Compare commits

..

4 Commits

Author SHA1 Message Date
Jay D Dee
88f81fda0b v3.11.7 2020-01-26 04:33:39 -05:00
Jay D Dee
103e6ad36c v3.11.6 2020-01-23 00:11:08 -05:00
Jay D Dee
1a7a573675 v3.11.5 2020-01-18 15:14:27 -05:00
Jay D Dee
70089d1224 v3.11.2 2020-01-08 14:44:47 -05:00
160 changed files with 4928 additions and 4761 deletions

View File

@@ -33,3 +33,6 @@ Jay D Dee
xcouiz@gmail.com
Cryply
Colin Percival
Alexander Peslyak

View File

@@ -80,7 +80,6 @@ cpuminer_SOURCES = \
algo/cryptonight/cryptonight-common.c\
algo/cryptonight/cryptonight-aesni.c\
algo/cryptonight/cryptonight.c\
algo/cubehash/sph_cubehash.c \
algo/cubehash/cubehash_sse2.c\
algo/cubehash/cube-hash-2way.c \
algo/echo/sph_echo.c \
@@ -89,6 +88,7 @@ cpuminer_SOURCES = \
algo/gost/sph_gost.c \
algo/groestl/groestl-gate.c \
algo/groestl/groestl512-hash-4way.c \
algo/groestl/groestl256-hash-4way.c \
algo/groestl/sph_groestl.c \
algo/groestl/groestl.c \
algo/groestl/groestl-4way.c \
@@ -120,6 +120,8 @@ cpuminer_SOURCES = \
algo/keccak/keccak-hash-4way.c \
algo/keccak/keccak-4way.c\
algo/keccak/keccak-gate.c \
algo/keccak/sha3d-4way.c \
algo/keccak/sha3d.c \
algo/lanehash/lane.c \
algo/luffa/sph_luffa.c \
algo/luffa/luffa.c \
@@ -179,6 +181,7 @@ cpuminer_SOURCES = \
algo/sha/sph_sha2big.c \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \
@@ -291,12 +294,11 @@ cpuminer_SOURCES = \
algo/x22/x25x.c \
algo/x22/x25x-4way.c \
algo/yescrypt/yescrypt.c \
algo/yescrypt/sha256_Y.c \
algo/yescrypt/yescrypt-best.c \
algo/yespower/yespower-gate.c \
algo/yespower/yespower-blake2b.c \
algo/yespower/crypto/blake2b-yp.c \
algo/yespower/sha256_p.c \
algo/yespower/yescrypt-r8g.c \
algo/yespower/yespower-opt.c
disable_flags =

View File

@@ -97,10 +97,10 @@ Supported Algorithms
qubit Qubit
scrypt scrypt(1024, 1, 1) (default)
scrypt:N scrypt(N, 1, 1)
scryptjane:nf
sha256d Double SHA-256
sha256q Quad SHA-256, Pyrite (PYE)
sha256t Triple SHA-256, Onecoin (OC)
sha3d Double keccak256 (BSHA3)
shavite3 Shavite3
skein Skein+Sha (Skeincoin)
skein2 Double Skein (Woodcoin)
@@ -134,6 +134,7 @@ Supported Algorithms
xevan Bitsend (BSD)
yescrypt Globalboost-Y (BSTY)
yescryptr8 BitZeny (ZNY)
yescryptr8g Koto (KOTO)
yescryptr16 Eli
yescryptr32 WAVI
yespower Cryply

View File

@@ -8,9 +8,10 @@ Security warning
Miner programs are often flagged as malware by antivirus programs. This is
usually a false positive, they are flagged simply because they are
cryptocurrency miners. However, some malware has been spread using the
cover that miners are known to be subject to false positives. Always be on
alert. The source code of cpuminer-opt is open for anyone to inspect.
cryptocurrency miners. However, some malware masquerading as a miner has
been spread using the cover that miners are known to be subject to false
positives ans users will dismiss the AV alert. Always be on alert.
The source code of cpuminer-opt is open for anyone to inspect.
If you don't trust the software don't download it.
The cryptographic hashing code has been taken from trusted sources but has been
@@ -29,12 +30,110 @@ Requirements
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
supported.
64 bit Linux or Windows operating system. Apple, Android and Rpi are
not supported. FreeBSD YMMV.
64 bit Linux or Windows operating system. Apple, Android and Raspberry Pi
are not supported. FreeBSD YMMV.
Reporting bugs
--------------
Bugs can be reported by sending am email to JayDDee246@gmail.com or opening
an issue in git: https://github.com/JayDDee/cpuminer-opt/issues
Please include the following information:
1. CPU model, operating system, cpuminer-opt version (must be latest),
binary file for Windows, changes to default build procedure for Linux.
2. Exact comand line (except user and pw) and intial output showing
the above requested info.
3. Additional program output showing any error messages or other
pertinent data.
4. A clear description of the problem including history, scope,
persistence or intermittance, and reproduceability.
In simpler terms:
What is it doing?
What should it be doing instead?
Did it work in a previous release?
Does it happen for all algos? All pools? All options? Solo?
Does it happen all the time?
If not what makes it happen or not happen?
Change Log
----------
v3.11.7
Added yescryptr8g algo fotr KOTO, including support for block version 5.
Added sha3d algo for BSHA3.
Removed memcmp and clean_job checks from get_new_work, now only check job_id.
Small improvement to sha512 and sha256 parallel implementations that don't
use SHA.
v3.11.6
Fixed CPU temperature regression from v3.11.5.
More improvements to share log. More compact, highlight incremented counter,
block height when solved, job id when stale.
v3.11.5
Fixed AVX512 detection that could cause compilation errors on CPUs
without AVX512.
Fixed "BLOCK SOLVED" log incorrectly displaying "Accepted" when a block
is solved.
Added share counter to share submitited & accepted logs
Added job id to share submitted log.
Share submitted log is no longer highlighted blue, there was too much blue.
Another CPU temperature fix for Linux.
Added bug reporting tips to RELEASE NOTES.
v3.11.4
Fixed scrypt segfault since v3.9.9.1.
Stale shares counted and reported seperately from other rejected shares.
Display of counters for solved blocks, rejects, stale shares suppressed in
periodic summary when zero.
v3.11.3
Fixed x12 AVX2 again.
More speed for allium: AVX2 +4%, AVX512 +6%, VAES +14%.
Restored lost speed for x22i & x25x.
v3.11.2
Fixed x11gost (sib) AVX2 invalid shares.
Fixed x16r, x16rv2, x16s, x16rt, x16rt-veil (veil), x21s.
No shares were submitted when cube, shavite or echo were the first function
in the hash order.
Fixed all algos reporting stats problems when mining with SSE2.
Faster Lyra2 AVX512: lyra2z +47%, lyra2rev3 +11%, allium +13%, x21s +6%
Other minor performance improvements.
Known issue:
Lyra2 AVX512 improvements paradoxically reduced performance on x22i and x25x.
https://github.com/JayDDee/cpuminer-opt/issues/225
v3.11.1
Faster panama for x25x AVX2 & AVX512.

View File

@@ -209,6 +209,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
case ALGO_SHA256Q: register_sha256q_algo ( gate ); break;
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: register_sha3d_algo ( gate ); break;
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
case ALGO_SKEIN: register_skein_algo ( gate ); break;
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
@@ -247,6 +248,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
case ALGO_YESPOWER: register_yespower_algo ( gate ); break;

View File

@@ -121,54 +121,55 @@ void ( *hash_suw ) ( void*, const void* );
// Allocate thread local buffers and other initialization specific to miner
// threads.
bool ( *miner_thread_init ) ( int );
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t*,
bool );
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
// Return pointer to nonce in blockheader.
uint32_t *( *get_nonceptr ) ( uint32_t* );
uint32_t *( *get_nonceptr ) ( uint32_t* );
// Decode getwork blockheader
bool ( *work_decode ) ( const json_t*, struct work* );
bool ( *work_decode ) ( const json_t*, struct work* );
// Extra getwork data
void ( *decode_extra_data ) ( struct work*, uint64_t* );
void ( *decode_extra_data ) ( struct work*, uint64_t* );
bool ( *submit_getwork_result ) ( CURL*, struct work* );
bool ( *submit_getwork_result ) ( CURL*, struct work* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
// Increment extranonce
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t,
unsigned char* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t );
// Build mining.submit message
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
char* ( *malloc_txs_request ) ( struct work* );
char* ( *malloc_txs_request ) ( struct work* );
// Big or little
void ( *set_work_data_endian ) ( struct work* );
void ( *set_work_data_endian ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
// Wait for first work
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
// Diverge mining threads
bool ( *do_this_thread ) ( int );
bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
void ( *resync_threads ) ( struct work* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response )( json_t* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response ) ( json_t* );
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
@@ -225,7 +226,7 @@ uint32_t *std_get_nonceptr( uint32_t *work_data );
uint32_t *jr2_get_nonceptr( uint32_t *work_data );
void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job );
uint32_t* end_nonce_ptr );
void jr2_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
@@ -256,7 +257,8 @@ double std_calc_network_diff( struct work *work );
void std_build_block_header( struct work* g_work, uint32_t version,
uint32_t *prevhash, uint32_t *merkle_root,
uint32_t ntime, uint32_t nbits );
uint32_t ntime, uint32_t nbits,
unsigned char *final_sapling_hash );
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );

View File

@@ -62,9 +62,7 @@ int scanhash_argon2( struct work* work, uint32_t max_nonce,
argon2hash(hash, endiandata);
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);

View File

@@ -13,7 +13,7 @@ void blakehash_4way(void *state, const void *input)
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r14_4way_context ctx;
memcpy( &ctx, &blake_4w_ctx, sizeof ctx );
blake256r14_4way( &ctx, input + (64<<2), 16 );
blake256r14_4way_update( &ctx, input + (64<<2), 16 );
blake256r14_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -36,7 +36,7 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r14_4way_init( &blake_4w_ctx );
blake256r14_4way( &blake_4w_ctx, vdata, 64 );
blake256r14_4way_update( &blake_4w_ctx, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );

View File

@@ -37,8 +37,6 @@
#ifndef __BLAKE_HASH_4WAY__
#define __BLAKE_HASH_4WAY__ 1
//#ifdef __SSE4_2__
#ifdef __cplusplus
extern "C"{
#endif
@@ -51,46 +49,41 @@ extern "C"{
#define SPH_SIZE_blake512 512
// With SSE4.2 only Blake-256 4 way is available.
// With AVX2 Blake-256 8way & Blake-512 4 way are also available.
// Blake-256 4 way
//////////////////////////
//
// Blake-256 4 way SSE2
typedef struct {
unsigned char buf[64<<2];
uint32_t H[8<<2];
// __m128i buf[16] __attribute__ ((aligned (64)));
// __m128i H[8];
// __m128i S[4];
size_t ptr;
uint32_t T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla
} blake_4way_small_context __attribute__ ((aligned (64)));
// Default 14 rounds
// Default, 14 rounds, blake, decred
typedef blake_4way_small_context blake256_4way_context;
void blake256_4way_init(void *ctx);
void blake256_4way_update(void *ctx, const void *data, size_t len);
#define blake256_4way blake256_4way_update
void blake256_4way_close(void *ctx, void *dst);
// 14 rounds, blake, decred
typedef blake_4way_small_context blake256r14_4way_context;
void blake256r14_4way_init(void *cc);
void blake256r14_4way_update(void *cc, const void *data, size_t len);
#define blake256r14_4way blake256r14_4way_update
void blake256r14_4way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_4way_small_context blake256r8_4way_context;
void blake256r8_4way_init(void *cc);
void blake256r8_4way_update(void *cc, const void *data, size_t len);
#define blake256r8_4way blake256r8_4way_update
void blake256r8_4way_close(void *cc, void *dst);
#ifdef __AVX2__
// Blake-256 8 way
//////////////////////////
//
// Blake-256 8 way AVX2
typedef struct {
__m256i buf[16] __attribute__ ((aligned (64)));
@@ -104,7 +97,6 @@ typedef struct {
typedef blake_8way_small_context blake256_8way_context;
void blake256_8way_init(void *cc);
void blake256_8way_update(void *cc, const void *data, size_t len);
//#define blake256_8way blake256_8way_update
void blake256_8way_close(void *cc, void *dst);
// 14 rounds, blake, decred
@@ -117,10 +109,9 @@ void blake256r14_8way_close(void *cc, void *dst);
typedef blake_8way_small_context blake256r8_8way_context;
void blake256r8_8way_init(void *cc);
void blake256r8_8way_update(void *cc, const void *data, size_t len);
#define blake256r8_8way blake256r8_8way_update
void blake256r8_8way_close(void *cc, void *dst);
// Blake-512 4 way
// Blake-512 4 way AVX2
typedef struct {
__m256i buf[16];
@@ -134,14 +125,15 @@ typedef blake_4way_big_context blake512_4way_context;
void blake512_4way_init( blake_4way_big_context *sc );
void blake512_4way_update( void *cc, const void *data, size_t len );
#define blake512_4way blake512_4way_update
void blake512_4way_close( void *cc, void *dst );
void blake512_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void blake512_4way_full( blake_4way_big_context *sc, void * dst,
const void *data, size_t len );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//Blake-256 16 way
////////////////////////////
//
// Blake-256 16 way AVX512
typedef struct {
__m512i buf[16];
@@ -169,8 +161,9 @@ void blake256r8_16way_init(void *cc);
void blake256r8_16way_update(void *cc, const void *data, size_t len);
void blake256r8_16way_close(void *cc, void *dst);
// Blake-512 8 way
////////////////////////////
//
//// Blake-512 8 way AVX512
typedef struct {
__m512i buf[16];
@@ -185,12 +178,10 @@ typedef blake_8way_big_context blake512_8way_context;
void blake512_8way_init( blake_8way_big_context *sc );
void blake512_8way_update( void *cc, const void *data, size_t len );
void blake512_8way_close( void *cc, void *dst );
void blake512_8way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void blake512_8way_full( blake_8way_big_context *sc, void * dst,
const void *data, size_t len );
#endif // AVX512
#endif // AVX2
#ifdef __cplusplus

View File

@@ -39,7 +39,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
blake2b_8way_final( &ctx, hash );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
@@ -94,7 +94,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
blake2b_4way_final( &ctx, hash );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )

View File

@@ -43,17 +43,14 @@ int scanhash_blake2b( struct work *work, uint32_t max_nonce,
do {
be32enc(&endiandata[19], n);
//blake2b_hash_end(vhashcpu, endiandata);
blake2b_hash(vhashcpu, endiandata);
if (vhashcpu[7] < Htarg && fulltest(vhashcpu, ptarget)) {
work_set_target_ratio(work, vhashcpu);
*hashes_done = n - first_nonce + 1;
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget))
{
pdata[19] = n;
return 1;
}
n++;
submit_solution( work, vhashcpu, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;

View File

@@ -56,7 +56,7 @@ int scanhash_blake2s( struct work *work,
do {
be32enc(&endiandata[19], n);
blake2s_hash( hash64, endiandata );
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
if (hash64[7] <= Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;

View File

@@ -267,22 +267,22 @@ static const sph_u64 CB[16] = {
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#define CB0 0x243F6A8885A308D3
#define CB1 0x13198A2E03707344
#define CB2 0xA4093822299F31D0
#define CB3 0x082EFA98EC4E6C89
#define CB4 0x452821E638D01377
#define CB5 0xBE5466CF34E90C6C
#define CB6 0xC0AC29B7C97C50DD
#define CB7 0x3F84D5B5B5470917
#define CB8 0x9216D5D98979FB1B
#define CB9 0xD1310BA698DFB5AC
#define CBA 0x2FFD72DBD01ADFB7
#define CBB 0xB8E1AFED6A267E96
#define CBC 0xBA7C9045F12C7F99
#define CBD 0x24A19947B3916CF7
#define CBE 0x0801F2E2858EFC16
#define CBF 0x636920D871574E69
#define READ_STATE64(state) do { \
H0 = (state)->H[0]; \
@@ -349,9 +349,9 @@ static const sph_u64 CB[16] = {
#define DECL_STATE64_8WAY \
__m512i H0, H1, H2, H3, H4, H5, H6, H7; \
__m512i S0, S1, S2, S3; \
sph_u64 T0, T1;
uint64_t T0, T1;
#define COMPRESS64_8WAY do \
#define COMPRESS64_8WAY( buf ) do \
{ \
__m512i M0, M1, M2, M3, M4, M5, M6, M7; \
__m512i M8, M9, MA, MB, MC, MD, ME, MF; \
@@ -424,6 +424,84 @@ static const sph_u64 CB[16] = {
H7 = mm512_xor4( VF, V7, S3, H7 ); \
} while (0)
void blake512_8way_compress( blake_8way_big_context *sc )
{
__m512i M0, M1, M2, M3, M4, M5, M6, M7;
__m512i M8, M9, MA, MB, MC, MD, ME, MF;
__m512i V0, V1, V2, V3, V4, V5, V6, V7;
__m512i V8, V9, VA, VB, VC, VD, VE, VF;
__m512i shuf_bswap64;
V0 = sc->H[0];
V1 = sc->H[1];
V2 = sc->H[2];
V3 = sc->H[3];
V4 = sc->H[4];
V5 = sc->H[5];
V6 = sc->H[6];
V7 = sc->H[7];
V8 = _mm512_xor_si512( sc->S[0], m512_const1_64( CB0 ) );
V9 = _mm512_xor_si512( sc->S[1], m512_const1_64( CB1 ) );
VA = _mm512_xor_si512( sc->S[2], m512_const1_64( CB2 ) );
VB = _mm512_xor_si512( sc->S[3], m512_const1_64( CB3 ) );
VC = _mm512_xor_si512( _mm512_set1_epi64( sc->T0 ),
m512_const1_64( CB4 ) );
VD = _mm512_xor_si512( _mm512_set1_epi64( sc->T0 ),
m512_const1_64( CB5 ) );
VE = _mm512_xor_si512( _mm512_set1_epi64( sc->T1 ),
m512_const1_64( CB6 ) );
VF = _mm512_xor_si512( _mm512_set1_epi64( sc->T1 ),
m512_const1_64( CB7 ) );
shuf_bswap64 = m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637,
0x28292a2b2c2d2e2f, 0x2021222324252627,
0x18191a1b1c1d1e1f, 0x1011121314151617,
0x08090a0b0c0d0e0f, 0x0001020304050607 );
M0 = _mm512_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm512_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm512_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm512_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm512_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm512_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm512_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm512_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm512_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm512_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm512_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm512_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm512_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm512_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm512_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm512_shuffle_epi8( sc->buf[15], shuf_bswap64 );
ROUND_B_8WAY(0);
ROUND_B_8WAY(1);
ROUND_B_8WAY(2);
ROUND_B_8WAY(3);
ROUND_B_8WAY(4);
ROUND_B_8WAY(5);
ROUND_B_8WAY(6);
ROUND_B_8WAY(7);
ROUND_B_8WAY(8);
ROUND_B_8WAY(9);
ROUND_B_8WAY(0);
ROUND_B_8WAY(1);
ROUND_B_8WAY(2);
ROUND_B_8WAY(3);
ROUND_B_8WAY(4);
ROUND_B_8WAY(5);
sc->H[0] = mm512_xor4( V8, V0, sc->S[0], sc->H[0] );
sc->H[1] = mm512_xor4( V9, V1, sc->S[1], sc->H[1] );
sc->H[2] = mm512_xor4( VA, V2, sc->S[2], sc->H[2] );
sc->H[3] = mm512_xor4( VB, V3, sc->S[3], sc->H[3] );
sc->H[4] = mm512_xor4( VC, V4, sc->S[0], sc->H[4] );
sc->H[5] = mm512_xor4( VD, V5, sc->S[1], sc->H[5] );
sc->H[6] = mm512_xor4( VE, V6, sc->S[2], sc->H[6] );
sc->H[7] = mm512_xor4( VF, V7, sc->S[3], sc->H[7] );
}
void blake512_8way_init( blake_8way_big_context *sc )
{
__m512i zero = m512_zero;
@@ -455,39 +533,43 @@ blake64_8way( blake_8way_big_context *sc, const void *data, size_t len )
const int buf_size = 128; // sizeof/8
// 64, 80 bytes: 1st pass copy data. 2nd pass copy padding and compress.
// 128 bytes: 1st pass copy data, compress. 2nd pass copy padding, compress.
buf = sc->buf;
ptr = sc->ptr;
if ( len < (buf_size - ptr) )
{
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE64(sc);
while ( len > 0 )
{
size_t clen;
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T64(T0 + 1024) ) < 1024 )
T1 = SPH_T64(T1 + 1);
COMPRESS64_8WAY;
ptr = 0;
}
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = T0 + 1024 ) < 1024 )
T1 = T1 + 1;
COMPRESS64_8WAY( buf );
ptr = 0;
}
}
WRITE_STATE64(sc);
sc->ptr = ptr;
}
}
static void
blake64_8way_close( blake_8way_big_context *sc, void *dst )
@@ -495,26 +577,22 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
__m512i buf[16];
size_t ptr;
unsigned bit_len;
// uint64_t z, zz;
sph_u64 th, tl;
uint64_t th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
// z = 0x80 >> n;
// zz = ((ub & -z) | z) & 0xFF;
// buf[ptr>>3] = _mm512_set1_epi64( zz );
buf[ptr>>3] = m512_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
{
@@ -535,8 +613,8 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
memset_zero_512( buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
blake64_8way( sc, buf + (ptr>>3), 128 - ptr );
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
memset_zero_512( buf, 112>>3 );
buf[104>>3] = m512_const1_64( 0x0100000000000000ULL );
buf[112>>3] = m512_const1_64( bswap_64( th ) );
@@ -547,6 +625,79 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
// init, update & close
void blake512_8way_full( blake_8way_big_context *sc, void * dst,
const void *data, size_t len )
{
// init
casti_m512i( sc->H, 0 ) = m512_const1_64( 0x6A09E667F3BCC908 );
casti_m512i( sc->H, 1 ) = m512_const1_64( 0xBB67AE8584CAA73B );
casti_m512i( sc->H, 2 ) = m512_const1_64( 0x3C6EF372FE94F82B );
casti_m512i( sc->H, 3 ) = m512_const1_64( 0xA54FF53A5F1D36F1 );
casti_m512i( sc->H, 4 ) = m512_const1_64( 0x510E527FADE682D1 );
casti_m512i( sc->H, 5 ) = m512_const1_64( 0x9B05688C2B3E6C1F );
casti_m512i( sc->H, 6 ) = m512_const1_64( 0x1F83D9ABFB41BD6B );
casti_m512i( sc->H, 7 ) = m512_const1_64( 0x5BE0CD19137E2179 );
casti_m512i( sc->S, 0 ) = m512_zero;
casti_m512i( sc->S, 1 ) = m512_zero;
casti_m512i( sc->S, 2 ) = m512_zero;
casti_m512i( sc->S, 3 ) = m512_zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
// update
memcpy_512( sc->buf, (__m512i*)data, len>>3 );
sc->ptr = len;
if ( len == 128 )
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
sc->ptr = 0;
}
// close
size_t ptr64 = sc->ptr >> 3;
unsigned bit_len;
uint64_t th, tl;
bit_len = sc->ptr << 3;
sc->buf[ptr64] = m512_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr64 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 1024 - bit_len;
memset_zero_512( sc->buf + ptr64 + 1, 13 - ptr64 );
sc->buf[13] = m512_const1_64( 0x0100000000000000ULL );
sc->buf[14] = m512_const1_64( bswap_64( th ) );
sc->buf[15] = m512_const1_64( bswap_64( tl ) );
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
void
blake512_8way_update(void *cc, const void *data, size_t len)
{
@@ -555,12 +706,6 @@ blake512_8way_update(void *cc, const void *data, size_t len)
void
blake512_8way_close(void *cc, void *dst)
{
blake512_8way_addbits_and_close(cc, 0, 0, dst);
}
void
blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake64_8way_close(cc, dst);
}
@@ -596,7 +741,7 @@ blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#define DECL_STATE64_4WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
sph_u64 T0, T1;
uint64_t T0, T1;
#define COMPRESS64_4WAY do \
{ \
@@ -670,6 +815,81 @@ blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
} while (0)
void blake512_4way_compress( blake_4way_big_context *sc )
{
__m256i M0, M1, M2, M3, M4, M5, M6, M7;
__m256i M8, M9, MA, MB, MC, MD, ME, MF;
__m256i V0, V1, V2, V3, V4, V5, V6, V7;
__m256i V8, V9, VA, VB, VC, VD, VE, VF;
__m256i shuf_bswap64;
V0 = sc->H[0];
V1 = sc->H[1];
V2 = sc->H[2];
V3 = sc->H[3];
V4 = sc->H[4];
V5 = sc->H[5];
V6 = sc->H[6];
V7 = sc->H[7];
V8 = _mm256_xor_si256( sc->S[0], m256_const1_64( CB0 ) );
V9 = _mm256_xor_si256( sc->S[1], m256_const1_64( CB1 ) );
VA = _mm256_xor_si256( sc->S[2], m256_const1_64( CB2 ) );
VB = _mm256_xor_si256( sc->S[3], m256_const1_64( CB3 ) );
VC = _mm256_xor_si256( _mm256_set1_epi64x( sc->T0 ),
m256_const1_64( CB4 ) );
VD = _mm256_xor_si256( _mm256_set1_epi64x( sc->T0 ),
m256_const1_64( CB5 ) );
VE = _mm256_xor_si256( _mm256_set1_epi64x( sc->T1 ),
m256_const1_64( CB6 ) );
VF = _mm256_xor_si256( _mm256_set1_epi64x( sc->T1 ),
m256_const1_64( CB7 ) );
shuf_bswap64 = m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617,
0x08090a0b0c0d0e0f, 0x0001020304050607 );
M0 = _mm256_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm256_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm256_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm256_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm256_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm256_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm256_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm256_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm256_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm256_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm256_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm256_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm256_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm256_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm256_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm256_shuffle_epi8( sc->buf[15], shuf_bswap64 );
ROUND_B_4WAY(0);
ROUND_B_4WAY(1);
ROUND_B_4WAY(2);
ROUND_B_4WAY(3);
ROUND_B_4WAY(4);
ROUND_B_4WAY(5);
ROUND_B_4WAY(6);
ROUND_B_4WAY(7);
ROUND_B_4WAY(8);
ROUND_B_4WAY(9);
ROUND_B_4WAY(0);
ROUND_B_4WAY(1);
ROUND_B_4WAY(2);
ROUND_B_4WAY(3);
ROUND_B_4WAY(4);
ROUND_B_4WAY(5);
sc->H[0] = mm256_xor4( V8, V0, sc->S[0], sc->H[0] );
sc->H[1] = mm256_xor4( V9, V1, sc->S[1], sc->H[1] );
sc->H[2] = mm256_xor4( VA, V2, sc->S[2], sc->H[2] );
sc->H[3] = mm256_xor4( VB, V3, sc->S[3], sc->H[3] );
sc->H[4] = mm256_xor4( VC, V4, sc->S[0], sc->H[4] );
sc->H[5] = mm256_xor4( VD, V5, sc->S[1], sc->H[5] );
sc->H[6] = mm256_xor4( VE, V6, sc->S[2], sc->H[6] );
sc->H[7] = mm256_xor4( VF, V7, sc->S[3], sc->H[7] );
}
void blake512_4way_init( blake_4way_big_context *sc )
{
__m256i zero = m256_zero;
@@ -681,10 +901,12 @@ void blake512_4way_init( blake_4way_big_context *sc )
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C2B3E6C1F );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9ABFB41BD6B );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD19137E2179 );
casti_m256i( sc->S, 0 ) = zero;
casti_m256i( sc->S, 1 ) = zero;
casti_m256i( sc->S, 2 ) = zero;
casti_m256i( sc->S, 3 ) = zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
@@ -703,31 +925,31 @@ blake64_4way( blake_4way_big_context *sc, const void *data, size_t len)
ptr = sc->ptr;
if ( len < (buf_size - ptr) )
{
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE64(sc);
while ( len > 0 )
{
size_t clen;
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if (ptr == buf_size )
{
if ((T0 = SPH_T64(T0 + 1024)) < 1024)
T1 = SPH_T64(T1 + 1);
COMPRESS64_4WAY;
ptr = 0;
}
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( (T0 = T0 + 1024 ) < 1024 )
T1 = SPH_T64(T1 + 1);
COMPRESS64_4WAY;
ptr = 0;
}
}
WRITE_STATE64(sc);
sc->ptr = ptr;
@@ -739,7 +961,7 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
__m256i buf[16];
size_t ptr;
unsigned bit_len;
sph_u64 th, tl;
uint64_t th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
@@ -748,13 +970,13 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
{
@@ -788,13 +1010,77 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
mm256_block_bswap_64( (__m256i*)dst, sc->H );
}
/*
void
blake512_4way_init(void *cc)
// init, update & close
void blake512_4way_full( blake_4way_big_context *sc, void * dst,
const void *data, size_t len )
{
blake64_4way_init(cc, IV512, salt_zero_big);
// init
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E667F3BCC908 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE8584CAA73B );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF372FE94F82B );
casti_m256i( sc->H, 3 ) = m256_const1_64( 0xA54FF53A5F1D36F1 );
casti_m256i( sc->H, 4 ) = m256_const1_64( 0x510E527FADE682D1 );
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C2B3E6C1F );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9ABFB41BD6B );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD19137E2179 );
casti_m256i( sc->S, 0 ) = m256_zero;
casti_m256i( sc->S, 1 ) = m256_zero;
casti_m256i( sc->S, 2 ) = m256_zero;
casti_m256i( sc->S, 3 ) = m256_zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
// update
memcpy_256( sc->buf, (__m256i*)data, len>>3 );
sc->ptr += len;
if ( len == 128 )
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
sc->ptr = 0;
}
// close
size_t ptr64 = sc->ptr >> 3;
unsigned bit_len;
uint64_t th, tl;
bit_len = sc->ptr << 3;
sc->buf[ptr64] = m256_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( sc->ptr == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 1024 - bit_len;
memset_zero_256( sc->buf + ptr64 + 1, 13 - ptr64 );
sc->buf[13] = m256_const1_64( 0x0100000000000000ULL );
sc->buf[14] = m256_const1_64( bswap_64( th ) );
sc->buf[15] = m256_const1_64( bswap_64( tl ) );
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
mm256_block_bswap_64( (__m256i*)dst, sc->H );
}
*/
void
blake512_4way_update(void *cc, const void *data, size_t len)
@@ -806,17 +1092,8 @@ void
blake512_4way_close(void *cc, void *dst)
{
blake64_4way_close( cc, dst );
// blake512_4way_addbits_and_close(cc, dst);
}
/*
void
blake512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake64_4way_close(cc, ub, n, dst, 8);
}
*/
#ifdef __cplusplus
}
#endif

