Compare commits

...

5 Commits

Author SHA1 Message Date
Jay D Dee
88f81fda0b v3.11.7 2020-01-26 04:33:39 -05:00
Jay D Dee
103e6ad36c v3.11.6 2020-01-23 00:11:08 -05:00
Jay D Dee
1a7a573675 v3.11.5 2020-01-18 15:14:27 -05:00
Jay D Dee
70089d1224 v3.11.2 2020-01-08 14:44:47 -05:00
Jay D Dee
3572cb53c4 v3.11.0 2020-01-02 23:54:08 -05:00
274 changed files with 11965 additions and 19093 deletions

View File

@@ -33,3 +33,6 @@ Jay D Dee
xcouiz@gmail.com
Cryply
Colin Percival
Alexander Peslyak

View File

@@ -80,15 +80,18 @@ cpuminer_SOURCES = \
algo/cryptonight/cryptonight-common.c\
algo/cryptonight/cryptonight-aesni.c\
algo/cryptonight/cryptonight.c\
algo/cubehash/sph_cubehash.c \
algo/cubehash/cubehash_sse2.c\
algo/cubehash/cube-hash-2way.c \
algo/echo/sph_echo.c \
algo/echo/echo-hash-4way.c \
algo/echo/aes_ni/hash.c\
algo/gost/sph_gost.c \
algo/groestl/groestl-gate.c \
algo/groestl/groestl512-hash-4way.c \
algo/groestl/groestl256-hash-4way.c \
algo/groestl/sph_groestl.c \
algo/groestl/groestl.c \
algo/groestl/groestl-4way.c \
algo/groestl/myrgr-gate.c \
algo/groestl/myrgr-4way.c \
algo/groestl/myr-groestl.c \
@@ -117,7 +120,8 @@ cpuminer_SOURCES = \
algo/keccak/keccak-hash-4way.c \
algo/keccak/keccak-4way.c\
algo/keccak/keccak-gate.c \
algo/keccak/sse2/keccak.c \
algo/keccak/sha3d-4way.c \
algo/keccak/sha3d.c \
algo/lanehash/lane.c \
algo/luffa/sph_luffa.c \
algo/luffa/luffa.c \
@@ -147,6 +151,7 @@ cpuminer_SOURCES = \
algo/nist5/nist5-4way.c \
algo/nist5/nist5.c \
algo/nist5/zr5.c \
algo/panama/panama-hash-4way.c \
algo/panama/sph_panama.c \
algo/radiogatun/sph_radiogatun.c \
algo/quark/quark-gate.c \
@@ -172,11 +177,11 @@ cpuminer_SOURCES = \
algo/scrypt/scrypt.c \
algo/scrypt/neoscrypt.c \
algo/scrypt/pluck.c \
algo/scryptjane/scrypt-jane.c \
algo/sha/sph_sha2.c \
algo/sha/sph_sha2big.c \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \
@@ -188,6 +193,7 @@ cpuminer_SOURCES = \
algo/shavite/sph_shavite.c \
algo/shavite/sph-shavite-aesni.c \
algo/shavite/shavite-hash-2way.c \
algo/shavite/shavite-hash-4way.c \
algo/shavite/shavite.c \
algo/simd/sph_simd.c \
algo/simd/nist.c \
@@ -288,12 +294,11 @@ cpuminer_SOURCES = \
algo/x22/x25x.c \
algo/x22/x25x-4way.c \
algo/yescrypt/yescrypt.c \
algo/yescrypt/sha256_Y.c \
algo/yescrypt/yescrypt-best.c \
algo/yespower/yespower-gate.c \
algo/yespower/yespower-blake2b.c \
algo/yespower/crypto/blake2b-yp.c \
algo/yespower/sha256_p.c \
algo/yespower/yescrypt-r8g.c \
algo/yespower/yespower-opt.c
disable_flags =

View File

@@ -97,10 +97,10 @@ Supported Algorithms
qubit Qubit
scrypt scrypt(1024, 1, 1) (default)
scrypt:N scrypt(N, 1, 1)
scryptjane:nf
sha256d Double SHA-256
sha256q Quad SHA-256, Pyrite (PYE)
sha256t Triple SHA-256, Onecoin (OC)
sha3d Double keccak256 (BSHA3)
shavite3 Shavite3
skein Skein+Sha (Skeincoin)
skein2 Double Skein (Woodcoin)
@@ -134,6 +134,7 @@ Supported Algorithms
xevan Bitsend (BSD)
yescrypt Globalboost-Y (BSTY)
yescryptr8 BitZeny (ZNY)
yescryptr8g Koto (KOTO)
yescryptr16 Eli
yescryptr32 WAVI
yespower Cryply

View File

@@ -8,9 +8,10 @@ Security warning
Miner programs are often flagged as malware by antivirus programs. This is
usually a false positive, they are flagged simply because they are
cryptocurrency miners. However, some malware has been spread using the
cover that miners are known to be subject to false positives. Always be on
alert. The source code of cpuminer-opt is open for anyone to inspect.
cryptocurrency miners. However, some malware masquerading as a miner has
been spread using the cover that miners are known to be subject to false
positives ans users will dismiss the AV alert. Always be on alert.
The source code of cpuminer-opt is open for anyone to inspect.
If you don't trust the software don't download it.
The cryptographic hashing code has been taken from trusted sources but has been
@@ -21,7 +22,7 @@ required.
Compile Instructions
--------------------
See INSTALL_LINUX or INSTALL_WINDOWS fror compile instruuctions
See INSTALL_LINUX or INSTALL_WINDOWS for compile instruuctions
Requirements
------------
@@ -29,19 +30,141 @@ Requirements
Intel Core2 or newer, or AMD Steamroller or newer CPU. ARM CPUs are not
supported.
64 bit Linux or Windows operating system. Apple, Android and Rpi are
not supported. FreeBSD YMMV.
64 bit Linux or Windows operating system. Apple, Android and Raspberry Pi
are not supported. FreeBSD YMMV.
Reporting bugs
--------------
Bugs can be reported by sending am email to JayDDee246@gmail.com or opening
an issue in git: https://github.com/JayDDee/cpuminer-opt/issues
Please include the following information:
1. CPU model, operating system, cpuminer-opt version (must be latest),
binary file for Windows, changes to default build procedure for Linux.
2. Exact comand line (except user and pw) and intial output showing
the above requested info.
3. Additional program output showing any error messages or other
pertinent data.
4. A clear description of the problem including history, scope,
persistence or intermittance, and reproduceability.
In simpler terms:
What is it doing?
What should it be doing instead?
Did it work in a previous release?
Does it happen for all algos? All pools? All options? Solo?
Does it happen all the time?
If not what makes it happen or not happen?
Change Log
----------
v3.11.7
Added yescryptr8g algo fotr KOTO, including support for block version 5.
Added sha3d algo for BSHA3.
Removed memcmp and clean_job checks from get_new_work, now only check job_id.
Small improvement to sha512 and sha256 parallel implementations that don't
use SHA.
v3.11.6
Fixed CPU temperature regression from v3.11.5.
More improvements to share log. More compact, highlight incremented counter,
block height when solved, job id when stale.
v3.11.5
Fixed AVX512 detection that could cause compilation errors on CPUs
without AVX512.
Fixed "BLOCK SOLVED" log incorrectly displaying "Accepted" when a block
is solved.
Added share counter to share submitited & accepted logs
Added job id to share submitted log.
Share submitted log is no longer highlighted blue, there was too much blue.
Another CPU temperature fix for Linux.
Added bug reporting tips to RELEASE NOTES.
v3.11.4
Fixed scrypt segfault since v3.9.9.1.
Stale shares counted and reported seperately from other rejected shares.
Display of counters for solved blocks, rejects, stale shares suppressed in
periodic summary when zero.
v3.11.3
Fixed x12 AVX2 again.
More speed for allium: AVX2 +4%, AVX512 +6%, VAES +14%.
Restored lost speed for x22i & x25x.
v3.11.2
Fixed x11gost (sib) AVX2 invalid shares.
Fixed x16r, x16rv2, x16s, x16rt, x16rt-veil (veil), x21s.
No shares were submitted when cube, shavite or echo were the first function
in the hash order.
Fixed all algos reporting stats problems when mining with SSE2.
Faster Lyra2 AVX512: lyra2z +47%, lyra2rev3 +11%, allium +13%, x21s +6%
Other minor performance improvements.
Known issue:
Lyra2 AVX512 improvements paradoxically reduced performance on x22i and x25x.
https://github.com/JayDDee/cpuminer-opt/issues/225
v3.11.1
Faster panama for x25x AVX2 & AVX512.
Fixed echo VAES for Xevan.
Removed support for scryptjane algo.
Reverted macro implemtations of hash functions to SPH reference code
for SSE2 versions of algos.
v3.11.0
Fixed x25x AVX512 lane 4 invalid shares.
AVX512 for hex, phi2.
VAES optimzation for Intel Icelake CPUs for most algos recently optimized
with AVX512, source code only.
v3.10.7
AVX512 for x25x, lbry, x13bcd (bcd).
v3.10.6
Added support for SSL stratum: stratum+tcps://
Added job id reporting again, but leaner, suppressed with --quiet.
AVX512 for x21s, x22i, lyra2z, allium
AVX512 for x21s, x22i, lyra2z, allium.
Fixed share overflow warnings mining lbry with Ryzen (SHA).

View File

@@ -206,10 +206,10 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_QUARK: register_quark_algo ( gate ); break;
case ALGO_QUBIT: register_qubit_algo ( gate ); break;
case ALGO_SCRYPT: register_scrypt_algo ( gate ); break;
case ALGO_SCRYPTJANE: register_scryptjane_algo ( gate ); break;
case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
case ALGO_SHA256Q: register_sha256q_algo ( gate ); break;
case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: register_sha3d_algo ( gate ); break;
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
case ALGO_SKEIN: register_skein_algo ( gate ); break;
case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
@@ -248,6 +248,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
case ALGO_YESPOWER: register_yespower_algo ( gate ); break;
@@ -317,6 +318,7 @@ const char* const algo_alias_map[][2] =
{ "argon2d-crds", "argon2d250" },
{ "argon2d-dyn", "argon2d500" },
{ "argon2d-uis", "argon2d4096" },
{ "bcd", "x13bcd" },
{ "bitcore", "timetravel10" },
{ "bitzeny", "yescryptr8" },
{ "blake256r8", "blakecoin" },

View File

@@ -121,54 +121,55 @@ void ( *hash_suw ) ( void*, const void* );
// Allocate thread local buffers and other initialization specific to miner
// threads.
bool ( *miner_thread_init ) ( int );
bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t*,
bool );
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
// Return pointer to nonce in blockheader.
uint32_t *( *get_nonceptr ) ( uint32_t* );
uint32_t *( *get_nonceptr ) ( uint32_t* );
// Decode getwork blockheader
bool ( *work_decode ) ( const json_t*, struct work* );
bool ( *work_decode ) ( const json_t*, struct work* );
// Extra getwork data
void ( *decode_extra_data ) ( struct work*, uint64_t* );
void ( *decode_extra_data ) ( struct work*, uint64_t* );
bool ( *submit_getwork_result ) ( CURL*, struct work* );
bool ( *submit_getwork_result ) ( CURL*, struct work* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
// Increment extranonce
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t,
unsigned char* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t );
// Build mining.submit message
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
char* ( *malloc_txs_request ) ( struct work* );
char* ( *malloc_txs_request ) ( struct work* );
// Big or little
void ( *set_work_data_endian ) ( struct work* );
void ( *set_work_data_endian ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
double ( *calc_network_diff ) ( struct work* );
// Wait for first work
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
// Diverge mining threads
bool ( *do_this_thread ) ( int );
bool ( *do_this_thread ) ( int );
// After do_this_thread
void ( *resync_threads ) ( struct work* );
void ( *resync_threads ) ( struct work* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response )( json_t* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response ) ( json_t* );
set_t optimizations;
int ( *get_work_data_size ) ();
int ntime_index;
@@ -225,7 +226,7 @@ uint32_t *std_get_nonceptr( uint32_t *work_data );
uint32_t *jr2_get_nonceptr( uint32_t *work_data );
void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job );
uint32_t* end_nonce_ptr );
void jr2_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr );
@@ -256,7 +257,8 @@ double std_calc_network_diff( struct work *work );
void std_build_block_header( struct work* g_work, uint32_t version,
uint32_t *prevhash, uint32_t *merkle_root,
uint32_t ntime, uint32_t nbits );
uint32_t ntime, uint32_t nbits,
unsigned char *final_sapling_hash );
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );

View File

@@ -62,9 +62,7 @@ int scanhash_argon2( struct work* work, uint32_t max_nonce,
argon2hash(hash, endiandata);
if (hash[7] <= Htarg && fulltest(hash, ptarget)) {
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);

View File

@@ -13,7 +13,7 @@ void blakehash_4way(void *state, const void *input)
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
blake256r14_4way_context ctx;
memcpy( &ctx, &blake_4w_ctx, sizeof ctx );
blake256r14_4way( &ctx, input + (64<<2), 16 );
blake256r14_4way_update( &ctx, input + (64<<2), 16 );
blake256r14_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -36,7 +36,7 @@ int scanhash_blake_4way( struct work *work, uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r14_4way_init( &blake_4w_ctx );
blake256r14_4way( &blake_4w_ctx, vdata, 64 );
blake256r14_4way_update( &blake_4w_ctx, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );

View File

@@ -37,8 +37,6 @@
#ifndef __BLAKE_HASH_4WAY__
#define __BLAKE_HASH_4WAY__ 1
//#ifdef __SSE4_2__
#ifdef __cplusplus
extern "C"{
#endif
@@ -51,46 +49,41 @@ extern "C"{
#define SPH_SIZE_blake512 512
// With SSE4.2 only Blake-256 4 way is available.
// With AVX2 Blake-256 8way & Blake-512 4 way are also available.
// Blake-256 4 way
//////////////////////////
//
// Blake-256 4 way SSE2
typedef struct {
unsigned char buf[64<<2];
uint32_t H[8<<2];
// __m128i buf[16] __attribute__ ((aligned (64)));
// __m128i H[8];
// __m128i S[4];
size_t ptr;
uint32_t T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla
} blake_4way_small_context __attribute__ ((aligned (64)));
// Default 14 rounds
// Default, 14 rounds, blake, decred
typedef blake_4way_small_context blake256_4way_context;
void blake256_4way_init(void *ctx);
void blake256_4way_update(void *ctx, const void *data, size_t len);
#define blake256_4way blake256_4way_update
void blake256_4way_close(void *ctx, void *dst);
// 14 rounds, blake, decred
typedef blake_4way_small_context blake256r14_4way_context;
void blake256r14_4way_init(void *cc);
void blake256r14_4way_update(void *cc, const void *data, size_t len);
#define blake256r14_4way blake256r14_4way_update
void blake256r14_4way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_4way_small_context blake256r8_4way_context;
void blake256r8_4way_init(void *cc);
void blake256r8_4way_update(void *cc, const void *data, size_t len);
#define blake256r8_4way blake256r8_4way_update
void blake256r8_4way_close(void *cc, void *dst);
#ifdef __AVX2__
// Blake-256 8 way
//////////////////////////
//
// Blake-256 8 way AVX2
typedef struct {
__m256i buf[16] __attribute__ ((aligned (64)));
@@ -104,7 +97,6 @@ typedef struct {
typedef blake_8way_small_context blake256_8way_context;
void blake256_8way_init(void *cc);
void blake256_8way_update(void *cc, const void *data, size_t len);
#define blake256_8way blake256_8way_update
void blake256_8way_close(void *cc, void *dst);
// 14 rounds, blake, decred
@@ -117,10 +109,9 @@ void blake256r14_8way_close(void *cc, void *dst);
typedef blake_8way_small_context blake256r8_8way_context;
void blake256r8_8way_init(void *cc);
void blake256r8_8way_update(void *cc, const void *data, size_t len);
#define blake256r8_8way blake256r8_8way_update
void blake256r8_8way_close(void *cc, void *dst);
// Blake-512 4 way
// Blake-512 4 way AVX2
typedef struct {
__m256i buf[16];
@@ -134,14 +125,15 @@ typedef blake_4way_big_context blake512_4way_context;
void blake512_4way_init( blake_4way_big_context *sc );
void blake512_4way_update( void *cc, const void *data, size_t len );
#define blake512_4way blake512_4way_update
void blake512_4way_close( void *cc, void *dst );
void blake512_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void blake512_4way_full( blake_4way_big_context *sc, void * dst,
const void *data, size_t len );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//Blake-256 16 way
////////////////////////////
//
// Blake-256 16 way AVX512
typedef struct {
__m512i buf[16];
@@ -169,8 +161,9 @@ void blake256r8_16way_init(void *cc);
void blake256r8_16way_update(void *cc, const void *data, size_t len);
void blake256r8_16way_close(void *cc, void *dst);
// Blake-512 8 way
////////////////////////////
//
//// Blake-512 8 way AVX512
typedef struct {
__m512i buf[16];
@@ -185,12 +178,10 @@ typedef blake_8way_big_context blake512_8way_context;
void blake512_8way_init( blake_8way_big_context *sc );
void blake512_8way_update( void *cc, const void *data, size_t len );
void blake512_8way_close( void *cc, void *dst );
void blake512_8way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void blake512_8way_full( blake_8way_big_context *sc, void * dst,
const void *data, size_t len );
#endif // AVX512
#endif // AVX2
#ifdef __cplusplus

View File

@@ -842,7 +842,8 @@ blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
}
static void
blake32_4way( blake_4way_small_context *ctx, const void *data, size_t len )
blake32_4way( blake_4way_small_context *ctx, const void *data,
size_t len )
{
__m128i *buf = (__m128i*)ctx->buf;
size_t bptr = ctx->ptr<<2;
@@ -1237,7 +1238,7 @@ blake256_4way_init(void *ctx)
}
void
blake256_4way(void *ctx, const void *data, size_t len)
blake256_4way_update(void *ctx, const void *data, size_t len)
{
blake32_4way(ctx, data, len);
}

View File

@@ -39,7 +39,7 @@ int scanhash_blake2b_8way( struct work *work, uint32_t max_nonce,
blake2b_8way_final( &ctx, hash );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
@@ -94,7 +94,7 @@ int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
blake2b_4way_final( &ctx, hash );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )

