Compare commits

...

20 Commits

Author SHA1 Message Date
Jay D Dee
8b4b4dc613 v3.13.0.1 2020-05-07 17:57:04 -04:00
Jay D Dee
e76feaced8 v3.13.0 2020-05-06 00:53:43 -04:00
Jay D Dee
5e088d00d0 v3.12.8.2 2020-04-24 21:18:56 -04:00
Jay D Dee
972d4d70db v3.12.8.1 2020-04-17 16:12:45 -04:00
Jay D Dee
e96a6bd699 v3.12.8 2020-04-09 12:56:18 -04:00
Jay D Dee
fb9163185a v3.12.7 2020-03-20 16:30:12 -04:00
Jay D Dee
6e8b8ed34f v3.12.6.1 2020-03-07 14:11:06 -05:00
Jay D Dee
c0aadbcc99 v3.12.6 2020-03-05 18:43:20 -05:00
Jay D Dee
3da149418a v3.12.5 2020-03-01 13:18:17 -05:00
Jay D Dee
720610cce5 v3.12.4.6 2020-02-28 18:20:32 -05:00
Jay D Dee
cedcf4d070 v3.12.4.5 2020-02-28 02:42:22 -05:00
Jay D Dee
81b50c3c71 v3.12.4.4 2020-02-25 14:07:32 -05:00
Jay D Dee
0e1e88f53e v3.12.4.3 2020-02-24 21:35:19 -05:00
Jay D Dee
45c77a5c81 v3.12.4.2 2020-02-23 15:31:06 -05:00
Jay D Dee
dbce7e0721 v3.12.4.1 2020-02-22 18:06:39 -05:00
Jay D Dee
6d66051de6 v3.12.4 2020-02-21 16:34:53 -05:00
Jay D Dee
b93be8816a v3.12.3.1 2020-02-18 12:05:47 -05:00
Jay D Dee
19b0ac6d5c v3.12.3 2020-02-13 04:25:33 -05:00
Jay D Dee
3da2b958cf v3.12.2 2020-02-09 13:30:40 -05:00
Jay D Dee
dc2f8d81d3 v3.12.1 2020-02-07 20:18:20 -05:00
130 changed files with 6867 additions and 5811 deletions

View File

@@ -163,6 +163,7 @@ cpuminer_SOURCES = \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/hmac-sha256-hash-4way.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \

View File

@@ -12,10 +12,24 @@ a false positive, they are flagged simply because they are cryptocurrency
miners. The source code is open for anyone to inspect. If you don't trust
the software, don't use it.
New thread:
https://bitcointalk.org/index.php?topic=5226770.msg53865575#msg53865575
Old thread:
https://bitcointalk.org/index.php?topic=1326803.0
mailto://jayddee246@gmail.com
This note is to confirm that bitcointalk users JayDDee and joblo are the
same person.
I created a new BCT user JayDDee to match my github user id.
The old thread has been locked but still contains useful information for
reading.
See file RELEASE_NOTES for change log and INSTALL_LINUX or INSTALL_WINDOWS
for compile instructions.
@@ -23,25 +37,25 @@ Requirements
------------
1. A x86_64 architecture CPU with a minimum of SSE2 support. This includes
Intel Core2 and newer and AMD equivalents. In order to take advantage of AES_NI
optimizations a CPU with AES_NI is required. This includes Intel Westmere
and newer and AMD equivalents. Further optimizations are available on some
algoritms for CPUs with AVX and AVX2, Sandybridge and Haswell respectively.
Intel Core2 and newer and AMD equivalents. Further optimizations are available
on some algoritms for CPUs with AES, AVX, AVX2, SHA, AVX512 and VAES.
Older CPUs are supported by cpuminer-multi by TPruvot but at reduced
performance.
ARM CPUs are not supported.
ARM and Aarch64 CPUs are not supported.
2. 64 bit Linux OS. Ubuntu and Fedora based distributions, including Mint and
Centos, are known to work and have all dependencies in their repositories.
Others may work but may require more effort. Older versions such as Centos 6
don't work due to missing features.
2. 64 bit Linux or Windows OS. Ubuntu and Fedora based distributions,
including Mint and Centos, are known to work and have all dependencies
in their repositories. Others may work but may require more effort. Older
versions such as Centos 6 don't work due to missing features.
64 bit Windows OS is supported with mingw_w64 and msys or pre-built binaries.
MacOS, OSx and Android are not supported.
3. Stratum pool. Some algos may work wallet mining using getwork or GBT. YMMV.
3. Stratum pool supporting stratum+tcp:// or stratum+ssl:// protocols or
RPC getwork using http:// or https://.
GBT is YMMV.
Supported Algorithms
--------------------
@@ -138,6 +152,27 @@ Supported Algorithms
yespower-b2b generic yespower + blake2b
zr5 Ziftr
Many variations of scrypt based algos can be mine by specifying their
parameters:
scryptn2: --algo scrypt --param-n 1048576
cpupower: --algo yespower --param-key "CPUpower: The number of CPU working or available for proof-of-work mining"
power2b: --algo yespower-b2b --param-n 2048 --param-r 32 --param-key "Now I am become Death, the destroyer of worlds"
sugarchain: --algo yespower --param-n 2048 -param-r 32 --param-key "Satoshi Nakamoto 31/Oct/2008 Proof-of-work is essentially one-CPU-one-vote"
yespoweriots: --algo yespower --param-n 2048 --param-key "Iots is committed to the development of IOT"
yespowerlitb: --algo yespower --param-n 2048 --param-r 32 --param-key "LITBpower: The number of LITB working or available for proof-of-work mini"
yespoweric: --algo yespower --param-n 2048 --param-r 32 --param-key "IsotopeC"
yespowerurx: --algo yespower --param-n 2048 --param-r 32 --param-key "UraniumX"
yespowerltncg: --algo yespower --param-n 2048 --param-r 32 --param-key "LTNCGYES"
Errata
------

View File

@@ -1,8 +1,8 @@
This file is included in the Windows binary package. Compile instructions
for Linux and Windows can be found in RELEASE_NOTES.
cpuminer is a console program that is executed from a DOS command prompt.
There is no GUI and no mouse support.
cpuminer is a console program that is executed from a DOS or Powershell
prompt. There is no GUI and no mouse support.
Miner programs are often flagged as malware by antivirus programs. This is
a false positive, they are flagged simply because they are cryptocurrency
@@ -15,8 +15,8 @@ the features listed at cpuminer startup to ensure you are mining at
optimum speed using the best available features.
Architecture names and compile options used are only provided for Intel
Core series. Budget CPUs like Pentium and Celeron are often missing the
latest features.
Core series. Budget CPUs like Pentium and Celeron are often missing some
features.
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
@@ -31,14 +31,20 @@ https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/List_of_AMD_CPU_microarchitectures
Exe name Compile flags Arch name
Exe file name Compile flags Arch name
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell, Skylake, Coffeelake
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen "-march=znver1" AMD Ryzen, Threadripper
cpuminer-sse2.exe "-msse2" Core2, Nehalem
cpuminer-aes-sse42.exe "-march=westmere" Westmere
cpuminer-avx.exe "-march=corei7-avx" Sandybridge, Ivybridge
cpuminer-avx2.exe "-march=core-avx2 -maes" Haswell*
cpuminer-avx512.exe "-march=skylake-avx512" Skylake-X, Cascadelake-X
cpuminer-zen.exe "-march=znver1" AMD Ryzen, Threadripper
cpuminer-avx512-sha-vaes.exe "-march=icelake-client" Icelake*
* Haswell includes Broadwell, Skylake, Kabylake, Coffeelake & Cometlake.
Icelake is only available on some laptops. Mining with a laptop is not
recommended. The icelake build is included in anticipation of Intel eventually
releasing a desktop CPU with a microarchitecture newer than Skylake.
If you like this software feel free to donate:

View File

@@ -65,6 +65,168 @@ If not what makes it happen or not happen?
Change Log
----------
v3.13.0.1
Issue #262: Fixed xevan AVX2 invalid shares.
v3.13.0
Updated Windows binaries compiled with GCC 9. Included DLLs also updated.
Icelake build (cpuminer-avx512-sha-vaes.exe) now included in Windows
binaries package.
No source code changes.
v3.12.8.2
Fixed x12 AVX2 rejects.
Fixed phi AVX2 crash.
v3.12.8.1
Issue #261: Fixed yescryptr8g invalid shares.
v3.12.8
Yespower sha256 prehash made thread safe.
Rewrote diff conversion functions from scratch to be simpler and use
long double (float80) and int128 arithmetic for improved accuracy and
precision.
Some code cleanup and assorted small changes.
v3.12.7
Issue #257: fixed a file descriptor leak which caused the CPU temperature
and frequency query to report zeros after mining for a couple of hours.
Issue #253: stale share reduction for yescrypt, sonoa.
v3.12.6.1
Issue #252: Fixed SSL mining (stratum+tcps://)
Issue #254 Fixed benchmark.
Issue #253: Implemented stale share reduction for yespower, x25x, x22i, x21s,
x16*, scryptn2, more to come.
v3.12.6
Issue #246: improved stale share detection for getwork.
Improved precision of target_to_diff conversion from 4 digits to 20+.
Display hash and target debug data for all rejected shares.
A graphical representation of CPU affinity is displayed when using --threads.
Added highest and lowest accepted share to summary log.
Other small changes to logs to improve consistency and clarity.
v3.12.5
Issues #246 & #251: fixed incorrect share diff for stratum and getwork,
fixed incorrect target diff for getwork. Stats should now be correct for
getwork as well as stratum.
Issue #252: Fixed stratum+tcps not using curl ssl.
Getwork: reduce stale blocks, faster response to new work.
Added ntime to new job/work logs.
README.md now lists the parameters for yespower variations that don't have
a specific algo name.
v3.12.4.6
Issue #246: fixed getwork repeated new block logs with same height. New work
for the same block is now reported as "New work" instead of "New block".
Also added a check that work is new before generating "New work" log.
Added target diff to getwork new block log.
Changed share ratio in share result log to simple fraction, no longer %.
Added debug log to display mininginfo, use -D.
v3.12.4.5
Issue #246: better stale share detection for getwork, and enhanced logging
of stale shares for stratum & getwork.
Issue #251: fixed incorrect share difficulty and share ratio in share
result log.
Changed submit log to include share diff and block height.
Small cosmetic changes to logs.
v3.12.4.4
Issue #246: Fixed net hashrate in getwork block log,
removed duplicate getwork block log,
other small tweaks to stats logs for getwork.
Issue #248: Fixed chronic stale shares with scrypt:1048576 (scryptn2).
v3.12.4.3
Fixed segfault in new block log for getwork.
Disabled silent discarding of stale work after the submit is logged.
v3.12.4.2
Issue #245: fixed getwork stale shares, solo mining with getwork now works.
Issue #246: implemented block and summary logs for getwork.
v3.12.4.1
Issue #245: fix scantime when mining solo with getwork.
Added debug logs for creation of stratum and longpoll threads, use -D to
enable.
v3.12.4
Issue #244: Change longpoll to ignore job id.
Lyra2rev2 AVX2 +3%, AVX512 +6%.
v3.12.3.1
Issue #241: Fixed regression that broke coinbase address in v3.11.7.
v3.12.3
Issue #238: Fixed skunk AVX2.
Issue #239: Faster AVX2 & AVX512 for skein +44%, skein2 +30%, plus marginal
increases for skunk, x16r, x16rv2, x16rt, x16rt-veil, x16s, x21s.
Faster anime VAES +57%, AVX512 +21%, AVX2 +3%.
Redesigned code reponsible for #236.
v3.12.2
Fixed xevan, skein, skein2 AVX2, #238.
Reversed polarity of AVX2 vector bit test utilities, and all users, to be
logically and semantically correct. Follow up to issue #236.
v3.12.1
Fixed anime AVX2 low difficulty shares, git issue #236.
Periodic summary now reports lost hash rate due to rejected and stale shares,
displayed only when non-zero.
v3.12.0.1
Fixed hodl rejects, git issue #237.

193
aclocal.m4 vendored
View File

@@ -1,6 +1,6 @@
# generated automatically by aclocal 1.15.1 -*- Autoconf -*-
# generated automatically by aclocal 1.16.1 -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -20,7 +20,7 @@ You have another version of autoconf. It may work, but is not guaranteed to.
If you have problems, you may need to regenerate the build system entirely.
To do so, use the procedure documented by the package, typically 'autoreconf'.])])
# Copyright (C) 2002-2017 Free Software Foundation, Inc.
# Copyright (C) 2002-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -32,10 +32,10 @@ To do so, use the procedure documented by the package, typically 'autoreconf'.])
# generated from the m4 files accompanying Automake X.Y.
# (This private macro should not be called outside this file.)
AC_DEFUN([AM_AUTOMAKE_VERSION],
[am__api_version='1.15'
[am__api_version='1.16'
dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to
dnl require some minimum version. Point them to the right macro.
m4_if([$1], [1.15.1], [],
m4_if([$1], [1.16.1], [],
[AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl
])
@@ -51,14 +51,14 @@ m4_define([_AM_AUTOCONF_VERSION], [])
# Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced.
# This function is AC_REQUIREd by AM_INIT_AUTOMAKE.
AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION],
[AM_AUTOMAKE_VERSION([1.15.1])dnl
[AM_AUTOMAKE_VERSION([1.16.1])dnl
m4_ifndef([AC_AUTOCONF_VERSION],
[m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl
_AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))])
# Figure out how to run the assembler. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -78,7 +78,7 @@ _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl
# AM_AUX_DIR_EXPAND -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -130,7 +130,7 @@ am_aux_dir=`cd "$ac_aux_dir" && pwd`
# AM_CONDITIONAL -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -161,7 +161,7 @@ AC_CONFIG_COMMANDS_PRE(
Usually this means the macro was only invoked conditionally.]])
fi])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -352,13 +352,12 @@ _AM_SUBST_NOTMAKE([am__nodep])dnl
# Generate code to set up dependency tracking. -*- Autoconf -*-
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# _AM_OUTPUT_DEPENDENCY_COMMANDS
# ------------------------------
AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
@@ -366,49 +365,41 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# Older Autoconf quotes --file arguments for eval, but not when files
# are listed without --file. Let's play safe and only enable the eval
# if we detect the quoting.
case $CONFIG_FILES in
*\'*) eval set x "$CONFIG_FILES" ;;
*) set x $CONFIG_FILES ;;
esac
# TODO: see whether this extra hack can be removed once we start
# requiring Autoconf 2.70 or later.
AS_CASE([$CONFIG_FILES],
[*\'*], [eval set x "$CONFIG_FILES"],
[*], [set x $CONFIG_FILES])
shift
for mf
# Used to flag and report bootstrapping failures.
am_rc=0
for am_mf
do
# Strip MF so we end up with the name of the file.
mf=`echo "$mf" | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile or not.
# We used to match only the files named 'Makefile.in', but
# some people rename them; so instead we look at the file content.
# Grep'ing the first line is not enough: some people post-process
# each Makefile.in and add a new line on top of each file to say so.
# Grep'ing the whole file is not good either: AIX grep has a line
am_mf=`AS_ECHO(["$am_mf"]) | sed -e 's/:.*$//'`
# Check whether this is an Automake generated Makefile which includes
# dependency-tracking related rules and includes.
# Grep'ing the whole file directly is not great: AIX grep has a line
# limit of 2048, but all sed's we know have understand at least 4000.
if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then
dirpart=`AS_DIRNAME("$mf")`
else
continue
fi
# Extract the definition of DEPDIR, am__include, and am__quote
# from the Makefile without running 'make'.
DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"`
test -z "$DEPDIR" && continue
am__include=`sed -n 's/^am__include = //p' < "$mf"`
test -z "$am__include" && continue
am__quote=`sed -n 's/^am__quote = //p' < "$mf"`
# Find all dependency output files, they are included files with
# $(DEPDIR) in their names. We invoke sed twice because it is the
# simplest approach to changing $(DEPDIR) to its actual value in the
# expansion.
for file in `sed -n "
s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \
sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do
# Make sure the directory exists.
test -f "$dirpart/$file" && continue
fdir=`AS_DIRNAME(["$file"])`
AS_MKDIR_P([$dirpart/$fdir])
# echo "creating $dirpart/$file"
echo '# dummy' > "$dirpart/$file"
done
sed -n 's,^am--depfiles:.*,X,p' "$am_mf" | grep X >/dev/null 2>&1 \
|| continue
am_dirpart=`AS_DIRNAME(["$am_mf"])`
am_filepart=`AS_BASENAME(["$am_mf"])`
AM_RUN_LOG([cd "$am_dirpart" \
&& sed -e '/# am--include-marker/d' "$am_filepart" \
| $MAKE -f - am--depfiles]) || am_rc=$?
done
if test $am_rc -ne 0; then
AC_MSG_FAILURE([Something went wrong bootstrapping makefile fragments
for automatic dependency tracking. Try re-running configure with the
'--disable-dependency-tracking' option to at least be able to build
the package (albeit without support for automatic dependency tracking).])
fi
AS_UNSET([am_dirpart])
AS_UNSET([am_filepart])
AS_UNSET([am_mf])
AS_UNSET([am_rc])
rm -f conftest-deps.mk
}
])# _AM_OUTPUT_DEPENDENCY_COMMANDS
@@ -417,18 +408,17 @@ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS],
# -----------------------------
# This macro should only be invoked once -- use via AC_REQUIRE.
#
# This code is only required when automatic dependency tracking
# is enabled. FIXME. This creates each '.P' file that we will
# need in order to bootstrap the dependency handling code.
# This code is only required when automatic dependency tracking is enabled.
# This creates each '.Po' and '.Plo' makefile fragment that we'll need in
# order to bootstrap the dependency handling code.
AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS],
[AC_CONFIG_COMMANDS([depfiles],
[test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS],
[AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"])
])
[AMDEP_TRUE="$AMDEP_TRUE" MAKE="${MAKE-make}"])])
# Do all the work for Automake. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -515,8 +505,8 @@ AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl
AC_REQUIRE([AC_PROG_MKDIR_P])dnl
# For better backward compatibility. To be removed once Automake 1.9.x
# dies out for good. For more background, see:
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <http://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00001.html>
# <https://lists.gnu.org/archive/html/automake/2012-07/msg00014.html>
AC_SUBST([mkdir_p], ['$(MKDIR_P)'])
# We need awk for the "check" target (and possibly the TAP driver). The
# system "awk" is bad on some platforms.
@@ -583,7 +573,7 @@ END
Aborting the configuration process, to ensure you take notice of the issue.
You can download and install GNU coreutils to get an 'rm' implementation
that behaves properly: <http://www.gnu.org/software/coreutils/>.
that behaves properly: <https://www.gnu.org/software/coreutils/>.
If you want to complete the configuration process using your problematic
'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM
@@ -625,7 +615,7 @@ for _am_header in $config_headers :; do
done
echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -646,7 +636,7 @@ if test x"${install_sh+set}" != xset; then
fi
AC_SUBST([install_sh])])
# Copyright (C) 2003-2017 Free Software Foundation, Inc.
# Copyright (C) 2003-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -668,7 +658,7 @@ AC_SUBST([am__leading_dot])])
# Add --enable-maintainer-mode option to configure. -*- Autoconf -*-
# From Jim Meyering
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -703,7 +693,7 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# Check to see how 'make' treats includes. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -711,49 +701,42 @@ AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles])
# AM_MAKE_INCLUDE()
# -----------------
# Check to see how make treats includes.
# Check whether make has an 'include' directive that can support all
# the idioms we need for our automatic dependency tracking code.
AC_DEFUN([AM_MAKE_INCLUDE],
[am_make=${MAKE-make}
cat > confinc << 'END'
[AC_MSG_CHECKING([whether ${MAKE-make} supports the include directive])
cat > confinc.mk << 'END'
am__doit:
@echo this is the am__doit target
@echo this is the am__doit target >confinc.out
.PHONY: am__doit
END
# If we don't find an include directive, just comment out the code.
AC_MSG_CHECKING([for style of include used by $am_make])
am__include="#"
am__quote=
_am_result=none
# First try GNU make style include.
echo "include confinc" > confmf
# Ignore all kinds of additional output from 'make'.
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=include
am__quote=
_am_result=GNU
;;
esac
# Now try BSD make style include.
if test "$am__include" = "#"; then
echo '.include "confinc"' > confmf
case `$am_make -s -f confmf 2> /dev/null` in #(
*the\ am__doit\ target*)
am__include=.include
am__quote="\""
_am_result=BSD
;;
esac
fi
AC_SUBST([am__include])
AC_SUBST([am__quote])
AC_MSG_RESULT([$_am_result])
rm -f confinc confmf
])
# BSD make does it like this.
echo '.include "confinc.mk" # ignored' > confmf.BSD
# Other make implementations (GNU, Solaris 10, AIX) do it like this.
echo 'include confinc.mk # ignored' > confmf.GNU
_am_result=no
for s in GNU BSD; do
AM_RUN_LOG([${MAKE-make} -f confmf.$s && cat confinc.out])
AS_CASE([$?:`cat confinc.out 2>/dev/null`],
['0:this is the am__doit target'],
[AS_CASE([$s],
[BSD], [am__include='.include' am__quote='"'],
[am__include='include' am__quote=''])])
if test "$am__include" != "#"; then
_am_result="yes ($s style)"
break
fi
done
rm -f confinc.* confmf.*
AC_MSG_RESULT([${_am_result}])
AC_SUBST([am__include])])
AC_SUBST([am__quote])])
# Fake the existence of programs that GNU maintainers use. -*- Autoconf -*-
# Copyright (C) 1997-2017 Free Software Foundation, Inc.
# Copyright (C) 1997-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -792,7 +775,7 @@ fi
# Helper functions for option handling. -*- Autoconf -*-
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -821,7 +804,7 @@ AC_DEFUN([_AM_SET_OPTIONS],
AC_DEFUN([_AM_IF_OPTION],
[m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])])
# Copyright (C) 1999-2017 Free Software Foundation, Inc.
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -868,7 +851,7 @@ AC_LANG_POP([C])])
# For backward compatibility.
AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -887,7 +870,7 @@ AC_DEFUN([AM_RUN_LOG],
# Check to make sure that the build environment is sane. -*- Autoconf -*-
# Copyright (C) 1996-2017 Free Software Foundation, Inc.
# Copyright (C) 1996-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -968,7 +951,7 @@ AC_CONFIG_COMMANDS_PRE(
rm -f conftest.file
])
# Copyright (C) 2009-2017 Free Software Foundation, Inc.
# Copyright (C) 2009-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1028,7 +1011,7 @@ AC_SUBST([AM_BACKSLASH])dnl
_AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl
])
# Copyright (C) 2001-2017 Free Software Foundation, Inc.
# Copyright (C) 2001-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1056,7 +1039,7 @@ fi
INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s"
AC_SUBST([INSTALL_STRIP_PROGRAM])])
# Copyright (C) 2006-2017 Free Software Foundation, Inc.
# Copyright (C) 2006-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
@@ -1075,7 +1058,7 @@ AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)])
# Check how to create a tarball. -*- Autoconf -*-
# Copyright (C) 2004-2017 Free Software Foundation, Inc.
# Copyright (C) 2004-2018 Free Software Foundation, Inc.
#
# This file is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,