View File

@@ -14,7 +14,7 @@ void blakecoin_4way_hash(void *state, const void *input)
blake256r8_4way_context ctx;
memcpy( &ctx, &blakecoin_4w_ctx, sizeof ctx );
blake256r8_4way( &ctx, input + (64<<2), 16 );
blake256r8_4way_update( &ctx, input + (64<<2), 16 );
blake256r8_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
@@ -37,7 +37,7 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r8_4way_init( &blakecoin_4w_ctx );
blake256r8_4way( &blakecoin_4w_ctx, vdata, 64 );
blake256r8_4way_update( &blakecoin_4w_ctx, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
@@ -71,7 +71,7 @@ void blakecoin_8way_hash( void *state, const void *input )
blake256r8_8way_context ctx;
memcpy( &ctx, &blakecoin_8w_ctx, sizeof ctx );
blake256r8_8way( &ctx, input + (64<<3), 16 );
blake256r8_8way_update( &ctx, input + (64<<3), 16 );
blake256r8_8way_close( &ctx, vhash );
dintrlv_8x32( state, state+ 32, state+ 64, state+ 96, state+128,
@@ -95,7 +95,7 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256r8_8way_init( &blakecoin_8w_ctx );
blake256r8_8way( &blakecoin_8w_ctx, vdata, 64 );
blake256r8_8way_update( &blakecoin_8w_ctx, vdata, 64 );
do {
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,

View File

@@ -21,7 +21,7 @@ void decred_hash_4way( void *state, const void *input )
blake256_4way_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
blake256_4way( &ctx, tail, tail_len );
blake256_4way_update( &ctx, tail, tail_len );
blake256_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -46,7 +46,7 @@ int scanhash_decred_4way( struct work *work, uint32_t max_nonce,
mm128_intrlv_4x32x( vdata, edata, edata, edata, edata, 180*8 );
blake256_4way_init( &blake_mid );
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
blake256_4way_update( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
uint32_t *noncep = vdata + DECRED_NONCE_INDEX * 4;
do {

View File

@@ -77,25 +77,15 @@ int scanhash_decred( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[k], pdata[k]);
#endif
#ifdef DEBUG_ALGO
if (!thr_id) applog(LOG_DEBUG,"[%d] Target=%08x %08x", thr_id, ptarget[6], ptarget[7]);
#endif
do {
//be32enc(&endiandata[DCR_NONCE_OFT32], n);
endiandata[DECRED_NONCE_INDEX] = n;
decred_hash(hash32, endiandata);
if (hash32[7] <= HTarget && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
#ifdef DEBUG_ALGO
applog(LOG_BLUE, "Nonce : %08x %08x", n, swab32(n));
applog_hash(ptarget);
applog_compare_hash(hash32, ptarget);
#endif
pdata[DECRED_NONCE_INDEX] = n;
return 1;
if (hash32[7] <= HTarget && fulltest(hash32, ptarget))
{
pdata[DECRED_NONCE_INDEX] = n;
submit_solution( work, hash32, mythr );
}
n++;

View File

@@ -22,23 +22,23 @@ extern void pentablakehash_4way( void *output, const void *input )
blake512_4way_init( &ctx );
blake512_4way( &ctx, input, 80 );
blake512_4way_update( &ctx, input, 80 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
memcpy( output, hash0, 32 );

View File

@@ -40,7 +40,7 @@ int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
bmw512hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[ lane<<1 ] < Htarg ) )
if ( unlikely( hash7[ lane<<1 ] <= Htarg ) )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
@@ -93,8 +93,7 @@ int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
bmw512hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash7[ lane<<1 ] < Htarg ) )
// if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
if ( unlikely( hash7[ lane<<1 ] <= Htarg ) )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )

View File

@@ -168,6 +168,66 @@ int cube_4way_close( cube_4way_context *sp, void *output )
return 0;
}
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size )
{
__m512i *h = (__m512i*)sp->h;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = 32/16;
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
const int len = size >> 4;
const __m512i *in = (__m512i*)data;
__m512i *hash = (__m512i*)output;
int i;
for ( i = 0; i < len; i++ )
{
sp->h[ sp->pos ] = _mm512_xor_si512( sp->h[ sp->pos ], in[i] );
sp->pos++;
if ( sp->pos == sp->blocksize )
{
transform_4way( sp );
sp->pos = 0;
}
}
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm512_xor_si512( sp->h[ sp->pos ],
m512_const2_64( 0, 0x0000000000000080 ) );
transform_4way( sp );
sp->h[7] = _mm512_xor_si512( sp->h[7],
m512_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i )
transform_4way( sp );
memcpy( hash, sp->h, sp->hashlen<<6);
return 0;
}
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size )
{
@@ -376,4 +436,62 @@ int cube_2way_update_close( cube_2way_context *sp, void *output,
return 0;
}
int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
const void *data, size_t size )
{
__m256i *h = (__m256i*)sp->h;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = 32/16;
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
const int len = size >> 4;
const __m256i *in = (__m256i*)data;
__m256i *hash = (__m256i*)output;
int i;
for ( i = 0; i < len; i++ )
{
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ], in[i] );
sp->pos++;
if ( sp->pos == sp->blocksize )
{
transform_2way( sp );
sp->pos = 0;
}
}
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
m256_const2_64( 0, 0x0000000000000080 ) );
transform_2way( sp );
sp->h[7] = _mm256_xor_si256( sp->h[7],
m256_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i ) transform_2way( sp );
memcpy( hash, sp->h, sp->hashlen<<5 );
return 0;
}
#endif

View File

@@ -21,15 +21,12 @@ typedef struct _cube_4way_context cube_4way_context;
int cube_4way_init( cube_4way_context* sp, int hashbitlen, int rounds,
int blockbytes );
// reinitialize context with same parameters, much faster.
int cube_4way_reinit( cube_4way_context *sp );
int cube_4way_update( cube_4way_context *sp, const void *data, size_t size );
int cube_4way_close( cube_4way_context *sp, void *output );
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size );
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#endif
@@ -48,15 +45,12 @@ typedef struct _cube_2way_context cube_2way_context;
int cube_2way_init( cube_2way_context* sp, int hashbitlen, int rounds,
int blockbytes );
// reinitialize context with same parameters, much faster.
int cube_2way_reinit( cube_2way_context *sp );
int cube_2way_update( cube_2way_context *sp, const void *data, size_t size );
int cube_2way_close( cube_2way_context *sp, void *output );
int cube_2way_update_close( cube_2way_context *sp, void *output,
const void *data, size_t size );
int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#endif

View File

@@ -7,7 +7,6 @@
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _ECHO_VPERM_ must be defined if compiling with ../main.c
* - define NO_AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
@@ -21,13 +20,7 @@
#include "hash_api.h"
//#include "vperm.h"
#include <immintrin.h>
/*
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
*/
#include "simd-utils.h"
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
@@ -525,6 +518,165 @@ HashReturn update_final_echo( hashState_echo *state, BitSequence *hashval,
return SUCCESS;
}
HashReturn echo_full( hashState_echo *state, BitSequence *hashval,
int nHashSize, const BitSequence *data, DataLength datalen )
{
int i, j;
state->k = m128_zero;
state->processed_bits = 0;
state->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
state->uHashSize = 256;
state->uBlockLength = 192;
state->uRounds = 8;
state->hashsize = m128_const_64( 0, 0x100 );
state->const1536 = m128_const_64( 0, 0x600 );
break;
case 512:
state->uHashSize = 512;
state->uBlockLength = 128;
state->uRounds = 10;
state->hashsize = m128_const_64( 0, 0x200 );
state->const1536 = m128_const_64( 0, 0x400 );
break;
default:
return BAD_HASHBITLEN;
}
for(i = 0; i < 4; i++)
for(j = 0; j < nHashSize / 256; j++)
state->state[i][j] = state->hashsize;
for(i = 0; i < 4; i++)
for(j = nHashSize / 256; j < 4; j++)
state->state[i][j] = m128_zero;
unsigned int uBlockCount, uRemainingBytes;
if( (state->uBufferBytes + datalen) >= state->uBlockLength )
{
if( state->uBufferBytes != 0 )
{
// Fill the buffer
memcpy( state->buffer + state->uBufferBytes,
(void*)data, state->uBlockLength - state->uBufferBytes );
// Process buffer
Compress( state, state->buffer, 1 );
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
datalen -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = datalen / state->uBlockLength;
uRemainingBytes = datalen % state->uBlockLength;
if( uBlockCount > 0 )
{
Compress( state, data, uBlockCount );
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if( uRemainingBytes > 0 )
memcpy(state->buffer, (void*)data, uRemainingBytes);
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy( state->buffer + state->uBufferBytes, (void*)data, datalen );
state->uBufferBytes += datalen;
}
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32( 0, 0, 0, state->uBufferBytes * 8 );
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
if( (state->uBlockLength - state->uBufferBytes) >= 18 )
{
// Pad with zeros
memset( state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18) );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) = state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Last block contains message bits?
if( state->uBufferBytes == 1 )
{
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
else
{
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
// Compress
Compress( state, state->buffer, 1 );
}
else
{
// Fill with zero and compress
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - state->uBufferBytes );
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1 );
// Last block
memset( state->buffer, 0, state->uBlockLength - 18 );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) =
state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Compress the last block
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1) ;
}
// Store the hash value
_mm_store_si128( (__m128i*)hashval + 0, state->state[0][0] );
_mm_store_si128( (__m128i*)hashval + 1, state->state[1][0] );
if( state->uHashSize == 512 )
{
_mm_store_si128( (__m128i*)hashval + 2, state->state[2][0] );
_mm_store_si128( (__m128i*)hashval + 3, state->state[3][0] );
}
return SUCCESS;
}
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval)
{

View File

@@ -1,620 +0,0 @@
/*
* file : echo_vperm.c
* version : 1.0.208
* date : 14.12.2010
*
* - vperm and aes_ni implementations of hash function ECHO
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _ECHO_VPERM_ must be defined if compiling with ../main.c
* - define NO_AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#if defined(__AES__)
#include <memory.h>
#include "miner.h"
#include "hash_api.h"
//#include "vperm.h"
#include <immintrin.h>
/*
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
*/
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
MYALIGN const unsigned int _k_opt[] = {0xD6B66000, 0xFF9F4929, 0xDEBE6808, 0xF7974121, 0x50BCEC00, 0x01EDBD51, 0xB05C0CE0, 0xE10D5DB1};
MYALIGN const unsigned int _k_inv[] = {0x0D080180, 0x0E05060F, 0x0A0B0C02, 0x04070309, 0x0F0B0780, 0x01040A06, 0x02050809, 0x030D0E0C};
MYALIGN const unsigned int _k_sb1[] = {0xCB503E00, 0xB19BE18F, 0x142AF544, 0xA5DF7A6E, 0xFAE22300, 0x3618D415, 0x0D2ED9EF, 0x3BF7CCC1};
MYALIGN const unsigned int _k_sb2[] = {0x0B712400, 0xE27A93C6, 0xBC982FCD, 0x5EB7E955, 0x0AE12900, 0x69EB8840, 0xAB82234A, 0xC2A163C8};
MYALIGN const unsigned int _k_sb3[] = {0xC0211A00, 0x53E17249, 0xA8B2DA89, 0xFB68933B, 0xF0030A00, 0x5FF35C55, 0xA6ACFAA5, 0xF956AF09};
MYALIGN const unsigned int _k_sb4[] = {0x3FD64100, 0xE1E937A0, 0x49087E9F, 0xA876DE97, 0xC393EA00, 0x3D50AED7, 0x876D2914, 0xBA44FE79};
MYALIGN const unsigned int _k_sb5[] = {0xF4867F00, 0x5072D62F, 0x5D228BDB, 0x0DA9A4F9, 0x3971C900, 0x0B487AC2, 0x8A43F0FB, 0x81B332B8};
MYALIGN const unsigned int _k_sb7[] = {0xFFF75B00, 0xB20845E9, 0xE1BAA416, 0x531E4DAC, 0x3390E000, 0x62A3F282, 0x21C1D3B1, 0x43125170};
MYALIGN const unsigned int _k_sbo[] = {0x6FBDC700, 0xD0D26D17, 0xC502A878, 0x15AABF7A, 0x5FBB6A00, 0xCFE474A5, 0x412B35FA, 0x8E1E90D1};
MYALIGN const unsigned int _k_h63[] = {0x63636363, 0x63636363, 0x63636363, 0x63636363};
MYALIGN const unsigned int _k_hc6[] = {0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6};
MYALIGN const unsigned int _k_h5b[] = {0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b};
MYALIGN const unsigned int _k_h4e[] = {0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e};
MYALIGN const unsigned int _k_h0e[] = {0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e};
MYALIGN const unsigned int _k_h15[] = {0x15151515, 0x15151515, 0x15151515, 0x15151515};
MYALIGN const unsigned int _k_aesmix1[] = {0x0f0a0500, 0x030e0904, 0x07020d08, 0x0b06010c};
MYALIGN const unsigned int _k_aesmix2[] = {0x000f0a05, 0x04030e09, 0x0807020d, 0x0c0b0601};
MYALIGN const unsigned int _k_aesmix3[] = {0x05000f0a, 0x0904030e, 0x0d080702, 0x010c0b06};
MYALIGN const unsigned int _k_aesmix4[] = {0x0a05000f, 0x0e090403, 0x020d0807, 0x06010c0b};
MYALIGN const unsigned int const1[] = {0x00000001, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2mask[] = {0x00001b00, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int lsbmask[] = {0x01010101, 0x01010101, 0x01010101, 0x01010101};
MYALIGN const unsigned int invshiftrows[] = {0x070a0d00, 0x0b0e0104, 0x0f020508, 0x0306090c};
MYALIGN const unsigned int zero[] = {0x00000000, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57, 0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234};
#define ECHO_SUBBYTES(state, i, j) \
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
k1 = _mm_add_epi32(k1, M128(const1))
#define ECHO_MIXBYTES(state1, state2, j, t1, t2, s2) \
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\
t1 = _mm_srli_epi16(state1[0][j], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = s2;\
state2[1][j] = state1[0][j];\
state2[2][j] = state1[0][j];\
state2[3][j] = _mm_xor_si128(s2, state1[0][j]);\
s2 = _mm_add_epi8(state1[1][(j + 1) & 3], state1[1][(j + 1) & 3]);\
t1 = _mm_srli_epi16(state1[1][(j + 1) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], _mm_xor_si128(s2, state1[1][(j + 1) & 3]));\
state2[1][j] = _mm_xor_si128(state2[1][j], s2);\
state2[2][j] = _mm_xor_si128(state2[2][j], state1[1][(j + 1) & 3]);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[1][(j + 1) & 3]);\
s2 = _mm_add_epi8(state1[2][(j + 2) & 3], state1[2][(j + 2) & 3]);\
t1 = _mm_srli_epi16(state1[2][(j + 2) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[2][(j + 2) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], _mm_xor_si128(s2, state1[2][(j + 2) & 3]));\
state2[2][j] = _mm_xor_si128(state2[2][j], s2);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[2][(j + 2) & 3]);\
s2 = _mm_add_epi8(state1[3][(j + 3) & 3], state1[3][(j + 3) & 3]);\
t1 = _mm_srli_epi16(state1[3][(j + 3) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[3][(j + 3) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], state1[3][(j + 3) & 3]);\
state2[2][j] = _mm_xor_si128(state2[2][j], _mm_xor_si128(s2, state1[3][(j + 3) & 3]));\
state2[3][j] = _mm_xor_si128(state2[3][j], s2)
#define ECHO_ROUND_UNROLL2 \
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
ECHO_SUBBYTES(_state, 1, 1);\
ECHO_SUBBYTES(_state, 2, 1);\
ECHO_SUBBYTES(_state, 3, 1);\
ECHO_SUBBYTES(_state, 0, 2);\
ECHO_SUBBYTES(_state, 1, 2);\
ECHO_SUBBYTES(_state, 2, 2);\
ECHO_SUBBYTES(_state, 3, 2);\
ECHO_SUBBYTES(_state, 0, 3);\
ECHO_SUBBYTES(_state, 1, 3);\
ECHO_SUBBYTES(_state, 2, 3);\
ECHO_SUBBYTES(_state, 3, 3);\
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES(_state2, 0, 0);\
ECHO_SUBBYTES(_state2, 1, 0);\
ECHO_SUBBYTES(_state2, 2, 0);\
ECHO_SUBBYTES(_state2, 3, 0);\
ECHO_SUBBYTES(_state2, 0, 1);\
ECHO_SUBBYTES(_state2, 1, 1);\
ECHO_SUBBYTES(_state2, 2, 1);\
ECHO_SUBBYTES(_state2, 3, 1);\
ECHO_SUBBYTES(_state2, 0, 2);\
ECHO_SUBBYTES(_state2, 1, 2);\
ECHO_SUBBYTES(_state2, 2, 2);\
ECHO_SUBBYTES(_state2, 3, 2);\
ECHO_SUBBYTES(_state2, 0, 3);\
ECHO_SUBBYTES(_state2, 1, 3);\
ECHO_SUBBYTES(_state2, 2, 3);\
ECHO_SUBBYTES(_state2, 3, 3);\
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE(dst, src)\
dst[0][0] = src[0][0];\
dst[0][1] = src[0][1];\
dst[0][2] = src[0][2];\
dst[0][3] = src[0][3];\
dst[1][0] = src[1][0];\
dst[1][1] = src[1][1];\
dst[1][2] = src[1][2];\
dst[1][3] = src[1][3];\
dst[2][0] = src[2][0];\
dst[2][1] = src[2][1];\
dst[2][2] = src[2][2];\
dst[2][3] = src[2][3];\
dst[3][0] = src[3][0];\
dst[3][1] = src[3][1];\
dst[3][2] = src[3][2];\
dst[3][3] = src[3][3]
void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
{
unsigned int r, b, i, j;
__m128i t1, t2, s2, k1;
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
for(i = 0; i < 4; i++)
for(j = 0; j < ctx->uHashSize / 256; j++)
_state[i][j] = ctx->state[i][j];
for(b = 0; b < uBlockCount; b++)
{
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
// load message
for(j = ctx->uHashSize / 256; j < 4; j++)
{
for(i = 0; i < 4; i++)
{
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
}
}
uint64_t *b = (uint64_t*)_state;
//printf("Ss3: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
// save state
SAVESTATE(_statebackup, _state);
k1 = ctx->k;
for(r = 0; r < ctx->uRounds / 2; r++)
{
ECHO_ROUND_UNROLL2;
}
//printf("Ss4: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
if(ctx->uHashSize == 256)
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
}
}
else
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
}
}
pmsg += ctx->uBlockLength;
}
SAVESTATE(ctx->state, _state);
}
HashReturn init_echo(hashState_echo *ctx, int nHashSize)
{
int i, j;
ctx->k = _mm_setzero_si128();
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch(nHashSize)
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000100);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000600);
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000200);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000400);
break;
default:
return BAD_HASHBITLEN;
}
for(i = 0; i < 4; i++)
for(j = 0; j < nHashSize / 256; j++)
ctx->state[i][j] = ctx->hashsize;
for(i = 0; i < 4; i++)
for(j = nHashSize / 256; j < 4; j++)
ctx->state[i][j] = _mm_set_epi32(0, 0, 0, 0);
return SUCCESS;
}
HashReturn update_echo(hashState_echo *state, const BitSequence *data, DataLength databitlen)
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if((state->uBufferBytes + uByteLength) >= state->uBlockLength)
{
if(state->uBufferBytes != 0)
{
// Fill the buffer
memcpy(state->buffer + state->uBufferBytes, (void*)data, state->uBlockLength - state->uBufferBytes);
// Process buffer
Compress(state, state->buffer, 1);
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if(uBlockCount > 0)
{
Compress(state, data, uBlockCount);
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if(uRemainingBytes > 0)
{
memcpy(state->buffer, (void*)data, uRemainingBytes);
}
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy(state->buffer + state->uBufferBytes, (void*)data, uByteLength);
state->uBufferBytes += uByteLength;
}
return SUCCESS;
}
HashReturn final_echo(hashState_echo *state, BitSequence *hashval)
{
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32(0, 0, 0, state->uBufferBytes * 8);
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
if((state->uBlockLength - state->uBufferBytes) >= 18)
{
// Pad with zeros
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18));
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Last block contains message bits?
if(state->uBufferBytes == 1)
{
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
else
{
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
// Compress
Compress(state, state->buffer, 1);
}
else
{
// Fill with zero and compress
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - state->uBufferBytes);
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
// Last block
memset(state->buffer, 0, state->uBlockLength - 18);
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Compress the last block
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
}
// Store the hash value
_mm_storeu_si128((__m128i*)hashval + 0, state->state[0][0]);
_mm_storeu_si128((__m128i*)hashval + 1, state->state[1][0]);
if(state->uHashSize == 512)
{
_mm_storeu_si128((__m128i*)hashval + 2, state->state[2][0]);
_mm_storeu_si128((__m128i*)hashval + 3, state->state[3][0]);
}
return SUCCESS;
}
HashReturn update_final_echo( hashState_echo *state, BitSequence *hashval,
const BitSequence *data, DataLength databitlen )
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
/*
if( (state->uBufferBytes + uByteLength) >= state->uBlockLength )
{
printf("full block\n");
if( state->uBufferBytes != 0 )
{
// Fill the buffer
memcpy( state->buffer + state->uBufferBytes,
(void*)data, state->uBlockLength - state->uBufferBytes );
// Process buffer
Compress( state, state->buffer, 1 );
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if( uBlockCount > 0 )
{
Compress( state, data, uBlockCount );
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if( uRemainingBytes > 0 )
memcpy(state->buffer, (void*)data, uRemainingBytes);
state->uBufferBytes = uRemainingBytes;
}
else
{
*/
memcpy( state->buffer + state->uBufferBytes, (void*)data, uByteLength );
state->uBufferBytes += uByteLength;
// }
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32( 0, 0, 0, state->uBufferBytes * 8 );
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
// if( (state->uBlockLength - state->uBufferBytes) >= 18 )
// {
// Pad with zeros
memset( state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18) );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) = state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Last block contains message bits?
if( state->uBufferBytes == 1 )
{
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
else
{
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
uint64_t *b = (uint64_t*)&state->k;
/*
printf("Sk: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
b = (uint64_t*)state->buffer;
printf("Sb: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
printf("Sb: %016lx %016lx %016lx %016lx\n",b[4],b[5],b[6],b[7]);
printf("Sb: %016lx %016lx %016lx %016lx\n",b[8],b[9],b[10],b[11]);
printf("Sb: %016lx %016lx %016lx %016lx\n",b[12],b[13],b[14],b[15]);
b = (uint64_t*)state->state;
printf("Ss1: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
printf("Ss1: %016lx %016lx %016lx %016lx\n",b[4],b[5],b[6],b[7]);
printf("Ss1: %016lx %016lx %016lx %016lx\n",b[8],b[9],b[10],b[11]);
printf("Ss1: %016lx %016lx %016lx %016lx\n",b[12],b[13],b[14],b[15]);
*/
// Compress
Compress( state, state->buffer, 1 );
//printf("Ss2: %016lx %016lx %016lx %016lx\n",b[0],b[1],b[2],b[3]);
/*
}
else
{
// Fill with zero and compress
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - state->uBufferBytes );
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1 );
// Last block
memset( state->buffer, 0, state->uBlockLength - 18 );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) =
state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Compress the last block
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1) ;
}
*/
// Store the hash value
_mm_storeu_si128( (__m128i*)hashval + 0, state->state[0][0] );
_mm_storeu_si128( (__m128i*)hashval + 1, state->state[1][0] );
if( state->uHashSize == 512 )
{
_mm_storeu_si128( (__m128i*)hashval + 2, state->state[2][0] );
_mm_storeu_si128( (__m128i*)hashval + 3, state->state[3][0] );
}
return SUCCESS;
}
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval)
{
HashReturn hRet;
hashState_echo hs;
/////
/*
__m128i a, b, c, d, t[4], u[4], v[4];
a = _mm_set_epi32(0x0f0e0d0c, 0x0b0a0908, 0x07060504, 0x03020100);
b = _mm_set_epi32(0x1f1e1d1c, 0x1b1a1918, 0x17161514, 0x13121110);
c = _mm_set_epi32(0x2f2e2d2c, 0x2b2a2928, 0x27262524, 0x23222120);
d = _mm_set_epi32(0x3f3e3d3c, 0x3b3a3938, 0x37363534, 0x33323130);
t[0] = _mm_unpacklo_epi8(a, b);
t[1] = _mm_unpackhi_epi8(a, b);
t[2] = _mm_unpacklo_epi8(c, d);
t[3] = _mm_unpackhi_epi8(c, d);
u[0] = _mm_unpacklo_epi16(t[0], t[2]);
u[1] = _mm_unpackhi_epi16(t[0], t[2]);
u[2] = _mm_unpacklo_epi16(t[1], t[3]);
u[3] = _mm_unpackhi_epi16(t[1], t[3]);
t[0] = _mm_unpacklo_epi16(u[0], u[1]);
t[1] = _mm_unpackhi_epi16(u[0], u[1]);
t[2] = _mm_unpacklo_epi16(u[2], u[3]);
t[3] = _mm_unpackhi_epi16(u[2], u[3]);
u[0] = _mm_unpacklo_epi8(t[0], t[1]);
u[1] = _mm_unpackhi_epi8(t[0], t[1]);
u[2] = _mm_unpacklo_epi8(t[2], t[3]);
u[3] = _mm_unpackhi_epi8(t[2], t[3]);
a = _mm_unpacklo_epi8(u[0], u[1]);
b = _mm_unpackhi_epi8(u[0], u[1]);
c = _mm_unpacklo_epi8(u[2], u[3]);
d = _mm_unpackhi_epi8(u[2], u[3]);
*/
/////
hRet = init_echo(&hs, hashbitlen);
if(hRet != SUCCESS)
return hRet;
hRet = update_echo(&hs, data, databitlen);
if(hRet != SUCCESS)
return hRet;
hRet = final_echo(&hs, hashval);
if(hRet != SUCCESS)
return hRet;
return SUCCESS;
}
#endif

View File

@@ -15,7 +15,7 @@
#ifndef HASH_API_H
#define HASH_API_H
#ifndef NO_AES_NI
#ifdef __AES__
#define HASH_IMPL_STR "ECHO-aesni"
#else
#define HASH_IMPL_STR "ECHO-vperm"
@@ -55,6 +55,8 @@ HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databit
HashReturn update_final_echo( hashState_echo *state, BitSequence *hashval,
const BitSequence *data, DataLength databitlen );
HashReturn echo_full( hashState_echo *state, BitSequence *hashval,
int nHashSize, const BitSequence *data, DataLength databitlen );
#endif // HASH_API_H

View File

@@ -313,4 +313,92 @@ int echo_4way_update_close( echo_4way_context *state, void *hashval,
return 0;
}
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen )
{
int i, j;
int databitlen = datalen * 8;
ctx->k = m512_zero;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x400);
break;
default:
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m512_zero;
// bytelen is either 32 (maybe), 64 or 80 or 128!
// all are less than full block.
int vlen = datalen / 32;
const int vblen = ctx->uBlockLength / 16; // 16 bytes per lane
__m512i remainingbits;
if ( databitlen == 1024 )
{
echo_4way_compress( ctx, data, 1 );
ctx->processed_bits = 1024;
remainingbits = m512_const2_64( 0, -1024 );
vlen = 0;
}
else
{
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_512( ctx->buffer, data, vlen );
ctx->processed_bits += (unsigned int)( databitlen );
remainingbits = _mm512_set4_epi32( 0, 0, 0, databitlen );
}
ctx->buffer[ vlen ] = _mm512_set4_epi32( 0, 0, 0, 0x80 );
memset_zero_512( ctx->buffer + vlen + 1, vblen - vlen - 2 );
ctx->buffer[ vblen-2 ] =
_mm512_set4_epi32( (uint32_t)ctx->uHashSize << 16, 0, 0, 0 );
ctx->buffer[ vblen-1 ] =
_mm512_set4_epi64( 0, ctx->processed_bits,
0, ctx->processed_bits );
ctx->k = _mm512_add_epi64( ctx->k, remainingbits );
ctx->k = _mm512_sub_epi64( ctx->k, ctx->const1536 );
echo_4way_compress( ctx, ctx->buffer, 1 );
_mm512_store_si512( (__m512i*)hashval + 0, ctx->state[ 0 ][ 0] );
_mm512_store_si512( (__m512i*)hashval + 1, ctx->state[ 1 ][ 0] );
if ( ctx->uHashSize == 512 )
{
_mm512_store_si512( (__m512i*)hashval + 2, ctx->state[ 2 ][ 0 ] );
_mm512_store_si512( (__m512i*)hashval + 3, ctx->state[ 3 ][ 0 ] );
}
return 0;
}
#endif

View File

@@ -32,5 +32,8 @@ int echo_close( echo_4way_context *state, void *hashval );
int echo_4way_update_close( echo_4way_context *state, void *hashval,
const void *data, int databitlen );
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen );
#endif
#endif