View File

@@ -43,17 +43,14 @@ int scanhash_blake2b( struct work *work, uint32_t max_nonce,
do {
be32enc(&endiandata[19], n);
//blake2b_hash_end(vhashcpu, endiandata);
blake2b_hash(vhashcpu, endiandata);
if (vhashcpu[7] < Htarg && fulltest(vhashcpu, ptarget)) {
work_set_target_ratio(work, vhashcpu);
*hashes_done = n - first_nonce + 1;
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget))
{
pdata[19] = n;
return 1;
}
n++;
submit_solution( work, vhashcpu, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;

View File

@@ -14,7 +14,6 @@
#ifndef __BLAKE2S_HASH_4WAY_H__
#define __BLAKE2S_HASH_4WAY_H__ 1
//#if defined(__SSE4_2__)
#if defined(__SSE2__)
#include "simd-utils.h"
@@ -132,6 +131,6 @@ int blake2s_16way_final( blake2s_16way_state *S, void *out, uint8_t outlen );
}
#endif
#endif // __SSE4_2__
#endif // __SSE2__
#endif

View File

@@ -56,7 +56,7 @@ int scanhash_blake2s( struct work *work,
do {
be32enc(&endiandata[19], n);
blake2s_hash( hash64, endiandata );
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
if (hash64[7] <= Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;

View File

@@ -267,22 +267,22 @@ static const sph_u64 CB[16] = {
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#define CB0 0x243F6A8885A308D3
#define CB1 0x13198A2E03707344
#define CB2 0xA4093822299F31D0
#define CB3 0x082EFA98EC4E6C89
#define CB4 0x452821E638D01377
#define CB5 0xBE5466CF34E90C6C
#define CB6 0xC0AC29B7C97C50DD
#define CB7 0x3F84D5B5B5470917
#define CB8 0x9216D5D98979FB1B
#define CB9 0xD1310BA698DFB5AC
#define CBA 0x2FFD72DBD01ADFB7
#define CBB 0xB8E1AFED6A267E96
#define CBC 0xBA7C9045F12C7F99
#define CBD 0x24A19947B3916CF7
#define CBE 0x0801F2E2858EFC16
#define CBF 0x636920D871574E69
#define READ_STATE64(state) do { \
H0 = (state)->H[0]; \
@@ -349,9 +349,9 @@ static const sph_u64 CB[16] = {
#define DECL_STATE64_8WAY \
__m512i H0, H1, H2, H3, H4, H5, H6, H7; \
__m512i S0, S1, S2, S3; \
sph_u64 T0, T1;
uint64_t T0, T1;
#define COMPRESS64_8WAY do \
#define COMPRESS64_8WAY( buf ) do \
{ \
__m512i M0, M1, M2, M3, M4, M5, M6, M7; \
__m512i M8, M9, MA, MB, MC, MD, ME, MF; \
@@ -424,6 +424,84 @@ static const sph_u64 CB[16] = {
H7 = mm512_xor4( VF, V7, S3, H7 ); \
} while (0)
void blake512_8way_compress( blake_8way_big_context *sc )
{
__m512i M0, M1, M2, M3, M4, M5, M6, M7;
__m512i M8, M9, MA, MB, MC, MD, ME, MF;
__m512i V0, V1, V2, V3, V4, V5, V6, V7;
__m512i V8, V9, VA, VB, VC, VD, VE, VF;
__m512i shuf_bswap64;
V0 = sc->H[0];
V1 = sc->H[1];
V2 = sc->H[2];
V3 = sc->H[3];
V4 = sc->H[4];
V5 = sc->H[5];
V6 = sc->H[6];
V7 = sc->H[7];
V8 = _mm512_xor_si512( sc->S[0], m512_const1_64( CB0 ) );
V9 = _mm512_xor_si512( sc->S[1], m512_const1_64( CB1 ) );
VA = _mm512_xor_si512( sc->S[2], m512_const1_64( CB2 ) );
VB = _mm512_xor_si512( sc->S[3], m512_const1_64( CB3 ) );
VC = _mm512_xor_si512( _mm512_set1_epi64( sc->T0 ),
m512_const1_64( CB4 ) );
VD = _mm512_xor_si512( _mm512_set1_epi64( sc->T0 ),
m512_const1_64( CB5 ) );
VE = _mm512_xor_si512( _mm512_set1_epi64( sc->T1 ),
m512_const1_64( CB6 ) );
VF = _mm512_xor_si512( _mm512_set1_epi64( sc->T1 ),
m512_const1_64( CB7 ) );
shuf_bswap64 = m512_const_64( 0x38393a3b3c3d3e3f, 0x3031323334353637,
0x28292a2b2c2d2e2f, 0x2021222324252627,
0x18191a1b1c1d1e1f, 0x1011121314151617,
0x08090a0b0c0d0e0f, 0x0001020304050607 );
M0 = _mm512_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm512_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm512_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm512_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm512_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm512_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm512_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm512_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm512_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm512_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm512_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm512_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm512_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm512_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm512_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm512_shuffle_epi8( sc->buf[15], shuf_bswap64 );
ROUND_B_8WAY(0);
ROUND_B_8WAY(1);
ROUND_B_8WAY(2);
ROUND_B_8WAY(3);
ROUND_B_8WAY(4);
ROUND_B_8WAY(5);
ROUND_B_8WAY(6);
ROUND_B_8WAY(7);
ROUND_B_8WAY(8);
ROUND_B_8WAY(9);
ROUND_B_8WAY(0);
ROUND_B_8WAY(1);
ROUND_B_8WAY(2);
ROUND_B_8WAY(3);
ROUND_B_8WAY(4);
ROUND_B_8WAY(5);
sc->H[0] = mm512_xor4( V8, V0, sc->S[0], sc->H[0] );
sc->H[1] = mm512_xor4( V9, V1, sc->S[1], sc->H[1] );
sc->H[2] = mm512_xor4( VA, V2, sc->S[2], sc->H[2] );
sc->H[3] = mm512_xor4( VB, V3, sc->S[3], sc->H[3] );
sc->H[4] = mm512_xor4( VC, V4, sc->S[0], sc->H[4] );
sc->H[5] = mm512_xor4( VD, V5, sc->S[1], sc->H[5] );
sc->H[6] = mm512_xor4( VE, V6, sc->S[2], sc->H[6] );
sc->H[7] = mm512_xor4( VF, V7, sc->S[3], sc->H[7] );
}
void blake512_8way_init( blake_8way_big_context *sc )
{
__m512i zero = m512_zero;
@@ -455,39 +533,43 @@ blake64_8way( blake_8way_big_context *sc, const void *data, size_t len )
const int buf_size = 128; // sizeof/8
// 64, 80 bytes: 1st pass copy data. 2nd pass copy padding and compress.
// 128 bytes: 1st pass copy data, compress. 2nd pass copy padding, compress.
buf = sc->buf;
ptr = sc->ptr;
if ( len < (buf_size - ptr) )
{
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
memcpy_512( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE64(sc);
while ( len > 0 )
{
size_t clen;
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = SPH_T64(T0 + 1024) ) < 1024 )
T1 = SPH_T64(T1 + 1);
COMPRESS64_8WAY;
ptr = 0;
}
memcpy_512( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( ( T0 = T0 + 1024 ) < 1024 )
T1 = T1 + 1;
COMPRESS64_8WAY( buf );
ptr = 0;
}
}
WRITE_STATE64(sc);
sc->ptr = ptr;
}
}
static void
blake64_8way_close( blake_8way_big_context *sc, void *dst )
@@ -495,26 +577,22 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
__m512i buf[16];
size_t ptr;
unsigned bit_len;
// uint64_t z, zz;
sph_u64 th, tl;
uint64_t th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
// z = 0x80 >> n;
// zz = ((ub & -z) | z) & 0xFF;
// buf[ptr>>3] = _mm512_set1_epi64( zz );
buf[ptr>>3] = m512_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
{
@@ -535,8 +613,8 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
memset_zero_512( buf + (ptr>>3) + 1, (120 - ptr) >> 3 );
blake64_8way( sc, buf + (ptr>>3), 128 - ptr );
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
memset_zero_512( buf, 112>>3 );
buf[104>>3] = m512_const1_64( 0x0100000000000000ULL );
buf[112>>3] = m512_const1_64( bswap_64( th ) );
@@ -547,6 +625,79 @@ blake64_8way_close( blake_8way_big_context *sc, void *dst )
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
// init, update & close
void blake512_8way_full( blake_8way_big_context *sc, void * dst,
const void *data, size_t len )
{
// init
casti_m512i( sc->H, 0 ) = m512_const1_64( 0x6A09E667F3BCC908 );
casti_m512i( sc->H, 1 ) = m512_const1_64( 0xBB67AE8584CAA73B );
casti_m512i( sc->H, 2 ) = m512_const1_64( 0x3C6EF372FE94F82B );
casti_m512i( sc->H, 3 ) = m512_const1_64( 0xA54FF53A5F1D36F1 );
casti_m512i( sc->H, 4 ) = m512_const1_64( 0x510E527FADE682D1 );
casti_m512i( sc->H, 5 ) = m512_const1_64( 0x9B05688C2B3E6C1F );
casti_m512i( sc->H, 6 ) = m512_const1_64( 0x1F83D9ABFB41BD6B );
casti_m512i( sc->H, 7 ) = m512_const1_64( 0x5BE0CD19137E2179 );
casti_m512i( sc->S, 0 ) = m512_zero;
casti_m512i( sc->S, 1 ) = m512_zero;
casti_m512i( sc->S, 2 ) = m512_zero;
casti_m512i( sc->S, 3 ) = m512_zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
// update
memcpy_512( sc->buf, (__m512i*)data, len>>3 );
sc->ptr = len;
if ( len == 128 )
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
sc->ptr = 0;
}
// close
size_t ptr64 = sc->ptr >> 3;
unsigned bit_len;
uint64_t th, tl;
bit_len = sc->ptr << 3;
sc->buf[ptr64] = m512_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( ptr64 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 1024 - bit_len;
memset_zero_512( sc->buf + ptr64 + 1, 13 - ptr64 );
sc->buf[13] = m512_const1_64( 0x0100000000000000ULL );
sc->buf[14] = m512_const1_64( bswap_64( th ) );
sc->buf[15] = m512_const1_64( bswap_64( tl ) );
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_8way_compress( sc );
mm512_block_bswap_64( (__m512i*)dst, sc->H );
}
void
blake512_8way_update(void *cc, const void *data, size_t len)
{
@@ -555,12 +706,6 @@ blake512_8way_update(void *cc, const void *data, size_t len)
void
blake512_8way_close(void *cc, void *dst)
{
blake512_8way_addbits_and_close(cc, 0, 0, dst);
}
void
blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake64_8way_close(cc, dst);
}
@@ -596,7 +741,7 @@ blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#define DECL_STATE64_4WAY \
__m256i H0, H1, H2, H3, H4, H5, H6, H7; \
__m256i S0, S1, S2, S3; \
sph_u64 T0, T1;
uint64_t T0, T1;
#define COMPRESS64_4WAY do \
{ \
@@ -670,6 +815,81 @@ blake512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
} while (0)
void blake512_4way_compress( blake_4way_big_context *sc )
{
__m256i M0, M1, M2, M3, M4, M5, M6, M7;
__m256i M8, M9, MA, MB, MC, MD, ME, MF;
__m256i V0, V1, V2, V3, V4, V5, V6, V7;
__m256i V8, V9, VA, VB, VC, VD, VE, VF;
__m256i shuf_bswap64;
V0 = sc->H[0];
V1 = sc->H[1];
V2 = sc->H[2];
V3 = sc->H[3];
V4 = sc->H[4];
V5 = sc->H[5];
V6 = sc->H[6];
V7 = sc->H[7];
V8 = _mm256_xor_si256( sc->S[0], m256_const1_64( CB0 ) );
V9 = _mm256_xor_si256( sc->S[1], m256_const1_64( CB1 ) );
VA = _mm256_xor_si256( sc->S[2], m256_const1_64( CB2 ) );
VB = _mm256_xor_si256( sc->S[3], m256_const1_64( CB3 ) );
VC = _mm256_xor_si256( _mm256_set1_epi64x( sc->T0 ),
m256_const1_64( CB4 ) );
VD = _mm256_xor_si256( _mm256_set1_epi64x( sc->T0 ),
m256_const1_64( CB5 ) );
VE = _mm256_xor_si256( _mm256_set1_epi64x( sc->T1 ),
m256_const1_64( CB6 ) );
VF = _mm256_xor_si256( _mm256_set1_epi64x( sc->T1 ),
m256_const1_64( CB7 ) );
shuf_bswap64 = m256_const_64( 0x18191a1b1c1d1e1f, 0x1011121314151617,
0x08090a0b0c0d0e0f, 0x0001020304050607 );
M0 = _mm256_shuffle_epi8( sc->buf[ 0], shuf_bswap64 );
M1 = _mm256_shuffle_epi8( sc->buf[ 1], shuf_bswap64 );
M2 = _mm256_shuffle_epi8( sc->buf[ 2], shuf_bswap64 );
M3 = _mm256_shuffle_epi8( sc->buf[ 3], shuf_bswap64 );
M4 = _mm256_shuffle_epi8( sc->buf[ 4], shuf_bswap64 );
M5 = _mm256_shuffle_epi8( sc->buf[ 5], shuf_bswap64 );
M6 = _mm256_shuffle_epi8( sc->buf[ 6], shuf_bswap64 );
M7 = _mm256_shuffle_epi8( sc->buf[ 7], shuf_bswap64 );
M8 = _mm256_shuffle_epi8( sc->buf[ 8], shuf_bswap64 );
M9 = _mm256_shuffle_epi8( sc->buf[ 9], shuf_bswap64 );
MA = _mm256_shuffle_epi8( sc->buf[10], shuf_bswap64 );
MB = _mm256_shuffle_epi8( sc->buf[11], shuf_bswap64 );
MC = _mm256_shuffle_epi8( sc->buf[12], shuf_bswap64 );
MD = _mm256_shuffle_epi8( sc->buf[13], shuf_bswap64 );
ME = _mm256_shuffle_epi8( sc->buf[14], shuf_bswap64 );
MF = _mm256_shuffle_epi8( sc->buf[15], shuf_bswap64 );
ROUND_B_4WAY(0);
ROUND_B_4WAY(1);
ROUND_B_4WAY(2);
ROUND_B_4WAY(3);
ROUND_B_4WAY(4);
ROUND_B_4WAY(5);
ROUND_B_4WAY(6);
ROUND_B_4WAY(7);
ROUND_B_4WAY(8);
ROUND_B_4WAY(9);
ROUND_B_4WAY(0);
ROUND_B_4WAY(1);
ROUND_B_4WAY(2);
ROUND_B_4WAY(3);
ROUND_B_4WAY(4);
ROUND_B_4WAY(5);
sc->H[0] = mm256_xor4( V8, V0, sc->S[0], sc->H[0] );
sc->H[1] = mm256_xor4( V9, V1, sc->S[1], sc->H[1] );
sc->H[2] = mm256_xor4( VA, V2, sc->S[2], sc->H[2] );
sc->H[3] = mm256_xor4( VB, V3, sc->S[3], sc->H[3] );
sc->H[4] = mm256_xor4( VC, V4, sc->S[0], sc->H[4] );
sc->H[5] = mm256_xor4( VD, V5, sc->S[1], sc->H[5] );
sc->H[6] = mm256_xor4( VE, V6, sc->S[2], sc->H[6] );
sc->H[7] = mm256_xor4( VF, V7, sc->S[3], sc->H[7] );
}
void blake512_4way_init( blake_4way_big_context *sc )
{
__m256i zero = m256_zero;
@@ -681,10 +901,12 @@ void blake512_4way_init( blake_4way_big_context *sc )
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C2B3E6C1F );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9ABFB41BD6B );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD19137E2179 );
casti_m256i( sc->S, 0 ) = zero;
casti_m256i( sc->S, 1 ) = zero;
casti_m256i( sc->S, 2 ) = zero;
casti_m256i( sc->S, 3 ) = zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
}
@@ -703,31 +925,31 @@ blake64_4way( blake_4way_big_context *sc, const void *data, size_t len)
ptr = sc->ptr;
if ( len < (buf_size - ptr) )
{
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
memcpy_256( buf + (ptr>>3), vdata, len>>3 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE64(sc);
while ( len > 0 )
{
size_t clen;
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if (ptr == buf_size )
{
if ((T0 = SPH_T64(T0 + 1024)) < 1024)
T1 = SPH_T64(T1 + 1);
COMPRESS64_4WAY;
ptr = 0;
}
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>3), vdata, clen>>3 );
ptr += clen;
vdata = vdata + (clen>>3);
len -= clen;
if ( ptr == buf_size )
{
if ( (T0 = T0 + 1024 ) < 1024 )
T1 = SPH_T64(T1 + 1);
COMPRESS64_4WAY;
ptr = 0;
}
}
WRITE_STATE64(sc);
sc->ptr = ptr;
@@ -739,7 +961,7 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
__m256i buf[16];
size_t ptr;
unsigned bit_len;
sph_u64 th, tl;
uint64_t th, tl;
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
@@ -748,13 +970,13 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
th = sc->T1;
if (ptr == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL);
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = SPH_C64(0xFFFFFFFFFFFFFC00ULL) + bit_len;
sc->T1 = SPH_T64(sc->T1 - 1);
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
{
@@ -788,13 +1010,77 @@ blake64_4way_close( blake_4way_big_context *sc, void *dst )
mm256_block_bswap_64( (__m256i*)dst, sc->H );
}
/*
void
blake512_4way_init(void *cc)
// init, update & close
void blake512_4way_full( blake_4way_big_context *sc, void * dst,
const void *data, size_t len )
{
blake64_4way_init(cc, IV512, salt_zero_big);
// init
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E667F3BCC908 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE8584CAA73B );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF372FE94F82B );
casti_m256i( sc->H, 3 ) = m256_const1_64( 0xA54FF53A5F1D36F1 );
casti_m256i( sc->H, 4 ) = m256_const1_64( 0x510E527FADE682D1 );
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C2B3E6C1F );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9ABFB41BD6B );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD19137E2179 );
casti_m256i( sc->S, 0 ) = m256_zero;
casti_m256i( sc->S, 1 ) = m256_zero;
casti_m256i( sc->S, 2 ) = m256_zero;
casti_m256i( sc->S, 3 ) = m256_zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
// update
memcpy_256( sc->buf, (__m256i*)data, len>>3 );
sc->ptr += len;
if ( len == 128 )
{
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
sc->ptr = 0;
}
// close
size_t ptr64 = sc->ptr >> 3;
unsigned bit_len;
uint64_t th, tl;
bit_len = sc->ptr << 3;
sc->buf[ptr64] = m256_const1_64( 0x80 );
tl = sc->T0 + bit_len;
th = sc->T1;
if ( sc->ptr == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL;
sc->T1 = 0xFFFFFFFFFFFFFFFFULL;
}
else if ( sc->T0 == 0 )
{
sc->T0 = 0xFFFFFFFFFFFFFC00ULL + bit_len;
sc->T1 = sc->T1 - 1;
}
else
sc->T0 -= 1024 - bit_len;
memset_zero_256( sc->buf + ptr64 + 1, 13 - ptr64 );
sc->buf[13] = m256_const1_64( 0x0100000000000000ULL );
sc->buf[14] = m256_const1_64( bswap_64( th ) );
sc->buf[15] = m256_const1_64( bswap_64( tl ) );
if ( ( sc->T0 = sc->T0 + 1024 ) < 1024 )
sc->T1 = sc->T1 + 1;
blake512_4way_compress( sc );
mm256_block_bswap_64( (__m256i*)dst, sc->H );
}
*/
void
blake512_4way_update(void *cc, const void *data, size_t len)
@@ -806,17 +1092,8 @@ void
blake512_4way_close(void *cc, void *dst)
{
blake64_4way_close( cc, dst );
// blake512_4way_addbits_and_close(cc, dst);
}
/*
void
blake512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
blake64_4way_close(cc, ub, n, dst, 8);
}
*/
#ifdef __cplusplus
}
#endif