View File

@@ -97,13 +97,10 @@ int null_scanhash()
return 0;
}
void null_hash()
int null_hash()
{
applog(LOG_WARNING,"SWERR: null_hash unsafe null function");
};
void null_hash_suw()
{
applog(LOG_WARNING,"SWERR: null_hash_suw unsafe null function");
return 0;
};
void init_algo_gate( algo_gate_t* gate )
@@ -111,12 +108,10 @@ void init_algo_gate( algo_gate_t* gate )
gate->miner_thread_init = (void*)&return_true;
gate->scanhash = (void*)&null_scanhash;
gate->hash = (void*)&null_hash;
gate->hash_suw = (void*)&null_hash_suw;
gate->get_new_work = (void*)&std_get_new_work;
gate->work_decode = (void*)&std_le_work_decode;
gate->decode_extra_data = (void*)&do_nothing;
gate->gen_merkle_root = (void*)&sha256d_gen_merkle_root;
gate->stratum_gen_work = (void*)&std_stratum_gen_work;
gate->build_stratum_request = (void*)&std_le_build_stratum_request;
gate->malloc_txs_request = (void*)&std_malloc_txs_request;
gate->submit_getwork_result = (void*)&std_le_submit_getwork_result;
@@ -230,11 +225,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_X22I: register_x22i_algo ( gate ); break;
case ALGO_X25X: register_x25x_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_05_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_05_algo ( gate ); break;
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
@@ -281,39 +271,37 @@ void exec_hash_function( int algo, void *output, const void *pdata )
const char* const algo_alias_map[][2] =
{
// alias proper
{ "argon2d-crds", "argon2d250" },
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },
{ "blake256r8vnl", "vanilla" },
{ "blake256r14", "blake" },
{ "blake256r14dcr", "decred" },
{ "cryptonote", "cryptonight" },
{ "cryptonight-light", "cryptolight" },
{ "diamond", "dmd-gr" },
{ "droplp", "drop" },
{ "espers", "hmq1725" },
{ "flax", "c11" },
{ "hsr", "x13sm3" },
{ "jackpot", "jha" },
{ "jane", "scryptjane" },
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },
{ "lyra2v3", "lyra2rev3" },
{ "myrgr", "myr-gr" },
{ "myriad", "myr-gr" },
{ "neo", "neoscrypt" },
{ "phi", "phi1612" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "veil", "x16rt-veil" },
{ "x16r-hex", "hex" },
{ "yenten", "yescryptr16" },
{ "ziftr", "zr5" },
{ NULL, NULL }
{ "argon2d-crds", "argon2d250" },
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },
{ "blake256r8vnl", "vanilla" },
{ "blake256r14", "blake" },
{ "blake256r14dcr", "decred" },
{ "diamond", "dmd-gr" },
{ "espers", "hmq1725" },
{ "flax", "c11" },
{ "hsr", "x13sm3" },
{ "jackpot", "jha" },
{ "jane", "scryptjane" },
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },
{ "lyra2v3", "lyra2rev3" },
{ "myrgr", "myr-gr" },
{ "myriad", "myr-gr" },
{ "neo", "neoscrypt" },
{ "phi", "phi1612" },
{ "scryptn2", "scrypt:1048576" },
{ "sib", "x11gost" },
{ "timetravel8", "timetravel" },
{ "veil", "x16rt-veil" },
{ "x16r-hex", "hex" },
{ "yenten", "yescryptr16" },
{ "ziftr", "zr5" },
{ NULL, NULL }
};
// if arg is a valid alias for a known algo it is updated with the proper

View File

@@ -75,7 +75,7 @@
// my hack at creating a set data type using bit masks. Set inclusion,
// exclusion union and intersection operations are provided for convenience. In // some cases it may be desireable to use boolean algebra directly on the
// data to perfomr set operations. Sets can be represented as single
// data to perform set operations. Sets can be represented as single
// elements, a bitwise OR of multiple elements, a bitwise OR of multiple
// set variables or constants, or combinations of the above.
// Examples:
@@ -110,12 +110,11 @@ inline bool set_excl ( set_t a, set_t b ) { return (a & b) == 0; }
typedef struct
{
// mandatory functions, must be overwritten
// mandatory function, must be overwritten
int ( *scanhash ) ( struct work*, uint32_t, uint64_t*, struct thr_info* );
// optional unsafe, must be overwritten if algo uses function
void ( *hash ) ( void*, const void*, uint32_t ) ;
void ( *hash_suw ) ( void*, const void* );
// Deprecated, will be removed
int ( *hash ) ( void*, const void*, uint32_t ) ;
//optional, safe to use default in most cases
@@ -123,9 +122,6 @@ void ( *hash_suw ) ( void*, const void* );
// threads.
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
@@ -165,7 +161,9 @@ bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
// No longer needed
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
@@ -213,16 +211,13 @@ void four_way_not_tested();
int null_scanhash();
// displays warning
void null_hash ();
void null_hash_suw();
int null_hash ();
// optional safe targets, default listed first unless noted.
void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *work );
void sha256d_gen_merkle_root( char *merkle_root, struct stratum_ctx *sctx );
void SHA256_gen_merkle_root ( char *merkle_root, struct stratum_ctx *sctx );
@@ -250,10 +245,6 @@ void std_build_block_header( struct work* g_work, uint32_t version,
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );
json_t* std_longpoll_rpc_call( CURL *curl, int *err, char *lp_url );
//json_t* jr2_longpoll_rpc_call( CURL *curl, int *err );
//bool std_stratum_handle_response( json_t *val );
//bool jr2_stratum_handle_response( json_t *val );
bool std_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
int thr_id );
@@ -272,11 +263,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate );
// compiler warnings but that's just more work for devs adding new algos.
bool register_algo( algo_gate_t *gate );
// Overrides a common set of functions used by RPC2 and other RPC2-specific
// init. Called by algo's register function before initializing algo-specific
// functions and data.
//bool register_json_rpc2( algo_gate_t *gate );
// use this to call the hash function of an algo directly, ie util.c test.
void exec_hash_function( int algo, void *output, const void *pdata );

View File

@@ -48,7 +48,7 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -107,7 +107,7 @@ int scanhash_blake_8way( struct work *work, uint32_t max_nonce,
if ( (hash+i)[7] <= HTarget && fulltest( hash+i, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;

View File

@@ -45,7 +45,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -100,7 +100,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -49,7 +49,7 @@ int scanhash_blake2s_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -104,7 +104,7 @@ int scanhash_blake2s_8way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -157,7 +157,7 @@ int scanhash_blake2s_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -49,7 +49,7 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
@@ -108,7 +108,7 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -62,7 +62,7 @@ int scanhash_decred_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[DECRED_NONCE_INDEX] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );

View File

@@ -105,7 +105,7 @@ int scanhash_pentablake_4way( struct work *work,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n + i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;

View File

@@ -138,7 +138,7 @@ void bmw512_2way_close( bmw512_2way_context *ctx, void *dst );
#if defined(__AVX2__)
// BMW-512 4 way 64
// BMW-512 64 bit 4 way
typedef struct {
__m256i buf[16];
@@ -149,7 +149,6 @@ typedef struct {
typedef bmw_4way_big_context bmw512_4way_context;
void bmw512_4way_init(void *cc);
void bmw512_4way_update(void *cc, const void *data, size_t len);
@@ -164,6 +163,7 @@ void bmw512_4way_addbits_and_close(
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// BMW-512 64 bit 8 way
typedef struct {
__m512i buf[16];
__m512i H[16];
@@ -171,6 +171,8 @@ typedef struct {
uint64_t bit_count;
} bmw512_8way_context __attribute__((aligned(128)));
void bmw512_8way_full( bmw512_8way_context *ctx, void *out, const void *data,
size_t len );
void bmw512_8way_init( bmw512_8way_context *ctx );
void bmw512_8way_update( bmw512_8way_context *ctx, const void *data,
size_t len );

View File

@@ -46,7 +46,7 @@ int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -99,7 +99,7 @@ int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -1507,6 +1507,93 @@ void bmw512_8way_close( bmw512_8way_context *ctx, void *dst )
casti_m512i( dst, u ) = h1[ v ];
}
void bmw512_8way_full( bmw512_8way_context *ctx, void *out, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
__m512i *buf = ctx->buf;
__m512i htmp[16];
__m512i *H = ctx->H;
__m512i *h2 = htmp;
uint64_t bit_count = len * 8;
size_t ptr = 0;
const int buf_size = 128; // bytes of one lane, compatible with len
// Init
H[ 0] = m512_const1_64( 0x8081828384858687 );
H[ 1] = m512_const1_64( 0x88898A8B8C8D8E8F );
H[ 2] = m512_const1_64( 0x9091929394959697 );
H[ 3] = m512_const1_64( 0x98999A9B9C9D9E9F );
H[ 4] = m512_const1_64( 0xA0A1A2A3A4A5A6A7 );
H[ 5] = m512_const1_64( 0xA8A9AAABACADAEAF );
H[ 6] = m512_const1_64( 0xB0B1B2B3B4B5B6B7 );
H[ 7] = m512_const1_64( 0xB8B9BABBBCBDBEBF );
H[ 8] = m512_const1_64( 0xC0C1C2C3C4C5C6C7 );
H[ 9] = m512_const1_64( 0xC8C9CACBCCCDCECF );
H[10] = m512_const1_64( 0xD0D1D2D3D4D5D6D7 );
H[11] = m512_const1_64( 0xD8D9DADBDCDDDEDF );
H[12] = m512_const1_64( 0xE0E1E2E3E4E5E6E7 );
H[13] = m512_const1_64( 0xE8E9EAEBECEDEEEF );
H[14] = m512_const1_64( 0xF0F1F2F3F4F5F6F7 );
H[15] = m512_const1_64( 0xF8F9FAFBFCFDFEFF );
// Update
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen >> 3 );
vdata = vdata + (clen>>3);
len -= clen;
ptr += clen;
if ( ptr == buf_size )
{
__m512i *ht;
compress_big_8way( buf, H, h2 );
ht = H;
H = h2;
h2 = ht;
ptr = 0;
}
}
if ( H != ctx->H )
memcpy_512( ctx->H, H, 16 );
// Close
{
__m512i h1[16], h2[16];
size_t u, v;
buf[ ptr>>3 ] = m512_const1_64( 0x80 );
ptr += 8;
if ( ptr > (buf_size - 8) )
{
memset_zero_512( buf + (ptr>>3), (buf_size - ptr) >> 3 );
compress_big_8way( buf, H, h1 );
ptr = 0;
H = h1;
}
memset_zero_512( buf + (ptr>>3), (buf_size - 8 - ptr) >> 3 );
buf[ (buf_size - 8) >> 3 ] = _mm512_set1_epi64( bit_count );
compress_big_8way( buf, H, h2 );
for ( u = 0; u < 16; u ++ )
buf[ u ] = h2[ u ];
compress_big_8way( buf, final_b8, h1 );
for (u = 0, v = 8; u < 8; u ++, v ++)
casti_m512i( out, u ) = h1[ v ];
}
}
#endif // AVX512
#ifdef __cplusplus

View File

@@ -179,14 +179,6 @@ int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
@@ -447,14 +439,6 @@ int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );

View File

@@ -28,6 +28,27 @@ int cube_4way_update_close( cube_4way_context *sp, void *output,
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
int cube_4x256_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#define cube512_4way_init( sp ) cube_4way_update( sp, 512 )
#define cube512_4way_update cube_4way_update
#define cube512_4way_update_close cube_4way_update
#define cube512_4way_close cube_4way_update
#define cube512_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 512, data, size )
#define cube512_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 512, data, size )
#define cube256_4way_init( sp ) cube_4way_update( sp, 256 )
#define cube256_4way_update cube_4way_update
#define cube256_4way_update_close cube_4way_update
#define cube256_4way_close cube_4way_update
#define cube256_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 256, data, size )
#define cube256_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 256, data, size )
#endif
// 2x128, 2 way parallel SSE2

View File

@@ -22,18 +22,26 @@ typedef struct
} echo_4way_context __attribute__ ((aligned (64)));
int echo_4way_init( echo_4way_context *state, int hashbitlen );
#define echo512_4way_init( state ) echo_4way_init( state, 512 )
#define echo256_4way_init( state ) echo_4way_init( state, 256 )
int echo_4way_update( echo_4way_context *state, const void *data,
unsigned int databitlen);
#define echo512_4way_update echo_4way_update
int echo_close( echo_4way_context *state, void *hashval );
#define echo512_4way_close echo_4way_close
int echo_4way_update_close( echo_4way_context *state, void *hashval,
const void *data, int databitlen );
#define echo512_4way_update_close echo_4way_update_close
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen );
#define echo512_4way_full( state, hashval, data, datalen ) \
echo_4way_full( state, hashval, 512, data, datalen )
#define echo256_4way_full( state, hashval, data, datalen ) \
echo_4way_full( state, hashval, 256, data, datalen )
#endif
#endif

View File

@@ -74,6 +74,14 @@ void sph_fugue512_close(void *cc, void *dst);
void sph_fugue512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define sph_fugue512_full( cc, dst, data, len ) \
do{ \
sph_fugue512_init( cc ); \
sph_fugue512( cc, data, len ); \
sph_fugue512_close( cc, dst ); \
}while(0)
#ifdef __cplusplus
}
#endif

View File

@@ -53,7 +53,7 @@ int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -143,7 +143,7 @@ int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -226,7 +226,7 @@ int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -129,7 +129,7 @@ int scanhash_jha_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -45,7 +45,7 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -97,7 +97,7 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ))
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -52,7 +52,7 @@ int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -111,7 +111,7 @@ int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -245,7 +245,7 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
@@ -394,7 +394,7 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -76,37 +76,34 @@ int scanhash_allium( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
if ( opt_benchmark )
ptarget[7] = 0x3ffff;
for ( int i = 0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
edata[i] = bswap_32( pdata[i] );
sph_blake256_init( &allium_ctx.blake );
sph_blake256( &allium_ctx.blake, endiandata, 64 );
sph_blake256( &allium_ctx.blake, edata, 64 );
do {
be32enc( &endiandata[19], nonce );
allium_hash( hash, endiandata );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = nonce;
allium_hash( hash, edata );
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash, mythr );
}
nonce++;
} while ( nonce < max_nonce && !work_restart[thr_id].restart );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

View File

@@ -94,12 +94,12 @@ bool lyra2rev2_thread_init()
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
l2v2_wholeMatrix = _mm_malloc( 2 * size, 64 ); // 2 way
init_lyra2rev2_8way_ctx();;
#elif defined (LYRA2REV2_4WAY)
init_lyra2rev2_16way_ctx();;
#elif defined (LYRA2REV2_8WAY)
l2v2_wholeMatrix = _mm_malloc( size, 64 );
init_lyra2rev2_4way_ctx();;
init_lyra2rev2_8way_ctx();;
#else
l2v2_wholeMatrix = _mm_malloc( size, 64 );
init_lyra2rev2_ctx();
@@ -109,17 +109,17 @@ bool lyra2rev2_thread_init()
bool register_lyra2rev2_algo( algo_gate_t* gate )
{
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_16way;
gate->hash = (void*)&lyra2rev2_16way_hash;
#elif defined (LYRA2REV2_8WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_8way;
gate->hash = (void*)&lyra2rev2_8way_hash;
#elif defined (LYRA2REV2_4WAY)
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
gate->hash = (void*)&lyra2rev2_4way_hash;
#else
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
opt_target_factor = 256.0;
return true;

View File

@@ -51,30 +51,32 @@ bool init_lyra2rev3_ctx();
//////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define LYRA2REV2_8WAY 1
#define LYRA2REV2_16WAY 1
#elif defined(__AVX2__)
#define LYRA2REV2_4WAY 1
#define LYRA2REV2_8WAY 1
#endif
extern __thread uint64_t* l2v2_wholeMatrix;
bool register_lyra2rev2_algo( algo_gate_t* gate );
#if defined(LYRA2REV2_8WAY)
#if defined(LYRA2REV2_16WAY)
void lyra2rev2_16way_hash( void *state, const void *input );
int scanhash_lyra2rev2_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_16way_ctx();
#elif defined(LYRA2REV2_8WAY)
void lyra2rev2_8way_hash( void *state, const void *input );
int scanhash_lyra2rev2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_8way_ctx();
#elif defined(LYRA2REV2_4WAY)
void lyra2rev2_4way_hash( void *state, const void *input );
int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev2_4way_ctx();
#else
void lyra2rev2_hash( void *state, const void *input );
int scanhash_lyra2rev2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );

View File

@@ -76,7 +76,7 @@ int scanhash_lyra2h_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);