View File

@@ -4,7 +4,7 @@
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include "simd-utils.h"
#include "sph_gost.h"
#ifdef __cplusplus
@@ -696,9 +696,26 @@ static void AddModulo512(const void *a,const void *b,void *c)
static void AddXor512(const void *a,const void *b,void *c)
{
const unsigned long long *A=a, *B=b;
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
casti_m512i( c, 0 ) = _mm512_xor_si512( casti_m512i( a, 0 ),
casti_m512i( b, 0 ) );
#elif defined(__AVX2__)
casti_m256i( c, 0 ) = _mm256_xor_si256( casti_m256i( a, 0 ),
casti_m256i( b, 0 ) );
casti_m256i( c, 1 ) = _mm256_xor_si256( casti_m256i( a, 1 ),
casti_m256i( b, 1 ) );
#elif defined(__SSE2__)
casti_m128i( c, 0 ) = _mm_xor_si128( casti_m128i( a, 0 ),
casti_m128i( b, 0 ) );
casti_m128i( c, 1 ) = _mm_xor_si128( casti_m128i( a, 1 ),
casti_m128i( b, 1 ) );
casti_m128i( c, 2 ) = _mm_xor_si128( casti_m128i( a, 2 ),
casti_m128i( b, 2 ) );
casti_m128i( c, 3 ) = _mm_xor_si128( casti_m128i( a, 3 ),
casti_m128i( b, 3 ) );
#else
const unsigned long long *A=a, *B=b;
unsigned long long *C=c;
#ifdef FULL_UNROLL
C[0] = A[0] ^ B[0];
C[1] = A[1] ^ B[1];
C[2] = A[2] ^ B[2];
@@ -707,12 +724,6 @@ static void AddXor512(const void *a,const void *b,void *c)
C[5] = A[5] ^ B[5];
C[6] = A[6] ^ B[6];
C[7] = A[7] ^ B[7];
#else
int i = 0;
for(i=0; i<8; i++) {
C[i] = A[i] ^ B[i];
}
#endif
}
@@ -893,31 +904,32 @@ static void g_N(const unsigned char *N,unsigned char *h,const unsigned char *m)
static void hash_X(unsigned char *IV,const unsigned char *message,unsigned long long length,unsigned char *out)
{
unsigned char v512[64] = {
unsigned char v512[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00
};
unsigned char v0[64] = {
};
unsigned char v0[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char Sigma[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char Sigma[64] = {
unsigned char N[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char N[64] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char m[64], *hash = IV;
unsigned char m[64] __attribute__((aligned(64)));
unsigned char *hash = IV;
unsigned long long len = length;
// Stage 2
@@ -952,7 +964,7 @@ static void hash_X(unsigned char *IV,const unsigned char *message,unsigned long
static void hash_512(const unsigned char *message, unsigned long long length, unsigned char *out)
{
unsigned char IV[64] = {
unsigned char IV[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

View File

@@ -81,9 +81,9 @@ typedef struct {
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
unsigned char buf[64] __attribute__((aligned(64)));
sph_u32 V[5][8] __attribute__((aligned(64)));
size_t ptr;
sph_u32 V[5][8];
#endif
} sph_gost512_context;

View File

@@ -2,13 +2,6 @@
//#define TASM
#define TINTR
//#define AES_NI
//#ifdef AES_NI
// specify AES-NI, AVX (with AES-NI) or vector-permute implementation
//#ifndef NO_AES_NI
// Not to be confused with AVX512VAES
#define VAES
// #define VAVX

View File

@@ -14,7 +14,7 @@
#include "miner.h"
#include "simd-utils.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "groestl-version.h"
@@ -67,8 +67,12 @@ HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT(ctx->chaining);
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -87,8 +91,9 @@ HashReturn_gr reinit_groestl( hashState_groestl* ctx )
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT(ctx->chaining);
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -180,6 +185,82 @@ HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
return SUCCESS_GR;
}
int groestl512_full( hashState_groestl* ctx, void* output,
const void* input, uint64_t databitlen )
{
int i;
ctx->hashlen = 64;
SET_CONSTANTS();
for ( i = 0; i < SIZE512; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE512;
__m128i* in = (__m128i*)input;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == len -1 )
{
// only 128 bits left in buffer, all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
// add zero padding
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
0, 0 ,0,0, 0,0,0,0 );
}
// digest final padding block and do output transform
TF1024( ctx->chaining, ctx->buffer );
OF1024( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
const void* input, DataLength_gr databitlen )
{

View File

@@ -87,5 +87,6 @@ HashReturn_gr final_groestl( hashState_groestl*, void* );
HashReturn_gr update_and_final_groestl( hashState_groestl*, void*,
const void*, DataLength_gr );
int groestl512_full( hashState_groestl*, void*, const void*, uint64_t );
#endif /* __hash_h */

View File

@@ -11,7 +11,7 @@
#include "miner.h"
#include "simd-utils.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "groestl-version.h"
@@ -86,8 +86,11 @@ HashReturn_gr reinit_groestl256(hashState_groestl256* ctx)
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT256(ctx->chaining);
ctx->chaining[ 3 ] = m128_const_64( 0, 0x0100000000000000 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT256(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;

View File

@@ -93,9 +93,6 @@ typedef enum
typedef struct {
__attribute__ ((aligned (32))) __m128i chaining[SIZE256];
__attribute__ ((aligned (32))) __m128i buffer[SIZE256];
// __attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
// __attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
// u64 block_counter; /* message block counter */
int hashlen; // bytes
int blk_count;
int buf_ptr; /* data buffer pointer */

View File

@@ -49,7 +49,7 @@ int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash+(lane<<3) )[7] < Htarg )
if ( ( hash+(lane<<3) )[7] <= Htarg )
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
{
pdata[19] = n + lane;

View File

@@ -3,19 +3,18 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#ifdef NO_AES_NI
#include "sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "sph_groestl.h"
#endif
typedef struct
{
#ifdef NO_AES_NI
sph_groestl512_context groestl1, groestl2;
#else
#ifdef __AES__
hashState_groestl groestl1, groestl2;
#else
sph_groestl512_context groestl1, groestl2;
#endif
} groestl_ctx_holder;
@@ -24,12 +23,12 @@ static groestl_ctx_holder groestl_ctx;
void init_groestl_ctx()
{
#ifdef NO_AES_NI
sph_groestl512_init( &groestl_ctx.groestl1 );
sph_groestl512_init( &groestl_ctx.groestl2 );
#else
#ifdef __AES__
init_groestl( &groestl_ctx.groestl1, 64 );
init_groestl( &groestl_ctx.groestl2, 64 );
#else
sph_groestl512_init( &groestl_ctx.groestl1 );
sph_groestl512_init( &groestl_ctx.groestl2 );
#endif
}
@@ -39,18 +38,18 @@ void groestlhash( void *output, const void *input )
groestl_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &groestl_ctx, sizeof(groestl_ctx) );
#ifdef NO_AES_NI
sph_groestl512(&ctx.groestl1, input, 80);
sph_groestl512_close(&ctx.groestl1, hash);
sph_groestl512(&ctx.groestl2, hash, 64);
sph_groestl512_close(&ctx.groestl2, hash);
#else
#ifdef __AES__
update_and_final_groestl( &ctx.groestl1, (char*)hash,
(const char*)input, 640 );
update_and_final_groestl( &ctx.groestl2, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512(&ctx.groestl1, input, 80);
sph_groestl512_close(&ctx.groestl1, hash);
sph_groestl512(&ctx.groestl2, hash, 64);
sph_groestl512_close(&ctx.groestl2, hash);
#endif
memcpy(output, hash, 32);
}

View File

@@ -1,4 +1,5 @@
/* hash.c Aug 2011
* groestl512-hash-4way https://github.com/JayDDee/cpuminer-opt 2019-12.
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
@@ -6,51 +7,18 @@
* This code is placed in the public domain
*/
// Optimized for hash and data length that are integrals of __m128i
#include <memory.h>
#include "hash-groestl256.h"
#include "groestl256-intr-4way.h"
#include "miner.h"
#include "simd-utils.h"
#ifndef NO_AES_NI
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#include "groestl-version.h"
#ifdef TASM
#ifdef VAES
#include "groestl256-asm-aes.h"
#else
#ifdef VAVX
#include "groestl256-asm-avx.h"
#else
#ifdef VVPERM
#include "groestl256-asm-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#ifdef TINTR
#ifdef VAES
#include "groestl256-intr-aes.h"
#else
#ifdef VAVX
#include "groestl256-intr-avx.h"
#else
#ifdef VVPERM
#include "groestl256-intr-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#error NO TYPE SPECIFIED (-DT[ASM/INTR])
#endif
#endif
/* initialise context */
HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
{
int i;
@@ -58,223 +26,84 @@ HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return FAIL_GR;
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT256( ctx->chaining );
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
// uint64_t len = U64BIG((uint64_t)LENGTH);
// ctx->chaining[ COLS/2 -1 ] = _mm512_set4_epi64( len, 0, len, 0 );
// INIT256_4way(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return SUCCESS_GR;
return 0;
}
HashReturn_gr reinit_groestl256(hashState_groestl256* ctx)
{
int i;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return FAIL_GR;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT256(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return SUCCESS_GR;
}
// Use this only for midstate and never for cryptonight
HashReturn_gr update_groestl256( hashState_groestl256* ctx, const void* input,
DataLength_gr databitlen )
{
__m128i* in = (__m128i*)input;
const int len = (int)databitlen / 128; // bits to __m128i
const int blocks = len / SIZE256; // __M128i to blocks
int rem = ctx->rem_ptr;
int i;
ctx->blk_count = blocks;
ctx->databitlen = databitlen;
// digest any full blocks
for ( i = 0; i < blocks; i++ )
TF512( ctx->chaining, &in[ i * SIZE256 ] );
// adjust buf_ptr to last block
ctx->buf_ptr = blocks * SIZE256;
// Copy any remainder to buffer
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
// adjust rem_ptr for new data
ctx->rem_ptr += i;
return SUCCESS_GR;
}
// don't use this at all
HashReturn_gr final_groestl256( hashState_groestl256* ctx, void* output )
{
const int len = (int)ctx->databitlen / 128; // bits to __m128i
const int blocks = ctx->blk_count + 1; // adjust for final block
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i; // where in buffer
int i;
// first pad byte = 0x80, last pad byte = block count
// everything in between is zero
if ( rem_ptr == len - 1 )
{
// all padding at once
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
}
else
{
// add first padding
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
// add zero padding
for ( i = rem_ptr + 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding
// cheat since we know the block count is trivial, good if block < 256
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0 );
}
// digest final padding block and do output transform
TF512( ctx->chaining, ctx->buffer );
OF512( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i];
return SUCCESS_GR;
}
HashReturn_gr update_and_final_groestl256( hashState_groestl256* ctx,
void* output, const void* input, DataLength_gr databitlen )
int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
__m128i* in = (__m128i*)input;
__m512i* in = (__m512i*)input;
int i;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512( ctx->chaining, &in[ i * SIZE256 ] );
TF512_4way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// cryptonight has 200 byte input, an odd number of __m128i
// remainder is only 8 bytes, ie u64.
if ( databitlen % 128 !=0 )
{
// must be cryptonight, copy 64 bits of data
*(uint64_t*)(ctx->buffer) = *(uint64_t*)(&in[ ctx->buf_ptr ] );
i = -1; // signal for odd length
}
else
{
// Copy any remaining data to buffer for final transform
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
}
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
// adjust for final block
blocks++;
blocks++; // adjust for final block
if ( i == len - 1 )
{
// all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
0, 0,0,0, 0,0,0,0x80 );
}
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
}
else
{
if ( i == -1 )
{
// cryptonight odd length
((uint64_t*)ctx->buffer)[ 1 ] = 0x80ull;
// finish the block with zero and length padding as normal
i = 0;
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
}
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding
// cheat since we know the block count is trivial, good if block < 256
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
0, 0,0,0, 0,0,0,0 );
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
}
// digest final padding block and do output transform
TF512( ctx->chaining, ctx->buffer );
OF512( ctx->chaining );
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return SUCCESS_GR;
return 0;
}
/* hash bit sequence */
HashReturn_gr hash_groestl256(int hashbitlen,
const BitSequence_gr* data,
DataLength_gr databitlen,
BitSequence_gr* hashval) {
HashReturn_gr ret;
hashState_groestl256 context;
#endif // VAES
/* initialise */
if ((ret = init_groestl256(&context, hashbitlen/8)) != SUCCESS_GR)
return ret;
/* process message */
if ((ret = update_groestl256(&context, data, databitlen)) != SUCCESS_GR)
return ret;
/* finalise */
ret = final_groestl256(&context, hashval);
return ret;
}
/* eBash API */
//#ifdef crypto_hash_BYTES
//int crypto_hash(unsigned char *out, const unsigned char *in, unsigned long long inlen)
//{
// if (hash_groestl(crypto_hash_BYTES * 8, in, inlen * 8,out) == SUCCESS_GR) return 0;
// return -1;
//}
//#endif
#endif

View File

@@ -6,56 +6,39 @@
* This code is placed in the public domain
*/
#ifndef __hash_h
#define __hash_h
#if !defined(GROESTL256_HASH_4WAY_H__)
#define GROESTL256_HASH_4WAY_H__ 1
#include "simd-utils.h"
#include <immintrin.h>
#include <stdint.h>
#include <stdio.h>
#if defined(_WIN64) || defined(__WINDOWS__)
#include <windows.h>
#endif
#include <stdlib.h>
/* eBash API begin */
/*
#include "crypto_hash.h"
#ifdef crypto_hash_BYTES
#include <crypto_uint8.h>
#include <crypto_uint32.h>
#include <crypto_uint64.h>
typedef crypto_uint8 u8;
typedef crypto_uint32 u32;
typedef crypto_uint64 u64;
#endif
*/
/* eBash API end */
//#define LENGTH (512)
#include "brg_endian.h"
#define NEED_UINT_64T
#include "algo/sha/brg_types.h"
#ifdef IACA_TRACE
#include IACA_MARKS
#endif
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define LENGTH (256)
//#include "brg_endian.h"
//#define NEED_UINT_64T
//#include "algo/sha/brg_types.h"
/* some sizes (number of bytes) */
#define ROWS (8)
#define LENGTHFIELDLEN (ROWS)
#define COLS512 (8)
//#define COLS1024 (16)
#define SIZE_512 ((ROWS)*(COLS512))
//#define SIZE1024 ((ROWS)*(COLS1024))
//#define SIZE_1024 ((ROWS)*(COLS1024))
#define ROUNDS512 (10)
//#define ROUNDS1024 (14)
//#if LENGTH<=256
#define COLS (COLS512)
//#define SIZE (SIZE512)
#define SIZE (SIZE512)
#define ROUNDS (ROUNDS512)
//#else
//#define COLS (COLS1024)
@@ -63,59 +46,30 @@ typedef crypto_uint64 u64;
//#define ROUNDS (ROUNDS1024)
//#endif
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*(7-(n)))))
#define U64BIG(a) (a)
#endif /* IS_BIG_ENDIAN */
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*n)))
#define U64BIG(a) \
((ROTL64(a, 8) & li_64(000000FF000000FF)) | \
(ROTL64(a,24) & li_64(0000FF000000FF00)) | \
(ROTL64(a,40) & li_64(00FF000000FF0000)) | \
(ROTL64(a,56) & li_64(FF000000FF000000)))
#endif /* IS_LITTLE_ENDIAN */
typedef unsigned char BitSequence_gr;
typedef unsigned long long DataLength_gr;
typedef enum
{
SUCCESS_GR = 0,
FAIL_GR = 1,
BAD_HASHBITLEN_GR = 2
} HashReturn_gr;
#define SIZE256 (SIZE_512/16)
typedef struct {
__attribute__ ((aligned (32))) __m128i chaining[SIZE256];
__attribute__ ((aligned (32))) __m128i buffer[SIZE256];
// __attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
// __attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
// u64 block_counter; /* message block counter */
int hashlen; // bytes
int blk_count;
int buf_ptr; /* data buffer pointer */
__attribute__ ((aligned (128))) __m512i chaining[SIZE256];
__attribute__ ((aligned (64))) __m512i buffer[SIZE256];
int hashlen; // byte
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
int databitlen;
} hashState_groestl256;
int databitlen; // bits
} groestl256_4way_context;
HashReturn_gr init_groestl256( hashState_groestl256*, int );
HashReturn_gr reinit_groestl256( hashState_groestl256* );
int groestl256_4way_init( groestl256_4way_context*, uint64_t );
HashReturn_gr update_groestl256( hashState_groestl256*, const void*,
DataLength_gr );
//int reinit_groestl( hashState_groestl* );
HashReturn_gr final_groestl256( hashState_groestl256*, void* );
//int groestl512_4way_update( groestl256_4way_context*, const void*,
// uint64_t );
HashReturn_gr hash_groestli256( int, const BitSequence_gr*, DataLength_gr,
BitSequence_gr* );
//int groestl512_4way_close( groestl512_4way_context*, void* );
HashReturn_gr update_and_final_groestl256( hashState_groestl256*, void*,
const void*, DataLength_gr );
int groestl256_4way_update_close( groestl256_4way_context*, void*,
const void*, uint64_t );
#endif /* __hash_h */
#endif
#endif

View File

@@ -7,35 +7,37 @@
* This code is placed in the public domain
*/
#include <smmintrin.h>
#include <wmmintrin.h>
#include "hash-groestl256.h"
#if !defined(GROESTL256_INTR_4WAY_H__)
#define GROESTL256_INTR_4WAY_H__ 1
#include "groestl256-hash-4way.h"
#if defined(__VAES__)
/* global constants */
__m128i ROUND_CONST_Lx;
__m128i ROUND_CONST_L0[ROUNDS512];
__m128i ROUND_CONST_L7[ROUNDS512];
//__m128i ROUND_CONST_P[ROUNDS1024];
//__m128i ROUND_CONST_Q[ROUNDS1024];
__m128i TRANSP_MASK;
__m128i SUBSH_MASK[8];
__m128i ALL_1B;
__m128i ALL_FF;
__m512i ROUND_CONST_Lx;
__m512i ROUND_CONST_L0[ROUNDS512];
__m512i ROUND_CONST_L7[ROUNDS512];
//__m512i ROUND_CONST_P[ROUNDS1024];
//__m512i ROUND_CONST_Q[ROUNDS1024];
__m512i TRANSP_MASK;
__m512i SUBSH_MASK[8];
__m512i ALL_1B;
__m512i ALL_FF;
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2(i, j, k){\
j = _mm_xor_si128(j, j);\
j = _mm_cmpgt_epi8(j, i);\
i = _mm_add_epi8(i, i);\
j = _mm_and_si128(j, k);\
i = _mm_xor_si128(i, j);\
j = _mm512_xor_si512(j, j);\
j = _mm512_movm_epi8( _mm512_cmpgt_epi8_mask(j, i) );\
i = _mm512_add_epi8(i, i);\
j = _mm512_and_si512(j, k);\
i = _mm512_xor_si512(i, j);\
}
/**/
@@ -61,152 +63,188 @@ __m128i ALL_FF;
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm_xor_si128(a0, a1);\
a0 = _mm512_xor_si512(a0, a1);\
b0 = a2;\
a1 = _mm_xor_si128(a1, a2);\
a1 = _mm512_xor_si512(a1, a2);\
b1 = a3;\
a2 = _mm_xor_si128(a2, a3);\
a2 = _mm512_xor_si512(a2, a3);\
b2 = a4;\
a3 = _mm_xor_si128(a3, a4);\
a3 = _mm512_xor_si512(a3, a4);\
b3 = a5;\
a4 = _mm_xor_si128(a4, a5);\
a4 = _mm512_xor_si512(a4, a5);\
b4 = a6;\
a5 = _mm_xor_si128(a5, a6);\
a5 = _mm512_xor_si512(a5, a6);\
b5 = a7;\
a6 = _mm_xor_si128(a6, a7);\
a7 = _mm_xor_si128(a7, b6);\
a6 = _mm512_xor_si512(a6, a7);\
a7 = _mm512_xor_si512(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm_xor_si128(b0, a4);\
b6 = _mm_xor_si128(b6, a4);\
b1 = _mm_xor_si128(b1, a5);\
b7 = _mm_xor_si128(b7, a5);\
b2 = _mm_xor_si128(b2, a6);\
b0 = _mm_xor_si128(b0, a6);\
b0 = _mm512_xor_si512(b0, a4);\
b6 = _mm512_xor_si512(b6, a4);\
b1 = _mm512_xor_si512(b1, a5);\
b7 = _mm512_xor_si512(b7, a5);\
b2 = _mm512_xor_si512(b2, a6);\
b0 = _mm512_xor_si512(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm_xor_si128(b3, a7);\
b1 = _mm_xor_si128(b1, a7);\
b3 = _mm512_xor_si512(b3, a7);\
b1 = _mm512_xor_si512(b1, a7);\
TEMP1 = b1;\
b4 = _mm_xor_si128(b4, a0);\
b2 = _mm_xor_si128(b2, a0);\
b4 = _mm512_xor_si512(b4, a0);\
b2 = _mm512_xor_si512(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm_xor_si128(b5, a1);\
b3 = _mm_xor_si128(b3, a1);\
b5 = _mm512_xor_si512(b5, a1);\
b3 = _mm512_xor_si512(b3, a1);\
b1 = a1;\
b6 = _mm_xor_si128(b6, a2);\
b4 = _mm_xor_si128(b4, a2);\
b6 = _mm512_xor_si512(b6, a2);\
b4 = _mm512_xor_si512(b4, a2);\
TEMP2 = a2;\
b7 = _mm_xor_si128(b7, a3);\
b5 = _mm_xor_si128(b5, a3);\
b7 = _mm512_xor_si512(b7, a3);\
b5 = _mm512_xor_si512(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm_xor_si128(a0, a3);\
a1 = _mm_xor_si128(a1, a4);\
a2 = _mm_xor_si128(a2, a5);\
a3 = _mm_xor_si128(a3, a6);\
a4 = _mm_xor_si128(a4, a7);\
a5 = _mm_xor_si128(a5, b0);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, TEMP2);\
a0 = _mm512_xor_si512(a0, a3);\
a1 = _mm512_xor_si512(a1, a4);\
a2 = _mm512_xor_si512(a2, a5);\
a3 = _mm512_xor_si512(a3, a6);\
a4 = _mm512_xor_si512(a4, a7);\
a5 = _mm512_xor_si512(a5, b0);\
a6 = _mm512_xor_si512(a6, b1);\
a7 = _mm512_xor_si512(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = ALL_1B;\
b1 = m512_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm_xor_si128(a0, TEMP0);\
a0 = _mm512_xor_si512(a0, TEMP0);\
MUL2(a1, b0, b1);\
a1 = _mm_xor_si128(a1, TEMP1);\
a1 = _mm512_xor_si512(a1, TEMP1);\
MUL2(a2, b0, b1);\
a2 = _mm_xor_si128(a2, b2);\
a2 = _mm512_xor_si512(a2, b2);\
MUL2(a3, b0, b1);\
a3 = _mm_xor_si128(a3, b3);\
a3 = _mm512_xor_si512(a3, b3);\
MUL2(a4, b0, b1);\
a4 = _mm_xor_si128(a4, b4);\
a4 = _mm512_xor_si512(a4, b4);\
MUL2(a5, b0, b1);\
a5 = _mm_xor_si128(a5, b5);\
a5 = _mm512_xor_si512(a5, b5);\
MUL2(a6, b0, b1);\
a6 = _mm_xor_si128(a6, b6);\
a6 = _mm512_xor_si512(a6, b6);\
MUL2(a7, b0, b1);\
a7 = _mm_xor_si128(a7, b7);\
a7 = _mm512_xor_si512(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2(a0, b0, b1);\
b5 = _mm_xor_si128(b5, a0);\
b5 = _mm512_xor_si512(b5, a0);\
MUL2(a1, b0, b1);\
b6 = _mm_xor_si128(b6, a1);\
b6 = _mm512_xor_si512(b6, a1);\
MUL2(a2, b0, b1);\
b7 = _mm_xor_si128(b7, a2);\
b7 = _mm512_xor_si512(b7, a2);\
MUL2(a5, b0, b1);\
b2 = _mm_xor_si128(b2, a5);\
b2 = _mm512_xor_si512(b2, a5);\
MUL2(a6, b0, b1);\
b3 = _mm_xor_si128(b3, a6);\
b3 = _mm512_xor_si512(b3, a6);\
MUL2(a7, b0, b1);\
b4 = _mm_xor_si128(b4, a7);\
b4 = _mm512_xor_si512(b4, a7);\
MUL2(a3, b0, b1);\
MUL2(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm_xor_si128(b0, a3);\
b1 = _mm_xor_si128(b1, a4);\
b0 = _mm512_xor_si512(b0, a3);\
b1 = _mm512_xor_si512(b1, a4);\
}/*MixBytes*/
#define SET_CONSTANTS(){\
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
SUBSH_MASK[0] = _mm_set_epi32(0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00);\
SUBSH_MASK[1] = _mm_set_epi32(0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801);\
SUBSH_MASK[2] = _mm_set_epi32(0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02);\
SUBSH_MASK[3] = _mm_set_epi32(0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03);\
SUBSH_MASK[4] = _mm_set_epi32(0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04);\
SUBSH_MASK[5] = _mm_set_epi32(0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05);\
SUBSH_MASK[6] = _mm_set_epi32(0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906);\
SUBSH_MASK[7] = _mm_set_epi32(0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07);\
for(i = 0; i < ROUNDS512; i++)\
{\
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
}\
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
}while(0); \
// calculate the round constants seperately and load at startup
#define SET_CONSTANTS(){\
ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\
TRANSP_MASK = _mm512_set_epi32( \
0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \
0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \
0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \
0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \
SUBSH_MASK[0] = _mm512_set_epi32( \
0x33363a3d, 0x38323539, 0x3c3f3134, 0x373b3e30, \
0x23262a2d, 0x28222529, 0x2c2f2124, 0x272b2e20, \
0x13161a1d, 0x18121519, 0x1c1f1114, 0x171b1e10, \
0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00 ); \
SUBSH_MASK[1] = _mm512_set_epi32( \
0x34373c3f, 0x3a33363b, 0x3e393235, 0x303d3831, \
0x24272c2f, 0x2a23262b, 0x2e292225, 0x202d2821, \
0x14171c1f, 0x1a13161b, 0x1e191215, 0x101d1801, \
0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801 );\
SUBSH_MASK[2] = _mm512_set_epi32( \
0x35303e39, 0x3c34373d, 0x383b3336, 0x313f3a32, \
0x25202e29, 0x2c24272d, 0x282b2326, 0x212f2a22, \
0x15101e19, 0x1c14171d, 0x181b1316, 0x111f1a12, \
0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02 );\
SUBSH_MASK[3] = _mm512_set_epi32( \
0x3631383b, 0x3e35303f, 0x3a3d3437, 0x32393c33, \
0x2621282b, 0x2e25202f, 0x2a2d2427, 0x22292c23, \
0x1611181b, 0x1e15101f, 0x1a1d1417, 0x12191c13, \
0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03 );\
SUBSH_MASK[4] = _mm512_set_epi32( \
0x3732393c, 0x3f363138, 0x3b3e3530, 0x333a3d34, \
0x2722292c, 0x2f262128, 0x2b2e2520, 0x232a2d24, \
0x1712191c, 0x1f161118, 0x1b1e1510, 0x131a1d14, \
0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04 );\
SUBSH_MASK[5] = _mm512_set_epi32( \
0x30333b3e, 0x3937323a, 0x3d383631, 0x343c3f35, \
0x20232b2e, 0x2927222a, 0x2d282621, 0x242c2f25, \
0x10131b1e, 0x1917121a, 0x1d181611, 0x141c1f15, \
0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05 );\
SUBSH_MASK[6] = _mm512_set_epi32( \
0x31343d38, 0x3b30333c, 0x3f3a3732, 0x353e3936, \
0x21242d28, 0x2b20232c, 0x2f2a2722, 0x252e2926, \
0x11141d18, 0x1b10131c, 0x1f1a1712, 0x151e1916, \
0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906 );\
SUBSH_MASK[7] = _mm512_set_epi32( \
0x32353f3a, 0x3d31343e, 0x393c3033, 0x36383b37, \
0x22252f2a, 0x2d21242e, 0x292c2023, 0x26282b27, \
0x12151f1a, 0x1d11141e, 0x191c1013, 0x16181b17, \
0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07 );\
for ( i = 0; i < ROUNDS512; i++ ) \
{\
ROUND_CONST_L0[i] = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x70605040 ^ ( i * 0x01010101 ), 0x30201000 ^ ( i * 0x01010101 ) ); \
ROUND_CONST_L7[i] = _mm512_set4_epi32( 0x8f9fafbf ^ ( i * 0x01010101 ), \
0xcfdfefff ^ ( i * 0x01010101 ), 0x00000000, 0x00000000 ); \
}\
ROUND_CONST_Lx = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x00000000, 0x00000000 ); \
}while(0);\
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
b1 = ROUND_CONST_Lx;\
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
a1 = _mm_xor_si128(a1, b1);\
a2 = _mm_xor_si128(a2, b1);\
a3 = _mm_xor_si128(a3, b1);\
a4 = _mm_xor_si128(a4, b1);\
a5 = _mm_xor_si128(a5, b1);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
a0 = _mm512_xor_si512( a0, (ROUND_CONST_L0[i]) );\
a1 = _mm512_xor_si512( a1, b1 );\
a2 = _mm512_xor_si512( a2, b1 );\
a3 = _mm512_xor_si512( a3, b1 );\
a4 = _mm512_xor_si512( a4, b1 );\
a5 = _mm512_xor_si512( a5, b1 );\
a6 = _mm512_xor_si512( a6, b1 );\
a7 = _mm512_xor_si512( a7, (ROUND_CONST_L7[i]) );\
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm_xor_si128(b0, b0);\
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
a0 = _mm_aesenclast_si128(a0, b0);\
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
a1 = _mm_aesenclast_si128(a1, b0);\
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
a2 = _mm_aesenclast_si128(a2, b0);\
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
a3 = _mm_aesenclast_si128(a3, b0);\
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
a4 = _mm_aesenclast_si128(a4, b0);\
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
a5 = _mm_aesenclast_si128(a5, b0);\
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
a6 = _mm_aesenclast_si128(a6, b0);\
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
a7 = _mm_aesenclast_si128(a7, b0);\
b0 = _mm512_xor_si512( b0, b0 );\
a0 = _mm512_shuffle_epi8( a0, (SUBSH_MASK[0]) );\
a0 = _mm512_aesenclast_epi128(a0, b0 );\
a1 = _mm512_shuffle_epi8( a1, (SUBSH_MASK[1]) );\
a1 = _mm512_aesenclast_epi128(a1, b0 );\
a2 = _mm512_shuffle_epi8( a2, (SUBSH_MASK[2]) );\
a2 = _mm512_aesenclast_epi128(a2, b0 );\
a3 = _mm512_shuffle_epi8( a3, (SUBSH_MASK[3]) );\
a3 = _mm512_aesenclast_epi128(a3, b0 );\
a4 = _mm512_shuffle_epi8( a4, (SUBSH_MASK[4]) );\
a4 = _mm512_aesenclast_epi128(a4, b0 );\
a5 = _mm512_shuffle_epi8( a5, (SUBSH_MASK[5]) );\
a5 = _mm512_aesenclast_epi128(a5, b0 );\
a6 = _mm512_shuffle_epi8( a6, (SUBSH_MASK[6]) );\
a6 = _mm512_aesenclast_epi128(a6, b0 );\
a7 = _mm512_shuffle_epi8( a7, (SUBSH_MASK[7]) );\
a7 = _mm512_aesenclast_epi128( a7, b0 );\
\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
@@ -237,31 +275,31 @@ __m128i ALL_FF;
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK;\
\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\
i2 = _mm_shuffle_epi8(i2, t0);\
i3 = _mm_shuffle_epi8(i3, t0);\
i0 = _mm512_shuffle_epi8( i0, t0 );\
i1 = _mm512_shuffle_epi8( i1, t0 );\
i2 = _mm512_shuffle_epi8( i2, t0 );\
i3 = _mm512_shuffle_epi8( i3, t0 );\
\
o1 = i0;\
t0 = i2;\
\
i0 = _mm_unpacklo_epi16(i0, i1);\
o1 = _mm_unpackhi_epi16(o1, i1);\
i2 = _mm_unpacklo_epi16(i2, i3);\
t0 = _mm_unpackhi_epi16(t0, i3);\
i0 = _mm512_unpacklo_epi16( i0, i1 );\
o1 = _mm512_unpackhi_epi16( o1, i1 );\
i2 = _mm512_unpacklo_epi16( i2, i3 );\
t0 = _mm512_unpackhi_epi16( t0, i3 );\
\
i0 = _mm_shuffle_epi32(i0, 216);\
o1 = _mm_shuffle_epi32(o1, 216);\
i2 = _mm_shuffle_epi32(i2, 216);\
t0 = _mm_shuffle_epi32(t0, 216);\
i0 = _mm512_shuffle_epi32( i0, 216 );\
o1 = _mm512_shuffle_epi32( o1, 216 );\
i2 = _mm512_shuffle_epi32( i2, 216 );\
t0 = _mm512_shuffle_epi32( t0, 216 );\
\
o2 = i0;\
o3 = o1;\
\
i0 = _mm_unpacklo_epi32(i0, i2);\
o1 = _mm_unpacklo_epi32(o1, t0);\
o2 = _mm_unpackhi_epi32(o2, i2);\
o3 = _mm_unpackhi_epi32(o3, t0);\
i0 = _mm512_unpacklo_epi32( i0, i2 );\
o1 = _mm512_unpacklo_epi32( o1, t0 );\
o2 = _mm512_unpackhi_epi32( o2, i2 );\
o3 = _mm512_unpackhi_epi32( o3, t0 );\
}/**/
/* Matrix Transpose Step 2
@@ -279,19 +317,19 @@ __m128i ALL_FF;
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
o1 = i0;\
o2 = i1;\
i0 = _mm_unpacklo_epi64(i0, i4);\
o1 = _mm_unpackhi_epi64(o1, i4);\
i0 = _mm512_unpacklo_epi64( i0, i4 );\
o1 = _mm512_unpackhi_epi64( o1, i4 );\
o3 = i1;\
o4 = i2;\
o2 = _mm_unpacklo_epi64(o2, i5);\
o3 = _mm_unpackhi_epi64(o3, i5);\
o2 = _mm512_unpacklo_epi64( o2, i5 );\
o3 = _mm512_unpackhi_epi64( o3, i5 );\
o5 = i2;\
o6 = i3;\
o4 = _mm_unpacklo_epi64(o4, i6);\
o5 = _mm_unpackhi_epi64(o5, i6);\
o4 = _mm512_unpacklo_epi64( o4, i6 );\
o5 = _mm512_unpackhi_epi64( o5, i6 );\
o7 = i3;\
o6 = _mm_unpacklo_epi64(o6, i7);\
o7 = _mm_unpackhi_epi64(o7, i7);\
o6 = _mm512_unpacklo_epi64( o6, i7 );\
o7 = _mm512_unpackhi_epi64( o7, i7 );\
}/**/
/* Matrix Transpose Inverse Step 2
@@ -302,19 +340,20 @@ __m128i ALL_FF;
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
o0 = i0;\
i0 = _mm_unpacklo_epi64(i0, i1);\
o0 = _mm_unpackhi_epi64(o0, i1);\
i0 = _mm512_unpacklo_epi64( i0, i1 );\
o0 = _mm512_unpackhi_epi64( o0, i1 );\
o1 = i2;\
i2 = _mm_unpacklo_epi64(i2, i3);\
o1 = _mm_unpackhi_epi64(o1, i3);\
i2 = _mm512_unpacklo_epi64( i2, i3 );\
o1 = _mm512_unpackhi_epi64( o1, i3 );\
o2 = i4;\
i4 = _mm_unpacklo_epi64(i4, i5);\
o2 = _mm_unpackhi_epi64(o2, i5);\
i4 = _mm512_unpacklo_epi64( i4, i5 );\
o2 = _mm512_unpackhi_epi64( o2, i5 );\
o3 = i6;\
i6 = _mm_unpacklo_epi64(i6, i7);\
o3 = _mm_unpackhi_epi64(o3, i7);\
i6 = _mm512_unpacklo_epi64( i6, i7 );\
o3 = _mm512_unpackhi_epi64( o3, i7 );\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
@@ -322,19 +361,19 @@ __m128i ALL_FF;
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
t0 = _mm_xor_si128(t0, t0);\
t0 = _mm512_xor_si512( t0, t0 );\
i1 = i0;\
i3 = i2;\
i5 = i4;\
i7 = i6;\
i0 = _mm_unpacklo_epi64(i0, t0);\
i1 = _mm_unpackhi_epi64(i1, t0);\
i2 = _mm_unpacklo_epi64(i2, t0);\
i3 = _mm_unpackhi_epi64(i3, t0);\
i4 = _mm_unpacklo_epi64(i4, t0);\
i5 = _mm_unpackhi_epi64(i5, t0);\
i6 = _mm_unpacklo_epi64(i6, t0);\
i7 = _mm_unpackhi_epi64(i7, t0);\
i0 = _mm512_unpacklo_epi64( i0, t0 );\
i1 = _mm512_unpackhi_epi64( i1, t0 );\
i2 = _mm512_unpacklo_epi64( i2, t0 );\
i3 = _mm512_unpackhi_epi64( i3, t0 );\
i4 = _mm512_unpacklo_epi64( i4, t0 );\
i5 = _mm512_unpackhi_epi64( i5, t0 );\
i6 = _mm512_unpacklo_epi64( i6, t0 );\
i7 = _mm512_unpackhi_epi64( i7, t0 );\
}/**/
/* Matrix Transpose Output Inverse Step 2
@@ -344,17 +383,18 @@ __m128i ALL_FF;
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
i0 = _mm_unpacklo_epi64(i0, i1);\
i2 = _mm_unpacklo_epi64(i2, i3);\
i4 = _mm_unpacklo_epi64(i4, i5);\
i6 = _mm_unpacklo_epi64(i6, i7);\
i0 = _mm512_unpacklo_epi64( i0, i1 );\
i2 = _mm512_unpacklo_epi64( i2, i3 );\
i4 = _mm512_unpacklo_epi64( i4, i5 );\
i6 = _mm512_unpacklo_epi64( i6, i7 );\
}/**/
void INIT256( __m128i* chaining )
void INIT256_4way( __m512i* chaining )
{
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
static __m512i xmm0, xmm2, xmm6, xmm7;
static __m512i xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm12 - xmm15 */
xmm12 = chaining[0];
@@ -373,17 +413,13 @@ void INIT256( __m128i* chaining )
chaining[3] = xmm7;
}
void TF512( __m128i* chaining, __m128i* message )
void TF512_4way( __m512i* chaining, __m512i* message )
{
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
#ifdef IACA_TRACE
IACA_START;
#endif
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load message into registers xmm12 - xmm15 */
xmm12 = message[0];
@@ -404,10 +440,10 @@ void TF512( __m128i* chaining, __m128i* message )
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
xmm8 = _mm_xor_si128(xmm8, xmm12);
xmm0 = _mm_xor_si128(xmm0, xmm2);
xmm4 = _mm_xor_si128(xmm4, xmm6);
xmm5 = _mm_xor_si128(xmm5, xmm7);
xmm8 = _mm512_xor_si512( xmm8, xmm12 );
xmm0 = _mm512_xor_si512( xmm0, xmm2 );
xmm4 = _mm512_xor_si512( xmm4, xmm6 );
xmm5 = _mm512_xor_si512( xmm5, xmm7 );
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
@@ -422,17 +458,17 @@ void TF512( __m128i* chaining, __m128i* message )
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, xmm8);
xmm1 = _mm_xor_si128(xmm1, xmm10);
xmm2 = _mm_xor_si128(xmm2, xmm12);
xmm3 = _mm_xor_si128(xmm3, xmm14);
xmm0 = _mm512_xor_si512( xmm0, xmm8 );
xmm1 = _mm512_xor_si512( xmm1, xmm10 );
xmm2 = _mm512_xor_si512( xmm2, xmm12 );
xmm3 = _mm512_xor_si512( xmm3, xmm14 );
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, (chaining[0]));
xmm1 = _mm_xor_si128(xmm1, (chaining[1]));
xmm2 = _mm_xor_si128(xmm2, (chaining[2]));
xmm3 = _mm_xor_si128(xmm3, (chaining[3]));
xmm0 = _mm512_xor_si512( xmm0, (chaining[0]) );
xmm1 = _mm512_xor_si512( xmm1, (chaining[1]) );
xmm2 = _mm512_xor_si512( xmm2, (chaining[2]) );
xmm3 = _mm512_xor_si512( xmm3, (chaining[3]) );
/* store CV */
chaining[0] = xmm0;
@@ -440,19 +476,16 @@ void TF512( __m128i* chaining, __m128i* message )
chaining[2] = xmm2;
chaining[3] = xmm3;
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512( __m128i* chaining )
void OF512_4way( __m512i* chaining )
{
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
xmm8 = chaining[0];
@@ -475,10 +508,10 @@ void OF512( __m128i* chaining )
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm10 = _mm_xor_si128(xmm10, (chaining[1]));
xmm12 = _mm_xor_si128(xmm12, (chaining[2]));
xmm14 = _mm_xor_si128(xmm14, (chaining[3]));
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[1]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[2]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[3]) );
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
@@ -489,4 +522,5 @@ void OF512( __m128i* chaining )
chaining[3] = xmm11;
}
#endif // VAES
#endif // GROESTL512_INTR_4WAY_H__

