i <-- H(B_i xor B_{i-1}) */
blkxor_8way( &B[i * 16], &B[ (i - 1) * 16 ], 16 );
salsa20_8way( &B[i * 16], ctx->salsa20_rounds );
}
#endif
}
// This looks a lot like data dependent addressing
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static __m256i integerify8( const __m256i *B, size_t r )
{
/*
* Our 32-bit words are in host byte order. Also, they are SIMD-shuffled, but
* we only care about the least significant 32 bits anyway.
*/
const __m256i *X = &B[ (2 * r - 1) * 16 ];
return X[0];
}
/**
* p2floor(x):
* Largest power of 2 not greater than argument.
*/
static uint32_t p2floor8( uint32_t x )
{
uint32_t y;
while ( ( y = x & (x - 1) ) )
x = y;
return x;
}
/**
* wrap(x, i):
* Wrap x to the range 0 to i-1.
*/
static uint32_t wrap8( uint32_t x, uint32_t i )
{
uint32_t n = p2floor( i );
return ( x & (n - 1) ) + (i - n);
}
/**
* smix1(B, r, N, V, X, ctx):
* Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length.
*/
static void smix1_8way( __m256i *B, size_t r, uint32_t N,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx )
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* 1: X <-- B */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
X[ k * 16 + i ] = B[ k * 16 + ( i * 5 % 16 ) ];
if ( ctx->version != YESPOWER_0_5 )
{
for ( k = 1; k < r; k++ )
{
blkcpy_8way( &X[k * 32], &X[ (k - 1) * 32 ], 32 );
blockmix_pwxform_8way( &X[k * 32], ctx, 1 );
}
}
/* 2: for i = 0 to N - 1 do */
for ( i = 0; i < N; i++ )
{
/* 3: V_i <-- X */
blkcpy_8way( &V[i * s], X, s );
if ( i > 1 )
{
// is j int or vector? Integrify has data dependent addressing?
/* j <-- Wrap(Integerify(X), i) */
// j = wrap8( integerify8( X, r ), i );
/* X <-- X xor V_j */
blkxor_8way( X, &V[j * s], s );
}
/* 4: X <-- H(X) */
if ( V != ctx->S )
blockmix_pwxform_8way( X, ctx, r );
else
blockmix_salsa_8way( X, ctx->salsa20_rounds );
}
/* B' <-- X */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
B[ k * 16 + ( i * 5 % 16 ) ] = X[ k * 16 + i ];
}
/**
* smix2(B, r, N, Nloop, V, X, ctx):
* Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length. The value N must be a power of 2
* greater than 1.
*/
static void smix2_8way( __m256i *B, size_t r, uint32_t N, uint32_t Nloop,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx )
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* X <-- B */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
X[ k * 16 + i ] = B[ k * 16 + ( i * 5 % 16 ) ];
/* 6: for i = 0 to N - 1 do */
for ( i = 0; i < Nloop; i++ )
{
/* 7: j <-- Integerify(X) mod N */
// j = integerify8(X, r) & (N - 1);
/* 8.1: X <-- X xor V_j */
blkxor_8way( X, &V[j * s], s );
/* V_j <-- X */
if ( Nloop != 2 )
blkcpy_8way( &V[j * s], X, s );
/* 8.2: X <-- H(X) */
blockmix_pwxform_8way( X, ctx, r );
}
/* 10: B' <-- X */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
B[ k * 16 + ( i * 5 % 16 ) ] = X[ k * 16 + i ];
}
/**
* smix(B, r, N, p, t, V, X, ctx):
* Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the
* temporary storage V must be 128rN bytes in length; the temporary storage
* X must be 128r bytes in length. The value N must be a power of 2 and at
* least 16.