View File

@@ -14,7 +14,7 @@ void blakecoin_4way_hash(void *state, const void *input)
blake256r8_4way_context ctx;
memcpy( &ctx, &blakecoin_4w_ctx, sizeof ctx );
blake256r8_4way( &ctx, input + (64<<2), 16 );
blake256r8_4way_update( &ctx, input + (64<<2), 16 );
blake256r8_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
@@ -37,7 +37,7 @@ int scanhash_blakecoin_4way( struct work *work, uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256r8_4way_init( &blakecoin_4w_ctx );
blake256r8_4way( &blakecoin_4w_ctx, vdata, 64 );
blake256r8_4way_update( &blakecoin_4w_ctx, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
@@ -71,7 +71,7 @@ void blakecoin_8way_hash( void *state, const void *input )
blake256r8_8way_context ctx;
memcpy( &ctx, &blakecoin_8w_ctx, sizeof ctx );
blake256r8_8way( &ctx, input + (64<<3), 16 );
blake256r8_8way_update( &ctx, input + (64<<3), 16 );
blake256r8_8way_close( &ctx, vhash );
dintrlv_8x32( state, state+ 32, state+ 64, state+ 96, state+128,
@@ -95,7 +95,7 @@ int scanhash_blakecoin_8way( struct work *work, uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256r8_8way_init( &blakecoin_8w_ctx );
blake256r8_8way( &blakecoin_8w_ctx, vdata, 64 );
blake256r8_8way_update( &blakecoin_8w_ctx, vdata, 64 );
do {
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,

View File

@@ -21,7 +21,7 @@ void decred_hash_4way( void *state, const void *input )
blake256_4way_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &blake_mid, sizeof(blake_mid) );
blake256_4way( &ctx, tail, tail_len );
blake256_4way_update( &ctx, tail, tail_len );
blake256_4way_close( &ctx, vhash );
dintrlv_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
@@ -46,7 +46,7 @@ int scanhash_decred_4way( struct work *work, uint32_t max_nonce,
mm128_intrlv_4x32x( vdata, edata, edata, edata, edata, 180*8 );
blake256_4way_init( &blake_mid );
blake256_4way( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
blake256_4way_update( &blake_mid, vdata, DECRED_MIDSTATE_LEN );
uint32_t *noncep = vdata + DECRED_NONCE_INDEX * 4;
do {

View File

@@ -77,25 +77,15 @@ int scanhash_decred( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[k], pdata[k]);
#endif
#ifdef DEBUG_ALGO
if (!thr_id) applog(LOG_DEBUG,"[%d] Target=%08x %08x", thr_id, ptarget[6], ptarget[7]);
#endif
do {
//be32enc(&endiandata[DCR_NONCE_OFT32], n);
endiandata[DECRED_NONCE_INDEX] = n;
decred_hash(hash32, endiandata);
if (hash32[7] <= HTarget && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
#ifdef DEBUG_ALGO
applog(LOG_BLUE, "Nonce : %08x %08x", n, swab32(n));
applog_hash(ptarget);
applog_compare_hash(hash32, ptarget);
#endif
pdata[DECRED_NONCE_INDEX] = n;
return 1;
if (hash32[7] <= HTarget && fulltest(hash32, ptarget))
{
pdata[DECRED_NONCE_INDEX] = n;
submit_solution( work, hash32, mythr );
}
n++;

View File

@@ -22,23 +22,23 @@ extern void pentablakehash_4way( void *output, const void *input )
blake512_4way_init( &ctx );
blake512_4way( &ctx, input, 80 );
blake512_4way_update( &ctx, input, 80 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
blake512_4way_init( &ctx );
blake512_4way( &ctx, vhash, 64 );
blake512_4way_update( &ctx, vhash, 64 );
blake512_4way_close( &ctx, vhash );
memcpy( output, hash0, 32 );

View File

@@ -1,476 +0,0 @@
/* $Id: blake.c 252 2011-06-07 17:55:14Z tp $ */
/*
* BLAKE implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#include "../sph_blake.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u64 blkIV512[8] = {
SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#define CBx(r, i) CBx_(Z ## r ## i)
#define CBx_(n) CBx__(n)
#define CBx__(n) CB ## n
#define CB0 SPH_C64(0x243F6A8885A308D3)
#define CB1 SPH_C64(0x13198A2E03707344)
#define CB2 SPH_C64(0xA4093822299F31D0)
#define CB3 SPH_C64(0x082EFA98EC4E6C89)
#define CB4 SPH_C64(0x452821E638D01377)
#define CB5 SPH_C64(0xBE5466CF34E90C6C)
#define CB6 SPH_C64(0xC0AC29B7C97C50DD)
#define CB7 SPH_C64(0x3F84D5B5B5470917)
#define CB8 SPH_C64(0x9216D5D98979FB1B)
#define CB9 SPH_C64(0xD1310BA698DFB5AC)
#define CBA SPH_C64(0x2FFD72DBD01ADFB7)
#define CBB SPH_C64(0xB8E1AFED6A267E96)
#define CBC SPH_C64(0xBA7C9045F12C7F99)
#define CBD SPH_C64(0x24A19947B3916CF7)
#define CBE SPH_C64(0x0801F2E2858EFC16)
#define CBF SPH_C64(0x636920D871574E69)
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define GB(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T64(a + b + (m0 ^ c1)); \
d = SPH_ROTR64(d ^ a, 32); \
c = SPH_T64(c + d); \
b = SPH_ROTR64(b ^ c, 25); \
a = SPH_T64(a + b + (m1 ^ c0)); \
d = SPH_ROTR64(d ^ a, 16); \
c = SPH_T64(c + d); \
b = SPH_ROTR64(b ^ c, 11); \
} while (0)
#define ROUND_B(r) do { \
GB(Mx(r, 0), Mx(r, 1), CBx(r, 0), CBx(r, 1), V0, V4, V8, VC); \
GB(Mx(r, 2), Mx(r, 3), CBx(r, 2), CBx(r, 3), V1, V5, V9, VD); \
GB(Mx(r, 4), Mx(r, 5), CBx(r, 4), CBx(r, 5), V2, V6, VA, VE); \
GB(Mx(r, 6), Mx(r, 7), CBx(r, 6), CBx(r, 7), V3, V7, VB, VF); \
GB(Mx(r, 8), Mx(r, 9), CBx(r, 8), CBx(r, 9), V0, V5, VA, VF); \
GB(Mx(r, A), Mx(r, B), CBx(r, A), CBx(r, B), V1, V6, VB, VC); \
GB(Mx(r, C), Mx(r, D), CBx(r, C), CBx(r, D), V2, V7, V8, VD); \
GB(Mx(r, E), Mx(r, F), CBx(r, E), CBx(r, F), V3, V4, V9, VE); \
} while (0)
#define COMPRESS64 do { \
int b=0; \
sph_u64 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u64 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u64 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u64 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = blkH0, \
V1 = blkH1, \
V2 = blkH2, \
V3 = blkH3, \
V4 = blkH4, \
V5 = blkH5, \
V6 = blkH6, \
V7 = blkH7; \
V8 = blkS0 ^ CB0, \
V9 = blkS1 ^ CB1, \
VA = blkS2 ^ CB2, \
VB = blkS3 ^ CB3, \
VC = hashctA ^ CB4, \
VD = hashctA ^ CB5, \
VE = hashctB ^ CB6, \
VF = hashctB ^ CB7; \
M0 = sph_dec64be_aligned(buf + 0), \
M1 = sph_dec64be_aligned(buf + 8), \
M2 = sph_dec64be_aligned(buf + 16), \
M3 = sph_dec64be_aligned(buf + 24), \
M4 = sph_dec64be_aligned(buf + 32), \
M5 = sph_dec64be_aligned(buf + 40), \
M6 = sph_dec64be_aligned(buf + 48), \
M7 = sph_dec64be_aligned(buf + 56), \
M8 = sph_dec64be_aligned(buf + 64), \
M9 = sph_dec64be_aligned(buf + 72), \
MA = sph_dec64be_aligned(buf + 80), \
MB = sph_dec64be_aligned(buf + 88), \
MC = sph_dec64be_aligned(buf + 96), \
MD = sph_dec64be_aligned(buf + 104), \
ME = sph_dec64be_aligned(buf + 112), \
MF = sph_dec64be_aligned(buf + 120); \
/* loop once and a half */ \
/* save some space */ \
for (;;) { \
ROUND_B(0); \
ROUND_B(1); \
ROUND_B(2); \
ROUND_B(3); \
ROUND_B(4); \
ROUND_B(5); \
if (b) break; \
b = 1; \
ROUND_B(6); \
ROUND_B(7); \
ROUND_B(8); \
ROUND_B(9); \
}; \
blkH0 ^= blkS0 ^ V0 ^ V8, \
blkH1 ^= blkS1 ^ V1 ^ V9, \
blkH2 ^= blkS2 ^ V2 ^ VA, \
blkH3 ^= blkS3 ^ V3 ^ VB, \
blkH4 ^= blkS0 ^ V4 ^ VC, \
blkH5 ^= blkS1 ^ V5 ^ VD, \
blkH6 ^= blkS2 ^ V6 ^ VE, \
blkH7 ^= blkS3 ^ V7 ^ VF; \
} while (0)
/*
*/
#define DECL_BLK \
sph_u64 blkH0; \
sph_u64 blkH1; \
sph_u64 blkH2; \
sph_u64 blkH3; \
sph_u64 blkH4; \
sph_u64 blkH5; \
sph_u64 blkH6; \
sph_u64 blkH7; \
sph_u64 blkS0; \
sph_u64 blkS1; \
sph_u64 blkS2; \
sph_u64 blkS3; \
/* load initial constants */
#define BLK_I \
do { \
blkH0 = SPH_C64(0x6A09E667F3BCC908); \
blkH1 = SPH_C64(0xBB67AE8584CAA73B); \
blkH2 = SPH_C64(0x3C6EF372FE94F82B); \
blkH3 = SPH_C64(0xA54FF53A5F1D36F1); \
blkH4 = SPH_C64(0x510E527FADE682D1); \
blkH5 = SPH_C64(0x9B05688C2B3E6C1F); \
blkH6 = SPH_C64(0x1F83D9ABFB41BD6B); \
blkH7 = SPH_C64(0x5BE0CD19137E2179); \
blkS0 = 0; \
blkS1 = 0; \
blkS2 = 0; \
blkS3 = 0; \
hashctB = SPH_T64(0- 1); \
} while (0)
/* copy in 80 for initial hash */
#define BLK_W \
do { \
memcpy(hashbuf, input, 80); \
hashctA = SPH_C64(0xFFFFFFFFFFFFFC00) + 80*8; \
hashptr = 80; \
} while (0)
/* copy in 64 for looped hash */
#define BLK_U \
do { \
memcpy(hashbuf, hash , 64); \
hashctA = SPH_C64(0xFFFFFFFFFFFFFC00) + 64*8; \
hashptr = 64; \
} while (0)
/* blake compress function */
/* hash = blake512(loaded) */
#define BLK_C \
do { \
\
union { \
unsigned char buf[128]; \
sph_u64 dummy; \
} u; \
size_t ptr; \
unsigned bit_len; \
\
ptr = hashptr; \
bit_len = ((unsigned)ptr << 3) + 0; \
u.buf[ptr] = ((0 & -(0x80)) | (0x80)) & 0xFF; \
memset(u.buf + ptr + 1, 0, 111 - ptr); \
u.buf[111] |= 1; \
sph_enc64be_aligned(u.buf + 112, 0); \
sph_enc64be_aligned(u.buf + 120, bit_len); \
do { \
const void *data = u.buf + ptr; \
unsigned char *buf; \
buf = hashbuf; \
size_t clen; \
clen = (sizeof(char)*128) - hashptr; \
memcpy(buf + hashptr, data, clen); \
hashctA = SPH_T64(hashctA + 1024); \
hashctB = SPH_T64(hashctB + 1); \
COMPRESS64; \
} while (0); \
/* end blake64(sc, u.buf + ptr, 128 - ptr); */ \
sph_enc64be((unsigned char*)(hash) + (0 << 3), blkH0), \
sph_enc64be((unsigned char*)(hash) + (1 << 3), blkH1); \
sph_enc64be((unsigned char*)(hash) + (2 << 3), blkH2), \
sph_enc64be((unsigned char*)(hash) + (3 << 3), blkH3); \
sph_enc64be((unsigned char*)(hash) + (4 << 3), blkH4), \
sph_enc64be((unsigned char*)(hash) + (5 << 3), blkH5); \
sph_enc64be((unsigned char*)(hash) + (6 << 3), blkH6), \
sph_enc64be((unsigned char*)(hash) + (7 << 3), blkH7); \
} while (0)
#ifdef __cplusplus
}
#endif

View File

@@ -1,2 +0,0 @@
#define CRYPTO_BYTES 64

View File

@@ -1,2 +0,0 @@
amd64
x86

View File

@@ -1,8 +0,0 @@
#ifndef __BLAKE512_CONFIG_H__
#define __BLAKE512_CONFIG_H__
#define AVOID_BRANCHING 1
//#define HAVE_XOP 1
#endif