View File

@@ -15,36 +15,23 @@
#include "miner.h"
#include "simd-utils.h"
#if defined(__VAES__)
#define ROTL64(a,n) \
( ( ( (a)<<(n) ) | ( (a) >> (64-(n)) ) ) & 0xffffffffffffffff )
#define U64BIG(a) \
( ( ROTL64(a, 8) & 0x000000FF000000FF ) | \
( ROTL64(a,24) & 0x0000FF000000FF00 ) | \
( ROTL64(a,40) & 0x00FF000000FF0000 ) | \
( ROTL64(a,56) & 0xFF000000FF000000 ) )
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl512_4way_init( groestl512_4way_context* ctx, uint64_t hashlen )
{
int i;
ctx->hashlen = hashlen;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE512; i++ )
{
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
memset_zero_512( ctx->chaining, SIZE512 );
memset_zero_512( ctx->buffer, SIZE512 );
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m512_const2_64( 0x0200000000000000, 0 );
uint64_t len = U64BIG((uint64_t)LENGTH);
ctx->chaining[ COLS/2 -1 ] = _mm512_set4_epi64( len, 0, len, 0 );
INIT_4way(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -55,7 +42,7 @@ int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hashlen_m128i = 64 / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE512;
@@ -64,16 +51,13 @@ int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF1024_4way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
i += rem;
//--- final ---
@@ -87,23 +71,71 @@ int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
}
else
{
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
}
// digest final padding block and do output transform
TF1024_4way( ctx->chaining, ctx->buffer );
OF1024_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl512_4way_full( groestl512_4way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 64 >> 4; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
uint64_t blocks = len / SIZE512;
__m512i* in = (__m512i*)input;
int i;
// --- init ---
SET_CONSTANTS();
memset_zero_512( ctx->chaining, SIZE512 );
memset_zero_512( ctx->buffer, SIZE512 );
ctx->chaining[ 6 ] = m512_const2_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
for ( i = 0; i < blocks; i++ )
TF1024_4way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ ctx->rem_ptr + i ] = in[ ctx->buf_ptr + i ];
i += ctx->rem_ptr;
// --- close ---
blocks++;
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
TF1024_4way( ctx->chaining, ctx->buffer );
OF1024_4way( ctx->chaining );
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];

View File

@@ -1,11 +1,3 @@
/* hash.h Aug 2011
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
*
* This code is placed in the public domain
*/
#if !defined(GROESTL512_HASH_4WAY_H__)
#define GROESTL512_HASH_4WAY_H__ 1
@@ -18,11 +10,9 @@
#endif
#include <stdlib.h>
#define LENGTH (512)
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//#include "brg_endian.h"
//#define NEED_UINT_64T
//#include "algo/sha/brg_types.h"
#define LENGTH (512)
/* some sizes (number of bytes) */
#define ROWS (8)
@@ -44,34 +34,11 @@
#define ROUNDS (ROUNDS1024)
//#endif
/*
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*(7-(n)))))
#define U64BIG(a) (a)
#endif // IS_BIG_ENDIAN
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*n)))
#define U64BIG(a) \
((ROTL64(a, 8) & li_64(000000FF000000FF)) | \
(ROTL64(a,24) & li_64(0000FF000000FF00)) | \
(ROTL64(a,40) & li_64(00FF000000FF0000)) | \
(ROTL64(a,56) & li_64(FF000000FF000000)))
#endif // IS_LITTLE_ENDIAN
typedef unsigned char BitSequence_gr;
typedef unsigned long long DataLength_gr;
typedef enum { SUCCESS_GR = 0, FAIL_GR = 1, BAD_HASHBITLEN_GR = 2} HashReturn_gr;
*/
#define SIZE512 (SIZE_1024/16)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE512];
__attribute__ ((aligned (64))) __m512i buffer[SIZE512];
int hashlen; // byte
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
@@ -85,10 +52,11 @@ int groestl512_4way_init( groestl512_4way_context*, uint64_t );
int groestl512_4way_update( groestl512_4way_context*, const void*,
uint64_t );
int groestl512_4way_close( groestl512_4way_context*, void* );
int groestl512_4way_update_close( groestl512_4way_context*, void*,
const void*, uint64_t );
int groestl512_4way_full( groestl512_4way_context*, void*,
const void*, uint64_t );
#endif /* __hash_h */
#endif // VAES
#endif // GROESTL512_HASH_4WAY_H__

View File

@@ -115,7 +115,7 @@ __m512i ALL_FF;
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = ALL_1B;\
b1 = m512_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm512_xor_si512(a0, TEMP0);\
MUL2(a1, b0, b1);\
@@ -276,7 +276,7 @@ __m512i ALL_FF;
for ( round_counter = 0; round_counter < 14; round_counter += 2) \
{ \
/* AddRoundConstant Q1024 */\
xmm1 = ALL_FF;\
xmm1 = m512_neg1;\
xmm8 = _mm512_xor_si512( xmm8, xmm1 );\
xmm9 = _mm512_xor_si512( xmm9, xmm1 );\
xmm10 = _mm512_xor_si512( xmm10, xmm1 );\
@@ -298,7 +298,7 @@ __m512i ALL_FF;
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant Q1024 */\
xmm9 = ALL_FF;\
xmm9 = m512_neg1;\
xmm0 = _mm512_xor_si512( xmm0, xmm9 );\
xmm1 = _mm512_xor_si512( xmm1, xmm9 );\
xmm2 = _mm512_xor_si512( xmm2, xmm9 );\

View File

@@ -1,22 +1,20 @@
#include "myrgr-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#ifdef NO_AES_NI
#include "sph_groestl.h"
#else
#ifdef __AES__
#include "aes_ni/hash-groestl.h"
#else
#include "sph_groestl.h"
#endif
#include <openssl/sha.h>
typedef struct {
#ifdef NO_AES_NI
sph_groestl512_context groestl;
#else
#ifdef __AES__
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
#endif
SHA256_CTX sha;
} myrgr_ctx_holder;
@@ -25,10 +23,10 @@ myrgr_ctx_holder myrgr_ctx;
void init_myrgr_ctx()
{
#ifdef NO_AES_NI
sph_groestl512_init( &myrgr_ctx.groestl );
#else
#ifdef __AES__
init_groestl ( &myrgr_ctx.groestl, 64 );
#else
sph_groestl512_init( &myrgr_ctx.groestl );
#endif
SHA256_Init( &myrgr_ctx.sha );
}
@@ -40,12 +38,12 @@ void myriad_hash(void *output, const void *input)
uint32_t _ALIGN(32) hash[16];
#ifdef NO_AES_NI
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
#else
#ifdef __AES__
update_groestl( &ctx.groestl, (char*)input, 640 );
final_groestl( &ctx.groestl, (char*)hash);
#else
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
#endif
SHA256_Update( &ctx.sha, (unsigned char*)hash, 64 );

View File

@@ -1,13 +1,10 @@
#include "algo-gate-api.h"
#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
#include <stdint.h>
#include <stdlib.h>
#include "sph_hefty1.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/skein/sph_skein.h"
@@ -16,8 +13,7 @@
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/luffa/luffa_for_sse2.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#endif
@@ -25,30 +21,23 @@ void bastionhash(void *output, const void *input)
{
unsigned char hash[64] __attribute__ ((aligned (64)));
#ifdef NO_AES_NI
sph_echo512_context ctx_echo;
#ifdef __AES__
hashState_echo ctx_echo;
#else
hashState_echo ctx_echo;
sph_echo512_context ctx_echo;
#endif
hashState_luffa ctx_luffa;
hashState_luffa ctx_luffa;
sph_fugue512_context ctx_fugue;
sph_whirlpool_context ctx_whirlpool;
sph_shabal512_context ctx_shabal;
sph_hamsi512_context ctx_hamsi;
sph_skein512_context ctx_skein;
// unsigned char hashbuf[128] __attribute__ ((aligned (16)));
// sph_u64 hashctA;
// sph_u64 hashctB;
// size_t hashptr;
HEFTY1(input, 80, hash);
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
if (hash[0] & 0x8)
{
@@ -71,23 +60,19 @@ void bastionhash(void *output, const void *input)
if (hash[0] & 0x8)
{
#ifdef NO_AES_NI
#ifdef __AES__
init_echo( &ctx_echo, 512 );
update_final_echo ( &ctx_echo,(BitSequence*)hash,
(const BitSequence*)hash, 512 );
#else
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, hash, 64);
sph_echo512_close(&ctx_echo, hash);
#else
init_echo( &ctx_echo, 512 );
update_final_echo ( &ctx_echo,(BitSequence*)hash,
(const BitSequence*)hash, 512 );
// update_echo ( &ctx_echo, hash, 512 );
// final_echo( &ctx_echo, hash );
#endif
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
sph_shabal512_init(&ctx_shabal);
@@ -119,11 +104,9 @@ void bastionhash(void *output, const void *input)
sph_hamsi512(&ctx_hamsi, hash, 64);
sph_hamsi512_close(&ctx_hamsi, hash);
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
memcpy(output, hash, 32);
@@ -150,10 +133,8 @@ int scanhash_bastion( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
bastionhash(hash32, endiandata);
if (hash32[7] < Htarg && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
submit_solution( work, hash32, mythr );
}
n++;

View File

@@ -161,7 +161,7 @@ bool register_hodl_algo( algo_gate_t* gate )
// return false;
// }
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
gate->optimizations = AES_OPT | AVX_OPT | AVX2_OPT;
gate->optimizations = SSE42_OPT | AES_OPT | AVX2_OPT;
gate->scanhash = (void*)&hodl_scanhash;
gate->get_new_work = (void*)&hodl_get_new_work;
gate->longpoll_rpc_call = (void*)&hodl_longpoll_rpc_call;

View File

@@ -41,57 +41,10 @@
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_JH
#define SPH_SMALL_FOOTPRINT_JH 1
#endif
#if !defined SPH_JH_64 && SPH_64_TRUE
#define SPH_JH_64 1
#endif
#if !SPH_64
#undef SPH_JH_64
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
/*
* The internal bitslice representation may use either big-endian or
* little-endian (true bitslice operations do not care about the bit
* ordering, and the bit-swapping linear operations in JH happen to
* be invariant through endianness-swapping). The constants must be
* defined according to the chosen endianness; we use some
* byte-swapping macros for that.
*/
#if SPH_LITTLE_ENDIAN
#if SPH_64
#define C64e(x) ((SPH_C64(x) >> 56) \
| ((SPH_C64(x) >> 40) & SPH_C64(0x000000000000FF00)) \
| ((SPH_C64(x) >> 24) & SPH_C64(0x0000000000FF0000)) \
| ((SPH_C64(x) >> 8) & SPH_C64(0x00000000FF000000)) \
| ((SPH_C64(x) << 8) & SPH_C64(0x000000FF00000000)) \
| ((SPH_C64(x) << 24) & SPH_C64(0x0000FF0000000000)) \
| ((SPH_C64(x) << 40) & SPH_C64(0x00FF000000000000)) \
| ((SPH_C64(x) << 56) & SPH_C64(0xFF00000000000000)))
#define dec64e_aligned sph_dec64le_aligned
#define enc64e sph_enc64le
#endif
#else
#if SPH_64
#define C64e(x) SPH_C64(x)
#define dec64e_aligned sph_dec64be_aligned
#define enc64e sph_enc64be
#endif
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define Sb_8W(x0, x1, x2, x3, c) \
@@ -152,8 +105,97 @@ do { \
x3 = _mm256_xor_si256( x3, x4 ); \
} while (0)
#if SPH_JH_64
static const uint64_t C[] =
{
0x67f815dfa2ded572, 0x571523b70a15847b,
0xf6875a4d90d6ab81, 0x402bd1c3c54f9f4e,
0x9cfa455ce03a98ea, 0x9a99b26699d2c503,
0x8a53bbf2b4960266, 0x31a2db881a1456b5,
0xdb0e199a5c5aa303, 0x1044c1870ab23f40,
0x1d959e848019051c, 0xdccde75eadeb336f,
0x416bbf029213ba10, 0xd027bbf7156578dc,
0x5078aa3739812c0a, 0xd3910041d2bf1a3f,
0x907eccf60d5a2d42, 0xce97c0929c9f62dd,
0xac442bc70ba75c18, 0x23fcc663d665dfd1,
0x1ab8e09e036c6e97, 0xa8ec6c447e450521,
0xfa618e5dbb03f1ee, 0x97818394b29796fd,
0x2f3003db37858e4a, 0x956a9ffb2d8d672a,
0x6c69b8f88173fe8a, 0x14427fc04672c78a,
0xc45ec7bd8f15f4c5, 0x80bb118fa76f4475,
0xbc88e4aeb775de52, 0xf4a3a6981e00b882,
0x1563a3a9338ff48e, 0x89f9b7d524565faa,
0xfde05a7c20edf1b6, 0x362c42065ae9ca36,
0x3d98fe4e433529ce, 0xa74b9a7374f93a53,
0x86814e6f591ff5d0, 0x9f5ad8af81ad9d0e,
0x6a6234ee670605a7, 0x2717b96ebe280b8b,
0x3f1080c626077447, 0x7b487ec66f7ea0e0,
0xc0a4f84aa50a550d, 0x9ef18e979fe7e391,
0xd48d605081727686, 0x62b0e5f3415a9e7e,
0x7a205440ec1f9ffc, 0x84c9f4ce001ae4e3,
0xd895fa9df594d74f, 0xa554c324117e2e55,
0x286efebd2872df5b, 0xb2c4a50fe27ff578,
0x2ed349eeef7c8905, 0x7f5928eb85937e44,
0x4a3124b337695f70, 0x65e4d61df128865e,
0xe720b95104771bc7, 0x8a87d423e843fe74,
0xf2947692a3e8297d, 0xc1d9309b097acbdd,
0xe01bdc5bfb301b1d, 0xbf829cf24f4924da,
0xffbf70b431bae7a4, 0x48bcf8de0544320d,
0x39d3bb5332fcae3b, 0xa08b29e0c1c39f45,
0x0f09aef7fd05c9e5, 0x34f1904212347094,
0x95ed44e301b771a2, 0x4a982f4f368e3be9,
0x15f66ca0631d4088, 0xffaf52874b44c147,
0x30c60ae2f14abb7e, 0xe68c6eccc5b67046,
0x00ca4fbd56a4d5a4, 0xae183ec84b849dda,
0xadd1643045ce5773, 0x67255c1468cea6e8,
0x16e10ecbf28cdaa3, 0x9a99949a5806e933,
0x7b846fc220b2601f, 0x1885d1a07facced1,
0xd319dd8da15b5932, 0x46b4a5aac01c9a50,
0xba6b04e467633d9f, 0x7eee560bab19caf6,
0x742128a9ea79b11f, 0xee51363b35f7bde9,
0x76d350755aac571d, 0x01707da3fec2463a,
0x42d8a498afc135f7, 0x79676b9e20eced78,
0xa8db3aea15638341, 0x832c83324d3bc3fa,
0xf347271c1f3b40a7, 0x9a762db734f04059,
0xfd4f21d26c4e3ee7, 0xef5957dc398dfdb8,
0xdaeb492b490c9b8d, 0x0d70f36849d7a25b,
0x84558d7ad0ae3b7d, 0x658ef8e4f0e9a5f5,
0x533b1036f4a2b8a0, 0x5aec3e759e07a80c,
0x4f88e85692946891, 0x4cbcbaf8555cb05b,
0x7b9487f3993bbbe3, 0x5d1c6b72d6f4da75,
0x6db334dc28acae64, 0x71db28b850a5346c,
0x2a518d10f2e261f8, 0xfc75dd593364dbe3,
0xa23fce43f1bcac1c, 0xb043e8023cd1bb67,
0x75a12988ca5b0a33, 0x5c5316b44d19347f,
0x1e4d790ec3943b92, 0x3fafeeb6d7757479,
0x21391abef7d4a8ea, 0x5127234c097ef45c,
0xd23c32ba5324a326, 0xadd5a66d4a17a344,
0x08c9f2afa63e1db5, 0x563c6b91983d5983,
0x4d608672a17cf84c, 0xf6c76e08cc3ee246,
0x5e76bcb1b333982f, 0x2ae6c4efa566d62b,
0x36d4c1bee8b6f406, 0x6321efbc1582ee74,
0x69c953f40d4ec1fd, 0x26585806c45a7da7,
0x16fae0061614c17e, 0x3f9d63283daf907e,
0x0cd29b00e3f2c9d2, 0x300cd4b730ceaa5f,
0x9832e0f216512a74, 0x9af8cee3d830eb0d,
0x9279f1b57b9ec54b, 0xd36886046ee651ff,
0x316796e6574d239b, 0x05750a17f3a6e6cc,
0xce6c3213d98176b1, 0x62a205f88452173c,
0x47154778b3cb2bf4, 0x486a9323825446ff,
0x65655e4e0758df38, 0x8e5086fc897cfcf2,
0x86ca0bd0442e7031, 0x4e477830a20940f0,
0x8338f7d139eea065, 0xbd3a2ce437e95ef7,
0x6ff8130126b29721, 0xe7de9fefd1ed44a3,
0xd992257615dfa08b, 0xbe42dc12f6f7853c,
0x7eb027ab7ceca7d8, 0xdea83eaada7d8d53,
0xd86902bd93ce25aa, 0xf908731afd43f65a,
0xa5194a17daef5fc0, 0x6a21fd4c33664d97,
0x701541db3198b435, 0x9b54cdedbb0f1eea,
0x72409751a163d09a, 0xe26f4791bf9d75f6
};
// Big endian version
/*
static const sph_u64 C[] = {
C64e(0x72d5dea2df15f867), C64e(0x7b84150ab7231557),
C64e(0x81abd6904d5a87f6), C64e(0x4e9f4fc5c3d12b40),
@@ -240,6 +282,7 @@ static const sph_u64 C[] = {
C64e(0x35b49831db411570), C64e(0xea1e0fbbedcd549b),
C64e(0x9ad063a151974072), C64e(0xf6759dbf91476fe2)
};
*/
#define Ceven_hi(r) (C[((r) << 2) + 0])
#define Ceven_lo(r) (C[((r) << 2) + 1])
@@ -427,7 +470,7 @@ do { \
h7h = _mm256_xor_si256( h7h, m3h ); \
h7l = _mm256_xor_si256( h7l, m3l ); \
/*
static const sph_u64 IV256[] = {
C64e(0xeb98a3412c20d3eb), C64e(0x92cdbe7b9cb245c1),
C64e(0x1c93519160d4c7fa), C64e(0x260082d67e508a03),
@@ -450,11 +493,8 @@ static const sph_u64 IV512[] = {
C64e(0xcf57f6ec9db1f856), C64e(0xa706887c5716b156),
C64e(0xe3c2fcdfe68517fb), C64e(0x545a4678cc8cdd4b)
};
*/
#else
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -484,57 +524,6 @@ static const sph_u64 IV512[] = {
W ## ro(h7); \
} while (0)
#if SPH_SMALL_FOOTPRINT_JH
#if SPH_JH_64
/*
* The "small footprint" 64-bit version just uses a partially unrolled
* loop.
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define E8_8W do { \
unsigned r; \
for (r = 0; r < 42; r += 7) { \
SL_8W(0); \
SL_8W(1); \
SL_8W(2); \
SL_8W(3); \
SL_8W(4); \
SL_8W(5); \
SL_8W(6); \
} \
} while (0)
#endif
#define E8 do { \
unsigned r; \
for (r = 0; r < 42; r += 7) { \
SL(0); \
SL(1); \
SL(2); \
SL(3); \
SL(4); \
SL(5); \
SL(6); \
} \
} while (0)
#else
#endif
#else
#if SPH_JH_64
/*
* On a "true 64-bit" architecture, we can unroll at will.
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -585,6 +574,7 @@ static const sph_u64 IV512[] = {
#endif // AVX512
#define E8 do { \
SLu( 0, 0); \
SLu( 1, 1); \
@@ -630,13 +620,6 @@ static const sph_u64 IV512[] = {
SLu(41, 6); \
} while (0)
#else
#endif
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
void jh256_8way_init( jh_8way_context *sc )
@@ -732,12 +715,12 @@ jh_8way_core( jh_8way_context *sc, const void *data, size_t len )
static void
jh_8way_close( jh_8way_context *sc, unsigned ub, unsigned n, void *dst,
size_t out_size_w32, const void *iv )
size_t out_size_w32 )
{
__m512i buf[16*4];
__m512i *dst512 = (__m512i*)dst;
size_t numz, u;
sph_u64 l0, l1, l0e, l1e;
uint64_t l0, l1;
buf[0] = m512_const1_64( 0x80ULL );
@@ -748,12 +731,10 @@ jh_8way_close( jh_8way_context *sc, unsigned ub, unsigned n, void *dst,
memset_zero_512( buf+1, (numz>>3) - 1 );
l0 = SPH_T64(sc->block_count << 9) + (sc->ptr << 3);
l1 = SPH_T64(sc->block_count >> 55);
sph_enc64be( &l0e, l0 );
sph_enc64be( &l1e, l1 );
*(buf + (numz>>3) ) = _mm512_set1_epi64( l1e );
*(buf + (numz>>3) + 1) = _mm512_set1_epi64( l0e );
l0 = ( sc->block_count << 9 ) + ( sc->ptr << 3 );
l1 = ( sc->block_count >> 55 );
*(buf + (numz>>3) ) = _mm512_set1_epi64( bswap_64( l1 ) );
*(buf + (numz>>3) + 1) = _mm512_set1_epi64( bswap_64( l0 ) );
jh_8way_core( sc, buf, numz + 16 );
@@ -772,7 +753,7 @@ jh256_8way_update(void *cc, const void *data, size_t len)
void
jh256_8way_close(void *cc, void *dst)
{
jh_8way_close(cc, 0, 0, dst, 8, IV256);
jh_8way_close(cc, 0, 0, dst, 8);
}
void
@@ -784,7 +765,7 @@ jh512_8way_update(void *cc, const void *data, size_t len)
void
jh512_8way_close(void *cc, void *dst)
{
jh_8way_close(cc, 0, 0, dst, 16, IV512);
jh_8way_close(cc, 0, 0, dst, 16);
}
#endif
@@ -882,12 +863,12 @@ jh_4way_core( jh_4way_context *sc, const void *data, size_t len )
static void
jh_4way_close( jh_4way_context *sc, unsigned ub, unsigned n, void *dst,
size_t out_size_w32, const void *iv )
size_t out_size_w32 )
{
__m256i buf[16*4];
__m256i *dst256 = (__m256i*)dst;
size_t numz, u;
sph_u64 l0, l1, l0e, l1e;
uint64_t l0, l1;
buf[0] = m256_const1_64( 0x80ULL );
@@ -898,12 +879,10 @@ jh_4way_close( jh_4way_context *sc, unsigned ub, unsigned n, void *dst,
memset_zero_256( buf+1, (numz>>3) - 1 );
l0 = SPH_T64(sc->block_count << 9) + (sc->ptr << 3);
l1 = SPH_T64(sc->block_count >> 55);
sph_enc64be( &l0e, l0 );
sph_enc64be( &l1e, l1 );
*(buf + (numz>>3) ) = _mm256_set1_epi64x( l1e );
*(buf + (numz>>3) + 1) = _mm256_set1_epi64x( l0e );
l0 = ( sc->block_count << 9 ) + ( sc->ptr << 3 );
l1 = ( sc->block_count >> 55 );
*(buf + (numz>>3) ) = _mm256_set1_epi64x( bswap_64( l1 ) );
*(buf + (numz>>3) + 1) = _mm256_set1_epi64x( bswap_64( l0 ) );
jh_4way_core( sc, buf, numz + 16 );
@@ -922,7 +901,7 @@ jh256_4way_update(void *cc, const void *data, size_t len)
void
jh256_4way_close(void *cc, void *dst)
{
jh_4way_close(cc, 0, 0, dst, 8, IV256);
jh_4way_close(cc, 0, 0, dst, 8 );
}
void
@@ -934,7 +913,7 @@ jh512_4way_update(void *cc, const void *data, size_t len)
void
jh512_4way_close(void *cc, void *dst)
{
jh_4way_close(cc, 0, 0, dst, 16, IV512);
jh_4way_close(cc, 0, 0, dst, 16 );
}