*/
static void smix_8way( __m256i *B, size_t r, uint32_t N,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx)
{
uint32_t Nloop_all = (N + 2) / 3; /* 1/3, round up */
uint32_t Nloop_rw = Nloop_all;
Nloop_all++; Nloop_all &= ~(uint32_t)1; /* round up to even */
if ( ctx->version == YESPOWER_0_5 )
Nloop_rw &= ~(uint32_t)1; /* round down to even */
else
Nloop_rw++; Nloop_rw &= ~(uint32_t)1; /* round up to even */
smix1_8way( B, 1, ctx->Sbytes / 128, ctx->S, X, ctx );
smix1_8way( B, r, N, V, X, ctx );
smix2_8way( B, r, N, Nloop_rw /* must be > 2 */, V, X, ctx );
smix2_8way( B, r, N, Nloop_all - Nloop_rw /* 0 or 2 */, V, X, ctx );
}
/**
* yespower(local, src, srclen, params, dst):
* Compute yespower(src[0 .. srclen - 1], N, r), to be checked for "< target".
*
* Return 0 on success; or -1 on error.
*/
int yespower_8way( yespower_local_t *local, const __m256i *src, size_t srclen,
const yespower_params_t *params, yespower_8way_binary_t *dst,
int thrid )
{
yespower_version_t version = params->version;
uint32_t N = params->N;
uint32_t r = params->r;
const uint8_t *pers = params->pers;
size_t perslen = params->perslen;
int retval = -1;
size_t B_size, V_size;
uint32_t *B, *V, *X, *S;
pwxform_8way_ctx_t ctx;
__m256i sha256[8];
/* Sanity-check parameters */
if ( (version != YESPOWER_0_5 && version != YESPOWER_1_0 ) ||
N < 1024 || N > 512 * 1024 || r < 8 || r > 32 ||
(N & (N - 1)) != 0 || r < rmin ||
(!pers && perslen) )
{
errno = EINVAL;
return -1;
}
/* Allocate memory */
B_size = (size_t)128 * r;
V_size = B_size * N;
if ((V = malloc(V_size)) == NULL)
return -1;
if ((B = malloc(B_size)) == NULL)
goto free_V;
if ((X = malloc(B_size)) == NULL)
goto free_B;
ctx.version = version;
if (version == YESPOWER_0_5) {
ctx.salsa20_rounds = 8;
ctx.PWXrounds = PWXrounds_0_5;
ctx.Swidth = Swidth_0_5;
ctx.Sbytes = 2 * Swidth_to_Sbytes1(ctx.Swidth);
} else {
ctx.salsa20_rounds = 2;
ctx.PWXrounds = PWXrounds_1_0;
ctx.Swidth = Swidth_1_0;
ctx.Sbytes = 3 * Swidth_to_Sbytes1(ctx.Swidth);
}
if ((S = malloc(ctx.Sbytes)) == NULL)
goto free_X;
ctx.S = S;
ctx.S0 = (__m256i (*)[2])S;
ctx.S1 = ctx.S0 + (1 << ctx.Swidth) * PWXsimple;
ctx.S2 = ctx.S1 + (1 << ctx.Swidth) * PWXsimple;
ctx.Smask = Swidth_to_Smask(ctx.Swidth);
ctx.w = 0;
// do prehash
sha256_8way_full( sha256, src, srclen );
// need flexible size, use malloc;
__m256i vpers[128];
if ( version != YESPOWER_0_5 && perslen )
for ( int i = 0; i < perslen/4 + 1; i++ )
vpers[i] = _mm256_set1_epi32( pers[i] );
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
pbkdf2_sha256_8way( B, B_size, sha256, sizeof(sha256), vpers, perslen, 1 );
blkcpy_8way( sha256, B, sizeof(sha256) / sizeof(sha256[0] ) );
/* 3: B_i <-- MF(B_i, N) */
smix_8way( B, r, N, V, X, &ctx );
if ( version == YESPOWER_0_5 )
{
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
pbkdf2_sha256_8way( dst, sizeof(*dst), sha256, sizeof(sha256),