View File

@@ -7,23 +7,227 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#if defined (LYRA2REV2_8WAY)
#if defined (LYRA2REV2_16WAY)
typedef struct {
blake256_16way_context blake;
keccak256_8way_context keccak;
cubehashParam cube;
skein256_8way_context skein;
bmw256_16way_context bmw;
} lyra2v2_16way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_16way_ctx_holder l2v2_16way_ctx;
bool init_lyra2rev2_16way_ctx()
{
keccak256_8way_init( &l2v2_16way_ctx.keccak );
cubehashInit( &l2v2_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &l2v2_16way_ctx.skein );
bmw256_16way_init( &l2v2_16way_ctx.bmw );
return true;
}
void lyra2rev2_16way_hash( void *state, const void *input )
{
uint32_t vhash[8*16] __attribute__ ((aligned (128)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
uint32_t hash3[8] __attribute__ ((aligned (64)));
uint32_t hash4[8] __attribute__ ((aligned (64)));
uint32_t hash5[8] __attribute__ ((aligned (64)));
uint32_t hash6[8] __attribute__ ((aligned (64)));
uint32_t hash7[8] __attribute__ ((aligned (64)));
uint32_t hash8[8] __attribute__ ((aligned (64)));
uint32_t hash9[8] __attribute__ ((aligned (64)));
uint32_t hash10[8] __attribute__ ((aligned (64)));
uint32_t hash11[8] __attribute__ ((aligned (64)));
uint32_t hash12[8] __attribute__ ((aligned (64)));
uint32_t hash13[8] __attribute__ ((aligned (64)));
uint32_t hash14[8] __attribute__ ((aligned (64)));
uint32_t hash15[8] __attribute__ ((aligned (64)));
lyra2v2_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_16way_ctx, sizeof(l2v2_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64<<4), 16 );
blake256_16way_close( &ctx.blake, vhash );
dintrlv_16x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhash, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash5, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cubehash_full( &ctx.cube, (byte*) hash8, 256, (const byte*) hash8, 32 );
cubehash_full( &ctx.cube, (byte*) hash9, 256, (const byte*) hash9, 32 );
cubehash_full( &ctx.cube, (byte*) hash10, 256, (const byte*) hash10, 32 );
cubehash_full( &ctx.cube, (byte*) hash11, 256, (const byte*) hash11, 32 );
cubehash_full( &ctx.cube, (byte*) hash12, 256, (const byte*) hash12, 32 );
cubehash_full( &ctx.cube, (byte*) hash13, 256, (const byte*) hash13, 32 );
cubehash_full( &ctx.cube, (byte*) hash14, 256, (const byte*) hash14, 32 );
cubehash_full( &ctx.cube, (byte*) hash15, 256, (const byte*) hash15, 32 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
intrlv_2x256( vhash, hash2, hash3, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash2, hash3, vhash, 256 );
intrlv_2x256( vhash, hash4, hash5, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash4, hash5, vhash, 256 );
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash8, hash9, hash10, hash11, hash12,
hash13, hash14, hash15, 256 );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cubehash_full( &ctx.cube, (byte*) hash8, 256, (const byte*) hash8, 32 );
cubehash_full( &ctx.cube, (byte*) hash9, 256, (const byte*) hash9, 32 );
cubehash_full( &ctx.cube, (byte*) hash10, 256, (const byte*) hash10, 32 );
cubehash_full( &ctx.cube, (byte*) hash11, 256, (const byte*) hash11, 32 );
cubehash_full( &ctx.cube, (byte*) hash12, 256, (const byte*) hash12, 32 );
cubehash_full( &ctx.cube, (byte*) hash13, 256, (const byte*) hash13, 32 );
cubehash_full( &ctx.cube, (byte*) hash14, 256, (const byte*) hash14, 32 );
cubehash_full( &ctx.cube, (byte*) hash15, 256, (const byte*) hash15, 32 );
intrlv_16x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11,
hash12, hash13, hash14, hash15, 256 );
bmw256_16way_update( &ctx.bmw, vhash, 32 );
bmw256_16way_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_16way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *hashd7 = &hash[7*16];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
uint32_t n = first_nonce;
const uint32_t targ32 = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0000ff;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n );
blake256_16way_init( &l2v2_16way_ctx.blake );
blake256_16way_update( &l2v2_16way_ctx.blake, vdata, 64 );
do
{
lyra2rev2_16way_hash( hash, vdata );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_16x32( lane_hash, hash, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (LYRA2REV2_8WAY)
typedef struct {
blake256_8way_context blake;
keccak256_8way_context keccak;
cube_4way_context cube;
skein256_8way_context skein;
bmw256_8way_context bmw;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
bmw256_8way_context bmw;
} lyra2v2_8way_ctx_holder __attribute__ ((aligned (64)));
static lyra2v2_8way_ctx_holder l2v2_8way_ctx;
bool init_lyra2rev2_8way_ctx()
{
keccak256_8way_init( &l2v2_8way_ctx.keccak );
cube_4way_init( &l2v2_8way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &l2v2_8way_ctx.skein );
keccak256_4way_init( &l2v2_8way_ctx.keccak );
cubehashInit( &l2v2_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_8way_ctx.skein );
bmw256_8way_init( &l2v2_8way_ctx.bmw );
return true;
}
@@ -31,8 +235,6 @@ bool init_lyra2rev2_8way_ctx()
void lyra2rev2_8way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t vhashA[8*8] __attribute__ ((aligned (64)));
uint32_t vhashB[8*8] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
@@ -47,103 +249,113 @@ void lyra2rev2_8way_hash( void *state, const void *input )
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
rintrlv_8x32_8x64( vhashA, vhash, 256 );
dintrlv_8x32( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash, 256 );
keccak256_8way_update( &ctx.keccak, vhashA, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhash, 32 );
keccak256_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
intrlv_2x256( vhash, hash2, hash3, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash2, hash3, vhash, 256 );
intrlv_2x256( vhash, hash4, hash5, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash4, hash5, vhash, 256 );
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2REV2_2WAY( l2v2_wholeMatrix, vhash, 32, vhash, 32, 1, 4, 4 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash4, 32, hash4, 32, hash4, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash5, 32, hash5, 32, hash5, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 );
LYRA2REV2( l2v2_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 256 );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x64( vhash, hash4, hash5, hash6, hash7, 256 );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhash, 32 );
skein256_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way_update( &ctx.bmw, vhash, 32 );
bmw256_8way_close( &ctx.bmw, state );
}
int scanhash_lyra2rev2_8way( struct work *work, uint32_t max_nonce,
int scanhash_lyra2rev2_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hashd7 = &hash[7*8];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id;
const uint32_t targ32 = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
blake256_8way_init( &l2v2_8way_ctx.blake );
blake256_8way_update( &l2v2_8way_ctx.blake, vdata, 64 );
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
lyra2rev2_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
/*
#elif defined (LYRA2REV2_4WAY)
typedef struct {
@@ -226,15 +438,16 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hashd7 = &(hash[7<<2]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t targ32 = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19;
int thr_id = mythr->id;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
@@ -249,21 +462,22 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
lyra2rev2_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 4; lane++ ) if ( hashd7[lane] <= targ32 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
*/

View File

@@ -99,7 +99,7 @@ int scanhash_lyra2rev2( struct work *work,
lyra2rev2_hash(hash, endiandata);
if (hash[7] <= Htarg )
if( fulltest( hash, ptarget ) && !opt_benchmark )
if( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -130,15 +130,15 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *hash7 = &hash[7<<4];
uint32_t *hashd7 = &hash[7*16];
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 16;
const uint32_t Htarg = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const uint32_t targ32 = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19;
const int thr_id = mythr->id;
if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
@@ -159,17 +159,18 @@ int scanhash_lyra2rev3_16way( struct work *work, const uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_16x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -194,7 +195,7 @@ bool init_lyra2rev3_8way_ctx()
void lyra2rev3_8way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (64)));
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
@@ -250,17 +251,17 @@ void lyra2rev3_8way_hash( void *state, const void *input )
int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &hash[7<<3];
uint32_t *hashd7 = &hash[7*8];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const uint32_t targ32 = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
@@ -277,13 +278,13 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
if ( unlikely( hashd7[lane] <= targ32 ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -357,42 +358,41 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hashd7 = &(hash[7*4]);
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
const int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t targ32 = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19;
const int thr_id = mythr->id;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm128_bswap32_intrlv80_4x32( vdata, pdata );
*noncev = _mm_set_epi32( n+3, n+2, n+1, n );
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4way_update( &l2v3_4way_ctx.blake, vdata, 64 );
do
{
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
lyra2rev3_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( hash7[lane] <= Htarg )
for ( int lane = 0; lane < 4; lane++ ) if ( hashd7[lane] <= targ32 )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
pdata[19] = n;
*hashes_done = n - first_nonce + 1;
return 0;
}

View File

@@ -88,7 +88,7 @@ int scanhash_lyra2rev3( struct work *work,
lyra2rev3_hash(hash, endiandata);
if (hash[7] <= Htarg )
if( fulltest( hash, ptarget ) && !opt_benchmark )
if( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -124,7 +124,7 @@ int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
@@ -222,7 +222,7 @@ int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
@@ -301,7 +301,7 @@ int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );

View File

@@ -56,7 +56,7 @@ int scanhash_lyra2z( struct work *work, uint32_t max_nonce,
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
if (opt_benchmark)
ptarget[7] = 0x0000ff;
@@ -65,14 +65,13 @@ int scanhash_lyra2z( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[i], pdata[i]);
}
lyra2z_midstate( endiandata );
lyra2z_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
lyra2z_hash( hash, endiandata );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );

View File

@@ -9,7 +9,7 @@ void lyra2z330_hash(void *state, const void *input, uint32_t height)
{
uint32_t _ALIGN(256) hash[16];
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, input, 80, input, 80,
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, input, 80, input, 80,
2, 330, 256 );
memcpy(state, hash, 32);
@@ -18,38 +18,40 @@ void lyra2z330_hash(void *state, const void *input, uint32_t height)
int scanhash_lyra2z330( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__ ((aligned (64)));
uint32_t hash[8] __attribute__ ((aligned (128)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
if (opt_benchmark)
ptarget[7] = 0x0000ff;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
do
{
be32enc( &endiandata[19], nonce );
lyra2z330_hash( hash, endiandata, work->height );
if ( hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = nonce;
LYRA2Z( lyra2z330_wholeMatrix, hash, 32, edata, 80, edata, 80,
2, 330, 256 );
// lyra2z330_hash( hash, edata, work->height );
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
be32enc( pdata + 19, nonce );
submit_solution( work, hash, mythr );
}
nonce++;
} while ( nonce < max_nonce && !work_restart[thr_id].restart );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = nonce - first_nonce;
return 0;
}
@@ -66,7 +68,7 @@ bool lyra2z330_thread_init()
bool register_lyra2z330_algo( algo_gate_t* gate )
{
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2z330_thread_init;
gate->scanhash = (void*)&scanhash_lyra2z330;
gate->hash = (void*)&lyra2z330_hash;

View File

@@ -302,7 +302,7 @@ int scanhash_phi2_8way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -483,7 +483,7 @@ int scanhash_phi2_4way( struct work *work, uint32_t max_nonce,
if ( valid_hash( lane_hash, ptarget ) )
{
be32enc( pdata + 19, n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
edata[ 19 ] += 4;

View File

@@ -311,7 +311,7 @@ bool register_m7m_algo( algo_gate_t *gate )
{
gate->optimizations = SHA_OPT;
init_m7m_ctx();
gate->scanhash = (void*)scanhash_m7m_hash;
gate->scanhash = (void*)&scanhash_m7m_hash;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;

View File

@@ -108,7 +108,7 @@ int scanhash_nist5_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -196,7 +196,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -1,18 +1,241 @@
#include "cpuminer-config.h"
#include "anime-gate.h"
#if defined (ANIME_4WAY)
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#endif
#if defined (ANIME_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
#if defined(__VAES__)
groestl512_4way_context groestl;
#else
hashState_groestl groestl;
#endif
jh512_8way_context jh;
skein512_8way_context skein;
keccak512_8way_context keccak;
} anime_8way_ctx_holder;
anime_8way_ctx_holder anime_8way_ctx __attribute__ ((aligned (64)));
void init_anime_8way_ctx()
{
blake512_8way_init( &anime_8way_ctx.blake );
bmw512_8way_init( &anime_8way_ctx.bmw );
#if defined(__VAES__)
groestl512_4way_init( &anime_8way_ctx.groestl, 64 );
#else
init_groestl( &anime_8way_ctx.groestl, 64 );
#endif
skein512_8way_init( &anime_8way_ctx.skein );
jh512_8way_init( &anime_8way_ctx.jh );
keccak512_8way_init( &anime_8way_ctx.keccak );
}
void anime_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
uint64_t vhashB[8*8] __attribute__ ((aligned (64)));
uint64_t vhashC[8*8] __attribute__ ((aligned (64)));
#if !defined(__VAES__)
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
#endif
__m512i* vh = (__m512i*)vhash;
__m512i* vhA = (__m512i*)vhashA;
__m512i* vhB = (__m512i*)vhashB;
__m512i* vhC = (__m512i*)vhashC;
const __m512i bit3_mask = m512_const1_64( 8 );
const __m512i zero = _mm512_setzero_si512();
__mmask8 vh_mask;
anime_8way_ctx_holder ctx;
memcpy( &ctx, &anime_8way_ctx, sizeof(anime_8way_ctx) );
bmw512_8way_full( &ctx.bmw, vhash, input, 80 );
blake512_8way_full( &ctx.blake, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
#if defined(__VAES__)
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
if ( ( vh_mask & 0xf0 ) != 0xf0 )
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
#else
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
if ( hash4[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
if ( hash5[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
if ( hash6[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
if ( hash7[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhashC, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
#endif
if ( vh_mask & 0xff )
skein512_8way_full( &ctx.skein, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
#if defined(__VAES__)
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhash, vhashA, vhashB, 512 );
#else
dintrlv_8x64_512( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, vhash );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7 );
#endif
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
if ( ( vh_mask & 0xff ) != 0xff )
blake512_8way_full( &ctx.blake, vhashA, vhash, 64 );
if ( vh_mask & 0xff )
bmw512_8way_full( &ctx.bmw, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
if ( ( vh_mask & 0xff ) != 0xff )
{
keccak512_8way_init( &ctx.keccak );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhashA );
}
if ( vh_mask & 0xff )
{
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhashB );
}
casti_m512i( state,0 ) = _mm512_mask_blend_epi64( vh_mask, vhA[0], vhB[0] );
casti_m512i( state,1 ) = _mm512_mask_blend_epi64( vh_mask, vhA[1], vhB[1] );
casti_m512i( state,2 ) = _mm512_mask_blend_epi64( vh_mask, vhA[2], vhB[2] );
casti_m512i( state,3 ) = _mm512_mask_blend_epi64( vh_mask, vhA[3], vhB[3] );
}
int scanhash_anime_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint64_t hash64[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint64_t *hash64_q3 = &(hash64[3*8]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do
{
anime_8way_hash( hash64, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
extr_lane_8x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (ANIME_4WAY)
typedef struct {
blake512_4way_context blake;
@@ -23,18 +246,6 @@ typedef struct {
keccak512_4way_context keccak;
} anime_4way_ctx_holder;
anime_4way_ctx_holder anime_4way_ctx __attribute__ ((aligned (64)));
void init_anime_4way_ctx()
{
blake512_4way_init( &anime_4way_ctx.blake );
bmw512_4way_init( &anime_4way_ctx.bmw );
init_groestl( &anime_4way_ctx.groestl, 64 );
skein512_4way_init( &anime_4way_ctx.skein );
jh512_4way_init( &anime_4way_ctx.jh );
keccak512_4way_init( &anime_4way_ctx.keccak );
}
void anime_4way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
@@ -48,81 +259,61 @@ void anime_4way_hash( void *state, const void *input )
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
const uint32_t mask = 8;
int h_mask;
const __m256i bit3_mask = m256_const1_64( 8 );
const __m256i zero = _mm256_setzero_si256();
anime_4way_ctx_holder ctx;
memcpy( &ctx, &anime_4way_ctx, sizeof(anime_4way_ctx) );
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, input, 80 );
bmw512_4way_close( &ctx.bmw, vhash );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhash );
blake512_4way_full( &ctx.blake, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
// A
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits0( vh_mask ) )
{
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
}
// B
if ( h_mask & 0xffffffff )
skein512_4way_full( &ctx.skein, vhashB, vhash, 64 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits1( vh_mask ) )
{
blake512_4way_init( &ctx.blake );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
}
if ( mm256_anybits0( vh_mask ) )
// A
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
blake512_4way_full( &ctx.blake, vhashA, vhash, 64 );
// B
if ( h_mask & 0xffffffff )
{
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
@@ -131,64 +322,74 @@ void anime_4way_hash( void *state, const void *input )
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits1( vh_mask ) )
// A
if ( ( h_mask & 0xffffffff ) != 0xffffffff )
{
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
}
if ( mm256_anybits0( vh_mask ) )
// B
if ( h_mask & 0xffffffff )
{
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhashB );
}
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( state, state+32, state+64, state+96, vhash, 256 );
casti_m256i( state, 0 ) = _mm256_blendv_epi8( vhA[0], vhB[0], vh_mask );
casti_m256i( state, 1 ) = _mm256_blendv_epi8( vhA[1], vhB[1], vh_mask );
casti_m256i( state, 2 ) = _mm256_blendv_epi8( vhA[2], vhB[2], vh_mask );
casti_m256i( state, 3 ) = _mm256_blendv_epi8( vhA[3], vhB[3], vh_mask );
}
int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint64_t hash64[4*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint64_t *hash64_q3 = &(hash64[3*4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
anime_4way_hash( hash, vdata );
anime_4way_hash( hash64, vdata );
for ( int i = 0; i < 4; i++ )
if ( valid_hash( hash+(i<<3), ptarget ) && !opt_benchmark )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_solution( work, hash+(i<<3), mythr );
extr_lane_4x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;

View File

@@ -2,8 +2,10 @@
bool register_anime_algo( algo_gate_t* gate )
{
#if defined (ANIME_4WAY)
init_anime_4way_ctx();
#if defined (ANIME_8WAY)
gate->scanhash = (void*)&scanhash_anime_8way;
gate->hash = (void*)&anime_8way_hash;
#elif defined (ANIME_4WAY)
gate->scanhash = (void*)&scanhash_anime_4way;
gate->hash = (void*)&anime_4way_hash;
#else
@@ -11,7 +13,7 @@ bool register_anime_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_anime;
gate->hash = (void*)&anime_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
return true;
};