View File

@@ -43,7 +43,6 @@ extern "C"{
#endif
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "simd-utils.h"
#define SPH_SIZE_jh256 256

View File

@@ -65,7 +65,7 @@ void jha_hash_4way( void *out, const void *input )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
blake512_4way_init( &ctx_blake );
blake512_4way( &ctx_blake, vhash, 64 );
blake512_4way_update( &ctx_blake, vhash, 64 );
blake512_4way_close( &ctx_blake, vhashA );
jh512_4way_init( &ctx_jh );

View File

@@ -1,19 +1,16 @@
#include "jha-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/sph_blake.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#ifdef NO_AES_NI
#include "algo/groestl/sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
static __thread sph_keccak512_context jha_kec_mid __attribute__ ((aligned (64)));
@@ -28,12 +25,12 @@ void jha_hash(void *output, const void *input)
{
uint8_t _ALIGN(128) hash[64];
#ifdef NO_AES_NI
sph_groestl512_context ctx_groestl;
#ifdef __AES__
hashState_groestl ctx_groestl;
#else
hashState_groestl ctx_groestl;
sph_groestl512_context ctx_groestl;
#endif
sph_blake512_context ctx_blake;
sph_blake512_context ctx_blake;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
@@ -46,36 +43,36 @@ void jha_hash(void *output, const void *input)
for (int round = 0; round < 3; round++)
{
if (hash[0] & 0x01)
{
#ifdef NO_AES_NI
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, hash, 64 );
sph_groestl512_close(&ctx_groestl, hash );
{
#ifdef __AES__
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash,
(char*)hash, 512 );
#else
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash,
(char*)hash, 512 );
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, hash, 64 );
sph_groestl512_close(&ctx_groestl, hash );
#endif
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, hash, 64);
sph_skein512_close(&ctx_skein, hash );
}
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, hash, 64);
sph_skein512_close(&ctx_skein, hash );
}
if (hash[0] & 0x01)
{
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash );
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, hash, 64 );
sph_jh512_close(&ctx_jh, hash );
}
if (hash[0] & 0x01)
{
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash );
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, hash, 64 );
sph_jh512_close(&ctx_jh, hash );
}
}
memcpy(output, hash, 32);
@@ -117,9 +114,6 @@ int scanhash_jha( struct work *work, uint32_t max_nonce,
jha_kec_midstate( endiandata );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
@@ -127,25 +121,9 @@ int scanhash_jha( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
jha_hash(hash32, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash32[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
}
#endif
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget))
submit_solution( work, hash32, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}

View File

@@ -28,26 +28,28 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
keccakhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
@@ -79,27 +81,28 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
keccakhash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ))
{
pdata[19] = n + lane;
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

View File

@@ -1,5 +1,9 @@
#include "keccak-gate.h"
#include "sph_keccak.h"
int hard_coded_eb = 1;
// KECCAK
bool register_keccak_algo( algo_gate_t* gate )
{
@@ -19,6 +23,8 @@ bool register_keccak_algo( algo_gate_t* gate )
return true;
};
// KECCAKC
bool register_keccakc_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT | AVX512_OPT;
@@ -37,3 +43,50 @@ bool register_keccakc_algo( algo_gate_t* gate )
return true;
};
// SHA3D
void sha3d( void *state, const void *input, int len )
{
uint32_t _ALIGN(64) buffer[16], hash[16];
sph_keccak_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, len );
sph_keccak256_close( &ctx_keccak, (void*) buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, (void*) hash );
memcpy(state, hash, 32);
}
void sha3d_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
{
sha3d( merkle_root, sctx->job.coinbase, (int) sctx->job.coinbase_size );
for ( int i = 0; i < sctx->job.merkle_count; i++ )
{
memcpy( merkle_root + 32, sctx->job.merkle[i], 32 );
sha256d( merkle_root, merkle_root, 64 );
}
}
bool register_sha3d_algo( algo_gate_t* gate )
{
hard_coded_eb = 6;
opt_extranonce = false;
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&sha3d_gen_merkle_root;
#if defined (KECCAK_8WAY)
gate->scanhash = (void*)&scanhash_sha3d_8way;
gate->hash = (void*)&sha3d_hash_8way;
#elif defined (KECCAK_4WAY)
gate->scanhash = (void*)&scanhash_sha3d_4way;
gate->hash = (void*)&sha3d_hash_4way;
#else
gate->scanhash = (void*)&scanhash_sha3d;
gate->hash = (void*)&sha3d_hash;
#endif
return true;
};

View File

@@ -10,24 +10,37 @@
#define KECCAK_4WAY 1
#endif
extern int hard_coded_eb;
#if defined(KECCAK_8WAY)
void keccakhash_8way( void *state, const void *input );
int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_8way( void *state, const void *input );
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(KECCAK_4WAY)
void keccakhash_4way( void *state, const void *input );
int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_4way( void *state, const void *input );
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void keccakhash( void *state, const void *input );
int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void sha3d_hash( void *state, const void *input );
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -1,6 +1,7 @@
#include <stddef.h>
#include <stdint.h>
#include "keccak-hash-4way.h"
#include "keccak-gate.h"
static const uint64_t RC[] = {
0x0000000000000001, 0x0000000000008082,
@@ -163,12 +164,12 @@ static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
unsigned eb;
union {
__m512i tmp[lim + 1];
sph_u64 dummy; /* for alignment */
uint64_t dummy; /* for alignment */
} u;
size_t j;
size_t m512_len = byte_len >> 3;
eb = 0x100 >> 8;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;
@@ -344,12 +345,12 @@ static void keccak64_close( keccak64_ctx_m256i *kc, void *dst, size_t byte_len,
unsigned eb;
union {
__m256i tmp[lim + 1];
sph_u64 dummy; /* for alignment */
uint64_t dummy; /* for alignment */
} u;
size_t j;
size_t m256_len = byte_len >> 3;
eb = 0x100 >> 8;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;

View File

@@ -43,16 +43,8 @@ extern "C"{
#ifdef __AVX2__
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "simd-utils.h"
#define SPH_SIZE_keccak256 256
/**
* Output size (in bits) for Keccak-512.
*/
#define SPH_SIZE_keccak512 512
/**
* This structure is a context for Keccak computations: it contains the
* intermediate values and some data from the last entered block. Once a

View File

@@ -18,36 +18,34 @@ void keccakhash(void *state, const void *input)
memcpy(state, hash, 32);
}
int scanhash_keccak( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
//const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[32];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
uint32_t _ALIGN(32) hash64[8];
uint32_t endiandata[32];
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
do {
be32enc( &endiandata[19], n );
keccakhash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
keccakhash(hash64, endiandata);
if (((hash64[7]&0xFFFFFF00)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

126
algo/keccak/sha3d-4way.c Normal file
View File

@@ -0,0 +1,126 @@
#include "keccak-gate.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
#include "keccak-hash-4way.h"
#if defined(KECCAK_8WAY)
void sha3d_hash_8way(void *state, const void *input)
{
uint32_t buffer[16*8] __attribute__ ((aligned (128)));
keccak256_8way_context ctx;
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, input, 80 );
keccak256_8way_close( &ctx, buffer );
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, buffer, 32 );
keccak256_8way_close( &ctx, state );
}
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do {
sha3d_hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(KECCAK_4WAY)
void sha3d_hash_4way(void *state, const void *input)
{
uint32_t buffer[16*4] __attribute__ ((aligned (64)));
keccak256_4way_context ctx;
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, input, 80 );
keccak256_4way_close( &ctx, buffer );
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, buffer, 32 );
keccak256_4way_close( &ctx, state );
}
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
sha3d_hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#endif

50
algo/keccak/sha3d.c Normal file
View File

@@ -0,0 +1,50 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
void sha3d_hash(void *state, const void *input)
{
uint32_t buffer[16];
sph_keccak256_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, 80 );
sph_keccak256_close( &ctx_keccak, buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, state );
}
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[32];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
do {
be32enc( &endiandata[19], n );
sha3d_hash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -32,8 +32,8 @@
#include <stddef.h>
#include <string.h>
#include "sph_keccak.h"
#include "keccak-gate.h"
#ifdef __cplusplus
extern "C"{
@@ -1616,7 +1616,7 @@ keccak_core(sph_keccak_context *kc, const void *data, size_t len, size_t lim)
} u; \
size_t j; \
\
eb = (0x100 | (ub & 0xFF)) >> (8 - n); \
eb = hard_coded_eb; \
if (kc->ptr == (lim - 1)) { \
if (n == 7) { \
u.tmp[0] = eb; \

View File

@@ -459,6 +459,11 @@ int luffa_4way_init( luffa_4way_context *state, int hashbitlen )
return 0;
}
int luffa512_4way_init( luffa_4way_context *state )
{
return luffa_4way_init( state, 512 );
}
// Do not call luffa_update_close after having called luffa_update.
// Once luffa_update has been called only call luffa_update or luffa_close.
int luffa_4way_update( luffa_4way_context *state, const void *data,
@@ -496,6 +501,14 @@ int luffa_4way_update( luffa_4way_context *state, const void *data,
return 0;
}
/*
int luffa512_4way_update( luffa_4way_context *state, const void *data,
size_t len )
{
return luffa_4way_update( state, data, len );
}
*/
int luffa_4way_close( luffa_4way_context *state, void *hashval )
{
__m512i *buffer = (__m512i*)state->buffer;
@@ -518,6 +531,77 @@ int luffa_4way_close( luffa_4way_context *state, void *hashval )
return 0;
}
/*
int luffa512_4way_close( luffa_4way_context *state, void *hashval )
{
return luffa_4way_close( state, hashval );
}
*/
int luffa512_4way_full( luffa_4way_context *state, void *output,
const void *data, size_t inlen )
{
state->hashbitlen = 512;
__m128i *iv = (__m128i*)IV;
state->chainv[0] = m512_const1_128( iv[0] );
state->chainv[1] = m512_const1_128( iv[1] );
state->chainv[2] = m512_const1_128( iv[2] );
state->chainv[3] = m512_const1_128( iv[3] );
state->chainv[4] = m512_const1_128( iv[4] );
state->chainv[5] = m512_const1_128( iv[5] );
state->chainv[6] = m512_const1_128( iv[6] );
state->chainv[7] = m512_const1_128( iv[7] );
state->chainv[8] = m512_const1_128( iv[8] );
state->chainv[9] = m512_const1_128( iv[9] );
((__m512i*)state->buffer)[0] = m512_zero;
((__m512i*)state->buffer)[1] = m512_zero;
const __m512i *vdata = (__m512i*)data;
__m512i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m512i shuff_bswap32 = m512_const_64(
0x3c3d3e3f38393a3b, 0x3435363730313233,
0x2c2d2e2f28292a2b, 0x2425262720212223,
0x1c1d1e1f18191a1b, 0x1415161710111213,
0x0c0d0e0f08090a0b, 0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm512_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_4way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m512_const2_64( 0, 0x0000000080000000 );
rnd512_4way( state, msg );
}
else
{
// empty pad block
msg[0] = m512_const2_64( 0, 0x0000000080000000 );
msg[1] = m512_zero;
rnd512_4way( state, msg );
}
finalization512_4way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_4way( state, (uint32*)( output+64 ) );
return 0;
}
int luffa_4way_update_close( luffa_4way_context *state,
void *output, const void *data, size_t inlen )
{
@@ -1031,6 +1115,69 @@ int luffa_2way_close( luffa_2way_context *state, void *hashval )
return 0;
}
int luffa512_2way_full( luffa_2way_context *state, void *output,
const void *data, size_t inlen )
{
state->hashbitlen = 512;
__m128i *iv = (__m128i*)IV;
state->chainv[0] = m256_const1_128( iv[0] );
state->chainv[1] = m256_const1_128( iv[1] );
state->chainv[2] = m256_const1_128( iv[2] );
state->chainv[3] = m256_const1_128( iv[3] );
state->chainv[4] = m256_const1_128( iv[4] );
state->chainv[5] = m256_const1_128( iv[5] );
state->chainv[6] = m256_const1_128( iv[6] );
state->chainv[7] = m256_const1_128( iv[7] );
state->chainv[8] = m256_const1_128( iv[8] );
state->chainv[9] = m256_const1_128( iv[9] );
((__m256i*)state->buffer)[0] = m256_zero;
((__m256i*)state->buffer)[1] = m256_zero;
const __m256i *vdata = (__m256i*)data;
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m256i shuff_bswap32 = m256_const_64( 0x1c1d1e1f18191a1b,
0x1415161710111213,
0x0c0d0e0f08090a0b,
0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m256_const2_64( 0, 0x0000000080000000 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( output+32 ) );
return 0;
}
int luffa_2way_update_close( luffa_2way_context *state,
void *output, const void *data, size_t inlen )
{

View File

@@ -61,11 +61,23 @@ typedef struct {
} luffa_4way_context __attribute((aligned(128)));
int luffa_4way_init( luffa_4way_context *state, int hashbitlen );
int luffa_4way_update( luffa_4way_context *state, const void *data,
size_t len );
int luffa_4way_close( luffa_4way_context *state, void *hashval );
//int luffa_4way_update( luffa_4way_context *state, const void *data,
// size_t len );
//int luffa_4way_close( luffa_4way_context *state, void *hashval );
int luffa_4way_update_close( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_4way_full( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_4way_init( luffa_4way_context *state );
int luffa512_4way_update( luffa_4way_context *state, const void *data,
size_t len );
int luffa512_4way_close( luffa_4way_context *state, void *hashval );
int luffa512_4way_update_close( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
#define luffa_4way_update luffa512_4way_update
#define luffa_4way_close luffa512_4way_close
#define luffa_4way_update_close luffa512_4way_update_close
#endif
@@ -82,6 +94,8 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
int luffa_2way_close( luffa_2way_context *state, void *hashval );
int luffa_2way_update_close( luffa_2way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_2way_full( luffa_2way_context *state, void *output,
const void *data, size_t inlen );
#endif
#endif

View File

@@ -7,33 +7,44 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/groestl/aes_ni/hash-groestl256.h"
#if defined(__VAES__)
#include "algo/groestl/groestl256-hash-4way.h"
#endif
#if defined (ALLIUM_8WAY)
#if defined (ALLIUM_16WAY)
typedef struct {
blake256_8way_context blake;
blake256_16way_context blake;
keccak256_8way_context keccak;
cube_4way_context cube;
skein256_8way_context skein;
#if defined(__VAES__)
groestl256_4way_context groestl;
#else
hashState_groestl256 groestl;
} allium_8way_ctx_holder;
#endif
} allium_16way_ctx_holder;
static __thread allium_8way_ctx_holder allium_8way_ctx;
static __thread allium_16way_ctx_holder allium_16way_ctx;
bool init_allium_8way_ctx()
bool init_allium_16way_ctx()
{
keccak256_8way_init( &allium_8way_ctx.keccak );
cube_4way_init( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &allium_8way_ctx.skein );
init_groestl256( &allium_8way_ctx.groestl, 32 );
keccak256_8way_init( &allium_16way_ctx.keccak );
cube_4way_init( &allium_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &allium_16way_ctx.skein );
#if defined(__VAES__)
groestl256_4way_init( &allium_16way_ctx.groestl, 32 );
#else
init_groestl256( &allium_16way_ctx.groestl, 32 );
#endif
return true;
}
void allium_8way_hash( void *state, const void *input )
void allium_16way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t vhashA[8*8] __attribute__ ((aligned (64)));
uint32_t vhashB[8*8] __attribute__ ((aligned (64)));
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint32_t vhashA[16*8] __attribute__ ((aligned (64)));
uint32_t vhashB[16*8] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
@@ -42,18 +53,39 @@ void allium_8way_hash( void *state, const void *input )
uint32_t hash5[8] __attribute__ ((aligned (64)));
uint32_t hash6[8] __attribute__ ((aligned (64)));
uint32_t hash7[8] __attribute__ ((aligned (64)));
allium_8way_ctx_holder ctx __attribute__ ((aligned (64)));
uint32_t hash8[8] __attribute__ ((aligned (64)));
uint32_t hash9[8] __attribute__ ((aligned (64)));
uint32_t hash10[8] __attribute__ ((aligned (64)));
uint32_t hash11[8] __attribute__ ((aligned (64)));
uint32_t hash12[8] __attribute__ ((aligned (64)));
uint32_t hash13[8] __attribute__ ((aligned (64)));
uint32_t hash14[8] __attribute__ ((aligned (64)));
uint32_t hash15[8] __attribute__ ((aligned (64)));
allium_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_8way_ctx, sizeof(allium_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
memcpy( &ctx, &allium_16way_ctx, sizeof(allium_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64<<4), 16 );
blake256_16way_close( &ctx.blake, vhash );
rintrlv_8x32_8x64( vhashA, vhash, 256 );
dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhash, 256 );
intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
256 );
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
// rintrlv_8x32_8x64( vhashA, vhash, 256 );
keccak256_8way_update( &ctx.keccak, vhashA, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
keccak256_8way_close( &ctx.keccak, vhashA);
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhashB, 32 );
keccak256_8way_close( &ctx.keccak, vhashB);
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 256 );
vhashA, 256 );
dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
@@ -67,6 +99,18 @@ void allium_8way_hash( void *state, const void *input )
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, 256 );
@@ -78,6 +122,17 @@ void allium_8way_hash( void *state, const void *input )
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_4x128( vhashA, hash8, hash9, hash10, hash11, 256 );
intrlv_4x128( vhashB, hash12, hash13, hash14, hash15, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
dintrlv_4x128( hash8, hash9, hash10, hash11, vhashA, 256 );
dintrlv_4x128( hash12, hash13, hash14, hash15, vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
@@ -90,133 +145,216 @@ void allium_8way_hash( void *state, const void *input )
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
skein256_8way_update( &ctx.skein, vhashA, 32 );
skein256_8way_close( &ctx.skein, vhashA );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhashB, 32 );
skein256_8way_close( &ctx.skein, vhashB );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 256 );
vhashA, 256 );
dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhashB, 256 );
#if defined(__VAES__)
intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state, state+32, state+64, state+96, vhash, 256 );
intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+128, state+160, state+192, state+224, vhash, 256 );
intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+256, state+288, state+320, state+352, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+384, state+416, state+448, state+480, vhash, 256 );
#else
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+128, hash4, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+160, hash5, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+192, hash6, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+224, hash7, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+256, hash8, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+288, hash9, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+320, hash10, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+352, hash11, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+384, hash12, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+416, hash13, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+448, hash14, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+480, hash15, 256 );
#endif
}
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 8;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t last_nonce = max_nonce - 16;
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256_8way_init( &allium_8way_ctx.blake );
blake256_8way_update( &allium_8way_ctx.blake, vdata, 64 );
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
blake256_16way_init( &allium_16way_ctx.blake );
blake256_16way_update( &allium_16way_ctx.blake, vdata, 64 );
do {
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
allium_16way_hash( hash, vdata );
allium_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg )
for ( int lane = 0; lane < 16; lane++ )
if unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench )
{
if ( fulltest( hash+(lane<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
n += 8;
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (ALLIUM_4WAY)
#elif defined (ALLIUM_8WAY)
typedef struct {
blake256_4way_context blake;
blake256_8way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
hashState_groestl256 groestl;
} allium_4way_ctx_holder;
} allium_8way_ctx_holder;
static __thread allium_4way_ctx_holder allium_4way_ctx;
static __thread allium_8way_ctx_holder allium_8way_ctx;
bool init_allium_4way_ctx()
bool init_allium_8way_ctx()
{
keccak256_4way_init( &allium_4way_ctx.keccak );
cubehashInit( &allium_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_4way_ctx.skein );
init_groestl256( &allium_4way_ctx.groestl, 32 );
keccak256_4way_init( &allium_8way_ctx.keccak );
cubehashInit( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_8way_ctx.skein );
init_groestl256( &allium_8way_ctx.groestl, 32 );
return true;
}
void allium_4way_hash( void *state, const void *input )
void allium_8way_hash( void *hash, const void *input )
{
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
uint32_t hash3[8] __attribute__ ((aligned (32)));
uint32_t vhash32[8*4] __attribute__ ((aligned (64)));
uint32_t vhash64[8*4] __attribute__ ((aligned (64)));
allium_4way_ctx_holder ctx __attribute__ ((aligned (64)));
uint64_t vhashA[4*8] __attribute__ ((aligned (64)));
uint64_t vhashB[4*8] __attribute__ ((aligned (64)));
// uint64_t hash[4*8] __attribute__ ((aligned (64)));
uint64_t *hash0 = (uint64_t*)hash;
uint64_t *hash1 = (uint64_t*)hash+ 4;
uint64_t *hash2 = (uint64_t*)hash+ 8;
uint64_t *hash3 = (uint64_t*)hash+12;
uint64_t *hash4 = (uint64_t*)hash+16;
uint64_t *hash5 = (uint64_t*)hash+20;
uint64_t *hash6 = (uint64_t*)hash+24;
uint64_t *hash7 = (uint64_t*)hash+28;
allium_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_4way_ctx, sizeof(allium_4way_ctx) );
blake256_4way_update( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash32 );
memcpy( &ctx, &allium_8way_ctx, sizeof(allium_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhashA );
rintrlv_4x32_4x64( vhash64, vhash32, 256 );
keccak256_4way_update( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
keccak256_4way_update( &ctx.keccak, vhashA, 32 );
keccak256_4way_close( &ctx.keccak, vhashA );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhashB, 32 );
keccak256_4way_close( &ctx.keccak, vhashB );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 );
LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 );
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*)hash0, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
@@ -225,69 +363,97 @@ void allium_4way_hash( void *state, const void *input )
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*)hash2, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*)hash3, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4, (const byte*)hash4, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5, (const byte*)hash5, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6, (const byte*)hash6, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7, (const byte*)hash7, 32 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 );
LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 );
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
skein256_4way_update( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
skein256_4way_update( &ctx.skein, vhashA, 32 );
skein256_4way_close( &ctx.skein, vhashA );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhashB, 32 );
skein256_4way_close( &ctx.skein, vhashB );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash0, hash0, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash1, hash1, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash2, hash2, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
update_and_final_groestl256( &ctx.groestl, hash3, hash3, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash4, hash4, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash5, hash5, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash6, hash6, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash7, hash7, 256 );
}
int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint64_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint64_t *ptarget = (uint64_t*)work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &allium_4way_ctx.blake );
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );
blake256_8way_init( &allium_8way_ctx.blake );
blake256_8way_update( &allium_8way_ctx.blake, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
allium_8way_hash( hash, vdata );
allium_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg )
for ( int lane = 0; lane < 8; lane++ )
{
if ( fulltest( hash+(lane<<3), ptarget ) && !opt_benchmark )
const uint64_t *lane_hash = hash + (lane<<2);
if unlikely( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
n += 8;
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
} while likely( (n <= last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -78,7 +78,7 @@ bool register_lyra2rev3_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2rev3;
gate->hash = (void*)&lyra2rev3_hash;
#endif
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev3_thread_init;
opt_target_factor = 256.0;
return true;
@@ -119,7 +119,7 @@ bool register_lyra2rev2_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
opt_target_factor = 256.0;
return true;
@@ -146,7 +146,7 @@ bool register_lyra2z_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2z;
gate->hash = (void*)&lyra2z_hash;
#endif
gate->optimizations = SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -165,7 +165,7 @@ bool register_lyra2h_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2h;
gate->hash = (void*)&lyra2h_hash;
#endif
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -174,20 +174,20 @@ bool register_lyra2h_algo( algo_gate_t* gate )
bool register_allium_algo( algo_gate_t* gate )
{
#if defined (ALLIUM_8WAY)
#if defined (ALLIUM_16WAY)
gate->miner_thread_init = (void*)&init_allium_16way_ctx;
gate->scanhash = (void*)&scanhash_allium_16way;
gate->hash = (void*)&allium_16way_hash;
#elif defined (ALLIUM_8WAY)
gate->miner_thread_init = (void*)&init_allium_8way_ctx;
gate->scanhash = (void*)&scanhash_allium_8way;
gate->hash = (void*)&allium_8way_hash;
#elif defined (ALLIUM_4WAY)
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
gate->scanhash = (void*)&scanhash_allium_4way;
gate->hash = (void*)&allium_4way_hash;
#else
gate->miner_thread_init = (void*)&init_allium_ctx;
gate->scanhash = (void*)&scanhash_allium;
gate->hash = (void*)&allium_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -220,7 +220,7 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
// Assemble block header
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) );
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits), NULL );
for ( t = 0; t < 16; t++ )
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
}
@@ -229,7 +229,7 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
bool register_phi2_algo( algo_gate_t* gate )
{
// init_phi2_ctx();
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->get_work_data_size = (void*)&phi2_get_work_data_size;
gate->decode_extra_data = (void*)&phi2_decode_extra_data;
gate->build_extraheader = (void*)&phi2_build_extraheader;