View File

@@ -1,287 +0,0 @@
#include "hash.h"
/*
#ifndef NOT_SUPERCOP
#include "crypto_hash.h"
#include "crypto_uint64.h"
#include "crypto_uint32.h"
#include "crypto_uint8.h"
typedef crypto_uint64 u64;
typedef crypto_uint32 u32;
typedef crypto_uint8 u8;
#else
typedef unsigned long long u64;
typedef unsigned int u32;
typedef unsigned char u8;
#endif
*/
#define U8TO32(p) \
(((u32)((p)[0]) << 24) | ((u32)((p)[1]) << 16) | \
((u32)((p)[2]) << 8) | ((u32)((p)[3]) ))
#define U8TO64(p) \
(((u64)U8TO32(p) << 32) | (u64)U8TO32((p) + 4))
#define U32TO8(p, v) \
(p)[0] = (u8)((v) >> 24); (p)[1] = (u8)((v) >> 16); \
(p)[2] = (u8)((v) >> 8); (p)[3] = (u8)((v) );
#define U64TO8(p, v) \
U32TO8((p), (u32)((v) >> 32)); \
U32TO8((p) + 4, (u32)((v) ));
/*
typedef struct
{
__m128i h[4];
u64 s[4], t[2];
u32 buflen, nullt;
u8 buf[128];
} state __attribute__ ((aligned (64)));
*/
static const u8 padding[129] =
{
0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
static inline int blake512_compress( hashState_blake * state, const u8 * datablock )
{
__m128i row1l,row1h;
__m128i row2l,row2h;
__m128i row3l,row3h;
__m128i row4l,row4h;
const __m128i r16 = _mm_setr_epi8(2,3,4,5,6,7,0,1,10,11,12,13,14,15,8,9);
const __m128i u8to64 = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
__m128i m0, m1, m2, m3, m4, m5, m6, m7;
__m128i t0, t1, t2, t3, t4, t5, t6, t7;
__m128i b0, b1, b2, b3;
m0 = _mm_loadu_si128((__m128i*)(datablock + 0));
m1 = _mm_loadu_si128((__m128i*)(datablock + 16));
m2 = _mm_loadu_si128((__m128i*)(datablock + 32));
m3 = _mm_loadu_si128((__m128i*)(datablock + 48));
m4 = _mm_loadu_si128((__m128i*)(datablock + 64));
m5 = _mm_loadu_si128((__m128i*)(datablock + 80));
m6 = _mm_loadu_si128((__m128i*)(datablock + 96));
m7 = _mm_loadu_si128((__m128i*)(datablock + 112));
m0 = BSWAP64(m0);
m1 = BSWAP64(m1);
m2 = BSWAP64(m2);
m3 = BSWAP64(m3);
m4 = BSWAP64(m4);
m5 = BSWAP64(m5);
m6 = BSWAP64(m6);
m7 = BSWAP64(m7);
row1l = state->h[0];
row1h = state->h[1];
row2l = state->h[2];
row2h = state->h[3];
row3l = _mm_set_epi64x(0x13198A2E03707344ULL, 0x243F6A8885A308D3ULL);
row3h = _mm_set_epi64x(0x082EFA98EC4E6C89ULL, 0xA4093822299F31D0ULL);
row4l = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x452821E638D01377ULL);
row4h = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xC0AC29B7C97C50DDULL);
#ifdef AVOID_BRANCHING
do
{
const __m128i mask = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_set1_epi32(state->nullt));
const __m128i xor1 = _mm_and_si128(_mm_set1_epi64x(state->t[0]), mask);
const __m128i xor2 = _mm_and_si128(_mm_set1_epi64x(state->t[1]), mask);
row4l = _mm_xor_si128(row4l, xor1);
row4h = _mm_xor_si128(row4h, xor2);
} while(0);
#else
if(!state->nullt)
{
row4l = _mm_xor_si128(row4l, _mm_set1_epi64x(state->t[0]));
row4h = _mm_xor_si128(row4h, _mm_set1_epi64x(state->t[1]));
}
#endif
ROUND( 0);
ROUND( 1);
ROUND( 2);
ROUND( 3);
ROUND( 4);
ROUND( 5);
ROUND( 6);
ROUND( 7);
ROUND( 8);
ROUND( 9);
ROUND(10);
ROUND(11);
ROUND(12);
ROUND(13);
ROUND(14);
ROUND(15);
row1l = _mm_xor_si128(row3l,row1l);
row1h = _mm_xor_si128(row3h,row1h);
state->h[0] = _mm_xor_si128(row1l, state->h[0]);
state->h[1] = _mm_xor_si128(row1h, state->h[1]);
row2l = _mm_xor_si128(row4l,row2l);
row2h = _mm_xor_si128(row4h,row2h);
state->h[2] = _mm_xor_si128(row2l, state->h[2]);
state->h[3] = _mm_xor_si128(row2h, state->h[3]);
return 0;
}
static inline void blake512_init( hashState_blake * S, u64 databitlen )
{
memset(S, 0, sizeof(hashState_blake));
S->h[0] = _mm_set_epi64x(0xBB67AE8584CAA73BULL, 0x6A09E667F3BCC908ULL);
S->h[1] = _mm_set_epi64x(0xA54FF53A5F1D36F1ULL, 0x3C6EF372FE94F82BULL);
S->h[2] = _mm_set_epi64x(0x9B05688C2B3E6C1FULL, 0x510E527FADE682D1ULL);
S->h[3] = _mm_set_epi64x(0x5BE0CD19137E2179ULL, 0x1F83D9ABFB41BD6BULL);
S->buflen = databitlen;
}
static void blake512_update( hashState_blake * S, const u8 * data, u64 datalen )
{
int left = (S->buflen >> 3);
int fill = 128 - left;
if( left && ( ((datalen >> 3) & 0x7F) >= fill ) ) {
memcpy( (void *) (S->buf + left), (void *) data, fill );
S->t[0] += 1024;
blake512_compress( S, S->buf );
data += fill;
datalen -= (fill << 3);
left = 0;
}
while( datalen >= 1024 ) {
S->t[0] += 1024;
blake512_compress( S, data );
data += 128;
datalen -= 1024;
}
if( datalen > 0 ) {
memcpy( (void *) (S->buf + left), (void *) data, ( datalen>>3 ) & 0x7F );
S->buflen = (left<<3) + datalen;
}
else S->buflen=0;
}
static inline void blake512_final( hashState_blake * S, u8 * digest )
{
u8 msglen[16], zo=0x01,oo=0x81;
u64 lo=S->t[0] + S->buflen, hi = S->t[1];
if ( lo < S->buflen ) hi++;
U64TO8( msglen + 0, hi );
U64TO8( msglen + 8, lo );
if ( S->buflen == 888 ) /* one padding byte */
{
S->t[0] -= 8;
blake512_update( S, &oo, 8 );
}
else
{
if ( S->buflen < 888 ) /* enough space to fill the block */
{
if ( S->buflen == 0 ) S->nullt=1;
S->t[0] -= 888 - S->buflen;
blake512_update( S, padding, 888 - S->buflen );
}
else /* NOT enough space, need 2 compressions */
{
S->t[0] -= 1024 - S->buflen;
blake512_update( S, padding, 1024 - S->buflen );
S->t[0] -= 888;
blake512_update( S, padding+1, 888 );
S->nullt = 1;
}
blake512_update( S, &zo, 8 );
S->t[0] -= 8;
}
S->t[0] -= 128;
blake512_update( S, msglen, 128 );
do
{
const __m128i u8to64 = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
_mm_storeu_si128((__m128i*)(digest + 0), BSWAP64(S->h[0]));
_mm_storeu_si128((__m128i*)(digest + 16), BSWAP64(S->h[1]));
_mm_storeu_si128((__m128i*)(digest + 32), BSWAP64(S->h[2]));
_mm_storeu_si128((__m128i*)(digest + 48), BSWAP64(S->h[3]));
} while(0);
}
/*
int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen )
{
hashState_blake S;
blake512_init( &S );
blake512_update( &S, in, inlen*8 );
blake512_final( &S, out );
return 0;
}
*/
/*
#ifdef NOT_SUPERCOP
int main()
{
int i, v;
u8 data[144], digest[64];
u8 test1[]= {0x97, 0x96, 0x15, 0x87, 0xF6, 0xD9, 0x70, 0xFA, 0xBA, 0x6D, 0x24, 0x78, 0x04, 0x5D, 0xE6, 0xD1,
0xFA, 0xBD, 0x09, 0xB6, 0x1A, 0xE5, 0x09, 0x32, 0x05, 0x4D, 0x52, 0xBC, 0x29, 0xD3, 0x1B, 0xE4,
0xFF, 0x91, 0x02, 0xB9, 0xF6, 0x9E, 0x2B, 0xBD, 0xB8, 0x3B, 0xE1, 0x3D, 0x4B, 0x9C, 0x06, 0x09,
0x1E, 0x5F, 0xA0, 0xB4, 0x8B, 0xD0, 0x81, 0xB6, 0x34, 0x05, 0x8B, 0xE0, 0xEC, 0x49, 0xBE, 0xB3};
u8 test2[]= {0x31, 0x37, 0x17, 0xD6, 0x08, 0xE9, 0xCF, 0x75, 0x8D, 0xCB, 0x1E, 0xB0, 0xF0, 0xC3, 0xCF, 0x9F,
0xC1, 0x50, 0xB2, 0xD5, 0x00, 0xFB, 0x33, 0xF5, 0x1C, 0x52, 0xAF, 0xC9, 0x9D, 0x35, 0x8A, 0x2F,
0x13, 0x74, 0xB8, 0xA3, 0x8B, 0xBA, 0x79, 0x74, 0xE7, 0xF6, 0xEF, 0x79, 0xCA, 0xB1, 0x6F, 0x22,
0xCE, 0x1E, 0x64, 0x9D, 0x6E, 0x01, 0xAD, 0x95, 0x89, 0xC2, 0x13, 0x04, 0x5D, 0x54, 0x5D, 0xDE};
for(i=0; i<144; ++i) data[i]=0;
crypto_hash( digest, data, 1 );
v=0;
for(i=0; i<64; ++i) {
printf("%02X", digest[i]);
if ( digest[i] != test1[i]) v=1;
}
if (v) printf("\nerror\n");
else printf("\nok\n");
for(i=0; i<144; ++i) data[i]=0;
crypto_hash( digest, data, 144 );
v=0;
for(i=0; i<64; ++i) {
printf("%02X", digest[i]);
if ( digest[i] != test2[i]) v=1;
}
if (v) printf("\nerror\n");
else printf("\nok\n");
return 0;
}
#endif
*/

View File

@@ -1,74 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <x86intrin.h>
#include "config.h"
#include "rounds.h"
/*
#ifndef NOT_SUPERCOP
#include "crypto_hash.h"
#include "crypto_uint64.h"
#include "crypto_uint32.h"
#include "crypto_uint8.h"
typedef crypto_uint64 u64;
typedef crypto_uint32 u32;
typedef crypto_uint8 u8;
#else
*/
typedef unsigned long long u64;
typedef unsigned int u32;
typedef unsigned char u8;
typedef struct
{
__m128i h[4];
u64 s[4], t[2];
u32 buflen, nullt;
u8 buf[128];
} hashState_blake __attribute__ ((aligned (64)));
/*
#endif
#define U8TO32(p) \
(((u32)((p)[0]) << 24) | ((u32)((p)[1]) << 16) | \
((u32)((p)[2]) << 8) | ((u32)((p)[3]) ))
#define U8TO64(p) \
(((u64)U8TO32(p) << 32) | (u64)U8TO32((p) + 4))
#define U32TO8(p, v) \
(p)[0] = (u8)((v) >> 24); (p)[1] = (u8)((v) >> 16); \
(p)[2] = (u8)((v) >> 8); (p)[3] = (u8)((v) );
#define U64TO8(p, v) \
U32TO8((p), (u32)((v) >> 32)); \
U32TO8((p) + 4, (u32)((v) ));
*/
/*
static const u8 padding[129] =
{
0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
*/
static inline void blake512_init( hashState_blake * S, u64 datalen );
static void blake512_update( hashState_blake * S, const u8 * data, u64 datalen ) ;
static inline void blake512_final( hashState_blake * S, u8 * digest ) ;
int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen ) ;

View File

@@ -1,2 +0,0 @@
Jean-Philippe Aumasson
Samuel Neves

View File

@@ -1,871 +0,0 @@
#ifndef __BLAKE512_ROUNDS_H__
#define __BLAKE512_ROUNDS_H__
#ifndef HAVE_XOP
#define BSWAP64(x) _mm_shuffle_epi8((x), u8to64)
#define _mm_roti_epi64(x, c) \
(-(c) == 32) ? _mm_shuffle_epi32((x), _MM_SHUFFLE(2,3,0,1)) \
: (-(c) == 16) ? _mm_shuffle_epi8((x), r16) \
: _mm_xor_si128(_mm_srli_epi64((x), -(c)), _mm_slli_epi64((x), 64-(-c)))
#else
#define BSWAP64(x) _mm_perm_epi8((x),(x),u8to64)
#endif
#define LOAD_MSG_0_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m1); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m2, m3); \
t3 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m0, m1); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m3); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m5); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_0_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m5); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m4, m6); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m3, m7, 8); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_3(b0, b1) \
do \
{ \
t0 = _mm_shuffle_epi32(m0, _MM_SHUFFLE(1,0,3,2)); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m2); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_1_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m1); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m1); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_1(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m5, 8); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m7); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m6, 0xF0); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m5, m1, 0xF0); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m4); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_2_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m2, m0, 8); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m5); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m0); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m2, 0xF0); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_3_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m5); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m1, m5); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_2(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m0, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m7, m5, 0xF0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m1, 0xF0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_4_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m0, 8); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m4, m6, 0xF0); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m3); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m5); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m1); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m2, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m7, m0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_5_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x452821E638D01377ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m7, m4, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_1(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m6, m0, 0xF0); \
t1 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m7, m2); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m2, m7); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m5, m6, 8); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_shuffle_epi32(m4, _MM_SHUFFLE(1,0,3,2)); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_6_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m5, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m3); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m6, m1, 0xF0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_2(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m7, m5, 8); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_3(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m2, m7); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m4, m1); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_7_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m2); \
t1 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m3, m5); \
t3 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m7); \
t1 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x636920D871574E69ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m0, m5, 8); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x82EFA98EC4E6C89ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m7, m4); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m4, m1, 8); \
t3 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_3(b0, b1) \
do \
{ \
t0 = m6; \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m5, m0, 8); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_8_4(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m3, 0xF0); \
t1 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = m2; \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m0); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m2, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_3(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m7, m4); \
t1 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m1, m6); \
t3 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_9_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m7, m5, 8); \
t1 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x636920D871574E69ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x82EFA98EC4E6C89ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m0, m1); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m2, m3); \
t3 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m0, m1); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m3); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_3(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m5); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_10_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m5); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m7); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m2); \
t1 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m4, m6); \
t3 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m5, m4); \
t1 = _mm_set_epi64x(0x452821E638D01377ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m3, m7, 8); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xD1310BA698DFB5ACULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_3(b0, b1) \
do \
{ \
t0 = _mm_shuffle_epi32(m0, _MM_SHUFFLE(1,0,3,2)); \
t1 = _mm_set_epi64x(0xA4093822299F31D0ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m2); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_11_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m1); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m1); \
t3 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_1(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m5, 8); \
t1 = _mm_set_epi64x(0x243F6A8885A308D3ULL, 0x9216D5D98979FB1BULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m2, m7); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m4, m0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0xB8E1AFED6A267E96ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m1, m6, 0xF0); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0xBE5466CF34E90C6CULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m5, m1, 0xF0); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m3, m4); \
t3 = _mm_set_epi64x(0x452821E638D01377ULL, 0x13198A2E03707344ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_12_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m7, m3); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x2FFD72DBD01ADFB7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_alignr_epi8(m2, m0, 8); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x3F84D5B5B5470917ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m3, m1); \
t1 = _mm_set_epi64x(0x13198A2E03707344ULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m6, m5); \
t3 = _mm_set_epi64x(0x801F2E2858EFC16ULL, 0xBA7C9045F12C7F99ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_2(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m0); \
t1 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0x3F84D5B5B5470917ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m6, m7); \
t3 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x24A19947B3916CF7ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m1, m2, 0xF0); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xC0AC29B7C97C50DDULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_13_4(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m3, m5); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_1(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m4, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x243F6A8885A308D3ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m1, m5); \
t3 = _mm_set_epi64x(0x636920D871574E69ULL, 0x452821E638D01377ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_2(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m0, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0xD1310BA698DFB5ACULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m2, m7, 0xF0); \
t3 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xA4093822299F31D0ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m7, m5, 0xF0); \
t1 = _mm_set_epi64x(0xBA7C9045F12C7F99ULL, 0x13198A2E03707344ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m3, m1, 0xF0); \
t3 = _mm_set_epi64x(0x24A19947B3916CF7ULL, 0x9216D5D98979FB1BULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_14_4(b0, b1) \
do \
{ \
t0 = _mm_alignr_epi8(m6, m0, 8); \
t1 = _mm_set_epi64x(0xB8E1AFED6A267E96ULL, 0x801F2E2858EFC16ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m4, m6, 0xF0); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xC0AC29B7C97C50DDULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_1(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m1, m3); \
t1 = _mm_set_epi64x(0x2FFD72DBD01ADFB7ULL, 0xBA7C9045F12C7F99ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpacklo_epi64(m0, m4); \
t3 = _mm_set_epi64x(0x82EFA98EC4E6C89ULL, 0xB8E1AFED6A267E96ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_2(b0, b1) \
do \
{ \
t0 = _mm_unpacklo_epi64(m6, m5); \
t1 = _mm_set_epi64x(0xC0AC29B7C97C50DDULL, 0xA4093822299F31D0ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m5, m1); \
t3 = _mm_set_epi64x(0x9216D5D98979FB1BULL, 0x243F6A8885A308D3ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_3(b0, b1) \
do \
{ \
t0 = _mm_blend_epi16(m2, m3, 0xF0); \
t1 = _mm_set_epi64x(0xBE5466CF34E90C6CULL, 0x24A19947B3916CF7ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_unpackhi_epi64(m7, m0); \
t3 = _mm_set_epi64x(0xD1310BA698DFB5ACULL, 0x801F2E2858EFC16ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define LOAD_MSG_15_4(b0, b1) \
do \
{ \
t0 = _mm_unpackhi_epi64(m6, m2); \
t1 = _mm_set_epi64x(0x3F84D5B5B5470917ULL, 0x452821E638D01377ULL); \
b0 = _mm_xor_si128(t0, t1); \
t2 = _mm_blend_epi16(m7, m4, 0xF0); \
t3 = _mm_set_epi64x(0x13198A2E03707344ULL, 0x636920D871574E69ULL); \
b1 = _mm_xor_si128(t2, t3); \
} while(0)
#define G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1) \
row1l = _mm_add_epi64(_mm_add_epi64(row1l, b0), row2l); \
row1h = _mm_add_epi64(_mm_add_epi64(row1h, b1), row2h); \
\
row4l = _mm_xor_si128(row4l, row1l); \
row4h = _mm_xor_si128(row4h, row1h); \
\
row4l = _mm_roti_epi64(row4l, -32); \
row4h = _mm_roti_epi64(row4h, -32); \
\
row3l = _mm_add_epi64(row3l, row4l); \
row3h = _mm_add_epi64(row3h, row4h); \
\
row2l = _mm_xor_si128(row2l, row3l); \
row2h = _mm_xor_si128(row2h, row3h); \
\
row2l = _mm_roti_epi64(row2l, -25); \
row2h = _mm_roti_epi64(row2h, -25); \
#define G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1) \
row1l = _mm_add_epi64(_mm_add_epi64(row1l, b0), row2l); \
row1h = _mm_add_epi64(_mm_add_epi64(row1h, b1), row2h); \
\
row4l = _mm_xor_si128(row4l, row1l); \
row4h = _mm_xor_si128(row4h, row1h); \
\
row4l = _mm_roti_epi64(row4l, -16); \
row4h = _mm_roti_epi64(row4h, -16); \
\
row3l = _mm_add_epi64(row3l, row4l); \
row3h = _mm_add_epi64(row3h, row4h); \
\
row2l = _mm_xor_si128(row2l, row3l); \
row2h = _mm_xor_si128(row2h, row3h); \
\
row2l = _mm_roti_epi64(row2l, -11); \
row2h = _mm_roti_epi64(row2h, -11); \
#define DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h) \
t0 = _mm_alignr_epi8(row2h, row2l, 8); \
t1 = _mm_alignr_epi8(row2l, row2h, 8); \
row2l = t0; \
row2h = t1; \
\
t0 = row3l; \
row3l = row3h; \
row3h = t0; \
\
t0 = _mm_alignr_epi8(row4h, row4l, 8); \
t1 = _mm_alignr_epi8(row4l, row4h, 8); \
row4l = t1; \
row4h = t0;
#define UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h) \
t0 = _mm_alignr_epi8(row2l, row2h, 8); \
t1 = _mm_alignr_epi8(row2h, row2l, 8); \
row2l = t0; \
row2h = t1; \
\
t0 = row3l; \
row3l = row3h; \
row3h = t0; \
\
t0 = _mm_alignr_epi8(row4l, row4h, 8); \
t1 = _mm_alignr_epi8(row4h, row4l, 8); \
row4l = t1; \
row4h = t0;
#define ROUND(r) \
LOAD_MSG_ ##r ##_1(b0, b1); \
G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
LOAD_MSG_ ##r ##_2(b0, b1); \
G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
DIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h); \
LOAD_MSG_ ##r ##_3(b0, b1); \
G1(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
LOAD_MSG_ ##r ##_4(b0, b1); \
G2(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h,b0,b1); \
UNDIAGONALIZE(row1l,row2l,row3l,row4l,row1h,row2h,row3h,row4h);
#endif