View File

@@ -4,18 +4,25 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define ANIME_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define ANIME_4WAY 1
#endif
bool register_anime_algo( algo_gate_t* gate );
#if defined(ANIME_4WAY)
#if defined(ANIME_8WAY)
void anime_8way_hash( void *state, const void *input );
int scanhash_anime_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(ANIME_4WAY)
void anime_4way_hash( void *state, const void *input );
int scanhash_anime_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_anime_4way_ctx();
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -72,12 +72,10 @@ void quark_8way_hash( void *state, const void *input )
memcpy( &ctx, &quark_8way_ctx, sizeof(quark_8way_ctx) );
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
blake512_8way_full( &ctx.blake, vhash, input, 80 );
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
@@ -86,70 +84,34 @@ void quark_8way_hash( void *state, const void *input )
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
{
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashA, vhashA, 512 );
}
if ( ( vh_mask & 0xf0 ) != 0xf0 )
{
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashB, vhashB, 512 );
}
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
if ( ( vh_mask & 0xf0 ) != 0xf0 )
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhashC, vhashA, vhashB, 512 );
#else
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
if ( hash4[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash4,
(char*)hash4, 512 );
}
if ( hash5[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash5,
(char*)hash5, 512 );
}
if ( hash6[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash6,
(char*)hash6, 512 );
}
if ( hash7[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash7,
(char*)hash7, 512 );
}
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
if ( hash4[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
if ( hash5[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
if ( hash6[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
if ( hash7[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64( vhashC, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 512 );
@@ -157,10 +119,7 @@ void quark_8way_hash( void *state, const void *input )
#endif
if ( vh_mask & 0xff )
{
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhashB );
}
skein512_8way_full( &ctx.skein, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhC, vhB, vh_mask );
@@ -168,10 +127,10 @@ void quark_8way_hash( void *state, const void *input )
rintrlv_8x64_4x128( vhashA, vhashB, vhash, 512 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashA, vhashA, 512 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhashB, vhashB, 512 );
if ( ( vh_mask & 0x0f ) != 0x0f )
groestl512_4way_full( &ctx.groestl, vhashA, vhashA, 64 );
if ( ( vh_mask & 0xf0 ) != 0xf0 )
groestl512_4way_full( &ctx.groestl, vhashB, vhashB, 64 );
rintrlv_4x128_8x64( vhash, vhashA, vhashB, 512 );
@@ -180,22 +139,22 @@ void quark_8way_hash( void *state, const void *input )
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
if ( hash4[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
if ( hash5[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
if ( hash6[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
if ( hash7[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
512 );
@@ -209,27 +168,16 @@ void quark_8way_hash( void *state, const void *input )
zero );
if ( ( vh_mask & 0xff ) != 0xff )
{
blake512_8way_init( &ctx.blake );
blake512_8way_update( &ctx.blake, vhash, 64 );
blake512_8way_close( &ctx.blake, vhashA );
}
blake512_8way_full( &ctx.blake, vhashA, vhash, 64 );
if ( vh_mask & 0xff )
{
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhashB );
}
bmw512_8way_full( &ctx.bmw, vhashB, vhash, 64 );
mm512_blend_hash_8x64( vh, vhA, vhB, vh_mask );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm512_cmpeq_epi64_mask( _mm512_and_si512( vh[0], bit3_mask ),
zero );
@@ -258,41 +206,44 @@ void quark_8way_hash( void *state, const void *input )
int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint64_t hash64[4*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]);
uint32_t *pdata = work->data;
uint64_t *hash64_q3 = &(hash64[3*8]);
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t *pdata = work->data;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
quark_8way_hash( hash64, vdata );
quark_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash64_q3[ lane ] <= targ64_q3 && !bench ) )
{
extr_lane_8x64( lane_hash, hash, i, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
extr_lane_8x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart );
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -333,67 +284,47 @@ void quark_4way_hash( void *state, const void *input )
__m256i* vhA = (__m256i*)vhashA;
__m256i* vhB = (__m256i*)vhashB;
__m256i vh_mask;
int h_mask;
quark_4way_ctx_holder ctx;
const __m256i bit3_mask = m256_const1_64( 8 );
const uint32_t mask = 8;
const __m256i zero = _mm256_setzero_si256();
memcpy( &ctx, &quark_4way_ctx, sizeof(quark_4way_ctx) );
blake512_4way_update( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
blake512_4way_full( &ctx.blake, vhash, input, 80 );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
if ( hash0[0] & mask )
{
update_and_final_groestl( &ctx.groestl, (char*)hash0,
(char*)hash0, 512 );
}
if ( hash1[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1,
(char*)hash1, 512 );
}
if ( hash2[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2,
(char*)hash2, 512 );
}
if ( hash3[0] & mask )
{
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3,
(char*)hash3, 512 );
}
// A
if ( hash0[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
if ( hash1[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
if ( hash2[0] & 8)
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
if ( hash3[0] & 8 )
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
if ( mm256_anybits1( vh_mask ) )
{
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhashB );
}
// B
if ( likely( h_mask & 0xffffffff ) )
skein512_4way_full( &ctx.skein, vhashB, vhash, 64 );
mm256_blend_hash_4x64( vh, vhA, vhB, vh_mask );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
reinit_groestl( &ctx.groestl );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
groestl512_full( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
@@ -401,15 +332,13 @@ void quark_4way_hash( void *state, const void *input )
jh512_4way_close( &ctx.jh, vhash );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits0( vh_mask ) )
{
blake512_4way_init( &ctx.blake );
blake512_4way_update( &ctx.blake, vhash, 64 );
blake512_4way_close( &ctx.blake, vhashA );
}
if ( mm256_anybits1( vh_mask ) )
// A
if ( likely( ( h_mask & 0xffffffff ) != 0xffffffff ) )
blake512_4way_full( &ctx.blake, vhashA, vhash, 64 );
// B
if ( likely( h_mask & 0xffffffff ) )
{
bmw512_4way_init( &ctx.bmw );
bmw512_4way_update( &ctx.bmw, vhash, 64 );
@@ -421,20 +350,20 @@ void quark_4way_hash( void *state, const void *input )
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, 64 );
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
h_mask = _mm256_movemask_epi8( vh_mask );
if ( mm256_anybits0( vh_mask ) )
// A
if ( likely( ( h_mask & 0xffffffff ) != 0xffffffff ) )
{
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhashA );
}
if ( mm256_anybits1( vh_mask ) )
// B
if ( likely( h_mask & 0xffffffff ) )
{
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
@@ -451,41 +380,44 @@ void quark_4way_hash( void *state, const void *input )
int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint64_t hash64[4*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint64_t *hash64_q3 = &(hash64[3*4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint64_t targ64_q3 = ((uint64_t*)ptarget)[3];
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
quark_4way_hash( hash64, vdata );
quark_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
for ( int lane = 0; lane < 4; lane++ )
if ( hash64_q3[ lane ] <= targ64_q3 && !bench )
{
extr_lane_4x64( lane_hash, hash, i, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
extr_lane_4x64( lane_hash, hash64, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -106,13 +106,13 @@ int scanhash_deep_2way( struct work *work,uint32_t max_nonce,
if ( fulltest( hash, ptarget) && !opt_benchmark )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( !( (hash+8)[7] & mask ) )
if ( fulltest( hash+8, ptarget) && !opt_benchmark )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -153,7 +153,7 @@ int scanhash_qubit_4way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
submit_solution( work, hash+(lane<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart );
@@ -255,13 +255,13 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
if ( likely( fulltest( hash, ptarget) && !opt_benchmark ) )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
submit_solution( work, hash, mythr );
}
if ( unlikely( ( (hash+8))[7] <= Htarg ) )
if ( likely( fulltest( hash+8, ptarget) && !opt_benchmark ) )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
submit_solution( work, hash+8, mythr );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -132,7 +132,7 @@ int scanhash_lbry_16way( struct work *work, uint32_t max_nonce,
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 16;
@@ -251,7 +251,7 @@ int scanhash_lbry_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[27] = n + i;
submit_lane_solution( work, lane_hash, mythr, i );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;

View File

@@ -380,7 +380,7 @@ static inline void PBKDF2_SHA256_128_32_8way(uint32_t *tstate,
#endif /* HAVE_SHA256_8WAY */
#if defined(USE_ASM) && defined(__x86_64__)
//#if defined(USE_ASM) && defined(__x86_64__)
#define SCRYPT_MAX_WAYS 12
#define HAVE_SCRYPT_3WAY 1
@@ -394,113 +394,6 @@ void scrypt_core_3way(uint32_t *X, uint32_t *V, int N);
void scrypt_core_6way(uint32_t *X, uint32_t *V, int N);
#endif
#elif defined(USE_ASM) && defined(__i386__)
#define SCRYPT_MAX_WAYS 4
#define scrypt_best_throughput() 1
void scrypt_core(uint32_t *X, uint32_t *V, int N);
#elif defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__)
void scrypt_core(uint32_t *X, uint32_t *V, int N);
#if defined(__ARM_NEON__)
#undef HAVE_SHA256_4WAY
#define SCRYPT_MAX_WAYS 3
#define HAVE_SCRYPT_3WAY 1
#define scrypt_best_throughput() 3
void scrypt_core_3way(uint32_t *X, uint32_t *V, int N);
#endif
#else
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
int i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7);
x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9);
x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13);
x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18);
x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
/* Operate on rows. */
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7);
x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9);
x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13);
x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18);
x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
#undef R
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
static inline void scrypt_core(uint32_t *X, uint32_t *V, int N)
{
int i;
for (i = 0; i < N; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (i = 0; i < N; i++) {
uint32_t j = 32 * (X[16] & (N - 1));
for (uint8_t k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
}
#endif
#ifndef SCRYPT_MAX_WAYS
#define SCRYPT_MAX_WAYS 1
#define scrypt_best_throughput() 1
@@ -511,8 +404,8 @@ unsigned char *scrypt_buffer_alloc(int N)
return (uchar*) malloc((size_t)N * SCRYPT_MAX_WAYS * 128 + 63);
}
static void scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
uint32_t *midstate, unsigned char *scratchpad, int N)
static bool scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
uint32_t *midstate, unsigned char *scratchpad, int N, int thr_id )
{
uint32_t tstate[8], ostate[8];
uint32_t X[32];
@@ -527,11 +420,13 @@ static void scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output,
scrypt_core(X, V, N);
PBKDF2_SHA256_128_32(tstate, ostate, X, output);
return true;
}
#ifdef HAVE_SHA256_4WAY
static void scrypt_1024_1_1_256_4way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_4way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(128) tstate[4 * 8];
uint32_t _ALIGN(128) ostate[4 * 8];
@@ -545,32 +440,47 @@ static void scrypt_1024_1_1_256_4way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = input[k * 20 + i];
for (i = 0; i < 8; i++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[4 * i + k] = midstate[i];
HMAC_SHA256_80_init_4way(W, tstate, ostate);
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W);
for (i = 0; i < 32; i++)
HMAC_SHA256_80_init_4way(W, tstate, ostate);
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W);
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
X[k * 32 + i] = W[4 * i + k];
scrypt_core(X + 0 * 32, V, N);
scrypt_core(X + 0 * 32, V, N);
scrypt_core(X + 1 * 32, V, N);
scrypt_core(X + 2 * 32, V, N);
scrypt_core(X + 3 * 32, V, N);
for (i = 0; i < 32; i++)
if ( work_restart[thrid].restart ) return 0;
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
W[4 * i + k] = X[k * 32 + i];
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, W);
for (i = 0; i < 8; i++)
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, W);
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[k * 8 + i] = W[4 * i + k];
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#ifdef HAVE_SCRYPT_3WAY
static void scrypt_1024_1_1_256_3way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_3way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(64) tstate[3 * 8], ostate[3 * 8];
uint32_t _ALIGN(64) X[3 * 32];
@@ -581,23 +491,34 @@ static void scrypt_1024_1_1_256_3way(const uint32_t *input,
memcpy(tstate + 0, midstate, 32);
memcpy(tstate + 8, midstate, 32);
memcpy(tstate + 16, midstate, 32);
HMAC_SHA256_80_init(input + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init(input + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init(input + 20, tstate + 8, ostate + 8);
HMAC_SHA256_80_init(input + 40, tstate + 16, ostate + 16);
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0);
PBKDF2_SHA256_80_128(tstate + 8, ostate + 8, input + 20, X + 32);
PBKDF2_SHA256_80_128(tstate + 16, ostate + 16, input + 40, X + 64);
scrypt_core_3way(X, V, N);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0);
scrypt_core_3way(X, V, N);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0);
PBKDF2_SHA256_128_32(tstate + 8, ostate + 8, X + 32, output + 8);
PBKDF2_SHA256_128_32(tstate + 16, ostate + 16, X + 64, output + 16);
return 1;
}
#ifdef HAVE_SHA256_4WAY
static void scrypt_1024_1_1_256_12way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static bool scrypt_1024_1_1_256_12way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N,
int thrid )
{
uint32_t _ALIGN(128) tstate[12 * 8];
uint32_t _ALIGN(128) ostate[12 * 8];
@@ -612,43 +533,60 @@ static void scrypt_1024_1_1_256_12way(const uint32_t *input,
for (i = 0; i < 20; i++)
for (k = 0; k < 4; k++)
W[128 * j + 4 * i + k] = input[80 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
tstate[32 * j + 4 * i + k] = midstate[i];
HMAC_SHA256_80_init_4way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_4way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_4way(W + 128, tstate + 32, ostate + 32);
HMAC_SHA256_80_init_4way(W + 256, tstate + 64, ostate + 64);
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0);
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_4way(tstate + 32, ostate + 32, W + 128, W + 128);
PBKDF2_SHA256_80_128_4way(tstate + 64, ostate + 64, W + 256, W + 256);
for (j = 0; j < 3; j++)
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
X[128 * j + k * 32 + i] = W[128 * j + 4 * i + k];
scrypt_core_3way(X + 0 * 96, V, N);
scrypt_core_3way(X + 0 * 96, V, N);
scrypt_core_3way(X + 1 * 96, V, N);
scrypt_core_3way(X + 2 * 96, V, N);
scrypt_core_3way(X + 3 * 96, V, N);
for (j = 0; j < 3; j++)
if ( work_restart[thrid].restart ) return 0;
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 4; k++)
W[128 * j + 4 * i + k] = X[128 * j + k * 32 + i];
PBKDF2_SHA256_128_32_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_4way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_4way(tstate + 32, ostate + 32, W + 128, W + 128);
PBKDF2_SHA256_128_32_4way(tstate + 64, ostate + 64, W + 256, W + 256);
for (j = 0; j < 3; j++)
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 4; k++)
output[32 * j + k * 8 + i] = W[128 * j + 4 * i + k];
return 1;
}
#endif /* HAVE_SHA256_4WAY */
#endif /* HAVE_SCRYPT_3WAY */
#ifdef HAVE_SCRYPT_6WAY
static void scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad, int N)
static int scrypt_1024_1_1_256_24way( const uint32_t *input,
uint32_t *output, uint32_t *midstate,
unsigned char *scratchpad, int N, int thrid )
{
uint32_t _ALIGN(128) tstate[24 * 8];
uint32_t _ALIGN(128) ostate[24 * 8];
@@ -657,41 +595,60 @@ static void scrypt_1024_1_1_256_24way(const uint32_t *input,
uint32_t *V;
int i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
V = (uint32_t *)( ( (uintptr_t)(scratchpad) + 63 ) & ~ (uintptr_t)(63) );
for (j = 0; j < 3; j++)
for (i = 0; i < 20; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 20; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = input[8 * 20 * j + k * 20 + i];
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
tstate[8 * 8 * j + 8 * i + k] = midstate[i];
HMAC_SHA256_80_init_8way(W + 0, tstate + 0, ostate + 0);
HMAC_SHA256_80_init_8way(W + 256, tstate + 64, ostate + 64);
HMAC_SHA256_80_init_8way(W + 512, tstate + 128, ostate + 128);
PBKDF2_SHA256_80_128_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_80_128_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_80_128_8way(tstate + 128, ostate + 128, W + 512, W + 512);
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
HMAC_SHA256_80_init_8way( W + 0, tstate + 0, ostate + 0 );
HMAC_SHA256_80_init_8way( W + 256, tstate + 64, ostate + 64 );
HMAC_SHA256_80_init_8way( W + 512, tstate + 128, ostate + 128 );
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_80_128_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_80_128_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_80_128_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
if ( work_restart[thrid].restart ) return 0;
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
X[8 * 32 * j + k * 32 + i] = W[8 * 32 * j + 8 * i + k];
scrypt_core_6way(X + 0 * 32, V, N);
scrypt_core_6way(X + 6 * 32, V, N);
scrypt_core_6way(X + 12 * 32, V, N);
scrypt_core_6way(X + 18 * 32, V, N);
for (j = 0; j < 3; j++)
for (i = 0; i < 32; i++)
for (k = 0; k < 8; k++)
scrypt_core_6way( X + 0 * 32, V, N );
scrypt_core_6way( X + 6 * 32, V, N );
if ( work_restart[thrid].restart ) return 0;
scrypt_core_6way( X + 12 * 32, V, N );
scrypt_core_6way( X + 18 * 32, V, N );
if ( work_restart[thrid].restart ) return 0;
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 32; i++ )
for ( k = 0; k < 8; k++ )
W[8 * 32 * j + 8 * i + k] = X[8 * 32 * j + k * 32 + i];
PBKDF2_SHA256_128_32_8way(tstate + 0, ostate + 0, W + 0, W + 0);
PBKDF2_SHA256_128_32_8way(tstate + 64, ostate + 64, W + 256, W + 256);
PBKDF2_SHA256_128_32_8way(tstate + 128, ostate + 128, W + 512, W + 512);
for (j = 0; j < 3; j++)
for (i = 0; i < 8; i++)
for (k = 0; k < 8; k++)
PBKDF2_SHA256_128_32_8way( tstate + 0, ostate + 0, W + 0, W + 0 );
PBKDF2_SHA256_128_32_8way( tstate + 64, ostate + 64, W + 256, W + 256 );
PBKDF2_SHA256_128_32_8way( tstate + 128, ostate + 128, W + 512, W + 512 );
for ( j = 0; j < 3; j++ )
for ( i = 0; i < 8; i++ )
for ( k = 0; k < 8; k++ )
output[8 * 8 * j + k * 8 + i] = W[8 * 32 * j + 8 * i + k];
return 1;
}
#endif /* HAVE_SCRYPT_6WAY */
@@ -703,16 +660,18 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
uint32_t data[SCRYPT_MAX_WAYS * 20], hash[SCRYPT_MAX_WAYS * 8];
uint32_t midstate[8];
uint32_t n = pdata[19] - 1;
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
int throughput = scrypt_best_throughput();
int i;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
#ifdef HAVE_SHA256_4WAY
if (sha256_use_4way())
throughput *= 4;
#endif
// applog(LOG_INFO,"Scrypt thoughput %d",throughput);
for (i = 0; i < throughput; i++)
memcpy(data + i * 20, pdata, 80);
@@ -720,46 +679,50 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
sha256_transform(midstate, data, 0);
do {
bool rc = true;
for (i = 0; i < throughput; i++)
data[i * 20 + 19] = ++n;
#if defined(HAVE_SHA256_4WAY)
if (throughput == 4)
scrypt_1024_1_1_256_4way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_4way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_3WAY) && defined(HAVE_SHA256_4WAY)
if (throughput == 12)
scrypt_1024_1_1_256_12way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_12way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_6WAY)
if (throughput == 24)
scrypt_1024_1_1_256_24way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_24way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
#if defined(HAVE_SCRYPT_3WAY)
if (throughput == 3)
scrypt_1024_1_1_256_3way(data, hash, midstate,
scratchbuf, scratchbuf_size );
rc = scrypt_1024_1_1_256_3way(data, hash, midstate,
scratchbuf, scratchbuf_size, thr_id );
else
#endif
scrypt_1024_1_1_256(data, hash, midstate, scratchbuf,
scratchbuf_size );
rc = scrypt_1024_1_1_256(data, hash, midstate, scratchbuf,
scratchbuf_size, thr_id );
for (i = 0; i < throughput; i++) {
if (unlikely(hash[i * 8 + 7] <= Htarg && fulltest(hash + i * 8, ptarget))) {
if ( rc )
for ( i = 0; i < throughput; i++ )
{
if ( unlikely( valid_hash( hash + i * 8, ptarget ) ) )
{
pdata[19] = data[i * 20 + 19];
submit_solution( work, hash, mythr );
submit_solution( work, hash + i * 8, mythr );
}
}
} while (likely(n < max_nonce && !work_restart[thr_id].restart));
}
} while ( likely( ( n < ( max_nonce - throughput ) ) && !(*restart) ) );
*hashes_done = n - pdata[19] + 1;
*hashes_done = n - pdata[19];
pdata[19] = n;
return 0;
}
@@ -778,7 +741,6 @@ bool register_scrypt_algo( algo_gate_t* gate )
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
gate->scanhash = (void*)&scanhash_scrypt;
// gate->hash = (void*)&scrypt_1024_1_1_256_24way;
opt_target_factor = 65536.0;
if ( !opt_param_n )

View File

@@ -0,0 +1,440 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copywright 2020 JayDDee246@gmail.com
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
// HMAC 4-way SSE2
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
hmac_sha256_4way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_4way_context ctx;
hmac_sha256_4way_init( &ctx, K, Klen );
hmac_sha256_4way_update( &ctx, in, len );
hmac_sha256_4way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_4way_init( hmac_sha256_4way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*4] __attribute__ ((aligned (64)));
unsigned char khash[32*4] __attribute__ ((aligned (64)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_4way_init( &ctx->ictx );
sha256_4way_update( &ctx->ictx, K, Klen );
sha256_4way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_4way_init( &ctx->ictx );
memset( pad, 0x36, 64*4 );
for ( i = 0; i < Klen; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_4way_init( &ctx->octx );
memset( pad, 0x5c, 64*4 );
for ( i = 0; i < Klen/4; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
void
hmac_sha256_4way_update( hmac_sha256_4way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_4way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_4way_close( hmac_sha256_4way_context *ctx, void *digest )
{
unsigned char ihash[32*4] __attribute__ ((aligned (64)));
/* Finish the inner SHA256 operation. */
sha256_4way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_4way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_4way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_4way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*4];
uint8_t _ALIGN(128) U[32*4];
__m128i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_4way_init( &PShctx, passwd, passwdlen );
hmac_sha256_4way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_4way_context) );
hmac_sha256_4way_update( &hctx, &ivec, 4 );
hmac_sha256_4way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*4 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_4way_init( &hctx, passwd, passwdlen );
hmac_sha256_4way_update( &hctx, U, 32 );
hmac_sha256_4way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m128i( T, k ) = _mm_xor_si128( casti_m128i( T, k ),
casti_m128i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*4 ], T, clen*4 );
}
}
#if defined(__AVX2__)
// HMAC 8-way AVX2
void
hmac_sha256_8way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_8way_context ctx;
hmac_sha256_8way_init( &ctx, K, Klen );
hmac_sha256_8way_update( &ctx, in, len );
hmac_sha256_8way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_8way_init( hmac_sha256_8way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*8] __attribute__ ((aligned (128)));
unsigned char khash[32*8] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_8way_init( &ctx->ictx );
sha256_8way_update( &ctx->ictx, K, Klen );
sha256_8way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_8way_init( &ctx->ictx );
memset( pad, 0x36, 64*8);
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_8way_init( &ctx->octx );
memset( pad, 0x5c, 64*8 );
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_8way_update( hmac_sha256_8way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_8way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_8way_close( hmac_sha256_8way_context *ctx, void *digest )
{
unsigned char ihash[32*8] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_8way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_8way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_8way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_8way( uint8_t *buf, size_t dkLen, const uint8_t *passwd,
size_t passwdlen, const uint8_t *salt, size_t saltlen,
uint64_t c )
{
hmac_sha256_8way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*8];
uint8_t _ALIGN(128) U[32*8];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_8way_init( &PShctx, passwd, passwdlen );
// saltlen can be odd number of bytes
hmac_sha256_8way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
__m256i ivec = _mm256_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_8way_context) );
hmac_sha256_8way_update( &hctx, &ivec, 4 );
hmac_sha256_8way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*8 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_8way_init( &hctx, passwd, passwdlen );
hmac_sha256_8way_update( &hctx, U, 32 );
hmac_sha256_8way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m256i( T, k ) = _mm256_xor_si256( casti_m256i( T, k ),
casti_m256i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*8 ], T, clen*8 );
}
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// HMAC 16-way AVX512
void
hmac_sha256_16way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_16way_context ctx;
hmac_sha256_16way_init( &ctx, K, Klen );
hmac_sha256_16way_update( &ctx, in, len );
hmac_sha256_16way_close( &ctx, digest );
}
void
hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*16] __attribute__ ((aligned (128)));
unsigned char khash[32*16] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_16way_init( &ctx->ictx );
sha256_16way_update( &ctx->ictx, K, Klen );
sha256_16way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_16way_init( &ctx->ictx );
memset( pad, 0x36, 64*16 );
for ( i = 0; i < Klen; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_16way_init( &ctx->octx );
memset( pad, 0x5c, 64*16 );
for ( i = 0; i < Klen/4; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_16way_update( hmac_sha256_16way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_16way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_16way_close( hmac_sha256_16way_context *ctx, void *digest )
{
unsigned char ihash[32*16] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_16way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_16way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_16way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_16way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_16way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*16];
uint8_t _ALIGN(128) U[32*16];
__m512i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_16way_init( &PShctx, passwd, passwdlen );
hmac_sha256_16way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm512_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_16way_context) );
hmac_sha256_16way_update( &hctx, &ivec, 4 );
hmac_sha256_16way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*16 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_16way_init( &hctx, passwd, passwdlen );
hmac_sha256_16way_update( &hctx, U, 32 );
hmac_sha256_16way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m512i( T, k ) = _mm512_xor_si512( casti_m512i( T, k ),
casti_m512i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*16 ], T, clen*16 );
}
}
#endif // AVX512
#endif // AVX2