View File

@@ -153,27 +153,27 @@ bool lyra2h_thread_init();
//////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define ALLIUM_8WAY 1
#define ALLIUM_16WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define ALLIUM_4WAY 1
#define ALLIUM_8WAY 1
#endif
bool register_allium_algo( algo_gate_t* gate );
#if defined(ALLIUM_8WAY)
#if defined(ALLIUM_16WAY)
void allium_16way_hash( void *state, const void *input );
int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_16way_ctx();
#elif defined(ALLIUM_8WAY)
void allium_8way_hash( void *state, const void *input );
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_8way_ctx();
#elif defined(ALLIUM_4WAY)
void allium_4way_hash( void *state, const void *input );
int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_4way_ctx();
#else
void allium_hash( void *state, const void *input );

View File

@@ -575,4 +575,138 @@ int LYRA2RE_2WAY( void *K, uint64_t kLen, const void *pwd,
return 0;
}
int LYRA2X_2WAY( void *K, uint64_t kLen, const void *pwd,
const uint64_t pwdlen, const uint64_t timeCost,
const uint64_t nRows, const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[32];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa0 = 0;
int64_t rowa1 = 0;
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
//====================================================================/
//=== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
i = (int64_t)ROW_LEN_BYTES * nRows;
uint64_t *wholeMatrix = _mm_malloc( 2*i, 64 );
if (wholeMatrix == NULL)
return -1;
memset_zero_512( (__m512i*)wholeMatrix, i>>5 );
uint64_t *ptrWord = wholeMatrix;
uint64_t *pw = (uint64_t*)pwd;
//First, we clean enough blocks for the password, salt, basil and padding
int64_t nBlocksInput = ( ( pwdlen + pwdlen + 6 * sizeof(uint64_t) )
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
uint64_t *ptr = wholeMatrix;
memcpy( ptr, pw, 2*pwdlen ); // password
ptr += pwdlen>>2;
memcpy( ptr, pw, 2*pwdlen ); // password lane 1
ptr += pwdlen>>2;
// now build the rest interleaving on the fly.
ptr[0] = ptr[ 4] = kLen;
ptr[1] = ptr[ 5] = pwdlen;
ptr[2] = ptr[ 6] = pwdlen; // saltlen
ptr[3] = ptr[ 7] = timeCost;
ptr[8] = ptr[12] = nRows;
ptr[9] = ptr[13] = nCols;
ptr[10] = ptr[14] = 0x80;
ptr[11] = ptr[15] = 0x0100000000000000;
absorbBlockBlake2Safe_2way( state, ptrWord, nBlocksInput, BLOCK_LEN );
//Initializes M[0] and M[1]
reducedSqueezeRow0_2way( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
reducedDuplexRow1_2way( state, &wholeMatrix[0],
&wholeMatrix[ 2 * ROW_LEN_INT64], nCols );
do
{
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup_2way( state, &wholeMatrix[ 2* prev*ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa0*ROW_LEN_INT64 ],
&wholeMatrix[ 2* row*ROW_LEN_INT64 ],
nCols );
//updates the value of row* (deterministically picked during Setup))
rowa0 = (rowa0 + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa0 == 0)
{
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//===================== Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++)
{
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
do
{
rowa0 = state[ 0 ] & (unsigned int)(nRows-1);
rowa1 = state[ 4 ] & (unsigned int)(nRows-1);
reducedDuplexRow_2way_X( state, &wholeMatrix[ 2* prev * ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa0 * ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa1 * ROW_LEN_INT64 ],
&wholeMatrix[ 2* row *ROW_LEN_INT64 ],
nCols );
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//----------------------------------------------------
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//----------------------------------------------------
} while (row != 0);
}
//===================== Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock_2way( state, &wholeMatrix[ 2 * rowa0 *ROW_LEN_INT64],
&wholeMatrix[ 2 * rowa1 *ROW_LEN_INT64] );
//Squeezes the key
squeeze_2way( state, K, (unsigned int) kLen );
//================== Freeing the memory =============================//
_mm_free(wholeMatrix);
return 0;
}
#endif

View File

@@ -74,6 +74,9 @@ int LYRA2REV3_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
int LYRA2Z_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols );
int LYRA2X_2WAY( void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
#endif
#endif /* LYRA2_H_ */

View File

@@ -33,7 +33,7 @@ void lyra2h_4way_hash( void *state, const void *input )
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2h_4way_blake_mid, sizeof l2h_4way_blake_mid );
blake256_4way( &ctx_blake, input + (64*4), 16 );
blake256_4way_update( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );

View File

@@ -196,7 +196,6 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
__m512i* in = (__m512i*)rowIn;
__m512i* inout = (__m512i*)rowInOut;
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
__m512i t0, t1, t2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
@@ -218,24 +217,27 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
out[1] = _mm512_xor_si512( state1, in[1] );
out[2] = _mm512_xor_si512( state2, in[2] );
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
{
register __m512i t0, t1, t2;
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi32( 0x0303, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi32( 0x0303, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi32( 0x0303, t2, t1 ) );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
}
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
@@ -244,12 +246,235 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// big ugly workaound for pointer aliasing, use a union of pointers.
// Access matrix using m512i for in and out, m256i for inout
// reduced duplex row has three version depending on rows inout.
// If they are the same the fastest version can be used, equivalent to
// linear version.
// If either rowinout overlaps with rowout the slowest version is used,
// to refresh local data after overwriting rowout.
// Otherwise the normal version is used, slower than unified, faster than
// overlap.
//
// The likelyhood of each case depends on the number of rows. More rows
// means unified and overlap are both less likely.
// Unified has a 1 in Nrows chances,
// Overlap has 2 in Nrows chance reduced to 1 in Nrows because if both
// overlap it's unified.
// As a result normal is Nrows-2 / Nrows.
// for 4 rows: 1 unified, 2 overlap, 1 normal.
// for 8 rows: 1 unified, 2 overlap, 56 normal.
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
static inline void reducedDuplexRow_2way_normal( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout0 = (__m512i*)rowInOut0;
__m512i *inout1 = (__m512i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
register __m512i io0, io1, io2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
io0 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io1 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io2 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0 ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1 ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2 ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
register __m512i t0, t1, t2;
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
io0 = _mm512_xor_si512( io0, _mm512_mask_blend_epi64( 0x11, t0, t2 ) );
io1 = _mm512_xor_si512( io1, _mm512_mask_blend_epi64( 0x11, t1, t0 ) );
io2 = _mm512_xor_si512( io2, _mm512_mask_blend_epi64( 0x11, t2, t1 ) );
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
}
_mm512_mask_store_epi64( inout0, 0x0f, io0 );
_mm512_mask_store_epi64( inout1, 0xf0, io0 );
_mm512_mask_store_epi64( inout0 +1, 0x0f, io1 );
_mm512_mask_store_epi64( inout1 +1, 0xf0, io1 );
_mm512_mask_store_epi64( inout0 +2, 0x0f, io2 );
_mm512_mask_store_epi64( inout1 +2, 0xf0, io2 );
//Goes to next block
in += BLOCK_LEN_M256I;
inout0 += BLOCK_LEN_M256I;
inout1 += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
static inline void reducedDuplexRow_2way_overlap( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout0 = (__m512i*)rowInOut0;
__m512i *inout1 = (__m512i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
// inout_ovly io;
ovly_512 io0, io1, io2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
io0.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io1.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io2.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0.v512 ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1.v512 ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2.v512 ) );
/*
io.v512[0] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io.v512[1] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io.v512[2] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io.v512[0] ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io.v512[1] ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io.v512[2] ) );
*/
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
__m512i t0, t1, t2;
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
// if out is the same row as inout, update with new data.
if ( rowOut == rowInOut0 )
{
io0.v512 = _mm512_mask_blend_epi64( 0x0f, io0.v512, out[0] );
io1.v512 = _mm512_mask_blend_epi64( 0x0f, io1.v512, out[1] );
io2.v512 = _mm512_mask_blend_epi64( 0x0f, io2.v512, out[2] );
}
if ( rowOut == rowInOut1 )
{
io0.v512 = _mm512_mask_blend_epi64( 0xf0, io0.v512, out[0] );
io1.v512 = _mm512_mask_blend_epi64( 0xf0, io1.v512, out[1] );
io2.v512 = _mm512_mask_blend_epi64( 0xf0, io2.v512, out[2] );
}
/*
if ( rowOut == rowInOut0 )
{
io.v512[0] = _mm512_mask_blend_epi64( 0x0f, io.v512[0], out[0] );
io.v512[1] = _mm512_mask_blend_epi64( 0x0f, io.v512[1], out[1] );
io.v512[2] = _mm512_mask_blend_epi64( 0x0f, io.v512[2], out[2] );
}
if ( rowOut == rowInOut1 )
{
io.v512[0] = _mm512_mask_blend_epi64( 0xf0, io.v512[0], out[0] );
io.v512[1] = _mm512_mask_blend_epi64( 0xf0, io.v512[1], out[1] );
io.v512[2] = _mm512_mask_blend_epi64( 0xf0, io.v512[2], out[2] );
}
*/
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
io0.v512 = _mm512_xor_si512( io0.v512,
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
io1.v512 = _mm512_xor_si512( io1.v512,
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
io2.v512 = _mm512_xor_si512( io2.v512,
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
}
casti_m256i( inout0, 0 ) = io0.v256lo;
casti_m256i( inout1, 1 ) = io0.v256hi;
casti_m256i( inout0, 2 ) = io1.v256lo;
casti_m256i( inout1, 3 ) = io1.v256hi;
casti_m256i( inout0, 4 ) = io2.v256lo;
casti_m256i( inout1, 5 ) = io2.v256hi;
/*
_mm512_mask_store_epi64( inout0, 0x0f, io.v512[0] );
_mm512_mask_store_epi64( inout1, 0xf0, io.v512[0] );
_mm512_mask_store_epi64( inout0 +1, 0x0f, io.v512[1] );
_mm512_mask_store_epi64( inout1 +1, 0xf0, io.v512[1] );
_mm512_mask_store_epi64( inout0 +2, 0x0f, io.v512[2] );
_mm512_mask_store_epi64( inout1 +2, 0xf0, io.v512[2] );
*/
//Goes to next block
in += BLOCK_LEN_M256I;
inout0 += BLOCK_LEN_M256I;
inout1 += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
static inline void reducedDuplexRow_2way_overlap_X( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
@@ -257,30 +482,14 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
__m256i *inout0 = (__m256i*)rowInOut0;
__m256i *inout1 = (__m256i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
__m512i io[3];
povly inout;
inout.v512 = &io[0];
__m512i t0, t1, t2;
inout_ovly inout;
__m512i t0, t1, t2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
_mm_prefetch( in, _MM_HINT_T0 );
_mm_prefetch( inout0, _MM_HINT_T0 );
_mm_prefetch( inout1, _MM_HINT_T0 );
_mm_prefetch( in + 2, _MM_HINT_T0 );
_mm_prefetch( inout0 + 2, _MM_HINT_T0 );
_mm_prefetch( inout1 + 2, _MM_HINT_T0 );
_mm_prefetch( in + 4, _MM_HINT_T0 );
_mm_prefetch( inout0 + 4, _MM_HINT_T0 );
_mm_prefetch( inout1 + 4, _MM_HINT_T0 );
_mm_prefetch( in + 6, _MM_HINT_T0 );
_mm_prefetch( inout0 + 6, _MM_HINT_T0 );
_mm_prefetch( inout1 + 6, _MM_HINT_T0 );
for ( i = 0; i < nCols; i++ )
{
@@ -311,15 +520,15 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
// if inout is the same row as out it was just overwritten, reload.
if ( rowOut == rowInOut0 )
{
inout.v256[0] = inout0[0];
inout.v256[2] = inout0[2];
inout.v256[4] = inout0[4];
inout.v256[0] = ( (__m256i*)out )[0];
inout.v256[2] = ( (__m256i*)out )[2];
inout.v256[4] = ( (__m256i*)out )[4];
}
if ( rowOut == rowInOut1 )
{
inout.v256[1] = inout1[1];
inout.v256[3] = inout1[3];
inout.v256[5] = inout1[5];
inout.v256[1] = ( (__m256i*)out )[1];
inout.v256[3] = ( (__m256i*)out )[3];
inout.v256[5] = ( (__m256i*)out )[5];
}
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
@@ -328,12 +537,12 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout.v512[0] = _mm512_xor_si512( inout.v512[0],
_mm512_mask_blend_epi32( 0x0303, t0, t2 ) );
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout.v512[1] = _mm512_xor_si512( inout.v512[1],
_mm512_mask_blend_epi32( 0x0303, t1, t0 ) );
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout.v512[2] = _mm512_xor_si512( inout.v512[2],
_mm512_mask_blend_epi32( 0x0303, t2, t1 ) );
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
inout0[0] = inout.v256[0];
inout1[1] = inout.v256[1];
inout0[2] = inout.v256[2];
@@ -354,4 +563,108 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// rowInOut0 == rowInOut1, fastest, least likely: 1 / nrows
static inline void reducedDuplexRow_2way_unified( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout = (__m512i*)rowInOut0;
__m512i *out = (__m512i*)rowOut;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout[0] ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout[1] ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout[2] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
register __m512i t0, t1, t2;
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
}
//Goes to next block
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// Multi level specialization.
// There are three cases that need to be handled:
// unified: inout data is contiguous, fastest, unlikely.
// normal: inout data is not contiguous with no overlap with out, likely.
// overlap: inout data is not contiguous and one lane overlaps with out
// slowest, unlikely.
//
// In adition different algos prefer different coding. x25x and x22i prefer
// 256 bit memory acceses to handle the diverged data while all other
// algos prefer 512 bit memory accesses with masking and blending.
// Wrapper
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols )
{
if ( rowInOut0 == rowInOut1 )
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
reducedDuplexRow_2way_overlap( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
else
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
inline void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols )
{
if ( rowInOut0 == rowInOut1 )
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
{
asm volatile ( "nop" ); // Prevent GCC from optimizing
reducedDuplexRow_2way_overlap_X( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
else
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
#endif // AVX512

View File

@@ -203,13 +203,24 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
union _povly
union _ovly_512
{
__m512i *v512;
__m256i *v256;
uint64_t *u64;
__m512i v512;
struct
{
__m256i v256lo;
__m256i v256hi;
};
};
typedef union _povly povly;
typedef union _ovly_512 ovly_512;
union _inout_ovly
{
__m512i v512[3];
__m256i v256[6];
};
typedef union _inout_ovly inout_ovly;
//---- Housekeeping
void initState_2way( uint64_t State[/*16*/] );
@@ -234,6 +245,10 @@ void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols);
void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols);
#endif

View File

@@ -149,7 +149,7 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
char data_str[161], hash_str[65], target_str[65];
//uint8_t *bdata = 0;
uint8_t bdata[8192] __attribute__ ((aligned (64)));
int rc = 0, i, digits;
int i, digits;
int bytes;
size_t p = sizeof(unsigned long), a = 64/p, b = 32/p;
@@ -267,47 +267,41 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
}
const unsigned char *hash_ = (const unsigned char *)hash;
const unsigned char *target_ = (const unsigned char *)ptarget;
for ( i = 31; i >= 0; i-- )
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !opt_benchmark ) )
// if ( unlikely( hash[7] <= ptarget[7] ) )
// if ( likely( fulltest( hash, ptarget ) && !opt_benchmark ) )
{
if ( hash_[i] != target_[i] )
if ( opt_debug )
{
rc = hash_[i] < target_[i];
break;
}
}
if ( unlikely(rc) )
{
if ( opt_debug )
{
bin2hex(hash_str, (unsigned char *)hash, 32);
bin2hex(target_str, (unsigned char *)ptarget, 32);
bin2hex(data_str, (unsigned char *)data, 80);
applog(LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s", thr_id,
data_str,
hash_str,
target_str);
bin2hex( hash_str, (unsigned char *)hash, 32 );
bin2hex( target_str, (unsigned char *)ptarget, 32 );
bin2hex( data_str, (unsigned char *)data, 80 );
applog( LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s",
thr_id, data_str, hash_str, target_str );
}
pdata[19] = data[19];
submit_solution( work, hash, mythr );
}
} while (n < max_nonce && !work_restart[thr_id].restart);
} while ( n < max_nonce && !work_restart[thr_id].restart );
pdata[19] = n;
mpf_set_prec_raw(magifpi, prec0);
mpf_set_prec_raw(magifpi0, prec0);
mpf_set_prec_raw(mptmp, prec0);
mpf_set_prec_raw(mpt1, prec0);
mpf_set_prec_raw(mpt2, prec0);
mpf_clear(magifpi);
mpf_clear(magifpi0);
mpf_clear(mpten);
mpf_clear(mptmp);
mpf_clear(mpt1);
mpf_clear(mpt2);
mpz_clears(magipi, magisw, product, bns0, bns1, NULL);
mpf_set_prec_raw( magifpi, prec0 );
mpf_set_prec_raw( magifpi0, prec0 );
mpf_set_prec_raw( mptmp, prec0 );
mpf_set_prec_raw( mpt1, prec0 );
mpf_set_prec_raw( mpt2, prec0 );
mpf_clear( magifpi );
mpf_clear( magifpi0 );
mpf_clear( mpten );
mpf_clear( mptmp );
mpf_clear( mpt1 );
mpf_clear( mpt2 );
mpz_clears( magipi, magisw, product, bns0, bns1, NULL );
*hashes_done = n - first_nonce + 1;
return 0;

View File

@@ -102,7 +102,7 @@ int scanhash_nist5_8way( struct work *work, uint32_t max_nonce,
nist5hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
@@ -190,7 +190,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
nist5hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )

View File

@@ -25,7 +25,6 @@ void nist5hash(void *output, const void *input)
sph_skein512_context ctx_skein;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
uint32_t mask = 8;
sph_blake512_init( &ctx_blake );
sph_blake512( &ctx_blake, input, 80 );
@@ -59,10 +58,10 @@ void nist5hash(void *output, const void *input)
int scanhash_nist5( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
@@ -88,9 +87,6 @@ int scanhash_nist5( struct work *work, uint32_t max_nonce,
// we need bigendian data...
swab32_array( endiandata, pdata, 20 );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
@@ -98,24 +94,9 @@ int scanhash_nist5( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
nist5hash(hash64, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}

View File

@@ -142,11 +142,7 @@ int scanhash_zr5( struct work *work, uint32_t max_nonce,
{
pdata[0] = tmpdata[0];
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
work_set_target_ratio( work, hash );
if (opt_debug)
applog(LOG_INFO, "found nonce %x", nonce);
return 1;
submit_solution( work, hash, mythr );
}
}
nonce++;
@@ -158,14 +154,13 @@ int scanhash_zr5( struct work *work, uint32_t max_nonce,
}
void zr5_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job )
uint32_t* end_nonce_ptr )
{
// ignore POK in first word
// const int nonce_i = 19;
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) ) )
|| ( *nonceptr >= *end_nonce_ptr ) )
{
work_free( work );
work_copy( work, g_work );

View File

@@ -6,26 +6,25 @@
#define M17( macro ) \
do { \
macro( 0, 1, 2, 4); \
macro( 1, 2, 3, 5); \
macro( 2, 3, 4, 6); \
macro( 3, 4, 5, 7); \
macro( 4, 5, 6, 8); \
macro( 5, 6, 7, 9); \
macro( 6, 7, 8, 10); \
macro( 7, 8, 9, 11); \
macro( 8, 9, 10, 12); \
macro( 9, 10, 11, 13); \
macro(10, 11, 12, 14); \
macro(11, 12, 13, 15); \
macro(12, 13, 14, 16); \
macro(13, 14, 15, 0); \
macro(14, 15, 16, 1); \
macro(15, 16, 0, 2); \
macro(16, 0, 1, 3); \
macro( 0, 1, 2, 4 ); \
macro( 1, 2, 3, 5 ); \
macro( 2, 3, 4, 6 ); \
macro( 3, 4, 5, 7 ); \
macro( 4, 5, 6, 8 ); \
macro( 5, 6, 7, 9 ); \
macro( 6, 7, 8, 10 ); \
macro( 7, 8, 9, 11 ); \
macro( 8, 9, 10, 12 ); \
macro( 9, 10, 11, 13 ); \
macro( 10, 11, 12, 14 ); \
macro( 11, 12, 13, 15 ); \
macro( 12, 13, 14, 16 ); \
macro( 13, 14, 15, 0 ); \
macro( 14, 15, 16, 1 ); \
macro( 15, 16, 0, 2 ); \
macro( 16, 0, 1, 3 ); \
} while (0)
#define RSTATE(n0, n1, n2, n4) (a ## n0 = sc->state[n0])
#define WSTATE(n0, n1, n2, n4) (sc->state[n0] = a ## n0)
@@ -50,9 +49,7 @@ do { \
#define LVARS_4W \
LVAR17_4W(a) \
LVAR17_4W(g) \
LVAR17_4W(p) \
LVAR17_4W(t)
LVAR17_4W(g)
#define BUPDATE1_4W( n0, n2 ) \
do { \
@@ -63,14 +60,14 @@ do { \
#define BUPDATE_4W \
do { \
BUPDATE1_4W(0, 2); \
BUPDATE1_4W(1, 3); \
BUPDATE1_4W(2, 4); \
BUPDATE1_4W(3, 5); \
BUPDATE1_4W(4, 6); \
BUPDATE1_4W(5, 7); \
BUPDATE1_4W(6, 0); \
BUPDATE1_4W(7, 1); \
BUPDATE1_4W( 0, 2 ); \
BUPDATE1_4W( 1, 3 ); \
BUPDATE1_4W( 2, 4 ); \
BUPDATE1_4W( 3, 5 ); \
BUPDATE1_4W( 4, 6 ); \
BUPDATE1_4W( 5, 7 ); \
BUPDATE1_4W( 6, 0 ); \
BUPDATE1_4W( 7, 1 ); \
} while (0)
#define GAMMA_4W(n0, n1, n2, n4) \
@@ -78,46 +75,46 @@ do { \
_mm_or_si128( a ## n1, mm128_not( a ## n2 ) ) ) )
#define PI_ALL_4W do { \
p0 = g0; \
p1 = mm128_rol_32( g7, 1 ); \
p2 = mm128_rol_32( g14, 3 ); \
p3 = mm128_rol_32( g4, 6 ); \
p4 = mm128_rol_32( g11, 10 ); \
p5 = mm128_rol_32( g1, 15 ); \
p6 = mm128_rol_32( g8, 21 ); \
p7 = mm128_rol_32( g15, 28 ); \
p8 = mm128_rol_32( g5, 4 ); \
p9 = mm128_rol_32( g12, 13 ); \
p10 = mm128_rol_32( g2, 23 ); \
p11 = mm128_rol_32( g9, 2 ); \
p12 = mm128_rol_32( g16, 14 ); \
p13 = mm128_rol_32( g6, 27 ); \
p14 = mm128_rol_32( g13, 9 ); \
p15 = mm128_rol_32( g3, 24 ); \
p16 = mm128_rol_32( g10, 8 ); \
a0 = g0; \
a1 = mm128_rol_32( g7, 1 ); \
a2 = mm128_rol_32( g14, 3 ); \
a3 = mm128_rol_32( g4, 6 ); \
a4 = mm128_rol_32( g11, 10 ); \
a5 = mm128_rol_32( g1, 15 ); \
a6 = mm128_rol_32( g8, 21 ); \
a7 = mm128_rol_32( g15, 28 ); \
a8 = mm128_rol_32( g5, 4 ); \
a9 = mm128_rol_32( g12, 13 ); \
a10 = mm128_rol_32( g2, 23 ); \
a11 = mm128_rol_32( g9, 2 ); \
a12 = mm128_rol_32( g16, 14 ); \
a13 = mm128_rol_32( g6, 27 ); \
a14 = mm128_rol_32( g13, 9 ); \
a15 = mm128_rol_32( g3, 24 ); \
a16 = mm128_rol_32( g10, 8 ); \
} while (0)
#define THETA_4W(n0, n1, n2, n4) \
( t ## n0 = _mm_xor_si128( p ## n0, _mm_xor_si128( p ## n1, p ## n4 ) ) )
( g ## n0 = _mm_xor_si128( a ## n0, _mm_xor_si128( a ## n1, a ## n4 ) ) )
#define SIGMA_ALL_4W do { \
a0 = _mm_xor_si128( t0, _mm_set1_epi32( 1 ) ); \
a1 = _mm_xor_si128( t1, INW2( 0 ) ); \
a2 = _mm_xor_si128( t2, INW2( 1 ) ); \
a3 = _mm_xor_si128( t3, INW2( 2 ) ); \
a4 = _mm_xor_si128( t4, INW2( 3 ) ); \
a5 = _mm_xor_si128( t5, INW2( 4 ) ); \
a6 = _mm_xor_si128( t6, INW2( 5 ) ); \
a7 = _mm_xor_si128( t7, INW2( 6 ) ); \
a8 = _mm_xor_si128( t8, INW2( 7 ) ); \
a9 = _mm_xor_si128( t9, sc->buffer[ ptr16 ] [0 ] ); \
a10 = _mm_xor_si128( t10, sc->buffer[ ptr16 ] [1 ] ); \
a11 = _mm_xor_si128( t11, sc->buffer[ ptr16 ] [2 ] ); \
a12 = _mm_xor_si128( t12, sc->buffer[ ptr16 ] [3 ] ); \
a13 = _mm_xor_si128( t13, sc->buffer[ ptr16 ] [4 ] ); \
a14 = _mm_xor_si128( t14, sc->buffer[ ptr16 ] [5 ] ); \
a15 = _mm_xor_si128( t15, sc->buffer[ ptr16 ] [6 ] ); \
a16 = _mm_xor_si128( t16, sc->buffer[ ptr16 ] [7 ] ); \
a0 = _mm_xor_si128( g0, m128_one_32 ); \
a1 = _mm_xor_si128( g1, INW2( 0 ) ); \
a2 = _mm_xor_si128( g2, INW2( 1 ) ); \
a3 = _mm_xor_si128( g3, INW2( 2 ) ); \
a4 = _mm_xor_si128( g4, INW2( 3 ) ); \
a5 = _mm_xor_si128( g5, INW2( 4 ) ); \
a6 = _mm_xor_si128( g6, INW2( 5 ) ); \
a7 = _mm_xor_si128( g7, INW2( 6 ) ); \
a8 = _mm_xor_si128( g8, INW2( 7 ) ); \
a9 = _mm_xor_si128( g9, sc->buffer[ ptr16 ][0] ); \
a10 = _mm_xor_si128( g10, sc->buffer[ ptr16 ][1] ); \
a11 = _mm_xor_si128( g11, sc->buffer[ ptr16 ][2] ); \
a12 = _mm_xor_si128( g12, sc->buffer[ ptr16 ][3] ); \
a13 = _mm_xor_si128( g13, sc->buffer[ ptr16 ][4] ); \
a14 = _mm_xor_si128( g14, sc->buffer[ ptr16 ][5] ); \
a15 = _mm_xor_si128( g15, sc->buffer[ ptr16 ][6] ); \
a16 = _mm_xor_si128( g16, sc->buffer[ ptr16 ][7] ); \
} while (0)
#define PANAMA_STEP_4W do { \
@@ -145,9 +142,9 @@ panama_4way_push( panama_4way_context *sc, const unsigned char *pbuf,
#define INW2(i) INW1(i)
M17( RSTATE );
ptr0 = sc->buffer_ptr;
while (num -- > 0) {
while ( num-- > 0 )
{
PANAMA_STEP_4W;
pbuf = (const unsigned char *)pbuf + 32*4;
}
@@ -173,14 +170,11 @@ panama_4way_pull( panama_4way_context *sc, unsigned num )
#define INW2(i) casti_m128i( sc->buffer[ptr4], i )
M17( RSTATE );
ptr0 = sc->buffer_ptr;
while (num -- > 0) {
while ( num-- > 0 )
{
unsigned ptr4;
ptr4 = ( (ptr0 + 4) & 31 );
PANAMA_STEP_4W;
}
M17( WSTATE );
@@ -192,18 +186,11 @@ panama_4way_pull( panama_4way_context *sc, unsigned num )
}
void
panama_4way_init(void *cc)
panama_4way_init( void *cc )
{
panama_4way_context *sc;
sc = cc;
/*
* This is not completely conformant, but "it will work
* everywhere". Initial state consists of zeroes everywhere.
* Conceptually, the sph_u32 type may have padding bits which
* must not be set to 0; but such an architecture remains to
* be seen.
*/
sc->data_ptr = 0;
memset( sc->buffer, 0, sizeof sc->buffer );
sc->buffer_ptr = 0;
@@ -217,7 +204,8 @@ panama_4way_short( void *cc, const void *data, size_t len )
unsigned current;
sc = cc;
current = sc->data_ptr;
while (len > 0) {
while ( len > 0 )
{
unsigned clen;
clen = ( (sizeof sc->data ) >> 2 ) - current;
@@ -283,11 +271,8 @@ panama_4way_close( void *cc, void *dst )
*(__m128i*)( sc->data + current ) = m128_one_32;
current++;
memset_zero_128( (__m128i*)sc->data + current, 32 - current );
panama_4way_push( sc, sc->data, 1 );
panama_4way_pull( sc, 32 );
for ( i = 0; i < 8; i ++ )
casti_m128i( dst, i ) = sc->state[i + 9];
}
@@ -306,9 +291,7 @@ panama_4way_close( void *cc, void *dst )
#define LVARS_8W \
LVAR17_8W(a) \
LVAR17_8W(g) \
LVAR17_8W(p) \
LVAR17_8W(t)
LVAR17_8W(g)
#define BUPDATE1_8W( n0, n2 ) \
do { \
@@ -319,14 +302,14 @@ do { \
#define BUPDATE_8W \
do { \
BUPDATE1_8W(0, 2); \
BUPDATE1_8W(1, 3); \
BUPDATE1_8W(2, 4); \
BUPDATE1_8W(3, 5); \
BUPDATE1_8W(4, 6); \
BUPDATE1_8W(5, 7); \
BUPDATE1_8W(6, 0); \
BUPDATE1_8W(7, 1); \
BUPDATE1_8W( 0, 2 ); \
BUPDATE1_8W( 1, 3 ); \
BUPDATE1_8W( 2, 4 ); \
BUPDATE1_8W( 3, 5 ); \
BUPDATE1_8W( 4, 6 ); \
BUPDATE1_8W( 5, 7 ); \
BUPDATE1_8W( 6, 0 ); \
BUPDATE1_8W( 7, 1 ); \
} while (0)
#define GAMMA_8W(n0, n1, n2, n4) \
@@ -334,46 +317,47 @@ do { \
_mm256_or_si256( a ## n1, mm256_not( a ## n2 ) ) ) )
#define PI_ALL_8W do { \
p0 = g0; \
p1 = mm256_rol_32( g7, 1 ); \
p2 = mm256_rol_32( g14, 3 ); \
p3 = mm256_rol_32( g4, 6 ); \
p4 = mm256_rol_32( g11, 10 ); \
p5 = mm256_rol_32( g1, 15 ); \
p6 = mm256_rol_32( g8, 21 ); \
p7 = mm256_rol_32( g15, 28 ); \
p8 = mm256_rol_32( g5, 4 ); \
p9 = mm256_rol_32( g12, 13 ); \
p10 = mm256_rol_32( g2, 23 ); \
p11 = mm256_rol_32( g9, 2 ); \
p12 = mm256_rol_32( g16, 14 ); \
p13 = mm256_rol_32( g6, 27 ); \
p14 = mm256_rol_32( g13, 9 ); \
p15 = mm256_rol_32( g3, 24 ); \
p16 = mm256_rol_32( g10, 8 ); \
a0 = g0; \
a1 = mm256_rol_32( g7, 1 ); \
a2 = mm256_rol_32( g14, 3 ); \
a3 = mm256_rol_32( g4, 6 ); \
a4 = mm256_rol_32( g11, 10 ); \
a5 = mm256_rol_32( g1, 15 ); \
a6 = mm256_rol_32( g8, 21 ); \
a7 = mm256_rol_32( g15, 28 ); \
a8 = mm256_rol_32( g5, 4 ); \
a9 = mm256_rol_32( g12, 13 ); \
a10 = mm256_rol_32( g2, 23 ); \
a11 = mm256_rol_32( g9, 2 ); \
a12 = mm256_rol_32( g16, 14 ); \
a13 = mm256_rol_32( g6, 27 ); \
a14 = mm256_rol_32( g13, 9 ); \
a15 = mm256_rol_32( g3, 24 ); \
a16 = mm256_rol_32( g10, 8 ); \
} while (0)
#define THETA_8W(n0, n1, n2, n4) \
( t ## n0 = _mm256_xor_si256( p ## n0, _mm256_xor_si256( p ## n1, p ## n4 ) ) )
( g ## n0 = _mm256_xor_si256( a ## n0, _mm256_xor_si256( a ## n1, \
a ## n4 ) ) )
#define SIGMA_ALL_8W do { \
a0 = _mm256_xor_si256( t0, m256_one_32 ); \
a1 = _mm256_xor_si256( t1, INW2( 0 ) ); \
a2 = _mm256_xor_si256( t2, INW2( 1 ) ); \
a3 = _mm256_xor_si256( t3, INW2( 2 ) ); \
a4 = _mm256_xor_si256( t4, INW2( 3 ) ); \
a5 = _mm256_xor_si256( t5, INW2( 4 ) ); \
a6 = _mm256_xor_si256( t6, INW2( 5 ) ); \
a7 = _mm256_xor_si256( t7, INW2( 6 ) ); \
a8 = _mm256_xor_si256( t8, INW2( 7 ) ); \
a9 = _mm256_xor_si256( t9, sc->buffer[ ptr16 ] [0 ] ); \
a10 = _mm256_xor_si256( t10, sc->buffer[ ptr16 ] [1 ] ); \
a11 = _mm256_xor_si256( t11, sc->buffer[ ptr16 ] [2 ] ); \
a12 = _mm256_xor_si256( t12, sc->buffer[ ptr16 ] [3 ] ); \
a13 = _mm256_xor_si256( t13, sc->buffer[ ptr16 ] [4 ] ); \
a14 = _mm256_xor_si256( t14, sc->buffer[ ptr16 ] [5 ] ); \
a15 = _mm256_xor_si256( t15, sc->buffer[ ptr16 ] [6 ] ); \
a16 = _mm256_xor_si256( t16, sc->buffer[ ptr16 ] [7 ] ); \
a0 = _mm256_xor_si256( g0, m256_one_32 ); \
a1 = _mm256_xor_si256( g1, INW2( 0 ) ); \
a2 = _mm256_xor_si256( g2, INW2( 1 ) ); \
a3 = _mm256_xor_si256( g3, INW2( 2 ) ); \
a4 = _mm256_xor_si256( g4, INW2( 3 ) ); \
a5 = _mm256_xor_si256( g5, INW2( 4 ) ); \
a6 = _mm256_xor_si256( g6, INW2( 5 ) ); \
a7 = _mm256_xor_si256( g7, INW2( 6 ) ); \
a8 = _mm256_xor_si256( g8, INW2( 7 ) ); \
a9 = _mm256_xor_si256( g9, sc->buffer[ ptr16 ][0] ); \
a10 = _mm256_xor_si256( g10, sc->buffer[ ptr16 ][1] ); \
a11 = _mm256_xor_si256( g11, sc->buffer[ ptr16 ][2] ); \
a12 = _mm256_xor_si256( g12, sc->buffer[ ptr16 ][3] ); \
a13 = _mm256_xor_si256( g13, sc->buffer[ ptr16 ][4] ); \
a14 = _mm256_xor_si256( g14, sc->buffer[ ptr16 ][5] ); \
a15 = _mm256_xor_si256( g15, sc->buffer[ ptr16 ][6] ); \
a16 = _mm256_xor_si256( g16, sc->buffer[ ptr16 ][7] ); \
} while (0)
#define PANAMA_STEP_8W do { \
@@ -401,7 +385,6 @@ panama_8way_push( panama_8way_context *sc, const unsigned char *pbuf,
#define INW2(i) INW1(i)
M17( RSTATE );
ptr0 = sc->buffer_ptr;
while ( num-- > 0 )
{
@@ -429,9 +412,9 @@ panama_8way_pull( panama_8way_context *sc, unsigned num )
ptr0 = sc->buffer_ptr;
while (num -- > 0) {
while ( num-- > 0 )
{
unsigned ptr4;
ptr4 = ( (ptr0 + 4) & 31 );
PANAMA_STEP_8W;
}
@@ -449,13 +432,6 @@ panama_8way_init( void *cc )
panama_8way_context *sc;
sc = cc;
/*
* This is not completely conformant, but "it will work
* everywhere". Initial state consists of zeroes everywhere.
* Conceptually, the sph_u32 type may have padding bits which
* must not be set to 0; but such an architecture remains to
* be seen.
*/
sc->data_ptr = 0;
memset( sc->buffer, 0, sizeof sc->buffer );
sc->buffer_ptr = 0;
@@ -469,7 +445,8 @@ panama_8way_short( void *cc, const void *data, size_t len )
unsigned current;
sc = cc;
current = sc->data_ptr;
while (len > 0) {
while ( len > 0 )
{
unsigned clen;
clen = ( (sizeof sc->data ) >> 3 ) - current;
@@ -486,7 +463,6 @@ panama_8way_short( void *cc, const void *data, size_t len )
panama_8way_push( sc, sc->data, 1 );
}
}
sc->data_ptr = current;
}
@@ -535,9 +511,7 @@ panama_8way_close( void *cc, void *dst )
*(__m256i*)( sc->data + current ) = m256_one_32;
current++;
memset_zero_256( (__m256i*)sc->data + current, 32 - current );
panama_8way_push( sc, sc->data, 1 );
panama_8way_pull( sc, 32 );
for ( i = 0; i < 8; i ++ )