View File

@@ -40,8 +40,7 @@ int scanhash_bmw512_8way( struct work *work, uint32_t max_nonce,
bmw512hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( unlikely( hash7[ lane<<1 ] < Htarg ) )
// if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
if ( unlikely( hash7[ lane<<1 ] <= Htarg ) )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )
@@ -66,7 +65,7 @@ void bmw512hash_4way(void *state, const void *input)
{
bmw512_4way_context ctx;
bmw512_4way_init( &ctx );
bmw512_4way( &ctx, input, 80 );
bmw512_4way_update( &ctx, input, 80 );
bmw512_4way_close( &ctx, state );
}
@@ -94,8 +93,7 @@ int scanhash_bmw512_4way( struct work *work, uint32_t max_nonce,
bmw512hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash7[ lane<<1 ] < Htarg ) )
// if ( ( ( hash7[ lane<<1 ] & 0xFFFFFF00 ) == 0 ) )
if ( unlikely( hash7[ lane<<1 ] <= Htarg ) )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) )

View File

@@ -1,519 +0,0 @@
/* $Id: bmw.c 227 2010-06-16 17:28:38Z tp $ */
/*
* BMW implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include <limits.h>
#ifdef __cplusplus
extern "C"{
#endif
#include "../sph_bmw.h"
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static const sph_u64 bmwIV512[] = {
SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F),
SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F),
SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF),
SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF),
SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF),
SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF),
SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF),
SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF)
};
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define LPAR (
#define I16_16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
#define I16_17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
#define I16_18 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
#define I16_19 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
#define I16_20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
#define I16_21 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#define I16_22 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
#define I16_23 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
#define I16_24 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
#define I16_25 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
#define I16_26 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
#define I16_27 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
#define I16_28 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
#define I16_29 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28
#define I16_30 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
#define I16_31 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#define M16_16 0, 1, 3, 4, 7, 10, 11
#define M16_17 1, 2, 4, 5, 8, 11, 12
#define M16_18 2, 3, 5, 6, 9, 12, 13
#define M16_19 3, 4, 6, 7, 10, 13, 14
#define M16_20 4, 5, 7, 8, 11, 14, 15
#define M16_21 5, 6, 8, 9, 12, 15, 16
#define M16_22 6, 7, 9, 10, 13, 0, 1
#define M16_23 7, 8, 10, 11, 14, 1, 2
#define M16_24 8, 9, 11, 12, 15, 2, 3
#define M16_25 9, 10, 12, 13, 0, 3, 4
#define M16_26 10, 11, 13, 14, 1, 4, 5
#define M16_27 11, 12, 14, 15, 2, 5, 6
#define M16_28 12, 13, 15, 16, 3, 6, 7
#define M16_29 13, 14, 0, 1, 4, 7, 8
#define M16_30 14, 15, 1, 2, 5, 8, 9
#define M16_31 15, 16, 2, 3, 6, 9, 10
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 8) ^ SPH_ROTL32(x, 23))
#define ss2(x) (((x) >> 2) ^ SPH_T32((x) << 1) \
^ SPH_ROTL32(x, 12) ^ SPH_ROTL32(x, 25))
#define ss3(x) (((x) >> 2) ^ SPH_T32((x) << 2) \
^ SPH_ROTL32(x, 15) ^ SPH_ROTL32(x, 29))
#define ss4(x) (((x) >> 1) ^ (x))
#define ss5(x) (((x) >> 2) ^ (x))
#define rs1(x) SPH_ROTL32(x, 3)
#define rs2(x) SPH_ROTL32(x, 7)
#define rs3(x) SPH_ROTL32(x, 13)
#define rs4(x) SPH_ROTL32(x, 16)
#define rs5(x) SPH_ROTL32(x, 19)
#define rs6(x) SPH_ROTL32(x, 23)
#define rs7(x) SPH_ROTL32(x, 27)
#define Ks(j) SPH_T32((sph_u32)(j) * SPH_C32(0x05555555))
#define add_elt_s(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T32(SPH_ROTL32(mf(j0m), j1m) + SPH_ROTL32(mf(j3m), j4m) \
- SPH_ROTL32(mf(j10m), j11m) + Ks(j16)) ^ hf(j7m))
#define expand1s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(ss1(qf(i0)) + ss2(qf(i1)) + ss3(qf(i2)) + ss0(qf(i3)) \
+ ss1(qf(i4)) + ss2(qf(i5)) + ss3(qf(i6)) + ss0(qf(i7)) \
+ ss1(qf(i8)) + ss2(qf(i9)) + ss3(qf(i10)) + ss0(qf(i11)) \
+ ss1(qf(i12)) + ss2(qf(i13)) + ss3(qf(i14)) + ss0(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1s(qf, mf, hf, i16) \
expand1s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1s_(qf, mf, hf, i16, ix, iy) \
expand1s_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2s_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T32(qf(i0) + rs1(qf(i1)) + qf(i2) + rs2(qf(i3)) \
+ qf(i4) + rs3(qf(i5)) + qf(i6) + rs4(qf(i7)) \
+ qf(i8) + rs5(qf(i9)) + qf(i10) + rs6(qf(i11)) \
+ qf(i12) + rs7(qf(i13)) + ss4(qf(i14)) + ss5(qf(i15)) \
+ add_elt_s(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2s(qf, mf, hf, i16) \
expand2s_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2s_(qf, mf, hf, i16, ix, iy) \
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
#if SPH_64
#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \
^ SPH_ROTL64(x, 4) ^ SPH_ROTL64(x, 37))
#define sb1(x) (((x) >> 1) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 13) ^ SPH_ROTL64(x, 43))
#define sb2(x) (((x) >> 2) ^ SPH_T64((x) << 1) \
^ SPH_ROTL64(x, 19) ^ SPH_ROTL64(x, 53))
#define sb3(x) (((x) >> 2) ^ SPH_T64((x) << 2) \
^ SPH_ROTL64(x, 28) ^ SPH_ROTL64(x, 59))
#define sb4(x) (((x) >> 1) ^ (x))
#define sb5(x) (((x) >> 2) ^ (x))
#define rb1(x) SPH_ROTL64(x, 5)
#define rb2(x) SPH_ROTL64(x, 11)
#define rb3(x) SPH_ROTL64(x, 27)
#define rb4(x) SPH_ROTL64(x, 32)
#define rb5(x) SPH_ROTL64(x, 37)
#define rb6(x) SPH_ROTL64(x, 43)
#define rb7(x) SPH_ROTL64(x, 53)
#define Kb(j) SPH_T64((sph_u64)(j) * SPH_C64(0x0555555555555555))
#if 0
static const sph_u64 Kb_tab[] = {
Kb(16), Kb(17), Kb(18), Kb(19), Kb(20), Kb(21), Kb(22), Kb(23),
Kb(24), Kb(25), Kb(26), Kb(27), Kb(28), Kb(29), Kb(30), Kb(31)
};
#define rol_off(mf, j, off) \
SPH_ROTL64(mf(((j) + (off)) & 15), (((j) + (off)) & 15) + 1)
#define add_elt_b(mf, hf, j) \
(SPH_T64(rol_off(mf, j, 0) + rol_off(mf, j, 3) \
- rol_off(mf, j, 10) + Kb_tab[j]) ^ hf(((j) + 7) & 15))
#define expand1b(qf, mf, hf, i) \
SPH_T64(sb1(qf((i) - 16)) + sb2(qf((i) - 15)) \
+ sb3(qf((i) - 14)) + sb0(qf((i) - 13)) \
+ sb1(qf((i) - 12)) + sb2(qf((i) - 11)) \
+ sb3(qf((i) - 10)) + sb0(qf((i) - 9)) \
+ sb1(qf((i) - 8)) + sb2(qf((i) - 7)) \
+ sb3(qf((i) - 6)) + sb0(qf((i) - 5)) \
+ sb1(qf((i) - 4)) + sb2(qf((i) - 3)) \
+ sb3(qf((i) - 2)) + sb0(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#define expand2b(qf, mf, hf, i) \
SPH_T64(qf((i) - 16) + rb1(qf((i) - 15)) \
+ qf((i) - 14) + rb2(qf((i) - 13)) \
+ qf((i) - 12) + rb3(qf((i) - 11)) \
+ qf((i) - 10) + rb4(qf((i) - 9)) \
+ qf((i) - 8) + rb5(qf((i) - 7)) \
+ qf((i) - 6) + rb6(qf((i) - 5)) \
+ qf((i) - 4) + rb7(qf((i) - 3)) \
+ sb4(qf((i) - 2)) + sb5(qf((i) - 1)) \
+ add_elt_b(mf, hf, (i) - 16))
#else
#define add_elt_b(mf, hf, j0m, j1m, j3m, j4m, j7m, j10m, j11m, j16) \
(SPH_T64(SPH_ROTL64(mf(j0m), j1m) + SPH_ROTL64(mf(j3m), j4m) \
- SPH_ROTL64(mf(j10m), j11m) + Kb(j16)) ^ hf(j7m))
#define expand1b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(sb1(qf(i0)) + sb2(qf(i1)) + sb3(qf(i2)) + sb0(qf(i3)) \
+ sb1(qf(i4)) + sb2(qf(i5)) + sb3(qf(i6)) + sb0(qf(i7)) \
+ sb1(qf(i8)) + sb2(qf(i9)) + sb3(qf(i10)) + sb0(qf(i11)) \
+ sb1(qf(i12)) + sb2(qf(i13)) + sb3(qf(i14)) + sb0(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand1b(qf, mf, hf, i16) \
expand1b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand1b_(qf, mf, hf, i16, ix, iy) \
expand1b_inner LPAR qf, mf, hf, i16, ix, iy)
#define expand2b_inner(qf, mf, hf, i16, \
i0, i1, i2, i3, i4, i5, i6, i7, i8, \
i9, i10, i11, i12, i13, i14, i15, \
i0m, i1m, i3m, i4m, i7m, i10m, i11m) \
SPH_T64(qf(i0) + rb1(qf(i1)) + qf(i2) + rb2(qf(i3)) \
+ qf(i4) + rb3(qf(i5)) + qf(i6) + rb4(qf(i7)) \
+ qf(i8) + rb5(qf(i9)) + qf(i10) + rb6(qf(i11)) \
+ qf(i12) + rb7(qf(i13)) + sb4(qf(i14)) + sb5(qf(i15)) \
+ add_elt_b(mf, hf, i0m, i1m, i3m, i4m, i7m, i10m, i11m, i16))
#define expand2b(qf, mf, hf, i16) \
expand2b_(qf, mf, hf, i16, I16_ ## i16, M16_ ## i16)
#define expand2b_(qf, mf, hf, i16, ix, iy) \
expand2b_inner LPAR qf, mf, hf, i16, ix, iy)
#endif
#endif
#define MAKE_W(tt, i0, op01, i1, op12, i2, op23, i3, op34, i4) \
tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
#define Ws3 MAKE_W(SPH_T32, 0, -, 1, +, 8, -, 10, +, 13)
#define Ws4 MAKE_W(SPH_T32, 1, +, 2, +, 9, -, 11, -, 14)
#define Ws5 MAKE_W(SPH_T32, 3, -, 2, +, 10, -, 12, +, 15)
#define Ws6 MAKE_W(SPH_T32, 4, -, 0, -, 3, -, 11, +, 13)
#define Ws7 MAKE_W(SPH_T32, 1, -, 4, -, 5, -, 12, -, 14)
#define Ws8 MAKE_W(SPH_T32, 2, -, 5, -, 6, +, 13, -, 15)
#define Ws9 MAKE_W(SPH_T32, 0, -, 3, +, 6, -, 7, +, 14)
#define Ws10 MAKE_W(SPH_T32, 8, -, 1, -, 4, -, 7, +, 15)
#define Ws11 MAKE_W(SPH_T32, 8, -, 0, -, 2, -, 5, +, 9)
#define Ws12 MAKE_W(SPH_T32, 1, +, 3, -, 6, -, 9, +, 10)
#define Ws13 MAKE_W(SPH_T32, 2, +, 4, +, 7, +, 10, +, 11)
#define Ws14 MAKE_W(SPH_T32, 3, -, 5, +, 8, -, 11, -, 12)
#define Ws15 MAKE_W(SPH_T32, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qas do { \
qt[ 0] = SPH_T32(ss0(Ws0 ) + H( 1)); \
qt[ 1] = SPH_T32(ss1(Ws1 ) + H( 2)); \
qt[ 2] = SPH_T32(ss2(Ws2 ) + H( 3)); \
qt[ 3] = SPH_T32(ss3(Ws3 ) + H( 4)); \
qt[ 4] = SPH_T32(ss4(Ws4 ) + H( 5)); \
qt[ 5] = SPH_T32(ss0(Ws5 ) + H( 6)); \
qt[ 6] = SPH_T32(ss1(Ws6 ) + H( 7)); \
qt[ 7] = SPH_T32(ss2(Ws7 ) + H( 8)); \
qt[ 8] = SPH_T32(ss3(Ws8 ) + H( 9)); \
qt[ 9] = SPH_T32(ss4(Ws9 ) + H(10)); \
qt[10] = SPH_T32(ss0(Ws10) + H(11)); \
qt[11] = SPH_T32(ss1(Ws11) + H(12)); \
qt[12] = SPH_T32(ss2(Ws12) + H(13)); \
qt[13] = SPH_T32(ss3(Ws13) + H(14)); \
qt[14] = SPH_T32(ss4(Ws14) + H(15)); \
qt[15] = SPH_T32(ss0(Ws15) + H( 0)); \
} while (0)
#define MAKE_Qbs do { \
qt[16] = expand1s(Qs, M, H, 16); \
qt[17] = expand1s(Qs, M, H, 17); \
qt[18] = expand2s(Qs, M, H, 18); \
qt[19] = expand2s(Qs, M, H, 19); \
qt[20] = expand2s(Qs, M, H, 20); \
qt[21] = expand2s(Qs, M, H, 21); \
qt[22] = expand2s(Qs, M, H, 22); \
qt[23] = expand2s(Qs, M, H, 23); \
qt[24] = expand2s(Qs, M, H, 24); \
qt[25] = expand2s(Qs, M, H, 25); \
qt[26] = expand2s(Qs, M, H, 26); \
qt[27] = expand2s(Qs, M, H, 27); \
qt[28] = expand2s(Qs, M, H, 28); \
qt[29] = expand2s(Qs, M, H, 29); \
qt[30] = expand2s(Qs, M, H, 30); \
qt[31] = expand2s(Qs, M, H, 31); \
} while (0)
#define MAKE_Qs do { \
MAKE_Qas; \
MAKE_Qbs; \
} while (0)
#define Qs(j) (qt[j])
#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14)
#define Wb1 MAKE_W(SPH_T64, 6, -, 8, +, 11, +, 14, -, 15)
#define Wb2 MAKE_W(SPH_T64, 0, +, 7, +, 9, -, 12, +, 15)
#define Wb3 MAKE_W(SPH_T64, 0, -, 1, +, 8, -, 10, +, 13)
#define Wb4 MAKE_W(SPH_T64, 1, +, 2, +, 9, -, 11, -, 14)
#define Wb5 MAKE_W(SPH_T64, 3, -, 2, +, 10, -, 12, +, 15)
#define Wb6 MAKE_W(SPH_T64, 4, -, 0, -, 3, -, 11, +, 13)
#define Wb7 MAKE_W(SPH_T64, 1, -, 4, -, 5, -, 12, -, 14)
#define Wb8 MAKE_W(SPH_T64, 2, -, 5, -, 6, +, 13, -, 15)
#define Wb9 MAKE_W(SPH_T64, 0, -, 3, +, 6, -, 7, +, 14)
#define Wb10 MAKE_W(SPH_T64, 8, -, 1, -, 4, -, 7, +, 15)
#define Wb11 MAKE_W(SPH_T64, 8, -, 0, -, 2, -, 5, +, 9)
#define Wb12 MAKE_W(SPH_T64, 1, +, 3, -, 6, -, 9, +, 10)
#define Wb13 MAKE_W(SPH_T64, 2, +, 4, +, 7, +, 10, +, 11)
#define Wb14 MAKE_W(SPH_T64, 3, -, 5, +, 8, -, 11, -, 12)
#define Wb15 MAKE_W(SPH_T64, 12, -, 4, -, 6, -, 9, +, 13)
#define MAKE_Qab do { \
qt[ 0] = SPH_T64(sb0(Wb0 ) + H( 1)); \
qt[ 1] = SPH_T64(sb1(Wb1 ) + H( 2)); \
qt[ 2] = SPH_T64(sb2(Wb2 ) + H( 3)); \
qt[ 3] = SPH_T64(sb3(Wb3 ) + H( 4)); \
qt[ 4] = SPH_T64(sb4(Wb4 ) + H( 5)); \
qt[ 5] = SPH_T64(sb0(Wb5 ) + H( 6)); \
qt[ 6] = SPH_T64(sb1(Wb6 ) + H( 7)); \
qt[ 7] = SPH_T64(sb2(Wb7 ) + H( 8)); \
qt[ 8] = SPH_T64(sb3(Wb8 ) + H( 9)); \
qt[ 9] = SPH_T64(sb4(Wb9 ) + H(10)); \
qt[10] = SPH_T64(sb0(Wb10) + H(11)); \
qt[11] = SPH_T64(sb1(Wb11) + H(12)); \
qt[12] = SPH_T64(sb2(Wb12) + H(13)); \
qt[13] = SPH_T64(sb3(Wb13) + H(14)); \
qt[14] = SPH_T64(sb4(Wb14) + H(15)); \
qt[15] = SPH_T64(sb0(Wb15) + H( 0)); \
} while (0)
#define MAKE_Qbb do { \
qt[16] = expand1b(Qb, M, H, 16); \
qt[17] = expand1b(Qb, M, H, 17); \
qt[18] = expand2b(Qb, M, H, 18); \
qt[19] = expand2b(Qb, M, H, 19); \
qt[20] = expand2b(Qb, M, H, 20); \
qt[21] = expand2b(Qb, M, H, 21); \
qt[22] = expand2b(Qb, M, H, 22); \
qt[23] = expand2b(Qb, M, H, 23); \
qt[24] = expand2b(Qb, M, H, 24); \
qt[25] = expand2b(Qb, M, H, 25); \
qt[26] = expand2b(Qb, M, H, 26); \
qt[27] = expand2b(Qb, M, H, 27); \
qt[28] = expand2b(Qb, M, H, 28); \
qt[29] = expand2b(Qb, M, H, 29); \
qt[30] = expand2b(Qb, M, H, 30); \
qt[31] = expand2b(Qb, M, H, 31); \
} while (0)
#define MAKE_Qb do { \
MAKE_Qab; \
MAKE_Qbb; \
} while (0)
#define Qb(j) (qt[j])
#define FOLD(type, mkQ, tt, rol, mf, qf, dhf) do { \
type qt[32], xl, xh; \
mkQ; \
xl = qf(16) ^ qf(17) ^ qf(18) ^ qf(19) \
^ qf(20) ^ qf(21) ^ qf(22) ^ qf(23); \
xh = xl ^ qf(24) ^ qf(25) ^ qf(26) ^ qf(27) \
^ qf(28) ^ qf(29) ^ qf(30) ^ qf(31); \
dhf( 0) = tt(((xh << 5) ^ (qf(16) >> 5) ^ mf( 0)) \
+ (xl ^ qf(24) ^ qf( 0))); \
dhf( 1) = tt(((xh >> 7) ^ (qf(17) << 8) ^ mf( 1)) \
+ (xl ^ qf(25) ^ qf( 1))); \
dhf( 2) = tt(((xh >> 5) ^ (qf(18) << 5) ^ mf( 2)) \
+ (xl ^ qf(26) ^ qf( 2))); \
dhf( 3) = tt(((xh >> 1) ^ (qf(19) << 5) ^ mf( 3)) \
+ (xl ^ qf(27) ^ qf( 3))); \
dhf( 4) = tt(((xh >> 3) ^ (qf(20) << 0) ^ mf( 4)) \
+ (xl ^ qf(28) ^ qf( 4))); \
dhf( 5) = tt(((xh << 6) ^ (qf(21) >> 6) ^ mf( 5)) \
+ (xl ^ qf(29) ^ qf( 5))); \
dhf( 6) = tt(((xh >> 4) ^ (qf(22) << 6) ^ mf( 6)) \
+ (xl ^ qf(30) ^ qf( 6))); \
dhf( 7) = tt(((xh >> 11) ^ (qf(23) << 2) ^ mf( 7)) \
+ (xl ^ qf(31) ^ qf( 7))); \
dhf( 8) = tt(rol(dhf(4), 9) + (xh ^ qf(24) ^ mf( 8)) \
+ ((xl << 8) ^ qf(23) ^ qf( 8))); \
dhf( 9) = tt(rol(dhf(5), 10) + (xh ^ qf(25) ^ mf( 9)) \
+ ((xl >> 6) ^ qf(16) ^ qf( 9))); \
dhf(10) = tt(rol(dhf(6), 11) + (xh ^ qf(26) ^ mf(10)) \
+ ((xl << 6) ^ qf(17) ^ qf(10))); \
dhf(11) = tt(rol(dhf(7), 12) + (xh ^ qf(27) ^ mf(11)) \
+ ((xl << 4) ^ qf(18) ^ qf(11))); \
dhf(12) = tt(rol(dhf(0), 13) + (xh ^ qf(28) ^ mf(12)) \
+ ((xl >> 3) ^ qf(19) ^ qf(12))); \
dhf(13) = tt(rol(dhf(1), 14) + (xh ^ qf(29) ^ mf(13)) \
+ ((xl >> 4) ^ qf(20) ^ qf(13))); \
dhf(14) = tt(rol(dhf(2), 15) + (xh ^ qf(30) ^ mf(14)) \
+ ((xl >> 7) ^ qf(21) ^ qf(14))); \
dhf(15) = tt(rol(dhf(3), 16) + (xh ^ qf(31) ^ mf(15)) \
+ ((xl >> 2) ^ qf(22) ^ qf(15))); \
} while (0)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
#define FOLDb FOLD(sph_u64, MAKE_Qb, SPH_T64, SPH_ROTL64, M, Qb, dH)
#define DECL_BMW \
sph_u64 bmwH[16]; \
/* load initial constants */
#define BMW_I \
do { \
memcpy(bmwH, bmwIV512, sizeof bmwH); \
hashptr = 0; \
hashctA = 0; \
} while (0)
/* load hash for loop */
#define BMW_U \
do { \
const void *data = hash; \
size_t len = 64; \
unsigned char *buf; \
\
hashctA += (sph_u64)len << 3; \
buf = hashbuf; \
memcpy(buf, data, 64); \
hashptr = 64; \
} while (0)
/* bmw512 hash loaded */
/* hash = blake512(loaded) */
#define BMW_C \
do { \
void *dst = hash; \
size_t out_size_w64 = 8; \
unsigned char *data; \
sph_u64 *dh; \
unsigned char *out; \
size_t ptr, u, v; \
unsigned z; \
sph_u64 h1[16], h2[16], *h; \
data = hashbuf; \
ptr = hashptr; \
z = 0x80 >> 0; \
data[ptr ++] = ((0 & -z) | z) & 0xFF; \
memset(data + ptr, 0, (sizeof(char)*128) - 8 - ptr); \
sph_enc64le_aligned(data + (sizeof(char)*128) - 8, \
SPH_T64(hashctA + 0)); \
/* for break loop */ \
/* one copy of inline FOLD */ \
/* FOLD uses, */ \
/* uint64 *h, data */ \
/* uint64 dh, state */ \
h = bmwH; \
dh = h2; \
for (;;) { \
FOLDb; \
/* dh gets changed for 2nd run */ \
if (dh == h1) break; \
for (u = 0; u < 16; u ++) \
sph_enc64le_aligned(data + 8 * u, h2[u]); \
dh = h1; \
h = (sph_u64*)final_b; \
} \
/* end wrapped for break loop */ \
out = dst; \
for (u = 0, v = 16 - out_size_w64; u < out_size_w64; u ++, v ++) \
sph_enc64le(out + 8 * u, h1[v]); \
} while (0)
/*
static void
compress_big(const unsigned char *data, const sph_u64 h[16], sph_u64 dh[16])
{
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#define H(x) (h[x])
#define dH(x) (dh[x])
FOLDb;
#undef M
#undef H
#undef dH
}
*/
static const sph_u64 final_b[16] = {
SPH_C64(0xaaaaaaaaaaaaaaa0), SPH_C64(0xaaaaaaaaaaaaaaa1),
SPH_C64(0xaaaaaaaaaaaaaaa2), SPH_C64(0xaaaaaaaaaaaaaaa3),
SPH_C64(0xaaaaaaaaaaaaaaa4), SPH_C64(0xaaaaaaaaaaaaaaa5),
SPH_C64(0xaaaaaaaaaaaaaaa6), SPH_C64(0xaaaaaaaaaaaaaaa7),
SPH_C64(0xaaaaaaaaaaaaaaa8), SPH_C64(0xaaaaaaaaaaaaaaa9),
SPH_C64(0xaaaaaaaaaaaaaaaa), SPH_C64(0xaaaaaaaaaaaaaaab),
SPH_C64(0xaaaaaaaaaaaaaaac), SPH_C64(0xaaaaaaaaaaaaaaad),
SPH_C64(0xaaaaaaaaaaaaaaae), SPH_C64(0xaaaaaaaaaaaaaaaf)
};
#ifdef __cplusplus
}
#endif