View File

@@ -0,0 +1,107 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copyright 2020 JayDDee@gmailcom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef HMAC_SHA256_4WAY_H__
#define HMAC_SHA256_4WAY_H__
// Tested only 8-way with null pers
#include <sys/types.h>
#include <stdint.h>
#include "simd-utils.h"
#include "sha-hash-4way.h"
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
sha256_4way_context octx;
} hmac_sha256_4way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_4way_init( hmac_sha256_4way_context *, const void *, size_t );
void hmac_sha256_4way_update( hmac_sha256_4way_context *, const void *,
size_t );
void hmac_sha256_4way_close( hmac_sha256_4way_context *, void* );
void hmac_sha256_4way_full( void*, const void *, size_t Klen, const void *,
size_t len );
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX2__)
typedef struct _hmac_sha256_8way_context
{
sha256_8way_context ictx;
sha256_8way_context octx;
} hmac_sha256_8way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_8way_init( hmac_sha256_8way_context *, const void *, size_t );
void hmac_sha256_8way_update( hmac_sha256_8way_context *, const void *,
size_t );
void hmac_sha256_8way_close( hmac_sha256_8way_context *, void* );
void hmac_sha256_8way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct _hmac_sha256_16way_context
{
sha256_16way_context ictx;
sha256_16way_context octx;
} hmac_sha256_16way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_16way_init( hmac_sha256_16way_context *,
const void *, size_t );
void hmac_sha256_16way_update( hmac_sha256_16way_context *, const void *,
size_t );
void hmac_sha256_16way_close( hmac_sha256_16way_context *, void* );
void hmac_sha256_16way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_16way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX512
#endif // AVX2
#endif // HMAC_SHA256_4WAY_H__

View File

@@ -81,16 +81,17 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x36;
memset( pad + Klen, 0x36, 64 - Klen );
SHA256_Update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init( &ctx->octx );
memset(pad, 0x5c, 64);
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x5c;
memset( pad + Klen, 0x5c, 64 - Klen );
SHA256_Update( &ctx->octx, pad, 64 );
}
@@ -161,7 +162,13 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */
for ( k = 0; k < 32; k++ )
// _mm256_xor_si256( *(__m256i*)T, *(__m256i*)U );
// _mm_xor_si128( ((__m128i*)T)[0], ((__m128i*)U)[0] );
// _mm_xor_si128( ((__m128i*)T)[1], ((__m128i*)U)[1] );
// for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
}

View File

@@ -58,6 +58,7 @@ void sha256_4way_init( sha256_4way_context *sc );
void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
#endif // SSE2
@@ -75,6 +76,7 @@ typedef struct {
void sha256_8way_init( sha256_8way_context *sc );
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len );
void sha256_8way_close( sha256_8way_context *sc, void *dst );
void sha256_8way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -92,6 +94,7 @@ typedef struct {
void sha256_16way_init( sha256_16way_context *sc );
void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len );
void sha256_16way_close( sha256_16way_context *sc, void *dst );
void sha256_16way_full( void *dst, const void *data, size_t len );
#endif // AVX512
@@ -110,6 +113,7 @@ void sha512_4way_init( sha512_4way_context *sc);
void sha512_4way_update( sha512_4way_context *sc, const void *data,
size_t len );
void sha512_4way_close( sha512_4way_context *sc, void *dst );
void sha512_4way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -128,6 +132,7 @@ void sha512_8way_init( sha512_8way_context *sc);
void sha512_8way_update( sha512_8way_context *sc, const void *data,
size_t len );
void sha512_8way_close( sha512_8way_context *sc, void *dst );
void sha512_8way_full( void *dst, const void *data, size_t len );
#endif // AVX512

View File

@@ -330,6 +330,14 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
mm128_block_bswap_32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
}
#if defined(__AVX2__)
// SHA-256 8 way
@@ -498,6 +506,10 @@ void sha256_8way_init( sha256_8way_context *sc )
*/
}
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -564,6 +576,13 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -791,6 +810,14 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
}
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__

View File

@@ -85,7 +85,7 @@ int scanhash_sha256q_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -173,7 +173,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -78,7 +78,7 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -161,7 +161,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -33,7 +33,7 @@
#include <stddef.h>
#include <string.h>
#ifdef __AES__
#if defined(__AES__)
#include "sph_shavite.h"
#include "simd-utils.h"

View File

@@ -35,6 +35,8 @@
#include "sph_shavite.h"
#if !defined(__AES__)
#ifdef __cplusplus
extern "C"{
#endif
@@ -1762,3 +1764,6 @@ sph_shavite512_sw_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst
#ifdef __cplusplus
}
#endif
#endif // !AES

View File

@@ -262,15 +262,9 @@ void sph_shavite384_close(void *cc, void *dst);
void sph_shavite384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
// Always define sw but only define aesni when available
// Define fptrs for aesni or sw, not both.
void sph_shavite512_sw_init(void *cc);
void sph_shavite512_sw(void *cc, const void *data, size_t len);
void sph_shavite512_sw_close(void *cc, void *dst);
void sph_shavite512_sw_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
//Don't call these directly from application code, use the macros below.
#ifdef __AES__
void sph_shavite512_aesni_init(void *cc);
void sph_shavite512_aesni(void *cc, const void *data, size_t len);
void sph_shavite512_aesni_close(void *cc, void *dst);
@@ -285,6 +279,13 @@ void sph_shavite512_aesni_addbits_and_close(
#else
void sph_shavite512_sw_init(void *cc);
void sph_shavite512_sw(void *cc, const void *data, size_t len);
void sph_shavite512_sw_close(void *cc, void *dst);
void sph_shavite512_sw_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define sph_shavite512_init sph_shavite512_sw_init
#define sph_shavite512 sph_shavite512_sw
#define sph_shavite512_close sph_shavite512_sw_close
@@ -293,6 +294,20 @@ void sph_shavite512_aesni_addbits_and_close(
#endif
// Use these macros from application code.
#define shavite512_context sph_shavite512_context
#define shavite512_init sph_shavite512_init
#define shavite512_update sph_shavite512
#define shavite512_close sph_shavite512_close
#define shavite512_full( cc, dst, data, len ) \
do{ \
shavite512_init( cc ); \
shavite512_update( cc, data, len ); \
shavite512_close( cc, dst ); \
}while(0)
#ifdef __cplusplus
}
#endif

View File

@@ -13,18 +13,18 @@
#if defined (SKEIN_8WAY)
static __thread skein512_8way_context skein512_8way_ctx
__attribute__ ((aligned (64)));
void skeinhash_8way( void *state, const void *input )
{
uint64_t vhash64[8*8] __attribute__ ((aligned (128)));
skein512_8way_context ctx_skein;
memcpy( &ctx_skein, &skein512_8way_ctx, sizeof( ctx_skein ) );
uint32_t vhash32[16*8] __attribute__ ((aligned (128)));
sha256_8way_context ctx_sha256;
skein512_8way_init( &ctx_skein );
skein512_8way_update( &ctx_skein, input, 80 );
skein512_8way_close( &ctx_skein, vhash64 );
skein512_8way_final16( &ctx_skein, vhash64, input + (64*8) );
rintrlv_8x64_8x32( vhash32, vhash64, 512 );
sha256_8way_init( &ctx_sha256 );
@@ -36,63 +36,70 @@ int scanhash_skein_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *hash_d7 = &(hash[7*8]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t targ_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
skein512_8way_prehash64( &skein512_8way_ctx, vdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
skeinhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane ] <= Htarg )
if ( unlikely( hash_d7[ lane ] <= targ_d7 ) && !bench )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart );
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (SKEIN_4WAY)
static __thread skein512_4way_context skein512_4way_ctx
__attribute__ ((aligned (64)));
void skeinhash_4way( void *state, const void *input )
{
uint64_t vhash64[8*4] __attribute__ ((aligned (128)));
skein512_4way_context ctx_skein;
memcpy( &ctx_skein, &skein512_4way_ctx, sizeof( ctx_skein ) );
#if defined(__SHA__)
uint32_t hash0[16] __attribute__ ((aligned (64)));
uint32_t hash1[16] __attribute__ ((aligned (64)));
uint32_t hash2[16] __attribute__ ((aligned (64)));
uint32_t hash3[16] __attribute__ ((aligned (64)));
SHA256_CTX ctx_sha256;
SHA256_CTX ctx_sha256;
#else
uint32_t vhash32[16*4] __attribute__ ((aligned (64)));
sha256_4way_context ctx_sha256;
#endif
skein512_4way_init( &ctx_skein );
skein512_4way_update( &ctx_skein, input, 80 );
skein512_4way_close( &ctx_skein, vhash64 );
skein512_4way_final16( &ctx_skein, vhash64, input + (64*4) );
#if defined(__SHA__)
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 512 );
@@ -127,38 +134,43 @@ int scanhash_skein_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hash_d7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t targ_d7 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_prehash64( &skein512_4way_ctx, vdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
skeinhash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane ] <= Htarg )
if ( unlikely( ( hash_d7[ lane ] <= targ_d7 ) && !bench ) )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart );
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -4,14 +4,16 @@
bool register_skein_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
#if defined (SKEIN_8WAY)
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->scanhash = (void*)&scanhash_skein_8way;
gate->hash = (void*)&skeinhash_8way;
#elif defined (SKEIN_4WAY)
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_skein_4way;
gate->hash = (void*)&skeinhash_4way;
#else
gate->optimizations = AVX2_OPT | AVX512_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_skein;
gate->hash = (void*)&skeinhash;
#endif

View File

@@ -654,6 +654,160 @@ skein_big_close_8way( skein512_8way_context *sc, unsigned ub, unsigned n,
memcpy_512( dst, buf, out_len >> 3 );
}
void skein512_8way_full( skein512_8way_context *sc, void *out, const void *data,
size_t len )
{
__m512i h0, h1, h2, h3, h4, h5, h6, h7;
__m512i *vdata = (__m512i*)data;
__m512i *buf = sc->buf;
size_t ptr = 0;
unsigned first;
uint64_t bcount = 0;
const int buf_size = 64; // 64 * _m256i
// Init
h0 = m512_const1_64( 0x4903ADFF749C51CE );
h1 = m512_const1_64( 0x0D95DE399746DF03 );
h2 = m512_const1_64( 0x8FD1934127C79BCE );
h3 = m512_const1_64( 0x9A255629FF352CB1 );
h4 = m512_const1_64( 0x5DB62599DF6CA7B0 );
h5 = m512_const1_64( 0xEABE394CA9D5C3F4 );
h6 = m512_const1_64( 0x991112C71A75B523 );
h7 = m512_const1_64( 0xAE18A40B660FCC33 );
// Update
if ( len <= buf_size - ptr )
{
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
}
else
{
first = ( bcount == 0 ) << 7;
do {
size_t clen;
if ( ptr == buf_size )
{
bcount ++;
UBI_BIG_8WAY( 96 + first, 0 );
first = 0;
ptr = 0;
}
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata += (clen>>3);
len -= clen;
} while ( len > 0 );
}
// Close
unsigned et;
memset_zero_512( buf + (ptr>>3), (buf_size - ptr) >> 3 );
et = 352 + ((bcount == 0) << 7);
UBI_BIG_8WAY( et, ptr );
memset_zero_512( buf, buf_size >> 3 );
bcount = 0;
UBI_BIG_8WAY( 510, 8 );
casti_m512i( out, 0 ) = h0;
casti_m512i( out, 1 ) = h1;
casti_m512i( out, 2 ) = h2;
casti_m512i( out, 3 ) = h3;
casti_m512i( out, 4 ) = h4;
casti_m512i( out, 5 ) = h5;
casti_m512i( out, 6 ) = h6;
casti_m512i( out, 7 ) = h7;
}
void
skein512_8way_prehash64( skein512_8way_context *sc, const void *data )
{
__m512i *vdata = (__m512*)data;
__m512i *buf = sc->buf;
buf[0] = vdata[0];
buf[1] = vdata[1];
buf[2] = vdata[2];
buf[3] = vdata[3];
buf[4] = vdata[4];
buf[5] = vdata[5];
buf[6] = vdata[6];
buf[7] = vdata[7];
register __m512i h0 = m512_const1_64( 0x4903ADFF749C51CE );
register __m512i h1 = m512_const1_64( 0x0D95DE399746DF03 );
register __m512i h2 = m512_const1_64( 0x8FD1934127C79BCE );
register __m512i h3 = m512_const1_64( 0x9A255629FF352CB1 );
register __m512i h4 = m512_const1_64( 0x5DB62599DF6CA7B0 );
register __m512i h5 = m512_const1_64( 0xEABE394CA9D5C3F4 );
register __m512i h6 = m512_const1_64( 0x991112C71A75B523 );
register __m512i h7 = m512_const1_64( 0xAE18A40B660FCC33 );
uint64_t bcount = 1;
UBI_BIG_8WAY( 224, 0 );
sc->h0 = h0;
sc->h1 = h1;
sc->h2 = h2;
sc->h3 = h3;
sc->h4 = h4;
sc->h5 = h5;
sc->h6 = h6;
sc->h7 = h7;
}
void
skein512_8way_final16( skein512_8way_context *sc, void *output,
const void *data )
{
__m512i *in = (__m512i*)data;
__m512i *buf = sc->buf;
__m512i *out = (__m512i*)output;
register __m512i h0 = sc->h0;
register __m512i h1 = sc->h1;
register __m512i h2 = sc->h2;
register __m512i h3 = sc->h3;
register __m512i h4 = sc->h4;
register __m512i h5 = sc->h5;
register __m512i h6 = sc->h6;
register __m512i h7 = sc->h7;
const __m512i zero = m512_zero;
buf[0] = in[0];
buf[1] = in[1];
buf[2] = zero;
buf[3] = zero;
buf[4] = zero;
buf[5] = zero;
buf[6] = zero;
buf[7] = zero;
uint64_t bcount = 1;
UBI_BIG_8WAY( 352, 16 );
buf[0] = zero;
buf[1] = zero;
bcount = 0;
UBI_BIG_8WAY( 510, 8 );
out[0] = h0;
out[1] = h1;
out[2] = h2;
out[3] = h3;
out[4] = h4;
out[5] = h5;
out[6] = h6;
out[7] = h7;
}
void
skein256_8way_update(void *cc, const void *data, size_t len)
{
@@ -709,6 +863,7 @@ void skein512_4way_init( skein512_4way_context *sc )
sc->ptr = 0;
}
// Do not use for 128 bt data length
static void
skein_big_core_4way( skein512_4way_context *sc, const void *data,
size_t len )
@@ -794,6 +949,157 @@ skein_big_close_4way( skein512_4way_context *sc, unsigned ub, unsigned n,
memcpy_256( dst, buf, out_len >> 3 );
}
void
skein512_4way_full( skein512_4way_context *sc, void *out, const void *data,
size_t len )
{
__m256i h0, h1, h2, h3, h4, h5, h6, h7;
__m256i *vdata = (__m256i*)data;
__m256i *buf = sc->buf;
size_t ptr = 0;
unsigned first;
const int buf_size = 64; // 64 * __m256i
uint64_t bcount = 0;
h0 = m256_const1_64( 0x4903ADFF749C51CE );
h1 = m256_const1_64( 0x0D95DE399746DF03 );
h2 = m256_const1_64( 0x8FD1934127C79BCE );
h3 = m256_const1_64( 0x9A255629FF352CB1 );
h4 = m256_const1_64( 0x5DB62599DF6CA7B0 );
h5 = m256_const1_64( 0xEABE394CA9D5C3F4 );
h6 = m256_const1_64( 0x991112C71A75B523 );
h7 = m256_const1_64( 0xAE18A40B660FCC33 );
// Update
if ( len <= buf_size - ptr )
{
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
}
else
{
first = ( bcount == 0 ) << 7;
do {
size_t clen;
if ( ptr == buf_size )
{
bcount ++;
UBI_BIG_4WAY( 96 + first, 0 );
first = 0;
ptr = 0;
}
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata += (clen>>3);
len -= clen;
} while ( len > 0 );
}
// Close
unsigned et;
memset_zero_256( buf + (ptr>>3), (buf_size - ptr) >> 3 );
et = 352 + ((bcount == 0) << 7);
UBI_BIG_4WAY( et, ptr );
memset_zero_256( buf, buf_size >> 3 );
bcount = 0;
UBI_BIG_4WAY( 510, 8 );
casti_m256i( out, 0 ) = h0;
casti_m256i( out, 1 ) = h1;
casti_m256i( out, 2 ) = h2;
casti_m256i( out, 3 ) = h3;
casti_m256i( out, 4 ) = h4;
casti_m256i( out, 5 ) = h5;
casti_m256i( out, 6 ) = h6;
casti_m256i( out, 7 ) = h7;
}
void
skein512_4way_prehash64( skein512_4way_context *sc, const void *data )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf = sc->buf;
buf[0] = vdata[0];
buf[1] = vdata[1];
buf[2] = vdata[2];
buf[3] = vdata[3];
buf[4] = vdata[4];
buf[5] = vdata[5];
buf[6] = vdata[6];
buf[7] = vdata[7];
register __m256i h0 = m256_const1_64( 0x4903ADFF749C51CE );
register __m256i h1 = m256_const1_64( 0x0D95DE399746DF03 );
register __m256i h2 = m256_const1_64( 0x8FD1934127C79BCE );
register __m256i h3 = m256_const1_64( 0x9A255629FF352CB1 );
register __m256i h4 = m256_const1_64( 0x5DB62599DF6CA7B0 );
register __m256i h5 = m256_const1_64( 0xEABE394CA9D5C3F4 );
register __m256i h6 = m256_const1_64( 0x991112C71A75B523 );
register __m256i h7 = m256_const1_64( 0xAE18A40B660FCC33 );
uint64_t bcount = 1;
UBI_BIG_4WAY( 224, 0 );
sc->h0 = h0;
sc->h1 = h1;
sc->h2 = h2;
sc->h3 = h3;
sc->h4 = h4;
sc->h5 = h5;
sc->h6 = h6;
sc->h7 = h7;
}
void
skein512_4way_final16( skein512_4way_context *sc, void *out, const void *data )
{
__m256i *vdata = (__m256i*)data;
__m256i *buf = sc->buf;
register __m256i h0 = sc->h0;
register __m256i h1 = sc->h1;
register __m256i h2 = sc->h2;
register __m256i h3 = sc->h3;
register __m256i h4 = sc->h4;
register __m256i h5 = sc->h5;
register __m256i h6 = sc->h6;
register __m256i h7 = sc->h7;
const __m256i zero = m256_zero;
buf[0] = vdata[0];
buf[1] = vdata[1];
buf[2] = zero;
buf[3] = zero;
buf[4] = zero;
buf[5] = zero;
buf[6] = zero;
buf[7] = zero;
uint64_t bcount = 1;
UBI_BIG_4WAY( 352, 16 );
buf[0] = zero;
buf[1] = zero;
bcount = 0;
UBI_BIG_4WAY( 510, 8 );
casti_m256i( out, 0 ) = h0;
casti_m256i( out, 1 ) = h1;
casti_m256i( out, 2 ) = h2;
casti_m256i( out, 3 ) = h3;
casti_m256i( out, 4 ) = h4;
casti_m256i( out, 5 ) = h5;
casti_m256i( out, 6 ) = h6;
casti_m256i( out, 7 ) = h7;
}
// Broken for 80 bytes, use prehash.
void
skein256_4way_update(void *cc, const void *data, size_t len)
{
@@ -806,6 +1112,9 @@ skein256_4way_close(void *cc, void *dst)
skein_big_close_4way(cc, 0, 0, dst, 32);
}
// Do not use with 128 bit data
void
skein512_4way_update(void *cc, const void *data, size_t len)
{