View File

@@ -160,16 +160,12 @@ int scanhash_anime( struct work *work, uint32_t max_nonce,
pdata[19] = n;
if ( ( hash[7] & mask ) == 0 && fulltest( hash, ptarget ) )
{
work_set_target_ratio( work, hash );
*hashes_done = n - first_nonce + 1;
return true;
}
submit_solution( work, hash, mythr );
n++;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}

View File

@@ -1513,10 +1513,10 @@ int scanhash_hmq1725_4way( struct work *work, uint32_t max_nonce,
hmq1725_4way_hash( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] <= Htarg )
if ( unlikely( hash7[ lane<<1 ] <= Htarg ) )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );

View File

@@ -330,11 +330,8 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (((hash64[7]&0xFFFFFFFF)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
else if (ptarget[7]<=0xF)
@@ -344,11 +341,8 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (((hash64[7]&0xFFFFFFF0)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
else if (ptarget[7]<=0xFF)
@@ -358,11 +352,8 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (((hash64[7]&0xFFFFFF00)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
else if (ptarget[7]<=0xFFF)
@@ -372,13 +363,9 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (((hash64[7]&0xFFFFF000)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
else if (ptarget[7]<=0xFFFF)
{
@@ -387,13 +374,9 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (((hash64[7]&0xFFFF0000)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
else
{
@@ -401,15 +384,10 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
hmq1725hash(hash64, endiandata);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
work_set_target_ratio( work, hash64 );
return true;
}
if (fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;

View File

@@ -248,11 +248,11 @@ void quark_8way_hash( void *state, const void *input )
jh512_8way_close( &ctx.jh, vhashB );
}
// Final blend, directly to state, only need 32 bytes.
casti_m512i( state,0 ) = _mm512_mask_blend_epi64( vh_mask, vhA[0], vhB[0] );
casti_m512i( state,1 ) = _mm512_mask_blend_epi64( vh_mask, vhA[1], vhB[1] );
casti_m512i( state,2 ) = _mm512_mask_blend_epi64( vh_mask, vhA[2], vhB[2] );
casti_m512i( state,3 ) = _mm512_mask_blend_epi64( vh_mask, vhA[3], vhB[3] );
// Final blend, directly to state, only need 32 bytes.
casti_m512i( state,0 ) = _mm512_mask_blend_epi64( vh_mask, vhA[0], vhB[0] );
casti_m512i( state,1 ) = _mm512_mask_blend_epi64( vh_mask, vhA[1], vhB[1] );
casti_m512i( state,2 ) = _mm512_mask_blend_epi64( vh_mask, vhA[2], vhB[2] );
casti_m512i( state,3 ) = _mm512_mask_blend_epi64( vh_mask, vhA[3], vhB[3] );
}
int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
@@ -267,23 +267,24 @@ int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
quark_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( ( hash7[ i<<1 ] & 0xFFFFFF00 ) == 0 )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
{
extr_lane_8x64( lane_hash, hash, i, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );
@@ -296,7 +297,6 @@ int scanhash_quark_8way( struct work *work, uint32_t max_nonce,
return 0;
}
#elif defined (QUARK_4WAY)
typedef struct {
@@ -460,8 +460,9 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do
{
@@ -472,10 +473,10 @@ int scanhash_quark_4way( struct work *work, uint32_t max_nonce,
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( hash7[ i<<1 ] & 0xFFFFFF00 ) == 0 )
if ( unlikely( hash7[ i<<1 ] <= Htarg ) )
{
extr_lane_4x64( lane_hash, hash, i, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = n+i;
submit_lane_solution( work, lane_hash, mythr, i );

View File

@@ -126,15 +126,11 @@ int scanhash_quark( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
quark_hash(hash64, &endiandata);
if ((hash64[7]&0xFFFFFF00)==0)
{
if (fulltest(hash64, ptarget))
{
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
}
if ((hash64[7]&0xFFFFFF00)==0)
{
if (fulltest(hash64, ptarget))
submit_solution( work, hash64, mythr );
}
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

View File

@@ -5,7 +5,7 @@
#include <stdio.h>
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/echo/sph_echo.h"
@@ -15,10 +15,10 @@ typedef struct
{
hashState_luffa luffa;
cubehashParam cubehash;
#ifdef NO_AES_NI
sph_echo512_context echo;
#else
#ifdef __AES__
hashState_echo echo;
#else
sph_echo512_context echo;
#endif
} deep_ctx_holder;
@@ -29,10 +29,10 @@ void init_deep_ctx()
{
init_luffa( &deep_ctx.luffa, 512 );
cubehashInit( &deep_ctx.cubehash, 512, 16, 32 );
#ifdef NO_AES_NI
sph_echo512_init( &deep_ctx.echo );
#else
#ifdef __AES__
init_echo( &deep_ctx.echo, 512 );
#else
sph_echo512_init( &deep_ctx.echo );
#endif
};
@@ -59,12 +59,12 @@ void deep_hash(void *output, const void *input)
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*) hash,64);
#ifdef NO_AES_NI
sph_echo512 (&ctx.echo, (const void*) hash, 64);
sph_echo512_close(&ctx.echo, (void*) hash);
#else
#ifdef __AES__
update_final_echo ( &ctx.echo, (BitSequence *) hash,
(const BitSequence *) hash, 512);
#else
sph_echo512 (&ctx.echo, (const void*) hash, 64);
sph_echo512_close(&ctx.echo, (void*) hash);
#endif
asm volatile ("emms");
@@ -92,46 +92,21 @@ int scanhash_deep( struct work *work, uint32_t max_nonce,
deep_luffa_midstate( endiandata );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for ( int m=0; m < 6; m++ )
{
{
if ( Htarg <= htmax[m] )
{
{
uint32_t mask = masks[m];
do
{
{
pdata[19] = ++n;
be32enc( &endiandata[19], n );
deep_hash( hash64, endiandata );
#ifndef DEBUG_ALGO
if (!(hash64[7] & mask))
{
if ( fulltest(hash64, ptarget) )
{
*hashes_done = n - first_nonce + 1;
return true;
}
// else
// {
// applog(LOG_INFO, "Result does not validate on CPU!");
// }
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while ( n < max_nonce && !work_restart[thr_id].restart );
// see blake.c if else to understand the loop on htmax => mask
break;
be32enc( &endiandata[19], n );
deep_hash( hash64, endiandata );
if (!(hash64[7] & mask))
if ( fulltest(hash64, ptarget) )
submit_solution( work, hash64, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart );
break;
}
}

View File

@@ -149,8 +149,8 @@ int scanhash_qubit_4way( struct work *work,uint32_t max_nonce,
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash+(lane<<3) )[7] < Htarg )
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
if ( unlikely( ( hash+(lane<<3) )[7] <= Htarg ) )
if ( likely( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark ) )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
@@ -233,10 +233,6 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
uint32_t *noncep = vdata + 32+3; // 4*8 + 3
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
casti_m256i( endiandata, 0 ) = mm256_bswap_32( casti_m256i( pdata, 0 ) );
casti_m256i( endiandata, 1 ) = mm256_bswap_32( casti_m256i( pdata, 1 ) );
@@ -248,32 +244,27 @@ int scanhash_qubit_2way( struct work *work,uint32_t max_nonce,
luffa_2way_init( &qubit_2way_ctx.luffa, 512 );
luffa_2way_update( &qubit_2way_ctx.luffa, vdata, 64 );
for ( int m=0; m < 6; m++ ) if ( Htarg <= htmax[m] )
do
{
uint32_t mask = masks[m];
do
{
be32enc( noncep, n );
be32enc( noncep+4, n+1 );
qubit_2way_hash( hash, vdata );
pdata[19] = n;
be32enc( noncep, n );
be32enc( noncep+4, n+1 );
qubit_2way_hash( hash, vdata );
pdata[19] = n;
if ( !( hash[7] & mask ) )
if ( fulltest( hash, ptarget) && !opt_benchmark )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
}
if ( !( (hash+8)[7] & mask ) )
if ( fulltest( hash+8, ptarget) && !opt_benchmark )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
if ( unlikely( hash[7] <= Htarg ) )
if ( likely( fulltest( hash, ptarget) && !opt_benchmark ) )
{
pdata[19] = n;
submit_lane_solution( work, hash, mythr, 0 );
}
if ( unlikely( ( (hash+8))[7] <= Htarg ) )
if ( likely( fulltest( hash+8, ptarget) && !opt_benchmark ) )
{
pdata[19] = n+1;
submit_lane_solution( work, hash+8, mythr, 1 );
}
n += 2;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}

View File

@@ -7,7 +7,7 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/shavite/sph_shavite.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/echo/sph_echo.h"
@@ -19,10 +19,10 @@ typedef struct
cubehashParam cubehash;
sph_shavite512_context shavite;
hashState_sd simd;
#ifdef NO_AES_NI
sph_echo512_context echo;
#else
#ifdef __AES__
hashState_echo echo;
#else
sph_echo512_context echo;
#endif
} qubit_ctx_holder;
@@ -35,10 +35,10 @@ void init_qubit_ctx()
cubehashInit(&qubit_ctx.cubehash,512,16,32);
sph_shavite512_init(&qubit_ctx.shavite);
init_sd(&qubit_ctx.simd,512);
#ifdef NO_AES_NI
sph_echo512_init(&qubit_ctx.echo);
#else
#ifdef __AES__
init_echo(&qubit_ctx.echo, 512);
#else
sph_echo512_init(&qubit_ctx.echo);
#endif
};
@@ -71,12 +71,12 @@ void qubit_hash(void *output, const void *input)
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)hash, 512 );
#ifdef NO_AES_NI
sph_echo512 (&ctx.echo, (const void*) hash, 64);
sph_echo512_close(&ctx.echo, (void*) hash);
#else
#ifdef __AES__
update_final_echo( &ctx.echo, (BitSequence *) hash,
(const BitSequence *) hash, 512 );
#else
sph_echo512 (&ctx.echo, (const void*) hash, 64);
sph_echo512_close(&ctx.echo, (void*) hash);
#endif
asm volatile ("emms");
@@ -104,48 +104,23 @@ int scanhash_qubit( struct work *work, uint32_t max_nonce,
qubit_luffa_midstate( endiandata );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for ( int m=0; m < 6; m++ )
{
{
if ( Htarg <= htmax[m] )
{
{
uint32_t mask = masks[m];
do
{
{
pdata[19] = ++n;
be32enc(&endiandata[19], n);
qubit_hash(hash64, endiandata);
#ifndef DEBUG_ALGO
if (!(hash64[7] & mask))
{
if ( fulltest(hash64, ptarget) )
{
*hashes_done = n - first_nonce + 1;
return true;
}
// else
// {
// applog(LOG_INFO, "Result does not validate on CPU!");
// }
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
work_set_target_ratio( work, hash64 );
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while ( n < max_nonce && !work_restart[thr_id].restart );
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
be32enc(&endiandata[19], n);
qubit_hash(hash64, endiandata);
if (!(hash64[7] & mask))
if ( fulltest(hash64, ptarget) )
submit_solution( work, hash64, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart );
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;

View File

@@ -753,10 +753,8 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
for (i = 0; i < throughput; i++) {
if (unlikely(hash[i * 8 + 7] <= Htarg && fulltest(hash + i * 8, ptarget))) {
*hashes_done = n - pdata[19] + 1;
pdata[19] = data[i * 20 + 19];
work_set_target_ratio( work, hash );
return 1;
submit_solution( work, hash, mythr );
}
}
} while (likely(n < max_nonce && !work_restart[thr_id].restart));

View File

@@ -28,46 +28,10 @@
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256_p.h"
#include "simd-utils.h"
#include "hmac-sha256-hash.h"
#include "compat.h"
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
*/
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
@@ -76,9 +40,9 @@ void
SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
{
SHA256_CTX ctx;
SHA256_Init( &ctx );
SHA256_Update( &ctx, in, len );
SHA256_Final( digest, &ctx );
SHA256_Init( &ctx );
SHA256_Update( &ctx, in, len );
SHA256_Final( digest, &ctx );
}
/**
@@ -87,19 +51,18 @@ SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
HMAC_SHA256_Buf( const void *K, size_t Klen, const void *in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init( &ctx, K, Klen );
HMAC_SHA256_Update( &ctx, in, len );
HMAC_SHA256_Final( digest, &ctx );
HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init( &ctx, K, Klen );
HMAC_SHA256_Update( &ctx, in, len );
HMAC_SHA256_Final( digest, &ctx );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
{
unsigned char pad[64];
unsigned char khash[32];
@@ -107,7 +70,8 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
if ( Klen > 64 )
{
SHA256_Init( &ctx->ictx );
SHA256_Update( &ctx->ictx, K, Klen );
SHA256_Final( khash, &ctx->ictx );
@@ -116,7 +80,7 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx );
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
@@ -128,23 +92,19 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
SHA256_Update( &ctx->octx, pad, 64 );
/* Clean the stack. */
//memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
HMAC_SHA256_Update( HMAC_SHA256_CTX *ctx, const void *in, size_t len )
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
HMAC_SHA256_Final( unsigned char digest[32], HMAC_SHA256_CTX *ctx )
{
unsigned char ihash[32];
@@ -156,9 +116,6 @@ HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
/* Finish the outer SHA256 operation. */
SHA256_Final( digest, &ctx->octx );
/* Clean the stack. */
//memset(ihash, 0, 32);
}
/**
@@ -167,52 +124,51 @@ HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen )
{
HMAC_SHA256_CTX PShctx, hctx;
uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32];
uint8_t ivec[4];
uint32_t ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
HMAC_SHA256_Init( &PShctx, passwd, passwdlen );
HMAC_SHA256_Update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
ivec = bswap_32( i+1 );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
memcpy( &hctx, &PShctx, sizeof(HMAC_SHA256_CTX) );
HMAC_SHA256_Update( &hctx, &ivec, 4 );
HMAC_SHA256_Final( U, &hctx );
/* T_i = U_1 ... */
memcpy(T, U, 32);
memcpy( T, U, 32 );
for (j = 2; j <= c; j++) {
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
HMAC_SHA256_Init( &hctx, passwd, passwdlen );
HMAC_SHA256_Update( &hctx, U, 32 );
HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
if ( clen > 32 )
clen = 32;
memcpy(&buf[i * 32], T, clen);
memcpy( &buf[i * 32], T, clen );
}
/* Clean PShctx, since we never called _Final on it. */
//memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
}

View File

@@ -26,23 +26,24 @@
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#ifndef HMAC_SHA256_H__
#define HMAC_SHA256_H__
#include <sys/types.h>
#include <stdint.h>
#include <openssl/sha.h>
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
typedef struct HMAC_SHA256Context
{
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
void SHA256_Buf( const void * in, size_t len, uint8_t digest[32] );
void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void HMAC_SHA256_Init( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Update( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Final( unsigned char [32], HMAC_SHA256_CTX * );
void HMAC_SHA256_Buf( const void * K, size_t Klen, const void * in,
void HMAC_SHA256_Buf( const void *, size_t Klen, const void *,
size_t len, uint8_t digest[32] );
/**
@@ -53,4 +54,4 @@ void HMAC_SHA256_Buf( const void * K, size_t Klen, const void * in,
void PBKDF2_SHA256( const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */
#endif // HMAC_SHA256_H__

View File

@@ -94,6 +94,37 @@ static const uint32_t K256[64] =
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) )
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i K = _mm_set1_epi32( K256[( (j)+(i) )] ); \
__m128i T1 = mm128_ror_32( E, 14 ); \
__m128i T2 = mm128_ror_32( A, 9 ); \
__m128i T3 = _mm_xor_si128( F, G ); \
__m128i T4 = _mm_or_si128( A, B ); \
__m128i T5 = _mm_and_si128( A, B ); \
K = _mm_add_epi32( K, W[i] ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T3 = _mm_and_si128( T3, E ); \
T4 = _mm_and_si128( T4, C ); \
K = _mm_add_epi32( H, K ); \
T1 = mm128_ror_32( T1, 5 ); \
T2 = mm128_ror_32( T2, 11 ); \
T3 = _mm_xor_si128( T3, G ); \
T4 = _mm_or_si128( T4, T5 ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T1 = mm128_ror_32( T1, 6 ); \
T2 = mm128_ror_32( T2, 2 ); \
T1 = _mm_add_epi32( T1, T3 ); \
T2 = _mm_add_epi32( T2, T4 ); \
T1 = _mm_add_epi32( T1, K ); \
H = _mm_add_epi32( T1, T2 ); \
D = _mm_add_epi32( D, T1 ); \
} while (0)
/*
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i T1, T2; \
@@ -104,6 +135,8 @@ do { \
D = _mm_add_epi32( D, T1 ); \
H = _mm_add_epi32( T1, T2 ); \
} while (0)
*/
static void
sha256_4way_round( sha256_4way_context *ctx, __m128i *in, __m128i r[8] )

View File

@@ -319,7 +319,7 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
// SHA-512 4 way 64 bit
/*
#define CH(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
@@ -327,6 +327,15 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
_mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
#define BSG5_0(x) \
mm256_ror_64( _mm256_xor_si256( mm256_ror_64( \
_mm256_xor_si256( mm256_ror_64( x, 5 ), x ), 6 ), x ), 28 )
#define BSG5_1(x) \
mm256_ror_64( _mm256_xor_si256( mm256_ror_64( \
_mm256_xor_si256( mm256_ror_64( x, 23 ), x ), 4 ), x ), 14 )
*/
/*
#define BSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 28), mm256_ror_64(x, 34) ), mm256_ror_64(x, 39) )
@@ -334,7 +343,8 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
#define BSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 14), mm256_ror_64(x, 18) ), mm256_ror_64(x, 41) )
*/
/*
#define SSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 1), mm256_ror_64(x, 8) ), _mm256_srli_epi64(x, 7) )
@@ -342,7 +352,7 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
#define SSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 19), mm256_ror_64(x, 61) ), _mm256_srli_epi64(x, 6) )
*/
// Interleave SSG0 & SSG1 for better throughput.
// return ssg0(w0) + ssg1(w1)
static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
@@ -361,7 +371,7 @@ static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
return _mm256_add_epi64( w0a, w1a );
}
/*
#define SSG512x2_0( w0, w1, i ) do \
{ \
__m256i X0a, X1a, X0b, X1b; \
@@ -391,7 +401,51 @@ static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
w0 = _mm256_xor_si256( X0a, X0b ); \
w1 = _mm256_xor_si256( X1a, X1b ); \
} while(0)
*/
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i K = _mm256_set1_epi64x( K512[ i ] ); \
__m256i T1 = mm256_ror_64( E, 23 ); \
__m256i T2 = mm256_ror_64( A, 5 ); \
__m256i T3 = _mm256_xor_si256( F, G ); \
__m256i T4 = _mm256_or_si256( A, B ); \
__m256i T5 = _mm256_and_si256( A, B ); \
K = _mm256_add_epi64( K, W[i] ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T3 = _mm256_and_si256( T3, E ); \
T4 = _mm256_and_si256( T4, C ); \
K = _mm256_add_epi64( H, K ); \
T1 = mm256_ror_64( T1, 4 ); \
T2 = mm256_ror_64( T2, 6 ); \
T3 = _mm256_xor_si256( T3, G ); \
T4 = _mm256_or_si256( T4, T5 ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T1 = mm256_ror_64( T1, 14 ); \
T2 = mm256_ror_64( T2, 28 ); \
T1 = _mm256_add_epi64( T1, T3 ); \
T2 = _mm256_add_epi64( T2, T4 ); \
T1 = _mm256_add_epi64( T1, K ); \
H = _mm256_add_epi64( T1, T2 ); \
D = _mm256_add_epi64( D, T1 ); \
} while (0)
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i K = _mm256_add_epi64( W[i], _mm256_set1_epi64x( K512[ i ] ) ); \
__m256i T1 = BSG5_1(E); \
__m256i T2 = BSG5_0(A); \
T1 = mm256_add4_64( T1, H, CH(E, F, G), K ); \
T2 = _mm256_add_epi64( T2, MAJ(A, B, C) ); \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
*/
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i T1, T2; \
@@ -402,7 +456,7 @@ do { \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
*/
static void
sha512_4way_round( sha512_4way_context *ctx, __m256i *in, __m256i r[8] )