B, B_size, 1 );
if ( pers )
{
hmac_sha256_8way_full( dst, sizeof(*dst), vpers, perslen, sha256 );
sha256_8way_full( dst, sha256, sizeof(sha256) );
}
}
else
hmac_sha256_8way_full( dst, B + B_size - 64, 64, sha256, sizeof(sha256) );
/* Success! */
retval = 1;
/* Free memory */
free(S);
free_X:
free(X);
free_B:
free(B);
free_V:
free(V);
return retval;
}
int yespower_8way_tls( const __m256i *src, size_t srclen,
const yespower_params_t *params, yespower_8way_binary_t *dst, int trhid )
{
/* The reference implementation doesn't use thread-local storage */
return yespower_8way( NULL, src, srclen, params, dst, trhid );
}
int yespower_init_local8( yespower_local_t *local )
{
/* The reference implementation doesn't use the local structure */
local->base = local->aligned = NULL;
local->base_size = local->aligned_size = 0;
return 0;
}
int yespower_free_local8( yespower_local_t *local )
{
/* The reference implementation frees its memory in yespower() */
(void)local; /* unused */
return 0;
}
int yespower_8way_hash( const char *input, char *output, uint32_t len,
int thrid )
{
return yespower_8way_tls( input, len, &yespower_params,
(yespower_binary_t*)output, thrid );
}
int scanhash_yespower_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8*8];
uint32_t _ALIGN(128) vdata[20*8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
if ( yespower_hash( vdata, hash, 80, thr_id ) )
if unlikely( valid_hash( hash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
submit_solution( work, hash, mythr );
}
endiandata[19] = ++n;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
#endif // AVX2

View File

@@ -194,11 +194,13 @@ static int free_region(yespower_region_t *region)
#define restrict
#endif
/*
#ifdef __GNUC__
#define unlikely(exp) __builtin_expect(exp, 0)
#else
#define unlikely(exp) (exp)
#endif
*/
#ifdef __SSE__
#define PREFETCH(x, hint) _mm_prefetch((const char *)(x), (hint));
@@ -1113,7 +1115,7 @@ static void smix(uint8_t *B, size_t r, uint32_t N,
int yespower_b2b(yespower_local_t *local,
const uint8_t *src, size_t srclen,
const yespower_params_t *params,
yespower_binary_t *dst)
yespower_binary_t *dst, int thrid )
{
uint32_t N = params->N;
uint32_t r = params->r;
@@ -1168,17 +1170,25 @@ int yespower_b2b(yespower_local_t *local,
srclen = 0;
}
if ( work_restart[thrid].restart ) return false;
pbkdf2_blake2b_yp(init_hash, sizeof(init_hash), src, srclen, 1, B, 128);
if ( work_restart[thrid].restart ) return false;
memcpy(init_hash, B, sizeof(init_hash));
smix_1_0(B, r, N, V, XY, &ctx);
if ( work_restart[thrid].restart ) return false;
hmac_blake2b_yp_hash((uint8_t *)dst, B + B_size - 64, 64, init_hash, sizeof(init_hash));
/* Success! */
return 0;
return 1;
fail:
memset(dst, 0xff, sizeof(*dst));
return -1;
return 0;
}
/**
@@ -1189,7 +1199,7 @@ fail:
* Return 0 on success; or -1 on error.