View File

@@ -63,10 +63,16 @@ typedef struct
typedef skein_8way_big_context skein512_8way_context;
typedef skein_8way_big_context skein256_8way_context;
void skein512_8way_full( skein512_8way_context *sc, void *out,
const void *data, size_t len );
void skein512_8way_init( skein512_8way_context *sc );
void skein512_8way_update( void *cc, const void *data, size_t len );
void skein512_8way_close( void *cc, void *dst );
void skein512_8way_prehash64( skein512_8way_context *sc, const void *data );
void skein512_8way_final16( skein512_8way_context *sc, void *out,
const void *data );
void skein256_8way_init( skein256_8way_context *sc );
void skein256_8way_update( void *cc, const void *data, size_t len );
void skein256_8way_close( void *cc, void *dst );
@@ -85,6 +91,8 @@ typedef skein_4way_big_context skein512_4way_context;
typedef skein_4way_big_context skein256_4way_context;
void skein512_4way_init( skein512_4way_context *sc );
void skein512_4way_full( skein512_4way_context *sc, void *out,
const void *data, size_t len );
void skein512_4way_update( void *cc, const void *data, size_t len );
void skein512_4way_close( void *cc, void *dst );
@@ -92,6 +100,10 @@ void skein256_4way_init( skein256_4way_context *sc );
void skein256_4way_update( void *cc, const void *data, size_t len );
void skein256_4way_close( void *cc, void *dst );
void skein512_4way_prehash64( skein512_4way_context *sc, const void *data );
void skein512_4way_final16( skein512_4way_context *sc, void *out,
const void *data );
#ifdef __cplusplus
}
#endif

View File

@@ -5,114 +5,126 @@
#if defined(SKEIN_8WAY)
static __thread skein512_8way_context skein512_8way_ctx
__attribute__ ((aligned (64)));
void skein2hash_8way( void *output, const void *input )
{
skein512_8way_context ctx;
uint64_t hash[16*8] __attribute__ ((aligned (128)));
skein512_8way_context ctx;
memcpy( &ctx, &skein512_8way_ctx, sizeof( ctx ) );
skein512_8way_init( &ctx );
skein512_8way_update( &ctx, input, 80 );
skein512_8way_close( &ctx, hash );
skein512_8way_init( &ctx );
skein512_8way_update( &ctx, hash, 64 );
skein512_8way_close( &ctx, output );
skein512_8way_final16( &ctx, hash, input + (64*8) );
skein512_8way_full( &ctx, output, hash, 64 );
}
int scanhash_skein2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint64_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]);
uint64_t *hashq3 = &(hash[3*8]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint64_t targq3 = ((uint64_t*)ptarget)[3];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
skein512_8way_context ctx;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
skein512_8way_prehash64( &ctx, vdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
skein2hash_8way( hash, vdata );
skein512_8way_final16( &ctx, hash, vdata + (16*8) );
skein512_8way_full( &ctx, hash, hash, 64 );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
if ( unlikely( hashq3[ lane ] <= targq3 && !bench ) )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart );
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(SKEIN_4WAY)
static __thread skein512_4way_context skein512_4way_ctx
__attribute__ ((aligned (64)));
void skein2hash_4way( void *output, const void *input )
{
skein512_4way_context ctx;
memcpy( &ctx, &skein512_4way_ctx, sizeof( ctx ) );
uint64_t hash[16*4] __attribute__ ((aligned (64)));
skein512_4way_init( &ctx );
skein512_4way_update( &ctx, input, 80 );
skein512_4way_close( &ctx, hash );
skein512_4way_init( &ctx );
skein512_4way_update( &ctx, hash, 64 );
skein512_4way_close( &ctx, output );
skein512_4way_final16( &ctx, hash, input + (64*4) );
skein512_4way_full( &ctx, output, hash, 64 );
}
int scanhash_skein2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint64_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[25]);
uint64_t *hash_q3 = &(hash[3*4]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint64_t targ_q3 = ((uint64_t*)ptarget)[3];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
skein512_4way_context ctx;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_prehash64( &ctx, vdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
skein2hash_4way( hash, vdata );
skein512_4way_final16( &ctx, hash, vdata + (16*4) );
skein512_4way_full( &ctx, hash, hash, 64 );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
if ( hash_q3[ lane ] <= targ_q3 )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < max_nonce) && !work_restart[thr_id].restart );
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -120,6 +120,13 @@ void sph_whirlpool(void *cc, const void *data, size_t len);
*/
void sph_whirlpool_close(void *cc, void *dst);
#define sph_whirlpool512_full( cc, dst, data, len ) \
do{ \
sph_whirlpool_init( cc ); \
sph_whirlpool( cc, data, len ); \
sph_whirlpool_close( cc, dst ); \
}while(0)
/**
* WHIRLPOOL-0 uses the same structure than plain WHIRLPOOL.
*/

View File

@@ -279,7 +279,7 @@ int scanhash_c11_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
@@ -459,7 +459,7 @@ int scanhash_c11_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -221,7 +221,7 @@ int scanhash_timetravel_4way( struct work *work, uint32_t max_nonce,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -256,7 +256,7 @@ int scanhash_timetravel10_4way( struct work *work,
&& !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -128,7 +128,7 @@ int scanhash_tribus_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart);
@@ -213,7 +213,7 @@ int scanhash_tribus_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart);

View File

@@ -279,7 +279,7 @@ int scanhash_x11_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -469,7 +469,7 @@ int scanhash_x11_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -269,7 +269,7 @@ int scanhash_x11evo_4way( struct work* work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -312,7 +312,7 @@ int scanhash_x11gost_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
@@ -498,7 +498,7 @@ int scanhash_x11gost_4way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -170,6 +170,9 @@ void x12_8way_hash( void *state, const void *input )
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhashA );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhashB );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
@@ -263,7 +266,7 @@ int scanhash_x12_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -363,6 +366,18 @@ void x12_4way_hash( void *state, const void *input )
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
@@ -431,7 +446,7 @@ int scanhash_x12_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -208,7 +208,7 @@ int scanhash_phi1612_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart );
@@ -251,8 +251,12 @@ void phi1612_4way_hash( void *state, const void *input )
memcpy( &ctx, &phi1612_4way_ctx, sizeof(phi1612_4way_ctx) );
// Skein parallel 4way
skein512_4way_update( &ctx.skein, input, 80 );
skein512_4way_close( &ctx.skein, vhash );
// skein 4way is broken for 80 bytes
// skein512_4way_update( &ctx.skein, input, 80 );
// skein512_4way_close( &ctx.skein, vhash );
skein512_4way_prehash64( &ctx.skein, input );
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
// JH
jh512_4way_update( &ctx.jh, vhash, 64 );
@@ -344,7 +348,7 @@ int scanhash_phi1612_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -35,8 +35,7 @@ void skunk_8way_hash( void *output, const void *input )
skunk_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &skunk_8way_ctx, sizeof(skunk_8way_ctx) );
skein512_8way_update( &ctx.skein, input, 80 );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_final16( &ctx.skein, vhash, input );
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash, 512 );
@@ -104,35 +103,35 @@ int scanhash_skunk_8way( struct work *work, uint32_t max_nonce,
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
__m512i *noncev = (__m512i*)vdata + 9;
const int thr_id = mythr->id;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
if ( opt_benchmark )
((uint32_t*)ptarget)[7] = 0x0cff;
if ( bench ) ptarget[7] = 0x0fff;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_prehash64( &skunk_8way_ctx.skein, vdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
skunk_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( unlikely( (hash+(i<<3))[7] <= Htarg ) )
if ( likely( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark ) )
if ( unlikely( valid_hash( hash+(i<<3), ptarget ) && !bench ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
pdata[19] = bswap_32( n+i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n +=8;
} while ( likely( ( n < max_nonce-8 ) && !(*restart) ) );
} while ( likely( ( n < last_nonce ) && !( *restart ) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -159,17 +158,16 @@ static __thread skunk_4way_ctx_holder skunk_4way_ctx;
void skunk_4way_hash( void *output, const void *input )
{
uint64_t vhash[8*4] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
skunk_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &skunk_4way_ctx, sizeof(skunk_4way_ctx) );
skein512_4way_update( &ctx.skein, input, 80 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*)hash0, 64 );
@@ -213,40 +211,40 @@ void skunk_4way_hash( void *output, const void *input )
int scanhash_skunk_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[4*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
volatile uint8_t *restart = &(work_restart[thr_id].restart);
__m256i *noncev = (__m256i*)vdata + 9;
const int thr_id = mythr->id;
volatile uint8_t *restart = &( work_restart[ thr_id ].restart );
const bool bench = opt_benchmark;
if ( opt_benchmark )
((uint32_t*)ptarget)[7] = 0x0cff;
if ( bench ) ptarget[7] = 0x0fff;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_prehash64( &skunk_4way_ctx.skein, vdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
skunk_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( (hash+(i<<3))[7] <= Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
if ( unlikely( valid_hash( hash+(i<<3), ptarget ) && !bench ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
pdata[19] = bswap_32( n + i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n +=4;
} while ( ( n < max_nonce ) && !(*restart) );
*hashes_done = n - first_nonce + 1;
} while ( likely( ( n < last_nonce ) && !( *restart ) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -319,7 +319,7 @@ int scanhash_x13_8way( struct work *work, uint32_t max_nonce,
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -531,7 +531,7 @@ int scanhash_x13_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -321,7 +321,7 @@ int scanhash_x13bcd_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -541,7 +541,7 @@ int scanhash_x13bcd_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -246,7 +246,7 @@ int scanhash_x13sm3_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );

View File

@@ -129,7 +129,7 @@ int scanhash_polytimos_4way( struct work *work, uint32_t max_nonce,
if( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;

View File

@@ -108,7 +108,7 @@ int scanhash_veltor_4way( struct work *work, uint32_t max_nonce,
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
n += 4;
} while ( ( n < max_nonce ) && !(*restart) );

View File

@@ -324,7 +324,7 @@ int scanhash_x14_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 8;
@@ -534,7 +534,7 @@ int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
n += 4;

View File

@@ -364,7 +364,7 @@ int scanhash_x15_8way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
submit_solution( work, hash, mythr );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
@@ -592,7 +592,7 @@ int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
submit_solution( work, hash, mythr );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );

View File

@@ -30,9 +30,6 @@
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
static void hex_getAlgoString(const uint32_t* prevblock, char *output)
{
char *sptr = output;
@@ -50,6 +47,7 @@ static void hex_getAlgoString(const uint32_t* prevblock, char *output)
*sptr = '\0';
}
/*
union _hex_context_overlay
{
#if defined(__AES__)
@@ -66,7 +64,7 @@ union _hex_context_overlay
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
@@ -75,18 +73,19 @@ union _hex_context_overlay
SHA512_CTX sha512;
};
typedef union _hex_context_overlay hex_context_overlay;
*/
static __thread hex_context_overlay hex_ctx;
static __thread x16r_context_overlay hex_ctx;
void hex_hash( void* output, const void* input )
int hex_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
hex_context_overlay ctx;
x16r_context_overlay ctx;
memcpy( &ctx, &hex_ctx, sizeof(ctx) );
void *in = (void*) input;
int size = 80;
char elem = hashOrder[0];
char elem = x16r_hash_order[0];
uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
for ( int i = 0; i < 16; i++ )
@@ -160,9 +159,7 @@ void hex_hash( void* output, const void* input )
}
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
shavite512_full( &ctx.shavite, hash, in, size );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
@@ -190,9 +187,7 @@ void hex_hash( void* output, const void* input )
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
sph_fugue512_full( &ctx.fugue, hash, in, size );
break;
case SHABAL:
if ( i == 0 )
@@ -206,13 +201,12 @@ void hex_hash( void* output, const void* input )
break;
case WHIRLPOOL:
if ( i == 0 )
sph_whirlpool( &ctx.whirlpool, in+64, 16 );
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool( &ctx.whirlpool, in+64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash );
}
sph_whirlpool_close( &ctx.whirlpool, hash );
else
sph_whirlpool512_full( &ctx.whirlpool, hash, in, size );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
@@ -220,11 +214,15 @@ void hex_hash( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
algo = (uint8_t)hash[0] % X16R_HASH_FUNC_COUNT;
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
return 1;
}
int scanhash_hex( struct work *work, uint32_t max_nonce,
@@ -235,7 +233,7 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
@@ -244,17 +242,18 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
mm128_bswap32_80( edata, pdata );
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = swab32(pdata[17]);
if ( s_ntime != ntime )
{
hex_getAlgoString( (const uint32_t*) (&edata[1]), hashOrder );
hex_getAlgoString( (const uint32_t*) (&edata[1]), x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
@@ -291,8 +290,7 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
hex_hash( hash32, edata );
if ( hex_hash( hash32, edata, thr_id ) );
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
be32enc( &pdata[19], nonce );

View File

@@ -80,7 +80,7 @@ void x16r_8way_prehash( void *vdata, void *pdata )
// Called by wrapper hash function to optionally continue hashing and
// convert to final hash.
void x16r_8way_hash_generic( void* output, const void* input )
int x16r_8way_hash_generic( void* output, const void* input, int thrid )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -287,30 +287,14 @@ void x16r_8way_hash_generic( void* output, const void* input )
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in4, size );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in5, size );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in6, size );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in7, size );
sph_shavite512_close( &ctx.shavite, hash7 );
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
shavite512_full( &ctx.shavite, hash4, in4, size );
shavite512_full( &ctx.shavite, hash5, in5, size );
shavite512_full( &ctx.shavite, hash6, in6, size );
shavite512_full( &ctx.shavite, hash7, in7, size );
#endif
break;
case SIMD:
@@ -363,30 +347,14 @@ void x16r_8way_hash_generic( void* output, const void* input )
hash7, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in4, size );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in5, size );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in6, size );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in7, size );
sph_fugue512_close( &ctx.fugue, hash7 );
sph_fugue512_full( &ctx.fugue, hash0, in0, size );
sph_fugue512_full( &ctx.fugue, hash1, in1, size );
sph_fugue512_full( &ctx.fugue, hash2, in2, size );
sph_fugue512_full( &ctx.fugue, hash3, in3, size );
sph_fugue512_full( &ctx.fugue, hash4, in4, size );
sph_fugue512_full( &ctx.fugue, hash5, in5, size );
sph_fugue512_full( &ctx.fugue, hash6, in6, size );
sph_fugue512_full( &ctx.fugue, hash7, in7, size );
break;
case SHABAL:
intrlv_8x32( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
@@ -431,30 +399,14 @@ void x16r_8way_hash_generic( void* output, const void* input )
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in4, size );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in5, size );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in6, size );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in7, size );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
sph_whirlpool512_full( &ctx.whirlpool, hash4, in4, size );
sph_whirlpool512_full( &ctx.whirlpool, hash5, in5, size );
sph_whirlpool512_full( &ctx.whirlpool, hash6, in6, size );
sph_whirlpool512_full( &ctx.whirlpool, hash7, in7, size );
}
break;
case SHA_512:
@@ -472,6 +424,9 @@ void x16r_8way_hash_generic( void* output, const void* input )
hash7, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
@@ -483,14 +438,17 @@ void x16r_8way_hash_generic( void* output, const void* input )
memcpy( output+320, hash5, 64 );
memcpy( output+384, hash6, 64 );
memcpy( output+448, hash7, 64 );
return 1;
}
// x16-r,-s,-rt wrapper called directly by scanhash to repackage 512 bit
// hash to 256 bit final hash.
void x16r_8way_hash( void* output, const void* input )
int x16r_8way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*8] __attribute__ ((aligned (128)));
x16r_8way_hash_generic( hash, input );
if ( !x16r_8way_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
@@ -500,7 +458,9 @@ void x16r_8way_hash( void* output, const void* input )
memcpy( output+160, hash+320, 32 );
memcpy( output+192, hash+384, 32 );
memcpy( output+224, hash+448, 32 );
}
return 1;
}
// x16r only
int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
@@ -540,13 +500,12 @@ int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_8way_hash( hash, vdata );
if( x16r_8way_hash( hash, vdata, thr_id ) );
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -576,8 +535,7 @@ void x16r_4way_prehash( void *vdata, void *pdata )
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x16r_ctx.skein );
skein512_4way_update( &x16r_ctx.skein, vdata, 64 );
skein512_4way_prehash64( &x16r_ctx.skein, vdata );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
@@ -614,7 +572,7 @@ void x16r_4way_prehash( void *vdata, void *pdata )
}
}
void x16r_4way_hash_generic( void* output, const void* input )
int x16r_4way_hash_generic( void* output, const void* input, int thrid )
{
uint32_t vhash[20*4] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -692,14 +650,12 @@ void x16r_4way_hash_generic( void* output, const void* input )
break;
case SKEIN:
if ( i == 0 )
skein512_4way_update( &ctx.skein, input + (64<<2), 16 );
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, size );
skein512_4way_full( &ctx.skein, vhash, vhash, size );
}
skein512_4way_close( &ctx.skein, vhash );
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case LUFFA:
@@ -755,18 +711,10 @@ void x16r_4way_hash_generic( void* output, const void* input )
}
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
@@ -799,18 +747,10 @@ void x16r_4way_hash_generic( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_full( &ctx.fugue, hash0, in0, size );
sph_fugue512_full( &ctx.fugue, hash1, in1, size );
sph_fugue512_full( &ctx.fugue, hash2, in2, size );
sph_fugue512_full( &ctx.fugue, hash3, in3, size );
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
@@ -841,18 +781,10 @@ void x16r_4way_hash_generic( void* output, const void* input )
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
}
break;
case SHA_512:
@@ -869,23 +801,31 @@ void x16r_4way_hash_generic( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
return 1;
}
void x16r_4way_hash( void* output, const void* input )
int x16r_4way_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64*4] __attribute__ ((aligned (64)));
x16r_4way_hash_generic( hash, input );
if ( !x16r_4way_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
return 1;
}
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
@@ -924,12 +864,12 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_4way_hash( hash, vdata );
if ( x16r_4way_hash( hash, vdata, thr_id ) );
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -121,7 +121,7 @@ union _x16r_8way_context_overlay
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
@@ -131,8 +131,8 @@ typedef union _x16r_8way_context_overlay x16r_8way_context_overlay;
extern __thread x16r_8way_context_overlay x16r_ctx;
void x16r_8way_prehash( void *, void * );
void x16r_8way_hash_generic( void *, const void * );
void x16r_8way_hash( void *, const void * );
int x16r_8way_hash_generic( void *, const void *, int );
int x16r_8way_hash( void *, const void *, int );
int scanhash_x16r_8way( struct work *, uint32_t ,
uint64_t *, struct thr_info * );
extern __thread x16r_8way_context_overlay x16r_ctx;
@@ -152,7 +152,7 @@ union _x16r_4way_context_overlay
luffa_2way_context luffa;
hashState_luffa luffa1;
cubehashParam cube;
sph_shavite512_context shavite;
shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
@@ -166,8 +166,8 @@ typedef union _x16r_4way_context_overlay x16r_4way_context_overlay;
extern __thread x16r_4way_context_overlay x16r_ctx;
void x16r_4way_prehash( void *, void * );
void x16r_4way_hash_generic( void *, const void * );
void x16r_4way_hash( void *, const void * );
int x16r_4way_hash_generic( void *, const void *, int );
int x16r_4way_hash( void *, const void *, int );
int scanhash_x16r_4way( struct work *, uint32_t,
uint64_t *, struct thr_info * );
extern __thread x16r_4way_context_overlay x16r_ctx;
@@ -191,7 +191,7 @@ union _x16r_context_overlay
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
@@ -205,26 +205,26 @@ typedef union _x16r_context_overlay x16r_context_overlay;
extern __thread x16r_context_overlay x16_ctx;
void x16r_prehash( void *, void * );
void x16r_hash_generic( void *, const void * );
void x16r_hash( void *, const void * );
int x16r_hash_generic( void *, const void *, int );
int x16r_hash( void *, const void *, int );
int scanhash_x16r( struct work *, uint32_t, uint64_t *, struct thr_info * );
// x16Rv2
#if defined(X16RV2_8WAY)
void x16rv2_8way_hash( void *state, const void *input );
int x16rv2_8way_hash( void *state, const void *input, int thrid );
int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X16RV2_4WAY)
void x16rv2_4way_hash( void *state, const void *input );
int x16rv2_4way_hash( void *state, const void *input, int thrid );
int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void x16rv2_hash( void *state, const void *input );
int x16rv2_hash( void *state, const void *input, int thr_id );
int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
@@ -254,21 +254,21 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
// x21s
#if defined(X16R_8WAY)
void x21s_8way_hash( void *state, const void *input );
int x21s_8way_hash( void *state, const void *input, int thrid );
int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_8way_thread_init();
#elif defined(X16R_4WAY)
void x21s_4way_hash( void *state, const void *input );
int x21s_4way_hash( void *state, const void *input, int thrid );
int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_4way_thread_init();
#else
void x21s_hash( void *state, const void *input );
int x21s_hash( void *state, const void *input, int thr_id );
int scanhash_x21s( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_thread_init();