View File

@@ -1,61 +0,0 @@
/* $Id: sph_bmw.h 216 2010-06-08 09:46:57Z tp $ */
/**
* BMW interface. BMW (aka "Blue Midnight Wish") is a family of
* functions which differ by their output size; this implementation
* defines BMW for output sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_bmw.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_BMW_H__
#define SPH_BMW_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "sph_types.h"
#define SPH_SIZE_bmw512 512
typedef struct {
#ifndef DOXYGEN_IGNORE
sph_u64 bmwH[16];
#endif
} sph_bmw_big_context;
typedef sph_bmw_big_context sph_bmw512_context;
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -168,6 +168,66 @@ int cube_4way_close( cube_4way_context *sp, void *output )
return 0;
}
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size )
{
__m512i *h = (__m512i*)sp->h;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = 32/16;
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
h[ 0] = m512_const1_128( iv[0] );
h[ 1] = m512_const1_128( iv[1] );
h[ 2] = m512_const1_128( iv[2] );
h[ 3] = m512_const1_128( iv[3] );
h[ 4] = m512_const1_128( iv[4] );
h[ 5] = m512_const1_128( iv[5] );
h[ 6] = m512_const1_128( iv[6] );
h[ 7] = m512_const1_128( iv[7] );
const int len = size >> 4;
const __m512i *in = (__m512i*)data;
__m512i *hash = (__m512i*)output;
int i;
for ( i = 0; i < len; i++ )
{
sp->h[ sp->pos ] = _mm512_xor_si512( sp->h[ sp->pos ], in[i] );
sp->pos++;
if ( sp->pos == sp->blocksize )
{
transform_4way( sp );
sp->pos = 0;
}
}
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm512_xor_si512( sp->h[ sp->pos ],
m512_const2_64( 0, 0x0000000000000080 ) );
transform_4way( sp );
sp->h[7] = _mm512_xor_si512( sp->h[7],
m512_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i )
transform_4way( sp );
memcpy( hash, sp->h, sp->hashlen<<6);
return 0;
}
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size )
{
@@ -376,4 +436,62 @@ int cube_2way_update_close( cube_2way_context *sp, void *output,
return 0;
}
int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
const void *data, size_t size )
{
__m256i *h = (__m256i*)sp->h;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = 32/16;
sp->rounds = 16;
sp->pos = 0;
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
h[ 0] = m256_const1_128( iv[0] );
h[ 1] = m256_const1_128( iv[1] );
h[ 2] = m256_const1_128( iv[2] );
h[ 3] = m256_const1_128( iv[3] );
h[ 4] = m256_const1_128( iv[4] );
h[ 5] = m256_const1_128( iv[5] );
h[ 6] = m256_const1_128( iv[6] );
h[ 7] = m256_const1_128( iv[7] );
const int len = size >> 4;
const __m256i *in = (__m256i*)data;
__m256i *hash = (__m256i*)output;
int i;
for ( i = 0; i < len; i++ )
{
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ], in[i] );
sp->pos++;
if ( sp->pos == sp->blocksize )
{
transform_2way( sp );
sp->pos = 0;
}
}
// pos is zero for 64 byte data, 1 for 80 byte data.
sp->h[ sp->pos ] = _mm256_xor_si256( sp->h[ sp->pos ],
m256_const2_64( 0, 0x0000000000000080 ) );
transform_2way( sp );
sp->h[7] = _mm256_xor_si256( sp->h[7],
m256_const2_64( 0x0000000100000000, 0 ) );
for ( i = 0; i < 10; ++i ) transform_2way( sp );
memcpy( hash, sp->h, sp->hashlen<<5 );
return 0;
}
#endif

View File

@@ -21,15 +21,12 @@ typedef struct _cube_4way_context cube_4way_context;
int cube_4way_init( cube_4way_context* sp, int hashbitlen, int rounds,
int blockbytes );
// reinitialize context with same parameters, much faster.
int cube_4way_reinit( cube_4way_context *sp );
int cube_4way_update( cube_4way_context *sp, const void *data, size_t size );
int cube_4way_close( cube_4way_context *sp, void *output );
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size );
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#endif
@@ -48,15 +45,12 @@ typedef struct _cube_2way_context cube_2way_context;
int cube_2way_init( cube_2way_context* sp, int hashbitlen, int rounds,
int blockbytes );
// reinitialize context with same parameters, much faster.
int cube_2way_reinit( cube_2way_context *sp );
int cube_2way_update( cube_2way_context *sp, const void *data, size_t size );
int cube_2way_close( cube_2way_context *sp, void *output );
int cube_2way_update_close( cube_2way_context *sp, void *output,
const void *data, size_t size );
int cube_2way_full( cube_2way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#endif

View File

@@ -21,7 +21,27 @@ static void transform( cubehashParam *sp )
int r;
const int rounds = sp->rounds;
#ifdef __AVX2__
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
register __m512i x0, x1;
x0 = _mm512_load_si512( (__m512i*)sp->x );
x1 = _mm512_load_si512( (__m512i*)sp->x + 1 );
for ( r = 0; r < rounds; ++r )
{
x1 = _mm512_add_epi32( x0, x1 );
x0 = _mm512_xor_si512( mm512_rol_32( mm512_swap_256( x0 ), 7 ), x1 );
x1 = _mm512_add_epi32( x0, mm512_swap128_64( x1 ) );
x0 = _mm512_xor_si512( mm512_rol_32(
mm512_swap256_128( x0 ), 11 ), x1 );
x1 = mm512_swap64_32( x1 );
}
_mm512_store_si512( (__m512i*)sp->x, x0 );
_mm512_store_si512( (__m512i*)sp->x + 1, x1 );
#elif defined(__AVX2__)
register __m256i x0, x1, x2, x3, y0, y1;

View File

@@ -7,7 +7,6 @@
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _ECHO_VPERM_ must be defined if compiling with ../main.c
* - define NO_AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
@@ -21,13 +20,7 @@
#include "hash_api.h"
//#include "vperm.h"
#include <immintrin.h>
/*
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
*/
#include "simd-utils.h"
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
@@ -179,53 +172,53 @@ void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBloc
for(b = 0; b < uBlockCount; b++)
{
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
// load message
for(j = ctx->uHashSize / 256; j < 4; j++)
{
for(i = 0; i < 4; i++)
// load message
for(j = ctx->uHashSize / 256; j < 4; j++)
{
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
for(i = 0; i < 4; i++)
{
_state[i][j] = _mm_load_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
}
}
}
// save state
SAVESTATE(_statebackup, _state);
// save state
SAVESTATE(_statebackup, _state);
k1 = ctx->k;
k1 = ctx->k;
for(r = 0; r < ctx->uRounds / 2; r++)
{
ECHO_ROUND_UNROLL2;
}
for(r = 0; r < ctx->uRounds / 2; r++)
{
ECHO_ROUND_UNROLL2;
}
if(ctx->uHashSize == 256)
{
for(i = 0; i < 4; i++)
if(ctx->uHashSize == 256)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
}
}
}
else
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
}
}
pmsg += ctx->uBlockLength;
else
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
}
}
pmsg += ctx->uBlockLength;
}
SAVESTATE(ctx->state, _state);
@@ -390,13 +383,13 @@ HashReturn final_echo(hashState_echo *state, BitSequence *hashval)
}
// Store the hash value
_mm_storeu_si128((__m128i*)hashval + 0, state->state[0][0]);
_mm_storeu_si128((__m128i*)hashval + 1, state->state[1][0]);
_mm_store_si128((__m128i*)hashval + 0, state->state[0][0]);
_mm_store_si128((__m128i*)hashval + 1, state->state[1][0]);
if(state->uHashSize == 512)
{
_mm_storeu_si128((__m128i*)hashval + 2, state->state[2][0]);
_mm_storeu_si128((__m128i*)hashval + 3, state->state[3][0]);
_mm_store_si128((__m128i*)hashval + 2, state->state[2][0]);
_mm_store_si128((__m128i*)hashval + 3, state->state[3][0]);
}
return SUCCESS;
@@ -513,18 +506,177 @@ HashReturn update_final_echo( hashState_echo *state, BitSequence *hashval,
}
// Store the hash value
_mm_storeu_si128( (__m128i*)hashval + 0, state->state[0][0] );
_mm_storeu_si128( (__m128i*)hashval + 1, state->state[1][0] );
_mm_store_si128( (__m128i*)hashval + 0, state->state[0][0] );
_mm_store_si128( (__m128i*)hashval + 1, state->state[1][0] );
if( state->uHashSize == 512 )
{
_mm_storeu_si128( (__m128i*)hashval + 2, state->state[2][0] );
_mm_storeu_si128( (__m128i*)hashval + 3, state->state[3][0] );
_mm_store_si128( (__m128i*)hashval + 2, state->state[2][0] );
_mm_store_si128( (__m128i*)hashval + 3, state->state[3][0] );
}
return SUCCESS;
}
HashReturn echo_full( hashState_echo *state, BitSequence *hashval,
int nHashSize, const BitSequence *data, DataLength datalen )
{
int i, j;
state->k = m128_zero;
state->processed_bits = 0;
state->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
state->uHashSize = 256;
state->uBlockLength = 192;
state->uRounds = 8;
state->hashsize = m128_const_64( 0, 0x100 );
state->const1536 = m128_const_64( 0, 0x600 );
break;
case 512:
state->uHashSize = 512;
state->uBlockLength = 128;
state->uRounds = 10;
state->hashsize = m128_const_64( 0, 0x200 );
state->const1536 = m128_const_64( 0, 0x400 );
break;
default:
return BAD_HASHBITLEN;
}
for(i = 0; i < 4; i++)
for(j = 0; j < nHashSize / 256; j++)
state->state[i][j] = state->hashsize;
for(i = 0; i < 4; i++)
for(j = nHashSize / 256; j < 4; j++)
state->state[i][j] = m128_zero;
unsigned int uBlockCount, uRemainingBytes;
if( (state->uBufferBytes + datalen) >= state->uBlockLength )
{
if( state->uBufferBytes != 0 )
{
// Fill the buffer
memcpy( state->buffer + state->uBufferBytes,
(void*)data, state->uBlockLength - state->uBufferBytes );
// Process buffer
Compress( state, state->buffer, 1 );
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
datalen -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = datalen / state->uBlockLength;
uRemainingBytes = datalen % state->uBlockLength;
if( uBlockCount > 0 )
{
Compress( state, data, uBlockCount );
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if( uRemainingBytes > 0 )
memcpy(state->buffer, (void*)data, uRemainingBytes);
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy( state->buffer + state->uBufferBytes, (void*)data, datalen );
state->uBufferBytes += datalen;
}
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32( 0, 0, 0, state->uBufferBytes * 8 );
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
if( (state->uBlockLength - state->uBufferBytes) >= 18 )
{
// Pad with zeros
memset( state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18) );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) = state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Last block contains message bits?
if( state->uBufferBytes == 1 )
{
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
else
{
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
// Compress
Compress( state, state->buffer, 1 );
}
else
{
// Fill with zero and compress
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - state->uBufferBytes );
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1 );
// Last block
memset( state->buffer, 0, state->uBlockLength - 18 );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) =
state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Compress the last block
state->k = _mm_xor_si128( state->k, state->k );
state->k = _mm_sub_epi64( state->k, state->const1536 );
Compress( state, state->buffer, 1) ;
}
// Store the hash value
_mm_store_si128( (__m128i*)hashval + 0, state->state[0][0] );
_mm_store_si128( (__m128i*)hashval + 1, state->state[1][0] );
if( state->uHashSize == 512 )
{
_mm_store_si128( (__m128i*)hashval + 2, state->state[2][0] );
_mm_store_si128( (__m128i*)hashval + 3, state->state[3][0] );
}
return SUCCESS;
}
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval)
{