*/
int yespower_b2b_tls(const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst)
const yespower_params_t *params, yespower_binary_t *dst, int thrid )
{
static __thread int initialized = 0;
static __thread yespower_local_t local;
@@ -1199,7 +1209,7 @@ int yespower_b2b_tls(const uint8_t *src, size_t srclen,
initialized = 1;
}
return yespower_b2b(&local, src, srclen, params, dst);
return yespower_b2b(&local, src, srclen, params, dst, thrid);
}
/*
int yespower_init_local(yespower_local_t *local)

View File

@@ -30,13 +30,17 @@
#include "algo-gate-api.h"
static yespower_params_t yespower_params;
yespower_params_t yespower_params;
//SHA256_CTX sha256_prehash_ctx;
__thread SHA256_CTX sha256_prehash_ctx;
// YESPOWER
void yespower_hash( const char *input, char *output, uint32_t len )
int yespower_hash( const char *input, char *output, uint32_t len, int thrid )
{
yespower_tls( input, len, &yespower_params, (yespower_binary_t*)output );
return yespower_tls( input, len, &yespower_params,
(yespower_binary_t*)output, thrid );
}
int scanhash_yespower( struct work *work, uint32_t max_nonce,
@@ -54,8 +58,13 @@ int scanhash_yespower( struct work *work, uint32_t max_nonce,
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
yespower_hash( (char*)endiandata, (char*)vhash, 80 );
if ( yespower_hash( (char*)endiandata, (char*)vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
@@ -70,9 +79,9 @@ int scanhash_yespower( struct work *work, uint32_t max_nonce,
// YESPOWER-B2B
void yespower_b2b_hash( const char *input, char *output, uint32_t len )
int yespower_b2b_hash( const char *input, char *output, uint32_t len, int thrid )
{
yespower_b2b_tls( input, len, &yespower_params, (yespower_binary_t*)output );
return yespower_b2b_tls( input, len, &yespower_params, (yespower_binary_t*)output, thrid );
}
int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce,
@@ -85,13 +94,18 @@ int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
yespower_b2b_hash( (char*) endiandata, (char*) vhash, 80 );
if (yespower_b2b_hash( (char*) endiandata, (char*) vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
@@ -125,7 +139,7 @@ bool register_yespower_algo( algo_gate_t* gate )
yespower_params.perslen = 0;
}
applog( LOG_NOTICE,"Yespower parameters: N= %d, R= %d.", yespower_params.N,
applog( LOG_NOTICE,"Yespower parameters: N= %d, R= %d", yespower_params.N,
yespower_params.r );
if ( yespower_params.pers )
applog( LOG_NOTICE,"Key= \"%s\"\n", yespower_params.pers );
@@ -151,7 +165,7 @@ bool register_yespowerr16_algo( algo_gate_t* gate )
return true;
};
/* not used
/* not used, doesn't work
bool register_yescrypt_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
@@ -165,6 +179,40 @@ bool register_yescrypt_05_algo( algo_gate_t* gate )
return true;
}
bool register_yescrypt_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_yespower;
yespower_params.version = YESPOWER_0_5;
if ( opt_param_n ) yespower_params.N = opt_param_n;
else yespower_params.N = 2048;
if ( opt_param_r ) yespower_params.r = opt_param_r;
else yespower_params.r = 8;
if ( opt_param_key )
{
yespower_params.pers = opt_param_key;
yespower_params.perslen = strlen( opt_param_key );
}
else
{
yespower_params.pers = NULL;
yespower_params.perslen = 0;
}
// YESCRYPT_P = 1;
applog( LOG_NOTICE,"Yescrypt parameters: N= %d, R= %d.",
yespower_params.N, yespower_params.r );
if ( yespower_params.pers )
applog( LOG_NOTICE,"Key= \"%s\"\n", yespower_params.pers );
return true;
}
bool register_yescryptr8_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
@@ -216,12 +264,12 @@ bool register_power2b_algo( algo_gate_t* gate )
yespower_params.pers = "Now I am become Death, the destroyer of worlds";
yespower_params.perslen = 46;
applog( LOG_NOTICE,"yespower-b2b parameters: N= %d, R= %d.", yespower_params.N,
applog( LOG_NOTICE,"yespower-b2b parameters: N= %d, R= %d", yespower_params.N,
yespower_params.r );
applog( LOG_NOTICE,"Key= \"%s\"", yespower_params.pers );
applog( LOG_NOTICE,"Key length= %d\n", yespower_params.perslen );
gate->optimizations = SSE2_OPT | SHA_OPT;
gate->optimizations = SSE2_OPT;
gate->scanhash = (void*)&scanhash_yespower_b2b;
gate->hash = (void*)&yespower_b2b_hash;
opt_target_factor = 65536.0;

Some files were not shown because too many files have changed in this diff Show More