View File

@@ -48,7 +48,7 @@ void x16r_prehash( void *edata, void *pdata )
}
}
void x16r_hash_generic( void* output, const void* input )
int x16r_hash_generic( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x16r_context_overlay ctx;
@@ -124,9 +124,7 @@ void x16r_hash_generic( void* output, const void* input )
(byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
shavite512_full( &ctx.shavite, hash, in, size );
break;
case SIMD:
simd_full( &ctx.simd, (BitSequence *)hash,
@@ -153,9 +151,7 @@ void x16r_hash_generic( void* output, const void* input )
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
sph_fugue512_full( &ctx.fugue, hash, in, size );
break;
case SHABAL:
if ( i == 0 )
@@ -169,13 +165,12 @@ void x16r_hash_generic( void* output, const void* input )
break;
case WHIRLPOOL:
if ( i == 0 )
sph_whirlpool( &ctx.whirlpool, in+64, 16 );
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool( &ctx.whirlpool, in+64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash );
}
sph_whirlpool_close( &ctx.whirlpool, hash );
else
sph_whirlpool512_full( &ctx.whirlpool, hash, in, size );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
@@ -183,18 +178,24 @@ void x16r_hash_generic( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
in = (void*) hash;
size = 64;
}
memcpy( output, hash, 64 );
return true;
}
void x16r_hash( void* output, const void* input )
int x16r_hash( void* output, const void* input, int thrid )
{
uint8_t hash[64] __attribute__ ((aligned (64)));
x16r_hash_generic( hash, input );
if ( !x16r_hash_generic( hash, input, thrid ) )
return 0;
memcpy( output, hash, 32 );
memcpy( output, hash, 32 );
return 1;
}
int scanhash_x16r( struct work *work, uint32_t max_nonce,
@@ -228,8 +229,7 @@ int scanhash_x16r( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( x16r_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );
@@ -238,7 +238,7 @@ int scanhash_x16r( struct work *work, uint32_t max_nonce,
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

View File

@@ -41,13 +41,12 @@ int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_8way_hash( hash, vdata );
if ( x16r_8way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -95,12 +94,12 @@ int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_4way_hash( hash, vdata );
if ( x16r_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -36,8 +36,7 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( x16r_hash( hash32, edata, thr_id ) )
if ( valid_hash( hash32, ptarget ) && !bench )
{
pdata[19] = bswap_32( nonce );
@@ -46,7 +45,7 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

View File

@@ -35,9 +35,6 @@
#if defined (X16RV2_8WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rv2_8way_context_overlay
{
blake512_8way_context blake;
@@ -60,7 +57,7 @@ union _x16rv2_8way_context_overlay
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
@@ -68,7 +65,7 @@ union _x16rv2_8way_context_overlay
typedef union _x16rv2_8way_context_overlay x16rv2_8way_context_overlay;
static __thread x16rv2_8way_context_overlay x16rv2_ctx;
void x16rv2_8way_hash( void* output, const void* input )
int x16rv2_8way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[24*8] __attribute__ ((aligned (128)));
uint32_t hash0[24] __attribute__ ((aligned (64)));
@@ -96,7 +93,7 @@ void x16rv2_8way_hash( void* output, const void* input )
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -374,30 +371,14 @@ void x16rv2_8way_hash( void* output, const void* input )
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in4, size );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in5, size );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in6, size );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in7, size );
sph_shavite512_close( &ctx.shavite, hash7 );
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
shavite512_full( &ctx.shavite, hash4, in4, size );
shavite512_full( &ctx.shavite, hash5, in5, size );
shavite512_full( &ctx.shavite, hash6, in6, size );
shavite512_full( &ctx.shavite, hash7, in7, size );
#endif
break;
case SIMD:
@@ -451,30 +432,14 @@ void x16rv2_8way_hash( void* output, const void* input )
hash7, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in4, size );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in5, size );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in6, size );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in7, size );
sph_fugue512_close( &ctx.fugue, hash7 );
sph_fugue512_full( &ctx.fugue, hash0, in0, size );
sph_fugue512_full( &ctx.fugue, hash1, in1, size );
sph_fugue512_full( &ctx.fugue, hash2, in2, size );
sph_fugue512_full( &ctx.fugue, hash3, in3, size );
sph_fugue512_full( &ctx.fugue, hash4, in4, size );
sph_fugue512_full( &ctx.fugue, hash5, in5, size );
sph_fugue512_full( &ctx.fugue, hash6, in6, size );
sph_fugue512_full( &ctx.fugue, hash7, in7, size );
break;
case SHABAL:
intrlv_8x32( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
@@ -519,30 +484,14 @@ void x16rv2_8way_hash( void* output, const void* input )
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in4, size );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in5, size );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in6, size );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in7, size );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
sph_whirlpool512_full( &ctx.whirlpool, hash4, in4, size );
sph_whirlpool512_full( &ctx.whirlpool, hash5, in5, size );
sph_whirlpool512_full( &ctx.whirlpool, hash6, in6, size );
sph_whirlpool512_full( &ctx.whirlpool, hash7, in7, size );
}
break;
case SHA_512:
@@ -614,6 +563,9 @@ void x16rv2_8way_hash( void* output, const void* input )
hash7, vhash );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
@@ -625,6 +577,7 @@ void x16rv2_8way_hash( void* output, const void* input )
memcpy( output+160, hash5, 32 );
memcpy( output+192, hash6, 32 );
memcpy( output+224, hash7, 32 );
return 1;
}
int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
@@ -651,17 +604,19 @@ int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
const uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
@@ -718,13 +673,12 @@ int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16rv2_8way_hash( hash, vdata );
if ( x16rv2_8way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
@@ -737,9 +691,6 @@ int scanhash_x16rv2_8way( struct work *work, uint32_t max_nonce,
#elif defined (X16RV2_4WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rv2_4way_context_overlay
{
blake512_4way_context blake;
@@ -751,7 +702,7 @@ union _x16rv2_4way_context_overlay
keccak512_4way_context keccak;
luffa_2way_context luffa;
cubehashParam cube;
sph_shavite512_context shavite;
shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
@@ -770,7 +721,7 @@ inline void padtiger512( uint32_t* hash )
for ( int i = 6; i < 16; i++ ) hash[i] = 0;
}
void x16rv2_4way_hash( void* output, const void* input )
int x16rv2_4way_hash( void* output, const void* input, int thrid )
{
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
@@ -789,7 +740,7 @@ void x16rv2_4way_hash( void* output, const void* input )
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -835,47 +786,47 @@ void x16rv2_4way_hash( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case KECCAK:
if ( i == 0 )
{
sph_tiger( &ctx.tiger, in0 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash0 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in1 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash1 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in2 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash2 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in3 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash3 );
}
else
{
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in0, size );
sph_tiger_close( &ctx.tiger, hash0 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in1, size );
sph_tiger_close( &ctx.tiger, hash1 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in2, size );
sph_tiger_close( &ctx.tiger, hash2 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in3, size );
sph_tiger_close( &ctx.tiger, hash3 );
}
for ( int i = (24/4); i < (64/4); i++ )
if ( i == 0 )
{
sph_tiger( &ctx.tiger, in0 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash0 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in1 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash1 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in2 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash2 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in3 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash3 );
}
else
{
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in0, size );
sph_tiger_close( &ctx.tiger, hash0 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in1, size );
sph_tiger_close( &ctx.tiger, hash1 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in2, size );
sph_tiger_close( &ctx.tiger, hash2 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in3, size );
sph_tiger_close( &ctx.tiger, hash3 );
}
for ( int i = (24/4); i < (64/4); i++ )
hash0[i] = hash1[i] = hash2[i] = hash3[i] = 0;
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
keccak512_4way_init( &ctx.keccak );
keccak512_4way_update( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case SKEIN:
if ( i == 0 )
skein512_4way_update( &ctx.skein, input + (64<<2), 16 );
skein512_4way_final16( &ctx.skein, vhash, input + (64*4) );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
@@ -886,46 +837,46 @@ void x16rv2_4way_hash( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case LUFFA:
if ( i == 0 )
{
sph_tiger( &ctx.tiger, in0 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash0 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in1 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash1 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in2 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash2 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in3 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash3 );
}
else
{
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in0, size );
sph_tiger_close( &ctx.tiger, hash0 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in1, size );
sph_tiger_close( &ctx.tiger, hash1 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in2, size );
sph_tiger_close( &ctx.tiger, hash2 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in3, size );
sph_tiger_close( &ctx.tiger, hash3 );
}
for ( int i = (24/4); i < (64/4); i++ )
if ( i == 0 )
{
sph_tiger( &ctx.tiger, in0 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash0 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in1 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash1 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in2 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash2 );
memcpy( &ctx, &x16rv2_ctx, sizeof(ctx) );
sph_tiger( &ctx.tiger, in3 + 64, 16 );
sph_tiger_close( &ctx.tiger, hash3 );
}
else
{
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in0, size );
sph_tiger_close( &ctx.tiger, hash0 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in1, size );
sph_tiger_close( &ctx.tiger, hash1 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in2, size );
sph_tiger_close( &ctx.tiger, hash2 );
sph_tiger_init( &ctx.tiger );
sph_tiger( &ctx.tiger, in3, size );
sph_tiger_close( &ctx.tiger, hash3 );
}
for ( int i = (24/4); i < (64/4); i++ )
hash0[i] = hash1[i] = hash2[i] = hash3[i] = 0;
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, hash2, hash3, 512 );
luffa_2way_init( &ctx.luffa, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case CUBEHASH:
if ( i == 0 )
@@ -959,18 +910,10 @@ void x16rv2_4way_hash( void* output, const void* input )
}
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
shavite512_full( &ctx.shavite, hash0, in0, size );
shavite512_full( &ctx.shavite, hash1, in1, size );
shavite512_full( &ctx.shavite, hash2, in2, size );
shavite512_full( &ctx.shavite, hash3, in3, size );
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
@@ -1003,18 +946,10 @@ void x16rv2_4way_hash( void* output, const void* input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_full( &ctx.fugue, hash0, in0, size );
sph_fugue512_full( &ctx.fugue, hash1, in1, size );
sph_fugue512_full( &ctx.fugue, hash2, in2, size );
sph_fugue512_full( &ctx.fugue, hash3, in3, size );
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
@@ -1045,18 +980,10 @@ void x16rv2_4way_hash( void* output, const void* input )
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, in0, size );
sph_whirlpool512_full( &ctx.whirlpool, hash1, in1, size );
sph_whirlpool512_full( &ctx.whirlpool, hash2, in2, size );
sph_whirlpool512_full( &ctx.whirlpool, hash3, in3, size );
}
break;
case SHA_512:
@@ -1099,12 +1026,16 @@ void x16rv2_4way_hash( void* output, const void* input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
return 1;
}
int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
@@ -1121,7 +1052,7 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
__m256i *noncev = (__m256i*)vdata + 9;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
@@ -1130,17 +1061,19 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
const uint32_t ntime = bswap_32(pdata[17]);
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
@@ -1159,8 +1092,7 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x16rv2_ctx.skein );
skein512_4way_update( &x16rv2_ctx.skein, vdata, 64 );
skein512_4way_prehash64( &x16r_ctx.skein, vdata );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
@@ -1194,12 +1126,12 @@ int scanhash_x16rv2_4way( struct work *work, uint32_t max_nonce,
do
{
x16rv2_4way_hash( hash, vdata );
if ( x16rv2_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -34,7 +34,6 @@
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rv2_context_overlay
{
@@ -52,7 +51,7 @@ union _x16rv2_context_overlay
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
@@ -68,22 +67,16 @@ inline void padtiger512(uint32_t* hash) {
for (int i = (24/4); i < (64/4); i++) hash[i] = 0;
}
void x16rv2_hash( void* output, const void* input )
int x16rv2_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x16rv2_context_overlay ctx;
void *in = (void*) input;
int size = 80;
/*
if ( s_ntime == UINT32_MAX )
{
const uint8_t* in8 = (uint8_t*) input;
x16_r_s_getAlgoString( &in8[4], hashOrder );
}
*/
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -143,9 +136,7 @@ void x16rv2_hash( void* output, const void* input )
(const byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
shavite512_full( &ctx.shavite, hash, in, size );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
@@ -169,9 +160,7 @@ void x16rv2_hash( void* output, const void* input )
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
sph_fugue512_full( &ctx.fugue, hash, in, size );
break;
case SHABAL:
sph_shabal512_init( &ctx.shabal );
@@ -179,9 +168,7 @@ void x16rv2_hash( void* output, const void* input )
sph_shabal512_close( &ctx.shabal, hash );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool_close( &ctx.whirlpool, hash );
sph_whirlpool512_full( &ctx.whirlpool, hash, in, size );
break;
case SHA_512:
sph_tiger_init( &ctx.tiger );
@@ -193,58 +180,61 @@ void x16rv2_hash( void* output, const void* input )
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
if ( work_restart[thrid].restart ) return 0;
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
return 1;
}
int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
static __thread uint32_t s_ntime = UINT32_MAX;
if ( s_ntime != pdata[17] )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
x16_r_s_getAlgoString( (const uint8_t*) (&edata[1]), x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_DEBUG, "hash order %s (%08x)",
x16r_hash_order, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
if ( bench ) ptarget[7] = 0x0cff;
do
{
be32enc( &endiandata[19], nonce );
x16rv2_hash( hash32, endiandata );
if ( hash32[7] <= Htarg )
if (fulltest( hash32, ptarget ) && !opt_benchmark )
edata[19] = nonce;
if ( x16rv2_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash32, mythr );
}
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

View File

@@ -30,7 +30,7 @@ union _x21s_8way_context_overlay
typedef union _x21s_8way_context_overlay x21s_8way_context_overlay;
void x21s_8way_hash( void* output, const void* input )
int x21s_8way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint8_t shash[64*8] __attribute__ ((aligned (64)));
@@ -44,7 +44,8 @@ void x21s_8way_hash( void* output, const void* input )
uint32_t *hash7 = (uint32_t*)( shash+448 );
x21s_8way_context_overlay ctx;
x16r_8way_hash_generic( shash, input );
if ( !x16r_8way_hash_generic( shash, input, thrid ) )
return 0;
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
@@ -124,6 +125,8 @@ void x21s_8way_hash( void* output, const void* input )
sha256_8way_init( &ctx.sha256 );
sha256_8way_update( &ctx.sha256, vhash, 64 );
sha256_8way_close( &ctx.sha256, output );
return 1;
}
int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
@@ -166,8 +169,7 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_8way_hash( hash, vdata );
if ( x21s_8way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[lane] <= Htarg ) )
{
@@ -175,7 +177,7 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -215,7 +217,7 @@ union _x21s_4way_context_overlay
typedef union _x21s_4way_context_overlay x21s_4way_context_overlay;
void x21s_4way_hash( void* output, const void* input )
int x21s_4way_hash( void* output, const void* input, int thrid )
{
uint32_t vhash[16*4] __attribute__ ((aligned (64)));
uint8_t shash[64*4] __attribute__ ((aligned (64)));
@@ -225,8 +227,9 @@ void x21s_4way_hash( void* output, const void* input )
uint32_t *hash2 = (uint32_t*)( shash+128 );
uint32_t *hash3 = (uint32_t*)( shash+192 );
x16r_4way_hash_generic( shash, input );
if ( !x16r_4way_hash_generic( shash, input, thrid ) )
return 0;
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
haval256_5_4way_init( &ctx.haval );
@@ -299,6 +302,8 @@ void x21s_4way_hash( void* output, const void* input )
dintrlv_4x32( output, output+32, output+64,output+96, vhash, 256 );
#endif
return 1;
}
int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
@@ -337,12 +342,12 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_4way_hash( hash, vdata );
if ( x21s_4way_hash( hash, vdata, thr_id ) )
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n+i );
submit_lane_solution( work, hash+(i<<3), mythr, i );
submit_solution( work, hash+(i<<3), mythr );
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );

View File

@@ -27,12 +27,13 @@ union _x21s_context_overlay
};
typedef union _x21s_context_overlay x21s_context_overlay;
void x21s_hash( void* output, const void* input )
int x21s_hash( void* output, const void* input, int thrid )
{
uint32_t _ALIGN(128) hash[16];
x21s_context_overlay ctx;
x16r_hash_generic( hash, input );
if ( !x16r_hash_generic( hash, input, thrid ) )
return 0;
sph_haval256_5_init( &ctx.haval );
sph_haval256_5( &ctx.haval, (const void*) hash, 64) ;
@@ -54,6 +55,8 @@ void x21s_hash( void* output, const void* input )
SHA256_Final( (unsigned char*)hash, &ctx.sha256 );
memcpy( output, hash, 32 );
return 1;
}
int scanhash_x21s( struct work *work, uint32_t max_nonce,
@@ -87,8 +90,7 @@ int scanhash_x21s( struct work *work, uint32_t max_nonce,
do
{
edata[19] = nonce;
x21s_hash( hash32, edata );
if ( x21s_hash( hash32, edata, thr_id ) )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( nonce );
@@ -97,7 +99,7 @@ int scanhash_x21s( struct work *work, uint32_t max_nonce,
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@@ -4,14 +4,14 @@ bool register_sonoa_algo( algo_gate_t* gate )
{
#if defined (SONOA_8WAY)
gate->scanhash = (void*)&scanhash_sonoa_8way;
gate->hash = (void*)&sonoa_8way_hash;
// gate->hash = (void*)&sonoa_8way_hash;
#elif defined (SONOA_4WAY)
gate->scanhash = (void*)&scanhash_sonoa_4way;
gate->hash = (void*)&sonoa_4way_hash;
// gate->hash = (void*)&sonoa_4way_hash;
#else
init_sonoa_ctx();
gate->scanhash = (void*)&scanhash_sonoa;
gate->hash = (void*)&sonoa_hash;
// gate->hash = (void*)&sonoa_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
return true;

View File

@@ -14,19 +14,19 @@ bool register_sonoa_algo( algo_gate_t* gate );
#if defined(SONOA_8WAY)
void sonoa_8way_hash( void *state, const void *input );
int sonoa_8way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(SONOA_4WAY)
void sonoa_4way_hash( void *state, const void *input );
int sonoa_4way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void sonoa_hash( void *state, const void *input );
int sonoa_hash( void *state, const void *input, int thrid );
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_sonoa_ctx();