View File

@@ -15,7 +15,7 @@
#ifndef HASH_API_H
#define HASH_API_H
#ifndef NO_AES_NI
#ifdef __AES__
#define HASH_IMPL_STR "ECHO-aesni"
#else
#define HASH_IMPL_STR "ECHO-vperm"
@@ -55,6 +55,8 @@ HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databit
HashReturn update_final_echo( hashState_echo *state, BitSequence *hashval,
const BitSequence *data, DataLength databitlen );
HashReturn echo_full( hashState_echo *state, BitSequence *hashval,
int nHashSize, const BitSequence *data, DataLength databitlen );
#endif // HASH_API_H

View File

@@ -1,78 +1,37 @@
#if defined(__AVX512VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
//#if 0
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#include "simd-utils.h"
#include "echo-hash-4way.h"
/*
#include <memory.h>
#include "miner.h"
#include "hash_api.h"
//#include "vperm.h"
#include <immintrin.h>
static const unsigned int mul2ipt[] __attribute__ ((aligned (64))) =
{
0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57,
0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234
};
*/
/*
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
*/
// not used
/*
const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
const unsigned int _k_opt[] = {0xD6B66000, 0xFF9F4929, 0xDEBE6808, 0xF7974121, 0x50BCEC00, 0x01EDBD51, 0xB05C0CE0, 0xE10D5DB1};
const unsigned int _k_inv[] = {0x0D080180, 0x0E05060F, 0x0A0B0C02, 0x04070309, 0x0F0B0780, 0x01040A06, 0x02050809, 0x030D0E0C};
const unsigned int _k_sb1[] = {0xCB503E00, 0xB19BE18F, 0x142AF544, 0xA5DF7A6E, 0xFAE22300, 0x3618D415, 0x0D2ED9EF, 0x3BF7CCC1};
const unsigned int _k_sb2[] = {0x0B712400, 0xE27A93C6, 0xBC982FCD, 0x5EB7E955, 0x0AE12900, 0x69EB8840, 0xAB82234A, 0xC2A163C8};
const unsigned int _k_sb3[] = {0xC0211A00, 0x53E17249, 0xA8B2DA89, 0xFB68933B, 0xF0030A00, 0x5FF35C55, 0xA6ACFAA5, 0xF956AF09};
const unsigned int _k_sb4[] = {0x3FD64100, 0xE1E937A0, 0x49087E9F, 0xA876DE97, 0xC393EA00, 0x3D50AED7, 0x876D2914, 0xBA44FE79};
const unsigned int _k_sb5[] = {0xF4867F00, 0x5072D62F, 0x5D228BDB, 0x0DA9A4F9, 0x3971C900, 0x0B487AC2, 0x8A43F0FB, 0x81B332B8};
const unsigned int _k_sb7[] = {0xFFF75B00, 0xB20845E9, 0xE1BAA416, 0x531E4DAC, 0x3390E000, 0x62A3F282, 0x21C1D3B1, 0x43125170};
const unsigned int _k_sbo[] = {0x6FBDC700, 0xD0D26D17, 0xC502A878, 0x15AABF7A, 0x5FBB6A00, 0xCFE474A5, 0x412B35FA, 0x8E1E90D1};
const unsigned int _k_h63[] = {0x63636363, 0x63636363, 0x63636363, 0x63636363};
const unsigned int _k_hc6[] = {0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6};
const unsigned int _k_h5b[] = {0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b};
const unsigned int _k_h4e[] = {0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e};
const unsigned int _k_h0e[] = {0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e};
const unsigned int _k_h15[] = {0x15151515, 0x15151515, 0x15151515, 0x15151515};
const unsigned int _k_aesmix1[] = {0x0f0a0500, 0x030e0904, 0x07020d08, 0x0b06010c};
const unsigned int _k_aesmix2[] = {0x000f0a05, 0x04030e09, 0x0807020d, 0x0c0b0601};
const unsigned int _k_aesmix3[] = {0x05000f0a, 0x0904030e, 0x0d080702, 0x010c0b06};
const unsigned int _k_aesmix4[] = {0x0a05000f, 0x0e090403, 0x020d0807, 0x06010c0b};
*/
/*
MYALIGN const unsigned int const1[] = {0x00000001, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2mask[] = {0x00001b00, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int lsbmask[] = {0x01010101, 0x01010101, 0x01010101, 0x01010101};
MYALIGN const unsigned int invshiftrows[] = {0x070a0d00, 0x0b0e0104, 0x0f020508, 0x0306090c};
MYALIGN const unsigned int zero[] = {0x00000000, 0x00000000, 0x00000000, 0x00000000};
*/
MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57, 0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234};
// do these need to be reversed?
#define mul2mask \
m512_const4_32( 0x00001b00, 0, 0, 0 )
_mm512_set4_epi32( 0, 0, 0, 0x00001b00 )
// _mm512_set4_epi32( 0x00001b00, 0, 0, 0 )
#define lsbmask m512_const1_32( 0x01010101 )
#define ECHO_SUBBYTES( state, i, j ) \
state[i][j] = _mm512_aesenc_epi128( state[i][j], k1 ); \
state[i][j] = _mm512_aesenc_epi128( state[i][j], m512_zero ); \
k1 = _mm512_add_epi32( k1, m512_one_32 )
k1 = _mm512_add_epi32( k1, m512_one_128 );
#define ECHO_MIXBYTES( state1, state2, j, t1, t2, s2 ) do \
{ \
const int j1 = ( j+1 ) & 3; \
const int j2 = ( j+2 ) & 3; \
const int j3 = ( j+3 ) & 3; \
const int j1 = ( (j)+1 ) & 3; \
const int j2 = ( (j)+2 ) & 3; \
const int j3 = ( (j)+3 ) & 3; \
s2 = _mm512_add_epi8( state1[ 0 ] [j ], state1[ 0 ][ j ] ); \
t1 = _mm512_srli_epi16( state1[ 0 ][ j ], 7 ); \
t1 = _mm512_and_si128( t1, lsbmask );\
t1 = _mm512_and_si512( t1, lsbmask );\
t2 = _mm512_shuffle_epi8( mul2mask, t1 ); \
s2 = _mm512_xor_si512( s2, t2 ); \
state2[ 0 ] [j ] = s2; \
@@ -97,7 +56,7 @@ MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x2
state2[ 0 ][ j ] = _mm512_xor_si512( state2[ 0 ][ j ], state1[ 2 ][ j2 ] ); \
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], \
_mm512_xor_si512( s2, state1[ 2 ][ j2 ] ) ); \
state2[ 2 ][ j ] = _mm512_xor_si512128( state2[ 2 ][ j ], s2 ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], s2 ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3][ j ], state1[ 2 ][ j2 ] ); \
s2 = _mm512_add_epi8( state1[ 3 ][ j3 ], state1[ 3 ][ j3 ] ); \
t1 = _mm512_srli_epi16( state1[ 3 ][ j3 ], 7 ); \
@@ -108,12 +67,12 @@ MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x2
state2[ 1 ][ j ] = _mm512_xor_si512( state2[ 1 ][ j ], state1[ 3 ][ j3 ] ); \
state2[ 2 ][ j ] = _mm512_xor_si512( state2[ 2 ][ j ], \
_mm512_xor_si512( s2, state1[ 3 ][ j3] ) ); \
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], s2 )
state2[ 3 ][ j ] = _mm512_xor_si512( state2[ 3 ][ j ], s2 ); \
} while(0)
#define ECHO_ROUND_UNROLL2 \
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
@@ -153,8 +112,6 @@ MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x2
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE(dst, src)\
dst[0][0] = src[0][0];\
dst[0][1] = src[0][1];\
@@ -173,33 +130,44 @@ MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x2
dst[3][2] = src[3][2];\
dst[3][3] = src[3][3]
void echo_4way_compress( echo_4way_context *ctx, const unsigned char *pmsg,
// blockcount always 1
void echo_4way_compress( echo_4way_context *ctx, const __m512i *pmsg,
unsigned int uBlockCount )
{
unsigned int r, b, i, j;
__m512i t1, t2, s2, k1;
__m512i _state[4][4], _state2[4][4], _statebackup[4][4];
// unroll
for ( i = 0; i < 4; i++ )
for ( j = 0; j < ctx->uHashSize / 256; j++ )
_state[ i ][ j ] = ctx->state[ i ][ j ];
_state[ 0 ][ 0 ] = ctx->state[ 0 ][ 0 ];
_state[ 0 ][ 1 ] = ctx->state[ 0 ][ 1 ];
_state[ 0 ][ 2 ] = ctx->state[ 0 ][ 2 ];
_state[ 0 ][ 3 ] = ctx->state[ 0 ][ 3 ];
_state[ 1 ][ 0 ] = ctx->state[ 1 ][ 0 ];
_state[ 1 ][ 1 ] = ctx->state[ 1 ][ 1 ];
_state[ 1 ][ 2 ] = ctx->state[ 1 ][ 2 ];
_state[ 1 ][ 3 ] = ctx->state[ 1 ][ 3 ];
_state[ 2 ][ 0 ] = ctx->state[ 2 ][ 0 ];
_state[ 2 ][ 1 ] = ctx->state[ 2 ][ 1 ];
_state[ 2 ][ 2 ] = ctx->state[ 2 ][ 2 ];
_state[ 2 ][ 3 ] = ctx->state[ 2 ][ 3 ];
_state[ 3 ][ 0 ] = ctx->state[ 3 ][ 0 ];
_state[ 3 ][ 1 ] = ctx->state[ 3 ][ 1 ];
_state[ 3 ][ 2 ] = ctx->state[ 3 ][ 2 ];
_state[ 3 ][ 3 ] = ctx->state[ 3 ][ 3 ];
for ( b = 0; b < uBlockCount; b++ )
{
ctx->k = _mm512_add_epi64( ctx->k, ctx->const1536 );
// load message, make aligned, remove loadu
for( j = ctx->uHashSize / 256; j < 4; j++ )
{
for ( i = 0; i < 4; i++ )
{
_state[ i ][ j ] = _mm512_loadu_si512(
(__m512i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i );
_state[ i ][ j ] = _mm512_load_si512(
pmsg + 4 * (j - (ctx->uHashSize / 256)) + i );
}
}
// save state
SAVESTATE( _statebackup, _state );
@@ -254,8 +222,6 @@ void echo_4way_compress( echo_4way_context *ctx, const unsigned char *pmsg,
}
int echo_4way_init( echo_4way_context *ctx, int nHashSize )
{
int i, j;
@@ -270,23 +236,22 @@ int echo_4way_init( echo_4way_context *ctx, int nHashSize )
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm512_const4_32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_const4_32( 0, 0, 0, 0x600 );
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm512_const4_32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_const4_32( 0, 0, 0, 0x400);
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x400);
break;
default:
return BAD_HASHBITLEN;
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
@@ -295,265 +260,145 @@ int echo_4way_init( echo_4way_context *ctx, int nHashSize )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m512_zero;
return SUCCESS;
}
int echo_4way_update( echo_4way_context *state, const BitSequence *data, DataLength databitlen )
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if ( ( state->uBufferBytes + uByteLength ) >= state->uBlockLength )
{
if ( state->uBufferBytes != 0 )
{
// Fill the buffer
memcpy( state->buffer + state->uBufferBytes,
(void*)data, state->uBlockLength - state->uBufferBytes );
// Process buffer
echo_4way_compress( state, state->buffer, 1 );
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if ( uBlockCount > 0 )
{
echo_4way_compress( state, data, uBlockCount );
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if ( uRemainingBytes > 0 )
{
memcpy( state->buffer, (void*)data, uRemainingBytes );
}
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy( state->buffer + state->uBufferBytes, (void*)data, uByteLength );
state->uBufferBytes += uByteLength;
}
return 0;
}
echo_4way_close( echo_4way_context *state, BitSequence *hashval )
int echo_4way_update_close( echo_4way_context *state, void *hashval,
const void *data, int databitlen )
{
__m512i remainingbits;
// bytelen is either 32 (maybe), 64 or 80 or 128!
// all are less than full block.
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
int vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
const int vblen = state->uBlockLength / 16; // 16 bytes per lane
__m512i remainingbits;
remainingbits = _mm512_set4_epi32( 0, 0, 0, state->uBufferBytes * 8 );
// Pad with 0x80
state->buffer[ state->uBufferBytes++ ] = 0x80;
// Enough buffer space for padding in this block?
if ( ( state->uBlockLength - state->uBufferBytes ) >= 18)
{
// Pad with zeros
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - ( state->uBufferBytes + 18 ) );
// Hash size
*( (unsigned short*)( state->buffer + state->uBlockLength - 18 ) )
= state->uHashSize;
// Processed bits
*( ( DataLength*)( state->buffer + state->uBlockLength - 16 ) )
= state->processed_bits;
*( ( DataLength*)( state->buffer + state->uBlockLength - 8 ) ) = 0;
// Last block contains message bits?
if ( state->uBufferBytes == 1 )
{
state->k = _mm512_xor_si512( state->k, state->k );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
}
else
{
state->k = _mm512_add_epi64( state->k, remainingbits );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
}
// Compress
echo_4way_compress( state, state->buffer, 1 );
}
else
{
// Fill with zero and compress
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - state->uBufferBytes );
state->k = _mm512_add_epi64( state->k, remainingbits );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
echo_4way_compress( state, state->buffer, 1 );
// Last block
memset( state->buffer, 0, state->uBlockLength - 18 );
// Hash size
*( (unsigned short*)( state->buffer + state->uBlockLength - 18 ) )
= state->uHashSize;
// Processed bits
*( (DataLength*)( state->buffer + state->uBlockLength - 16 ) )
= state->processed_bits;
*( (DataLength*)( state->buffer + state->uBlockLength - 8 ) ) = 0;
// Compress the last block
state->k = _mm512_xor_si512(state->k, state->k);
state->k = _mm512_sub_epi64(state->k, state->const1536);
echo_4way_compress(state, state->buffer, 1);
}
// Store the hash value
_mm512_storeu_si512( (__m512i*)hashval + 0, state->state[ 0][ 0 ]);
_mm512_storeu_si512( (__m512i*)hashval + 1, state->state[ 1][ 0 ]);
if ( state->uHashSize == 512 )
{
_mm512_storeu_si512((__m512i*)hashval + 2, state->state[ 2 ][ 0 ]);
_mm512_storeu_si512((__m512i*)hashval + 3, state->state[ 3 ][ 0 ]);
}
return 0;
}
int echo_4way_update_close( echo_4way_context *state, BitSequence *hashval,
const BitSequence *data, DataLength databitlen )
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if ( (state->uBufferBytes + uByteLength) >= state->uBlockLength )
{
if ( state->uBufferBytes != 0 )
{
// Fill the buffer
memcpy( state->buffer + state->uBufferBytes,
(void*)data, state->uBlockLength - state->uBufferBytes );
// Process buffer
echo_4way_compress( state, state->buffer, 1 );
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if ( uBlockCount > 0 )
{
echo_4way_compress( state, data, uBlockCount );
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if ( uRemainingBytes > 0 )
memcpy(state->buffer, (void*)data, uRemainingBytes);
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy( state->buffer + state->uBufferBytes, (void*)data, uByteLength );
state->uBufferBytes += uByteLength;
}
__m512i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm512_set4_epi32( 0, 0, 0, state->uBufferBytes * 8 );
// Pad with 0x80
state->buffer[ state->uBufferBytes++ ] = 0x80;
// Enough buffer space for padding in this block?
if ( (state->uBlockLength - state->uBufferBytes) >= 18 )
if ( databitlen == 1024 )
{
// Pad with zeros
memset( state->buffer + state->uBufferBytes, 0,i
state->uBlockLength - (state->uBufferBytes + 18) );
echo_4way_compress( state, data, 1 );
state->processed_bits = 1024;
remainingbits = m512_const2_64( 0, -1024 );
vlen = 0;
}
else
{
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_512( state->buffer, data, vlen );
state->processed_bits += (unsigned int)( databitlen );
remainingbits = _mm512_set4_epi32( 0, 0, 0, databitlen );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) )
= state->uHashSize;
}
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
state->buffer[ vlen ] = _mm512_set4_epi32( 0, 0, 0, 0x80 );
memset_zero_512( state->buffer + vlen + 1, vblen - vlen - 2 );
state->buffer[ vblen-2 ] =
_mm512_set4_epi32( (uint32_t)state->uHashSize << 16, 0, 0, 0 );
state->buffer[ vblen-1 ] =
_mm512_set4_epi64( 0, state->processed_bits,
0, state->processed_bits );
// Last block contains message bits?
if( state->uBufferBytes == 1 )
{
state->k = _mm512_xor_si512( state->k, state->k );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
}
else
{
state->k = _mm_add_epi64( state->k, remainingbits );
state->k = _mm_sub_epi64( state->k, state->const1536 );
}
state->k = _mm512_add_epi64( state->k, remainingbits );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
// Compress
echo_4way_compress( state, state->buffer, 1 );
}
else
{
// Fill with zero and compress
memset( state->buffer + state->uBufferBytes, 0,
state->uBlockLength - state->uBufferBytes );
state->k = _mm512_add_epi64( state->k, remainingbits );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
echo_4way_compress( state, state->buffer, 1 );
echo_4way_compress( state, state->buffer, 1 );
// Last block
memset( state->buffer, 0, state->uBlockLength - 18 );
_mm512_store_si512( (__m512i*)hashval + 0, state->state[ 0 ][ 0] );
_mm512_store_si512( (__m512i*)hashval + 1, state->state[ 1 ][ 0] );
// Hash size
*( (unsigned short*)(state->buffer + state->uBlockLength - 18) ) =
state->uHashSize;
// Processed bits
*( (DataLength*)(state->buffer + state->uBlockLength - 16) ) =
state->processed_bits;
*( (DataLength*)(state->buffer + state->uBlockLength - 8) ) = 0;
// Compress the last block
state->k = _mm512_xor_si512( state->k, state->k );
state->k = _mm512_sub_epi64( state->k, state->const1536 );
echo_4way_compress( state, state->buffer, 1) ;
}
// Store the hash value
_mm512_storeu_si512( (__m512i*)hashval + 0, state->state[ 0 ][ 0] );
_mm512_storeu_si512( (__m512i*)hashval + 1, state->state[ 1 ][ 0] );
if ( state->uHashSize == 512 )
{
_mm512_storeu_si512( (__m512i*)hashval + 2, state->state[ 2 ][ 0 ] );
_mm512_storeu_si512( (__m512i*)hashval + 3, state->state[ 3 ][ 0 ] );
}
return 0;
if ( state->uHashSize == 512 )
{
_mm512_store_si512( (__m512i*)hashval + 2, state->state[ 2 ][ 0 ] );
_mm512_store_si512( (__m512i*)hashval + 3, state->state[ 3 ][ 0 ] );
}
return 0;
}
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen )
{
int i, j;
int databitlen = datalen * 8;
ctx->k = m512_zero;
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch( nHashSize )
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x100 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x600 );
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm512_set4_epi32( 0, 0, 0, 0x200 );
ctx->const1536 = _mm512_set4_epi32( 0, 0, 0, 0x400);
break;
default:
return 1;
}
for( i = 0; i < 4; i++ )
for( j = 0; j < nHashSize / 256; j++ )
ctx->state[ i ][ j ] = ctx->hashsize;
for( i = 0; i < 4; i++ )
for( j = nHashSize / 256; j < 4; j++ )
ctx->state[ i ][ j ] = m512_zero;
// bytelen is either 32 (maybe), 64 or 80 or 128!
// all are less than full block.
int vlen = datalen / 32;
const int vblen = ctx->uBlockLength / 16; // 16 bytes per lane
__m512i remainingbits;
if ( databitlen == 1024 )
{
echo_4way_compress( ctx, data, 1 );
ctx->processed_bits = 1024;
remainingbits = m512_const2_64( 0, -1024 );
vlen = 0;
}
else
{
vlen = databitlen / 128; // * 4 lanes / 128 bits per lane
memcpy_512( ctx->buffer, data, vlen );
ctx->processed_bits += (unsigned int)( databitlen );
remainingbits = _mm512_set4_epi32( 0, 0, 0, databitlen );
}
ctx->buffer[ vlen ] = _mm512_set4_epi32( 0, 0, 0, 0x80 );
memset_zero_512( ctx->buffer + vlen + 1, vblen - vlen - 2 );
ctx->buffer[ vblen-2 ] =
_mm512_set4_epi32( (uint32_t)ctx->uHashSize << 16, 0, 0, 0 );
ctx->buffer[ vblen-1 ] =
_mm512_set4_epi64( 0, ctx->processed_bits,
0, ctx->processed_bits );
ctx->k = _mm512_add_epi64( ctx->k, remainingbits );
ctx->k = _mm512_sub_epi64( ctx->k, ctx->const1536 );
echo_4way_compress( ctx, ctx->buffer, 1 );
_mm512_store_si512( (__m512i*)hashval + 0, ctx->state[ 0 ][ 0] );
_mm512_store_si512( (__m512i*)hashval + 1, ctx->state[ 1 ][ 0] );
if ( ctx->uHashSize == 512 )
{
_mm512_store_si512( (__m512i*)hashval + 2, ctx->state[ 2 ][ 0 ] );
_mm512_store_si512( (__m512i*)hashval + 3, ctx->state[ 3 ][ 0 ] );
}
return 0;
}
#endif