View File

@@ -3,11 +3,9 @@
#include <stdio.h>
// This implementation is deprecated, superseded by VAES in Icelake
// which provides HW based 4 way aes.
// It was created for AVX2 to eliminate interleaving between the
// preceding and following function.
// This code can be removed when current users have reverted to one way.
// This is a fake, it actually does not do parallel AES, that requires VAES.
// This is only intended when the preceding and folllowing functions use the
// same 2x128 interleave.
#if defined(__AVX2__)
@@ -410,4 +408,94 @@ void shavite512_2way_update_close( shavite512_2way_context *ctx, void *dst,
casti_m256i( dst, 3 ) = casti_m256i( ctx->h, 3 );
}
void shavite512_2way_full( shavite512_2way_context *ctx, void *dst,
const void *data, size_t len )
{
__m256i *h = (__m256i*)ctx->h;
__m128i *iv = (__m128i*)IV512;
h[0] = m256_const1_128( iv[0] );
h[1] = m256_const1_128( iv[1] );
h[2] = m256_const1_128( iv[2] );
h[3] = m256_const1_128( iv[3] );
ctx->ptr =
ctx->count0 =
ctx->count1 =
ctx->count2 =
ctx->count3 = 0;
unsigned char *buf = ctx->buf;
size_t ptr = ctx->ptr;
// process full blocks and load buf with remainder.
while ( len > 0 )
{
size_t clen;
clen = (sizeof ctx->buf) - ptr;
if ( clen > len << 1 )
clen = len << 1;
memcpy( buf + ptr, data, clen );
data = (const unsigned char *)data + clen;
ptr += clen;
len -= (clen >> 1);
if ( ptr == sizeof ctx->buf )
{
if ( ( ctx->count0 = ctx->count0 + 1024 ) == 0 )
{
ctx->count1 = ctx->count1 + 1;
if ( ctx->count1 == 0 )
{
ctx->count2 = ctx->count2 + 1;
if ( ctx->count2 == 0 )
ctx->count3 = ctx->count3 + 1;
}
}
c512_2way( ctx, buf );
ptr = 0;
}
}
uint32_t vp = ptr>>5;
// Count = { 0, 16, 64, 80 }. Outsize = 16 u32 = 512 bits = 0x0200
// Count is misaligned to 16 bits and straddles 2 vectors.
// Use u32 overlay to stage then u16 to load buf.
union
{
uint32_t u32[4];
uint16_t u16[8];
} count;
count.u32[0] = ctx->count0 += (ptr << 2); // ptr/2 * 8
count.u32[1] = ctx->count1;
count.u32[2] = ctx->count2;
count.u32[3] = ctx->count3;
if ( vp == 0 ) // empty buf, xevan.
{
casti_m256i( buf, 0 ) = m256_const2_64( 0, 0x0000000000000080 );
memset_zero_256( (__m256i*)buf + 1, 5 );
ctx->count0 = ctx->count1 = ctx->count2 = ctx->count3 = 0;
}
else // half full buf, everyone else.
{
casti_m256i( buf, vp++ ) = m256_const2_64( 0, 0x0000000000000080 );
memset_zero_256( (__m256i*)buf + vp, 6 - vp );
}
casti_m256i( buf, 6 ) = m256_const1_128(
_mm_insert_epi16( m128_zero, count.u16[0], 7 ) );
casti_m256i( buf, 7 ) = m256_const1_128( _mm_set_epi16(
0x0200, count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] ) );
c512_2way( ctx, buf);
casti_m256i( dst, 0 ) = casti_m256i( ctx->h, 0 );
casti_m256i( dst, 1 ) = casti_m256i( ctx->h, 1 );
casti_m256i( dst, 2 ) = casti_m256i( ctx->h, 2 );
casti_m256i( dst, 3 ) = casti_m256i( ctx->h, 3 );
}
#endif // AVX2

View File

@@ -18,6 +18,8 @@ void shavite512_2way_update( shavite512_2way_context *ctx, const void *data,
void shavite512_2way_close( shavite512_2way_context *ctx, void *dst );
void shavite512_2way_update_close( shavite512_2way_context *ctx, void *dst,
const void *data, size_t len );
void shavite512_2way_full( shavite512_2way_context *ctx, void *dst,
const void *data, size_t len );
#endif // AVX2

View File

@@ -1,6 +1,8 @@
#include "shavite-hash-4way.h"
#include <stdint.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
static const uint32_t IV512[] =
{
0x72FCCDD8, 0x79CA4727, 0x128A077B, 0x40D55AEC,
@@ -9,8 +11,6 @@ static const uint32_t IV512[] =
0xE275EADE, 0x502D9FCD, 0xB9357178, 0x022A4B9A
};
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define mm512_ror2x512hi_1x32( a, b ) \
_mm512_mask_blend_epi32( 0x8888, mm512_ror128_32( a ), \
mm512_ror128_32( b ) )
@@ -396,4 +396,96 @@ void shavite512_4way_update_close( shavite512_4way_context *ctx, void *dst,
casti_m512i( dst, 3 ) = casti_m512i( ctx->h, 3 );
}
void shavite512_4way_full( shavite512_4way_context *ctx, void *dst,
const void *data, size_t len )
{
__m512i *h = (__m512i*)ctx->h;
__m128i *iv = (__m128i*)IV512;
h[0] = m512_const1_128( iv[0] );
h[1] = m512_const1_128( iv[1] );
h[2] = m512_const1_128( iv[2] );
h[3] = m512_const1_128( iv[3] );
ctx->ptr =
ctx->count0 =
ctx->count1 =
ctx->count2 =
ctx->count3 = 0;
unsigned char *buf = ctx->buf;
size_t ptr = ctx->ptr;
// process full blocks and load buf with remainder.
while ( len > 0 )
{
size_t clen;
clen = (sizeof ctx->buf) - ptr;
if ( clen > len << 2 )
clen = len << 2;
memcpy( buf + ptr, data, clen );
data = (const unsigned char *)data + clen;
ptr += clen;
len -= (clen >> 2);
if ( ptr == sizeof ctx->buf )
{
if ( ( ctx->count0 = ctx->count0 + 1024 ) == 0 )
{
ctx->count1 = ctx->count1 + 1;
if ( ctx->count1 == 0 )
{
ctx->count2 = ctx->count2 + 1;
if ( ctx->count2 == 0 )
ctx->count3 = ctx->count3 + 1;
}
}
c512_4way( ctx, buf );
ptr = 0;
}
}
uint32_t vp = ptr>>6;
// Count = { 0, 16, 64, 80 }. Outsize = 16 u32 = 512 bits = 0x0200
// Count is misaligned to 16 bits and straddles 2 vectors.
// Use u32 overlay to stage then u16 to load buf.
union
{
uint32_t u32[4];
uint16_t u16[8];
} count;
count.u32[0] = ctx->count0 += (ptr << 1); // ptr/4 * 8
count.u32[1] = ctx->count1;
count.u32[2] = ctx->count2;
count.u32[3] = ctx->count3;
if ( vp == 0 ) // empty buf, xevan.
{
casti_m512i( buf, 0 ) = m512_const2_64( 0, 0x0000000000000080 );
memset_zero_512( (__m512i*)buf + 1, 5 );
ctx->count0 = ctx->count1 = ctx->count2 = ctx->count3 = 0;
}
else // half full buf, everyone else.
{
casti_m512i( buf, vp++ ) = m512_const2_64( 0, 0x0000000000000080 );
memset_zero_512( (__m512i*)buf + vp, 6 - vp );
}
casti_m512i( buf, 6 ) = m512_const1_128(
_mm_insert_epi16( m128_zero, count.u16[0], 7 ) );
casti_m512i( buf, 7 ) = m512_const1_128( _mm_set_epi16(
0x0200, count.u16[7], count.u16[6], count.u16[5],
count.u16[4], count.u16[3], count.u16[2], count.u16[1] ) );
c512_4way( ctx, buf);
casti_m512i( dst, 0 ) = casti_m512i( ctx->h, 0 );
casti_m512i( dst, 1 ) = casti_m512i( ctx->h, 1 );
casti_m512i( dst, 2 ) = casti_m512i( ctx->h, 2 );
casti_m512i( dst, 3 ) = casti_m512i( ctx->h, 3 );
}
#endif // VAES

View File

@@ -18,6 +18,8 @@ void shavite512_4way_update( shavite512_4way_context *ctx, const void *data,
void shavite512_4way_close( shavite512_4way_context *ctx, void *dst );
void shavite512_4way_update_close( shavite512_4way_context *ctx, void *dst,
const void *data, size_t len );
void shavite512_4way_full( shavite512_4way_context *ctx, void *dst,
const void *data, size_t len );
#endif // VAES

View File

@@ -1035,7 +1035,7 @@ int simd_4way_update( simd_4way_context *state, const void *data,
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
if ( ( current == 0 ) && ( databitlen >= bs ) )
{
// We can hash the data directly from the input buffer.
SIMD_4way_Compress( state, data, 0 );
@@ -1049,13 +1049,13 @@ int simd_4way_update( simd_4way_context *state, const void *data,
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4*(current/8), data, 4*((databitlen+7)/8) );
memcpy( state->buffer + 4 * (current/8), data, 4 * (databitlen/8) );
state->count += databitlen;
return 0;
}
else
{
memcpy( state->buffer + 4*(current/8), data, 4*(len/8) );
memcpy( state->buffer + 4 * (current / 8), data, 4 * (len / 8) );
state->count += len;
databitlen -= len;
data += 4*(len/8);
@@ -1128,7 +1128,7 @@ int simd_4way_update_close( simd_4way_context *state, void *hashval,
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4*( current/8 ), data, 4*( (databitlen+7)/8 ) );
memcpy( state->buffer + 4*( current/8 ), data, 4*( (databitlen)/8 ) );
state->count += databitlen;
break;
}
@@ -1149,7 +1149,7 @@ int simd_4way_update_close( simd_4way_context *state, void *hashval,
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
current = current / 8;
memset( state->buffer + 4*current, 0, 4*( state->blocksize/8 - current) );
SIMD_4way_Compress( state, state->buffer, 0 );
}
@@ -1173,6 +1173,91 @@ int simd_4way_update_close( simd_4way_context *state, void *hashval,
return 0;
}
int simd512_4way_full( simd_4way_context *state, void *hashval,
const void *data, int datalen )
{
__m512i *A = (__m512i*)state->A;
state->hashbitlen = 512;
state->n_feistels = 8;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm512_set4_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
int databitlen = datalen * 8;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_4way_Compress( state, data, 0 );
databitlen -= bs;
data += 4*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 4*( current/8 ), data, 4*( (databitlen)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 4*(current/8), data, 4*(len/8) );
state->count += len;
databitlen -= len;
data += 4*( len/8 );
current = 0;
SIMD_4way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = current / 8;
memset( state->buffer + 4*current, 0, 4*( state->blocksize/8 - current) );
SIMD_4way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 4*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
state->buffer[ i+32 ] = l & 0xff;
state->buffer[ i+48 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_4way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 4*( state->hashbitlen / 8 ) );
return 0;
}
#endif // AVX512
////////////////////////////////////
@@ -1929,4 +2014,90 @@ int simd_2way_update_close( simd_2way_context *state, void *hashval,
return 0;
}
int simd512_2way_full( simd_2way_context *state, void *hashval,
const void *data, int datalen )
{
__m256i *A = (__m256i*)state->A;
state->hashbitlen = 512;
state->n_feistels = 8;
state->blocksize = 128*8;
state->count = 0;
for ( int i = 0; i < 8; i++ )
A[i] = _mm256_set_epi32( SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0],
SIMD_IV_512[4*i+3], SIMD_IV_512[4*i+2],
SIMD_IV_512[4*i+1], SIMD_IV_512[4*i+0] );
int current, i;
int bs = state->blocksize; // bits in one lane
int isshort = 1;
uint64_t l;
int databitlen = datalen * 8;
current = state->count & (bs - 1);
while ( databitlen > 0 )
{
if ( current == 0 && databitlen >= bs )
{
// We can hash the data directly from the input buffer.
SIMD_2way_Compress( state, data, 0 );
databitlen -= bs;
data += 2*( bs/8 );
state->count += bs;
}
else
{
// Copy a chunk of data to the buffer
int len = bs - current;
if ( databitlen < len )
{
memcpy( state->buffer + 2*( current/8 ), data, 2*( (databitlen+7)/8 ) );
state->count += databitlen;
break;
}
else
{
memcpy( state->buffer + 2*(current/8), data, 2*(len/8) );
state->count += len;
databitlen -= len;
data += 2*( len/8 );
current = 0;
SIMD_2way_Compress( state, state->buffer, 0 );
}
}
}
current = state->count & (state->blocksize - 1);
// If there is still some data in the buffer, hash it
if ( current )
{
current = ( current+7 ) / 8;
memset( state->buffer + 2*current, 0, 2*( state->blocksize/8 - current) );
SIMD_2way_Compress( state, state->buffer, 0 );
}
//* Input the message length as the last block
memset( state->buffer, 0, 2*( state->blocksize/8 ) );
l = state->count;
for ( i = 0; i < 8; i++ )
{
state->buffer[ i ] = l & 0xff;
state->buffer[ i+16 ] = l & 0xff;
l >>= 8;
}
if ( state->count < 16384 )
isshort = 2;
SIMD_2way_Compress( state, state->buffer, isshort );
memcpy( hashval, state->A, 2*( state->hashbitlen / 8 ) );
return 0;
}
#endif

View File

@@ -26,6 +26,8 @@ int simd_4way_update( simd_4way_context *state, const void *data,
int simd_4way_close( simd_4way_context *state, void *hashval );
int simd_4way_update_close( simd_4way_context *state, void *hashval,
const void *data, int databitlen );
int simd512_4way_full( simd_4way_context *state, void *hashval,
const void *data, int datalen );
#endif
@@ -45,5 +47,8 @@ int simd_2way_update( simd_2way_context *state, const void *data,
int simd_2way_close( simd_2way_context *state, void *hashval );
int simd_2way_update_close( simd_2way_context *state, void *hashval,
const void *data, int databitlen );
int simd512_2way_full( simd_2way_context *state, void *hashval,
const void *data, int datalen );
#endif
#endif

View File

@@ -45,18 +45,18 @@ extern "C"{
#endif
/*
static const sph_u64 IV256[] = {
SPH_C64(0xCCD044A12FDB3E13), SPH_C64(0xE83590301A79A9EB),
SPH_C64(0x55AEA0614F816E6F), SPH_C64(0x2A2767A4AE9B94DB),
SPH_C64(0xEC06025E74DD7683), SPH_C64(0xE7A436CDC4746251),
SPH_C64(0xC36FBAF9393AD185), SPH_C64(0x3EEDBA1833EDFC13)
static const uint64_t IV256[] = {
0xCCD044A12FDB3E13, 0xE83590301A79A9EB,
0x55AEA0614F816E6F, 0x2A2767A4AE9B94DB,
0xEC06025E74DD7683, 0xE7A436CDC4746251,
0xC36FBAF9393AD185, 0x3EEDBA1833EDFC13
};
static const sph_u64 IV512[] = {
SPH_C64(0x4903ADFF749C51CE), SPH_C64(0x0D95DE399746DF03),
SPH_C64(0x8FD1934127C79BCE), SPH_C64(0x9A255629FF352CB1),
SPH_C64(0x5DB62599DF6CA7B0), SPH_C64(0xEABE394CA9D5C3F4),
SPH_C64(0x991112C71A75B523), SPH_C64(0xAE18A40B660FCC33)
static const uint64_t IV512[] = {
0x4903ADFF749C51CE, 0x0D95DE399746DF03,
0x8FD1934127C79BCE, 0x9A255629FF352CB1,
0x5DB62599DF6CA7B0, 0xEABE394CA9D5C3F4,
0x991112C71A75B523, 0xAE18A40B660FCC33
};
*/
@@ -372,7 +372,7 @@ do { \
#define UBI_BIG_8WAY(etype, extra) \
do { \
sph_u64 t0, t1, t2; \
uint64_t t0, t1, t2; \
__m512i h8; \
__m512i m0 = buf[0]; \
__m512i m1 = buf[1]; \
@@ -391,8 +391,8 @@ do { \
__m512i p5 = m5; \
__m512i p6 = m6; \
__m512i p7 = m7; \
t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \
t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \
t0 = (uint64_t)(bcount << 6) + (uint64_t)(extra); \
t1 = (bcount >> 58) + ((uint64_t)(etype) << 55); \
TFBIG_KINIT_8WAY(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); \
TFBIG_8WAY_4e(0); \
TFBIG_8WAY_4o(1); \
@@ -425,7 +425,7 @@ do { \
#define DECL_STATE_BIG_8WAY \
__m512i h0, h1, h2, h3, h4, h5, h6, h7; \
sph_u64 bcount;
uint64_t bcount;
#endif // AVX512
@@ -488,7 +488,7 @@ do { \
// scale buf offset by 4
#define UBI_BIG_4WAY(etype, extra) \
do { \
sph_u64 t0, t1, t2; \
uint64_t t0, t1, t2; \
__m256i h8; \
__m256i m0 = buf[0]; \
__m256i m1 = buf[1]; \
@@ -507,8 +507,8 @@ do { \
__m256i p5 = m5; \
__m256i p6 = m6; \
__m256i p7 = m7; \
t0 = SPH_T64(bcount << 6) + (sph_u64)(extra); \
t1 = (bcount >> 58) + ((sph_u64)(etype) << 55); \
t0 = (uint64_t)(bcount << 6) + (uint64_t)(extra); \
t1 = (bcount >> 58) + ((uint64_t)(etype) << 55); \
TFBIG_KINIT_4WAY(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); \
TFBIG_4WAY_4e(0); \
TFBIG_4WAY_4o(1); \
@@ -542,7 +542,7 @@ do { \
#define DECL_STATE_BIG_4WAY \
__m256i h0, h1, h2, h3, h4, h5, h6, h7; \
sph_u64 bcount;
uint64_t bcount;
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)

View File

@@ -48,14 +48,8 @@ extern "C"{
#endif
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "simd-utils.h"
// Output size in bits
#define SPH_SIZE_skein256 256
#define SPH_SIZE_skein512 512
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct
@@ -63,11 +57,11 @@ typedef struct
__m512i buf[8];
__m512i h0, h1, h2, h3, h4, h5, h6, h7;
size_t ptr;
sph_u64 bcount;
} sph_skein_8way_big_context __attribute__ ((aligned (128)));
uint64_t bcount;
} skein_8way_big_context __attribute__ ((aligned (128)));
typedef sph_skein_8way_big_context skein512_8way_context;
typedef sph_skein_8way_big_context skein256_8way_context;
typedef skein_8way_big_context skein512_8way_context;
typedef skein_8way_big_context skein256_8way_context;
void skein512_8way_init( skein512_8way_context *sc );
void skein512_8way_update( void *cc, const void *data, size_t len );
@@ -84,21 +78,19 @@ typedef struct
__m256i buf[8];
__m256i h0, h1, h2, h3, h4, h5, h6, h7;
size_t ptr;
sph_u64 bcount;
} sph_skein_4way_big_context __attribute__ ((aligned (128)));
uint64_t bcount;
} skein_4way_big_context __attribute__ ((aligned (128)));
typedef sph_skein_4way_big_context skein512_4way_context;
typedef sph_skein_4way_big_context skein256_4way_context;
typedef skein_4way_big_context skein512_4way_context;
typedef skein_4way_big_context skein256_4way_context;
void skein512_4way_init( skein512_4way_context *sc );
void skein512_4way_update( void *cc, const void *data, size_t len );
void skein512_4way_close( void *cc, void *dst );
//#define skein512_4way skein512_4way_update
void skein256_4way_init( skein256_4way_context *sc );
void skein256_4way_update( void *cc, const void *data, size_t len );
void skein256_4way_close( void *cc, void *dst );
//#define skein256_4way skein256_4way_update
#ifdef __cplusplus
}

View File

@@ -78,17 +78,12 @@ int scanhash_whirlpool( struct work* work, uint32_t max_nonce,
do {
const uint32_t Htarg = ptarget[7];
uint32_t vhash[8];
pdata[19] = ++n;
pdata[19] = ++n;
be32enc(&endiandata[19], n );
whirlpool_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget))
{
work_set_target_ratio(work, vhash);
*hashes_done = n - first_nonce + 1;
return true;
}
submit_solution( work, vhash, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

View File

@@ -48,11 +48,7 @@ int scanhash_whirlpoolx( struct work* work, uint32_t max_nonce,
whirlpoolx_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget))
{
work_set_target_ratio(work, vhash);
*hashes_done = n - first_nonce + 1;
return true;
}
submit_solution( work, vhash, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart);

View File

@@ -275,7 +275,7 @@ int scanhash_c11_8way( struct work *work, uint32_t max_nonce,
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( ( ( hash+(i<<3) )[7] < Htarg )
if ( ( ( hash+(i<<3) )[7] <= Htarg )
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
@@ -443,37 +443,26 @@ int scanhash_c11_4way( struct work *work, uint32_t max_nonce,
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for (int m=0; m < 6; m++)
if (Htarg <= htmax[m])
{
uint32_t mask = masks[m];
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
c11_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( ( (hash+(i<<3))[7] & mask ) == 0 )
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
c11_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( ( hash+(i<<3) )[7] <= Htarg )
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce + 1;
return 0;
}

View File

@@ -78,11 +78,9 @@ void c11_hash( void *output, const void *input )
sph_bmw512_close( &ctx.bmw, hash );
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, hash, 64 );
sph_groestl512_close( &ctx.groestl, hash );
#endif
@@ -108,12 +106,12 @@ void c11_hash( void *output, const void *input )
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#ifdef NO_AES_NI
sph_echo512( &ctx.echo, hash, 64 );
sph_echo512_close( &ctx.echo, hash );
#else
#if defined(__AES__)
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence *)hash, 512 );
#else
sph_echo512( &ctx.echo, hash, 64 );
sph_echo512_close( &ctx.echo, hash );
#endif
memcpy(output, hash, 32);
@@ -138,16 +136,12 @@ int scanhash_c11( struct work *work, uint32_t max_nonce,
swab32_array( endiandata, pdata, 20 );
do
{
{
pdata[19] = nonce;
be32enc( &endiandata[19], nonce );
c11_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest(hash, ptarget) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio( work, hash );
return 1;
}
submit_solution( work, hash, mythr );
nonce++;
} while ( nonce < max_nonce && !(*restart) );
pdata[19] = nonce;

View File

@@ -11,10 +11,10 @@
#include "algo/skein/sph_skein.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#ifdef NO_AES_NI
#include "algo/groestl/sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
@@ -28,10 +28,10 @@ typedef struct {
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
#ifdef NO_AES_NI
sph_groestl512_context groestl;
#else
#ifdef __AES__
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
#endif
} tt_ctx_holder;
@@ -47,10 +47,10 @@ void init_tt8_ctx()
sph_keccak512_init( &tt_ctx.keccak );
init_luffa( &tt_ctx.luffa, 512 );
cubehashInit( &tt_ctx.cube, 512, 16, 32 );
#ifdef NO_AES_NI
sph_groestl512_init( &tt_ctx.groestl );
#else
#ifdef __AES__
init_groestl( &tt_ctx.groestl, 64 );
#else
sph_groestl512_init( &tt_ctx.groestl );
#endif
};
@@ -110,7 +110,10 @@ void timetravel_hash(void *output, const void *input)
}
break;
case 2:
#ifdef NO_AES_NI
#ifdef __AES__
update_and_final_groestl( &ctx.groestl, (char*)hashB,
(char*)hashA, dataLen*8 );
#else
if ( i == 0 )
{
memcpy( &ctx.groestl, &tt_mid.groestl, sizeof tt_mid.groestl );
@@ -122,19 +125,6 @@ void timetravel_hash(void *output, const void *input)
sph_groestl512( &ctx.groestl, hashA, dataLen );
sph_groestl512_close( &ctx.groestl, hashB );
}
#else
// groestl midstate is slower
// if ( i == 0 )
// {
// memcpy( &ctx.groestl, &tt_mid.groestl, sizeof tt_mid.groestl );
// update_and_final_groestl( &ctx.groestl, (char*)hashB,
// (char*)input + midlen, tail*8 );
// }
// else
// {
update_and_final_groestl( &ctx.groestl, (char*)hashB,
(char*)hashA, dataLen*8 );
// }
#endif
break;
case 3:
@@ -253,13 +243,9 @@ int scanhash_timetravel( struct work *work, uint32_t max_nonce,
sph_bmw512( &tt_mid.bmw, endiandata, 64 );
break;
case 2:
#ifdef NO_AES_NI
#ifndef __AES__
memcpy( &tt_mid.groestl, &tt_ctx.groestl, sizeof(tt_mid.groestl ) );
sph_groestl512( &tt_mid.groestl, endiandata, 64 );
#else
// groestl midstate is slower
// memcpy( &tt_mid.groestl, &tt_ctx.groestl, sizeof(tt_mid.groestl ) );
// update_groestl( &tt_mid.groestl, (char*)endiandata, 64*8 );
#endif
break;
case 3:
@@ -293,14 +279,10 @@ int scanhash_timetravel( struct work *work, uint32_t max_nonce,
if ( hash[7] <= Htarg && fulltest( hash, ptarget) )
{
work_set_target_ratio( work, hash );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio( work, hash );
return 1;
}
nonce++;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !(*restart));
pdata[19] = nonce;

View File

@@ -12,11 +12,10 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/nist.h"
#ifdef NO_AES_NI
#include "algo/groestl/sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
@@ -32,10 +31,10 @@ typedef struct {
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
#ifdef NO_AES_NI
sph_groestl512_context groestl;
#else
#ifdef __AES__
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
#endif
} tt10_ctx_holder;
@@ -53,10 +52,10 @@ void init_tt10_ctx()
cubehashInit( &tt10_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &tt10_ctx.shavite );
init_sd( &tt10_ctx.simd, 512 );
#ifdef NO_AES_NI
sph_groestl512_init( &tt10_ctx.groestl );
#else
#ifdef __AES__
init_groestl( &tt10_ctx.groestl, 64 );
#else
sph_groestl512_init( &tt10_ctx.groestl );
#endif
};
@@ -116,7 +115,10 @@ void timetravel10_hash(void *output, const void *input)
}
break;
case 2:
#ifdef NO_AES_NI
#ifdef __AES__
update_and_final_groestl( &ctx.groestl, (char*)hashB,
(char*)hashA, dataLen*8 );
#else
if ( i == 0 )
{
memcpy( &ctx.groestl, &tt10_mid.groestl, sizeof tt10_mid.groestl );
@@ -128,19 +130,6 @@ void timetravel10_hash(void *output, const void *input)
sph_groestl512( &ctx.groestl, hashA, dataLen );
sph_groestl512_close( &ctx.groestl, hashB );
}
#else
// groestl midstate is slower
// if ( i == 0 )
// {
// memcpy( &ctx.groestl, &tt10_mid.groestl, sizeof tt10_mid.groestl );
// update_and_final_groestl( &ctx.groestl, (char*)hashB,
// (char*)input + midlen, tail*8 );
// }
// else
// {
update_and_final_groestl( &ctx.groestl, (char*)hashB,
(char*)hashA, dataLen*8 );
// }
#endif
break;
case 3:
@@ -286,13 +275,9 @@ int scanhash_timetravel10( struct work *work, uint32_t max_nonce,
sph_bmw512( &tt10_mid.bmw, endiandata, 64 );
break;
case 2:
#ifdef NO_AES_NI
#ifndef __AES__
memcpy( &tt10_mid.groestl, &tt10_ctx.groestl, sizeof(tt10_mid.groestl ) );
sph_groestl512( &tt10_mid.groestl, endiandata, 64 );
#else
// groestl midstate is slower
// memcpy( &tt10_mid.groestl, &tt10_ctx.groestl, sizeof(tt10_mid.groestl ) );
// update_groestl( &tt10_mid.groestl, (char*)endiandata, 64*8 );
#endif
break;
case 3:
@@ -334,14 +319,10 @@ int scanhash_timetravel10( struct work *work, uint32_t max_nonce,
if ( hash[7] <= Htarg && fulltest( hash, ptarget) )
{
work_set_target_ratio( work, hash );
pdata[19] = nonce;
work_set_target_ratio( work, hash );
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !(*restart));
pdata[19] = nonce;

View File

@@ -124,7 +124,7 @@ int scanhash_tribus_8way( struct work *work, uint32_t max_nonce,
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( (hash+(i<<3))[7] < Htarg )
if ( (hash+(i<<3))[7] <= Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
@@ -209,7 +209,7 @@ int scanhash_tribus_4way( struct work *work, uint32_t max_nonce,
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( (hash+(i<<3))[7] < Htarg )
if ( (hash+(i<<3))[7] <= Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;

View File

@@ -7,19 +7,19 @@
#include "algo/jh//sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#ifdef NO_AES_NI
#include "algo/echo/sph_echo.h"
#else
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/echo/sph_echo.h"
#endif
typedef struct {
sph_jh512_context jh;
sph_keccak512_context keccak;
#ifdef NO_AES_NI
sph_echo512_context echo;
#else
#ifdef __AES__
hashState_echo echo;
#else
sph_echo512_context echo;
#endif
} tribus_ctx_holder;
@@ -29,10 +29,10 @@ bool tribus_thread_init()
{
sph_jh512_init( &tribus_ctx.jh );
sph_keccak512_init( &tribus_ctx.keccak );
#ifdef NO_AES_NI
sph_echo512_init( &tribus_ctx.echo );
#else
#ifdef __AES__
init_echo( &tribus_ctx.echo, 512 );
#else
sph_echo512_init( &tribus_ctx.echo );
#endif
return true;
}
@@ -49,12 +49,12 @@ void tribus_hash(void *state, const void *input)
sph_keccak512( &ctx.keccak, (const void*) hash, 64 );
sph_keccak512_close( &ctx.keccak, (void*) hash );
#ifdef NO_AES_NI
sph_echo512( &ctx.echo, hash, 64 );
sph_echo512_close (&ctx.echo, hash );
#else
#ifdef __AES__
update_final_echo( &ctx.echo, (BitSequence *) hash,
(const BitSequence *) hash, 512 );
#else
sph_echo512( &ctx.echo, hash, 64 );
sph_echo512_close (&ctx.echo, hash );
#endif
memcpy(state, hash, 32);
@@ -98,9 +98,6 @@ int scanhash_tribus( struct work *work, uint32_t max_nonce,
sph_jh512_init( &tribus_ctx.jh );
sph_jh512( &tribus_ctx.jh, endiandata, 64 );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
@@ -108,25 +105,9 @@ int scanhash_tribus( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
tribus_hash(hash32, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash32[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
}
#endif
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget))
submit_solution( work, hash32, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}

Some files were not shown because too many files have changed in this diff Show More