View File

@@ -83,27 +83,27 @@ void init_sonoa_ctx()
sph_haval256_5_init(&sonoa_ctx.haval);
};
void sonoa_hash( void *state, const void *input )
int sonoa_hash( void *state, const void *input, int thrid )
{
uint8_t hash[128] __attribute__ ((aligned (64)));
sonoa_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sonoa_ctx, sizeof(sonoa_ctx) );
sonoa_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sonoa_ctx, sizeof(sonoa_ctx) );
sph_blake512(&ctx.blake, input, 80);
sph_blake512(&ctx.blake, input, 80);
sph_blake512_close(&ctx.blake, hash);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512(&ctx.skein, hash, 64);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512(&ctx.jh, hash, 64);
@@ -112,510 +112,489 @@ void sonoa_hash( void *state, const void *input )
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
update_final_sd( &ctx.simd, (BitSequence *)hash,
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
update_final_echo ( &ctx.echo, (BitSequence *)hash,
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_close(&ctx.shabal, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_init(&ctx.groestl );
sph_groestl512(&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_skein512_init( &ctx.skein);
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_jh512_init( &ctx.jh);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_keccak512_init( &ctx.keccak );
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
sph_shavite512_init( &ctx.shavite );
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
sph_echo512_init( &ctx.echo );
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_fugue512_init( &ctx.fugue );
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_shabal512_init( &ctx.shabal );
sph_shabal512(&ctx.shabal, hash, 64);
sph_shabal512_close(&ctx.shabal, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, 64 );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_haval256_5(&ctx.haval,(const void*) hash, 64);
sph_haval256_5_close(&ctx.haval, hash);
sph_haval256_5(&ctx.haval,(const void*) hash, 64);
sph_haval256_5_close(&ctx.haval, hash);
memcpy(state, hash, 32);
return 1;
}
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = pdata[19] - 1;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
uint64_t htmax[] =
mm128_bswap32_80( edata, pdata );
do
{
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] =
{
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
for ( int m = 0; m < 6; m++ ) if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
edata[19] = n;
if ( sonoa_hash( hash64, edata, thr_id ) )
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = ++n;
be32enc(&endiandata[19], n);
sonoa_hash(hash32, endiandata);
if ( !( hash32[7] & mask ) )
if ( fulltest( hash32, ptarget ) && !opt_benchmark )
submit_solution( work, hash32, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
break;
}
*hashes_done = n - first_nonce + 1;
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -74,9 +74,7 @@ void x17_8way_hash( void *state, const void *input )
blake512_8way_full( &ctx.blake, vhash, input, 80 );
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
#if defined(__VAES__)
@@ -106,9 +104,7 @@ void x17_8way_hash( void *state, const void *input )
#endif
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, 64 );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, 64 );
@@ -136,30 +132,14 @@ void x17_8way_hash( void *state, const void *input )
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhashA );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhashB );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash4, 64 );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash5, 64 );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash6, 64 );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash7, 64 );
sph_shavite512_close( &ctx.shavite, hash7 );
shavite512_full( &ctx.shavite, hash0, hash0, 64 );
shavite512_full( &ctx.shavite, hash1, hash1, 64 );
shavite512_full( &ctx.shavite, hash2, hash2, 64 );
shavite512_full( &ctx.shavite, hash3, hash3, 64 );
shavite512_full( &ctx.shavite, hash4, hash4, 64 );
shavite512_full( &ctx.shavite, hash5, hash5, 64 );
shavite512_full( &ctx.shavite, hash6, hash6, 64 );
shavite512_full( &ctx.shavite, hash7, hash7, 64 );
intrlv_4x128_512( vhashA, hash0, hash1, hash2, hash3 );
intrlv_4x128_512( vhashB, hash4, hash5, hash6, hash7 );
@@ -210,30 +190,14 @@ void x17_8way_hash( void *state, const void *input )
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash4, 64 );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash5, 64 );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash6, 64 );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash7, 64 );
sph_fugue512_close( &ctx.fugue, hash7 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, 64 );
sph_fugue512_full( &ctx.fugue, hash1, hash1, 64 );
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
sph_fugue512_full( &ctx.fugue, hash4, hash4, 64 );
sph_fugue512_full( &ctx.fugue, hash5, hash5, 64 );
sph_fugue512_full( &ctx.fugue, hash6, hash6, 64 );
sph_fugue512_full( &ctx.fugue, hash7, hash7, 64 );
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
@@ -245,30 +209,14 @@ void x17_8way_hash( void *state, const void *input )
dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash4, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash5, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash6, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash7, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash4, hash4, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash5, hash5, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, 64 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
@@ -287,18 +235,18 @@ void x17_8way_hash( void *state, const void *input )
int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t hash32[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *hash32_d7 = &(hash32[7*8]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
__m512i *noncev = (__m512i*)vdata + 9;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t targ32_d7 = ptarget[7];
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
@@ -307,16 +255,16 @@ int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x17_8way_hash( hash, vdata );
x17_8way_hash( hash32, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( ( hash7[ lane ] <= Htarg ) && !bench ) )
if ( unlikely( ( hash32_d7[ lane ] <= targ32_d7 ) && !bench ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
extr_lane_8x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -378,9 +326,7 @@ void x17_4way_hash( void *state, const void *input )
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, 64 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, 64 );
@@ -424,18 +370,10 @@ void x17_4way_hash( void *state, const void *input )
dintrlv_4x64_512( hash0, hash1, hash2, hash3, vhash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, 64 );
sph_fugue512_full( &ctx.fugue, hash1, hash1, 64 );
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
intrlv_4x32_512( vhash, hash0, hash1, hash2, hash3 );
@@ -445,18 +383,10 @@ void x17_4way_hash( void *state, const void *input )
dintrlv_4x32_512( hash0, hash1, hash2, hash3, vhash );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -474,18 +404,18 @@ void x17_4way_hash( void *state, const void *input )
int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t hash32[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t *hash32_d7 = &(hash32[ 7*4 ]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce -4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t targ32_d7 = ptarget[7];
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
@@ -493,16 +423,16 @@ int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x17_4way_hash( hash, vdata );
x17_4way_hash( hash32, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash7[ lane ] <= Htarg && !bench ) )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 && !bench ) )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
extr_lane_4x32( lane_hash, hash32, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -169,8 +169,8 @@ int scanhash_x17( struct work *work, uint32_t max_nonce,
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
} while ( n < max_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -76,9 +76,7 @@ void xevan_8way_hash( void *output, const void *input )
blake512_8way_full( &ctx.blake, vhash, input, 80 );
memset( &vhash[8<<3], 0, 64<<3 );
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, dataLen );
bmw512_8way_close( &ctx.bmw, vhash );
bmw512_8way_full( &ctx.bmw, vhash, vhash, dataLen );
#if defined(__VAES__)
@@ -108,9 +106,7 @@ void xevan_8way_hash( void *output, const void *input )
#endif
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, dataLen );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, dataLen );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, dataLen );
@@ -138,30 +134,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, dataLen<<3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash0, dataLen );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash1, dataLen );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash2, dataLen );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash3, dataLen );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash4, dataLen );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash5, dataLen );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash6, dataLen );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash7, dataLen );
sph_shavite512_close( &ctx.shavite, hash7 );
shavite512_full( &ctx.shavite, hash0, hash0, dataLen );
shavite512_full( &ctx.shavite, hash1, hash1, dataLen );
shavite512_full( &ctx.shavite, hash2, hash2, dataLen );
shavite512_full( &ctx.shavite, hash3, hash3, dataLen );
shavite512_full( &ctx.shavite, hash4, hash4, dataLen );
shavite512_full( &ctx.shavite, hash5, hash5, dataLen );
shavite512_full( &ctx.shavite, hash6, hash6, dataLen );
shavite512_full( &ctx.shavite, hash7, hash7, dataLen );
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, dataLen<<3 );
@@ -212,30 +192,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash4, dataLen );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash5, dataLen );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash6, dataLen );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash7, dataLen );
sph_fugue512_close( &ctx.fugue, hash7 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
sph_fugue512_full( &ctx.fugue, hash4, hash4, dataLen );
sph_fugue512_full( &ctx.fugue, hash5, hash5, dataLen );
sph_fugue512_full( &ctx.fugue, hash6, hash6, dataLen );
sph_fugue512_full( &ctx.fugue, hash7, hash7, dataLen );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, dataLen<<3 );
@@ -247,30 +211,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, dataLen<<3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash4, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash5, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash6, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash7, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash4, hash4, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash5, hash5, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, dataLen );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, dataLen<<3 );
@@ -291,9 +239,7 @@ void xevan_8way_hash( void *output, const void *input )
blake512_8way_full( &ctx.blake, vhash, vhash, dataLen );
bmw512_8way_init( &ctx.bmw );
bmw512_8way_update( &ctx.bmw, vhash, dataLen );
bmw512_8way_close( &ctx.bmw, vhash );
bmw512_8way_full( &ctx.bmw, vhash, vhash, dataLen );
#if defined(__VAES__)
@@ -323,9 +269,7 @@ void xevan_8way_hash( void *output, const void *input )
#endif
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, dataLen );
skein512_8way_close( &ctx.skein, vhash );
skein512_8way_full( &ctx.skein, vhash, vhash, dataLen );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, dataLen );
@@ -353,30 +297,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, dataLen<<3 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, dataLen<<3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash0, dataLen );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash1, dataLen );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash2, dataLen );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash3, dataLen );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash4, dataLen );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash5, dataLen );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash6, dataLen );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, hash7, dataLen );
sph_shavite512_close( &ctx.shavite, hash7 );
shavite512_full( &ctx.shavite, hash0, hash0, dataLen );
shavite512_full( &ctx.shavite, hash1, hash1, dataLen );
shavite512_full( &ctx.shavite, hash2, hash2, dataLen );
shavite512_full( &ctx.shavite, hash3, hash3, dataLen );
shavite512_full( &ctx.shavite, hash4, hash4, dataLen );
shavite512_full( &ctx.shavite, hash5, hash5, dataLen );
shavite512_full( &ctx.shavite, hash6, hash6, dataLen );
shavite512_full( &ctx.shavite, hash7, hash7, dataLen );
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, dataLen<<3 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, dataLen<<3 );
@@ -427,30 +355,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash4, dataLen );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash5, dataLen );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash6, dataLen );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash7, dataLen );
sph_fugue512_close( &ctx.fugue, hash7 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
sph_fugue512_full( &ctx.fugue, hash4, hash4, dataLen );
sph_fugue512_full( &ctx.fugue, hash5, hash5, dataLen );
sph_fugue512_full( &ctx.fugue, hash6, hash6, dataLen );
sph_fugue512_full( &ctx.fugue, hash7, hash7, dataLen );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, dataLen<<3 );
@@ -462,30 +374,14 @@ void xevan_8way_hash( void *output, const void *input )
dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, dataLen<<3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash4, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash5, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash6, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash7, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash4, hash4, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash5, hash5, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, dataLen );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, dataLen<<3 );
@@ -504,40 +400,43 @@ void xevan_8way_hash( void *output, const void *input )
int scanhash_xevan_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *hashd7 = &(hash[7*8]);
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
__m512i *noncev = (__m512i*)vdata + 9;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
const uint32_t targ32 = ptarget[7];
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
xevan_8way_hash( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if unlikely( ( hash7[ lane ] <= Htarg ) )
if ( unlikely( ( hashd7[ lane ] <= targ32 ) && !bench ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
if ( likely( valid_hash( lane_hash, ptarget ) ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -578,8 +477,6 @@ void xevan_4way_hash( void *output, const void *input )
const int dataLen = 128;
xevan_4way_context_overlay ctx __attribute__ ((aligned (64)));
// parallel 4 way
blake512_4way_full( &ctx.blake, vhash, input, 80 );
memset( &vhash[8<<2], 0, 64<<2 );
@@ -598,9 +495,7 @@ void xevan_4way_hash( void *output, const void *input )
// Parallel 4way
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, dataLen );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, dataLen );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, dataLen );
@@ -618,15 +513,11 @@ void xevan_4way_hash( void *output, const void *input )
cube_2way_full( &ctx.cube, vhashA, 512, vhashA, dataLen );
cube_2way_full( &ctx.cube, vhashB, 512, vhashB, dataLen );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashA, vhashA, dataLen );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, dataLen );
shavite512_2way_full( &ctx.shavite, vhashA, vhashA, dataLen );
shavite512_2way_full( &ctx.shavite, vhashB, vhashB, dataLen );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashA, vhashA, dataLen<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, dataLen<<3 );
simd512_2way_full( &ctx.simd, vhashA, vhashA, dataLen );
simd512_2way_full( &ctx.simd, vhashB, vhashB, dataLen );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
@@ -649,18 +540,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
// Parallel 4way 32 bit
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -672,18 +555,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
// Serial
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, dataLen );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -718,9 +593,7 @@ void xevan_4way_hash( void *output, const void *input )
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, dataLen );
skein512_4way_close( &ctx.skein, vhash );
skein512_4way_full( &ctx.skein, vhash, vhash, dataLen );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, dataLen );
@@ -738,15 +611,11 @@ void xevan_4way_hash( void *output, const void *input )
cube_2way_full( &ctx.cube, vhashA, 512, vhashA, dataLen );
cube_2way_full( &ctx.cube, vhashB, 512, vhashB, dataLen );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashA, vhashA, dataLen );
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, dataLen );
shavite512_2way_full( &ctx.shavite, vhashA, vhashA, dataLen );
shavite512_2way_full( &ctx.shavite, vhashB, vhashB, dataLen );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashA, vhashA, dataLen<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhashB, vhashB, dataLen<<3 );
simd512_2way_full( &ctx.simd, vhashA, vhashA, dataLen );
simd512_2way_full( &ctx.simd, vhashB, vhashB, dataLen );
dintrlv_2x128( hash0, hash1, vhashA, dataLen<<3 );
dintrlv_2x128( hash2, hash3, vhashB, dataLen<<3 );
@@ -768,18 +637,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash0, dataLen );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash1, dataLen );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash2, dataLen );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, hash3, dataLen );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_full( &ctx.fugue, hash0, hash0, dataLen );
sph_fugue512_full( &ctx.fugue, hash1, hash1, dataLen );
sph_fugue512_full( &ctx.fugue, hash2, hash2, dataLen );
sph_fugue512_full( &ctx.fugue, hash3, hash3, dataLen );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -789,18 +650,10 @@ void xevan_4way_hash( void *output, const void *input )
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, dataLen<<3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash0, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash1, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash2, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, hash3, dataLen );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool512_full( &ctx.whirlpool, hash0, hash0, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash1, hash1, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, dataLen );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, dataLen );
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, dataLen<<3 );
@@ -818,41 +671,43 @@ void xevan_4way_hash( void *output, const void *input )
int scanhash_xevan_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[7<<2]);
uint32_t hash[16*4] __attribute__ ((aligned (128)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hashd7 = &(hash[7<<2]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 9;
const uint32_t targ32 = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
const bool bench = opt_benchmark;
if ( opt_benchmark )
ptarget[7] = 0x0cff;
if ( bench ) ptarget[7] = 0x0cff;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0,n+2, 0,n+1, 0, n, 0 ) ), *noncev );
xevan_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane ] <= Htarg )
if ( unlikely( hashd7[ lane ] <= targ32 ) && ! bench )
{
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
pdata[19] = bswap_32( n + lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( ( n < max_nonce-4 ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -56,8 +56,6 @@ typedef struct {
} xevan_ctx_holder;
xevan_ctx_holder xevan_ctx __attribute__ ((aligned (64)));
static __thread sph_blake512_context xevan_blake_mid
__attribute__ ((aligned (64)));
void init_xevan_ctx()
{
@@ -85,34 +83,23 @@ void init_xevan_ctx()
#endif
};
void xevan_blake512_midstate( const void* input )
{
memcpy( &xevan_blake_mid, &xevan_ctx.blake, sizeof xevan_blake_mid );
sph_blake512( &xevan_blake_mid, input, 64 );
}
void xevan_hash(void *output, const void *input)
{
uint32_t _ALIGN(64) hash[32]; // 128 bytes required
uint32_t _ALIGN(64) hash[32]; // 128 bytes required
const int dataLen = 128;
xevan_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &xevan_ctx, sizeof(xevan_ctx) );
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
memcpy( &ctx.blake, &xevan_blake_mid, sizeof xevan_blake_mid );
sph_blake512( &ctx.blake, input + midlen, tail );
sph_blake512_close(&ctx.blake, hash);
xevan_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &xevan_ctx, sizeof(xevan_ctx) );
sph_blake512( &ctx.blake, input, 80 );
sph_blake512_close( &ctx.blake, hash );
memset(&hash[16], 0, 64);
sph_bmw512(&ctx.bmw, hash, dataLen);
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, dataLen*8 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, dataLen*8 );
#else
sph_groestl512(&ctx.groestl, hash, dataLen);
sph_groestl512_close(&ctx.groestl, hash);
@@ -127,20 +114,20 @@ void xevan_hash(void *output, const void *input)
sph_keccak512(&ctx.keccak, hash, dataLen);
sph_keccak512_close(&ctx.keccak, hash);
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, dataLen );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, dataLen );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*) hash, dataLen );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*) hash, dataLen );
sph_shavite512(&ctx.shavite, hash, dataLen);
sph_shavite512_close(&ctx.shavite, hash);
update_final_sd( &ctx.simd, (BitSequence *)hash,
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, dataLen*8 );
#if defined(__AES__)
update_final_echo( &ctx.echo, (BitSequence *) hash,
update_final_echo( &ctx.echo, (BitSequence *) hash,
(const BitSequence *) hash, dataLen*8 );
#else
sph_echo512(&ctx.echo, hash, dataLen);
@@ -159,15 +146,15 @@ void xevan_hash(void *output, const void *input)
sph_whirlpool(&ctx.whirlpool, hash, dataLen);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Update( &ctx.sha512, hash, dataLen );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, dataLen );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_haval256_5(&ctx.haval,(const void*) hash, dataLen);
sph_haval256_5_close(&ctx.haval, hash);
memset(&hash[8], 0, dataLen - 32);
memcpy( &ctx, &xevan_ctx, sizeof(xevan_ctx) );
memcpy( &ctx, &xevan_ctx, sizeof(xevan_ctx) );
sph_blake512(&ctx.blake, hash, dataLen);
sph_blake512_close(&ctx.blake, hash);
@@ -176,11 +163,11 @@ void xevan_hash(void *output, const void *input)
sph_bmw512_close(&ctx.bmw, hash);
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const BitSequence*)hash, dataLen*8 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const BitSequence*)hash, dataLen*8 );
#else
sph_groestl512(&ctx.groestl, hash, dataLen);
sph_groestl512_close(&ctx.groestl, hash);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512(&ctx.skein, hash, dataLen);
@@ -191,24 +178,25 @@ void xevan_hash(void *output, const void *input)
sph_keccak512(&ctx.keccak, hash, dataLen);
sph_keccak512_close(&ctx.keccak, hash);
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, dataLen );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*) hash, dataLen );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)hash, dataLen );
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*) hash, dataLen );
sph_shavite512(&ctx.shavite, hash, dataLen);
sph_shavite512_close(&ctx.shavite, hash);
update_final_sd( &ctx.simd, (BitSequence *)hash,
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, dataLen*8 );
#if defined(__AES__)
update_final_echo( &ctx.echo, (BitSequence *) hash,
update_final_echo( &ctx.echo, (BitSequence *) hash,
(const BitSequence *) hash, dataLen*8 );
#else
sph_echo512(&ctx.echo, hash, dataLen);
sph_echo512_close(&ctx.echo, hash);
sph_echo512(&ctx.echo, hash, dataLen);
sph_echo512_close(&ctx.echo, hash);
#endif
sph_hamsi512(&ctx.hamsi, hash, dataLen);
@@ -223,8 +211,8 @@ void xevan_hash(void *output, const void *input)
sph_whirlpool(&ctx.whirlpool, hash, dataLen);
sph_whirlpool_close(&ctx.whirlpool, hash);
SHA512_Update( &ctx.sha512, hash, dataLen );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Update( &ctx.sha512, hash, dataLen );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
sph_haval256_5(&ctx.haval,(const void*) hash, dataLen);
sph_haval256_5_close(&ctx.haval, hash);
@@ -233,41 +221,33 @@ void xevan_hash(void *output, const void *input)
}
int scanhash_xevan( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t _ALIGN(64) hash[8];
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if (opt_benchmark)
ptarget[7] = 0x0cff;
mm128_bswap32_80( edata, pdata );
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
xevan_blake512_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
xevan_hash(hash, endiandata);
if (hash[7] <= Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
submit_solution( work, hash, mythr );
}
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
do
{
edata[19] = n;
xevan_hash( hash64, edata );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif

Some files were not shown because too many files have changed in this diff Show More