View File

@@ -32,5 +32,8 @@ int echo_close( echo_4way_context *state, void *hashval );
int echo_4way_update_close( echo_4way_context *state, void *hashval,
const void *data, int databitlen );
int echo_4way_full( echo_4way_context *ctx, void *hashval, int nHashSize,
const void *data, int datalen );
#endif
#endif

View File

@@ -4,7 +4,7 @@
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include "simd-utils.h"
#include "sph_gost.h"
#ifdef __cplusplus
@@ -696,9 +696,26 @@ static void AddModulo512(const void *a,const void *b,void *c)
static void AddXor512(const void *a,const void *b,void *c)
{
const unsigned long long *A=a, *B=b;
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
casti_m512i( c, 0 ) = _mm512_xor_si512( casti_m512i( a, 0 ),
casti_m512i( b, 0 ) );
#elif defined(__AVX2__)
casti_m256i( c, 0 ) = _mm256_xor_si256( casti_m256i( a, 0 ),
casti_m256i( b, 0 ) );
casti_m256i( c, 1 ) = _mm256_xor_si256( casti_m256i( a, 1 ),
casti_m256i( b, 1 ) );
#elif defined(__SSE2__)
casti_m128i( c, 0 ) = _mm_xor_si128( casti_m128i( a, 0 ),
casti_m128i( b, 0 ) );
casti_m128i( c, 1 ) = _mm_xor_si128( casti_m128i( a, 1 ),
casti_m128i( b, 1 ) );
casti_m128i( c, 2 ) = _mm_xor_si128( casti_m128i( a, 2 ),
casti_m128i( b, 2 ) );
casti_m128i( c, 3 ) = _mm_xor_si128( casti_m128i( a, 3 ),
casti_m128i( b, 3 ) );
#else
const unsigned long long *A=a, *B=b;
unsigned long long *C=c;
#ifdef FULL_UNROLL
C[0] = A[0] ^ B[0];
C[1] = A[1] ^ B[1];
C[2] = A[2] ^ B[2];
@@ -707,12 +724,6 @@ static void AddXor512(const void *a,const void *b,void *c)
C[5] = A[5] ^ B[5];
C[6] = A[6] ^ B[6];
C[7] = A[7] ^ B[7];
#else
int i = 0;
for(i=0; i<8; i++) {
C[i] = A[i] ^ B[i];
}
#endif
}
@@ -893,31 +904,32 @@ static void g_N(const unsigned char *N,unsigned char *h,const unsigned char *m)
static void hash_X(unsigned char *IV,const unsigned char *message,unsigned long long length,unsigned char *out)
{
unsigned char v512[64] = {
unsigned char v512[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00
};
unsigned char v0[64] = {
};
unsigned char v0[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char Sigma[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char Sigma[64] = {
unsigned char N[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char N[64] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
unsigned char m[64], *hash = IV;
unsigned char m[64] __attribute__((aligned(64)));
unsigned char *hash = IV;
unsigned long long len = length;
// Stage 2
@@ -952,7 +964,7 @@ static void hash_X(unsigned char *IV,const unsigned char *message,unsigned long
static void hash_512(const unsigned char *message, unsigned long long length, unsigned char *out)
{
unsigned char IV[64] = {
unsigned char IV[64] __attribute__((aligned(64))) = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

View File

@@ -81,9 +81,9 @@ typedef struct {
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
unsigned char buf[64] __attribute__((aligned(64)));
sph_u32 V[5][8] __attribute__((aligned(64)));
size_t ptr;
sph_u32 V[5][8];
#endif
} sph_gost512_context;

View File

@@ -73,7 +73,7 @@ __m128i ALL_FF;
b5 = a7;\
a6 = _mm_xor_si128(a6, a7);\
a7 = _mm_xor_si128(a7, b6);\
\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm_xor_si128(b0, a4);\
b6 = _mm_xor_si128(b6, a4);\
@@ -195,7 +195,7 @@ __m128i ALL_FF;
for(round_counter = 0; round_counter < 14; round_counter+=2) {\
/* AddRoundConstant P1024 */\
xmm8 = _mm_xor_si128(xmm8, (ROUND_CONST_P[round_counter]));\
/* ShiftBytes P1024 + pre-AESENCLAST */\
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8(xmm8, (SUBSH_MASK[0]));\
xmm9 = _mm_shuffle_epi8(xmm9, (SUBSH_MASK[1]));\
xmm10 = _mm_shuffle_epi8(xmm10, (SUBSH_MASK[2]));\
@@ -209,7 +209,6 @@ __m128i ALL_FF;
\
/* AddRoundConstant P1024 */\
xmm0 = _mm_xor_si128(xmm0, (ROUND_CONST_P[round_counter+1]));\
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm_shuffle_epi8(xmm0, (SUBSH_MASK[0]));\
xmm1 = _mm_shuffle_epi8(xmm1, (SUBSH_MASK[1]));\
xmm2 = _mm_shuffle_epi8(xmm2, (SUBSH_MASK[2]));\
@@ -218,7 +217,6 @@ __m128i ALL_FF;
xmm5 = _mm_shuffle_epi8(xmm5, (SUBSH_MASK[5]));\
xmm6 = _mm_shuffle_epi8(xmm6, (SUBSH_MASK[6]));\
xmm7 = _mm_shuffle_epi8(xmm7, (SUBSH_MASK[7]));\
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
}

View File

@@ -2,13 +2,6 @@
//#define TASM
#define TINTR
//#define AES_NI
//#ifdef AES_NI
// specify AES-NI, AVX (with AES-NI) or vector-permute implementation
//#ifndef NO_AES_NI
// Not to be confused with AVX512VAES
#define VAES
// #define VAVX

View File

@@ -14,7 +14,7 @@
#include "miner.h"
#include "simd-utils.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "groestl-version.h"
@@ -67,8 +67,12 @@ HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT(ctx->chaining);
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -87,8 +91,9 @@ HashReturn_gr reinit_groestl( hashState_groestl* ctx )
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT(ctx->chaining);
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -180,6 +185,82 @@ HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
return SUCCESS_GR;
}
int groestl512_full( hashState_groestl* ctx, void* output,
const void* input, uint64_t databitlen )
{
int i;
ctx->hashlen = 64;
SET_CONSTANTS();
for ( i = 0; i < SIZE512; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
uint64_t blocks = len / SIZE512;
__m128i* in = (__m128i*)input;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == len -1 )
{
// only 128 bits left in buffer, all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
// add zero padding
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
0, 0 ,0,0, 0,0,0,0 );
}
// digest final padding block and do output transform
TF1024( ctx->chaining, ctx->buffer );
OF1024( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
const void* input, DataLength_gr databitlen )
{
@@ -230,6 +311,7 @@ HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
// digest final padding block and do output transform
TF1024( ctx->chaining, ctx->buffer );
OF1024( ctx->chaining );
// store hash result in output

View File

@@ -87,5 +87,6 @@ HashReturn_gr final_groestl( hashState_groestl*, void* );
HashReturn_gr update_and_final_groestl( hashState_groestl*, void*,
const void*, DataLength_gr );
int groestl512_full( hashState_groestl*, void*, const void*, uint64_t );
#endif /* __hash_h */

View File

@@ -11,7 +11,7 @@
#include "miner.h"
#include "simd-utils.h"
#ifndef NO_AES_NI
#ifdef __AES__
#include "groestl-version.h"
@@ -86,8 +86,11 @@ HashReturn_gr reinit_groestl256(hashState_groestl256* ctx)
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT256(ctx->chaining);
ctx->chaining[ 3 ] = m128_const_64( 0, 0x0100000000000000 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT256(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;

View File

@@ -93,9 +93,6 @@ typedef enum
typedef struct {
__attribute__ ((aligned (32))) __m128i chaining[SIZE256];
__attribute__ ((aligned (32))) __m128i buffer[SIZE256];
// __attribute__ ((aligned (32))) u64 chaining[SIZE/8]; /* actual state */
// __attribute__ ((aligned (32))) BitSequence_gr buffer[SIZE]; /* data buffer */
// u64 block_counter; /* message block counter */
int hashlen; // bytes
int blk_count;
int buf_ptr; /* data buffer pointer */

View File

@@ -0,0 +1,64 @@
#include "groestl-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#if defined(GROESTL_4WAY_VAES)
#include "groestl512-hash-4way.h"
void groestl_4way_hash( void *output, const void *input )
{
uint32_t hash[16*4] __attribute__ ((aligned (128)));
groestl512_4way_context ctx;
groestl512_4way_init( &ctx, 64 );
groestl512_4way_update_close( &ctx, hash, input, 640 );
groestl512_4way_init( &ctx, 64 );
groestl512_4way_update_close( &ctx, hash, hash, 512 );
dintrlv_4x128( output, output+32, output+64, output+96, hash, 256 );
}
int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (128)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t *noncep = vdata + 64+3; // 4*16 + 3
int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7];
mm512_bswap32_intrlv80_4x128( vdata, pdata );
do
{
be32enc( noncep, n );
be32enc( noncep+ 4, n+1 );
be32enc( noncep+ 8, n+2 );
be32enc( noncep+12, n+3 );
groestl_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash+(lane<<3) )[7] <= Htarg )
if ( fulltest( hash+(lane<<3), ptarget) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#endif

View File

@@ -0,0 +1,23 @@
#include "groestl-gate.h"
bool register_dmd_gr_algo( algo_gate_t *gate )
{
#if defined (GROESTL_4WAY_VAES)
gate->scanhash = (void*)&scanhash_groestl_4way;
gate->hash = (void*)&groestl_4way_hash;
#else
init_groestl_ctx();
gate->scanhash = (void*)&scanhash_groestl;
gate->hash = (void*)&groestlhash;
#endif
gate->optimizations = AES_OPT | VAES_OPT;
return true;
};
bool register_groestl_algo( algo_gate_t* gate )
{
register_dmd_gr_algo( gate );
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
return true;
};

View File

@@ -0,0 +1,31 @@
#ifndef GROESTL_GATE_H__
#define GROESTL_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define GROESTL_4WAY_VAES 1
#endif
bool register_dmd_gr_algo( algo_gate_t* gate );
bool register_groestl_algo( algo_gate_t* gate );
#if defined(GROESTL_4WAY_VAES)
void groestl_4way_hash( void *state, const void *input );
int scanhash_groestl_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void groestlhash( void *state, const void *input );
int scanhash_groestl( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_groestl_ctx();
#endif
#endif

View File

@@ -1,22 +1,20 @@
#include "algo-gate-api.h"
#include "groestl-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#ifdef NO_AES_NI
#include "sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "sph_groestl.h"
#endif
typedef struct
{
#ifdef NO_AES_NI
sph_groestl512_context groestl1, groestl2;
#else
#ifdef __AES__
hashState_groestl groestl1, groestl2;
#else
sph_groestl512_context groestl1, groestl2;
#endif
} groestl_ctx_holder;
@@ -25,12 +23,12 @@ static groestl_ctx_holder groestl_ctx;
void init_groestl_ctx()
{
#ifdef NO_AES_NI
sph_groestl512_init( &groestl_ctx.groestl1 );
sph_groestl512_init( &groestl_ctx.groestl2 );
#else
#ifdef __AES__
init_groestl( &groestl_ctx.groestl1, 64 );
init_groestl( &groestl_ctx.groestl2, 64 );
#else
sph_groestl512_init( &groestl_ctx.groestl1 );
sph_groestl512_init( &groestl_ctx.groestl2 );
#endif
}
@@ -40,18 +38,18 @@ void groestlhash( void *output, const void *input )
groestl_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &groestl_ctx, sizeof(groestl_ctx) );
#ifdef NO_AES_NI
sph_groestl512(&ctx.groestl1, input, 80);
sph_groestl512_close(&ctx.groestl1, hash);
sph_groestl512(&ctx.groestl2, hash, 64);
sph_groestl512_close(&ctx.groestl2, hash);
#else
#ifdef __AES__
update_and_final_groestl( &ctx.groestl1, (char*)hash,
(const char*)input, 640 );
update_and_final_groestl( &ctx.groestl2, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512(&ctx.groestl1, input, 80);
sph_groestl512_close(&ctx.groestl1, hash);
sph_groestl512(&ctx.groestl2, hash, 64);
sph_groestl512_close(&ctx.groestl2, hash);
#endif
memcpy(output, hash, 32);
}
@@ -78,15 +76,12 @@ int scanhash_groestl( struct work *work, uint32_t max_nonce,
groestlhash(hash, endiandata);
if (hash[7] <= Htarg )
if ( fulltest(hash, ptarget))
{
if ( fulltest(hash, ptarget) && !opt_benchmark )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
@@ -94,20 +89,3 @@ int scanhash_groestl( struct work *work, uint32_t max_nonce,
return 0;
}
bool register_dmd_gr_algo( algo_gate_t* gate )
{
init_groestl_ctx();
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_groestl;
gate->hash = (void*)&groestlhash;
opt_target_factor = 256.0;
return true;
};
bool register_groestl_algo( algo_gate_t* gate )
{
register_dmd_gr_algo( gate );
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
return true;
};

View File

@@ -0,0 +1,109 @@
/* hash.c Aug 2011
* groestl512-hash-4way https://github.com/JayDDee/cpuminer-opt 2019-12.
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
*
* This code is placed in the public domain
*/
// Optimized for hash and data length that are integrals of __m128i
#include <memory.h>
#include "groestl256-intr-4way.h"
#include "miner.h"
#include "simd-utils.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
{
int i;
ctx->hashlen = hashlen;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
// uint64_t len = U64BIG((uint64_t)LENGTH);
// ctx->chaining[ COLS/2 -1 ] = _mm512_set4_epi64( len, 0, len, 0 );
// INIT256_4way(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_4way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
}
else
{
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
}
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // VAES

View File

@@ -0,0 +1,75 @@
/* hash.h Aug 2011
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
*
* This code is placed in the public domain
*/
#if !defined(GROESTL256_HASH_4WAY_H__)
#define GROESTL256_HASH_4WAY_H__ 1
#include "simd-utils.h"
#include <immintrin.h>
#include <stdint.h>
#include <stdio.h>
#if defined(_WIN64) || defined(__WINDOWS__)
#include <windows.h>
#endif
#include <stdlib.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define LENGTH (256)
//#include "brg_endian.h"
//#define NEED_UINT_64T
//#include "algo/sha/brg_types.h"
/* some sizes (number of bytes) */
#define ROWS (8)
#define LENGTHFIELDLEN (ROWS)
#define COLS512 (8)
//#define COLS1024 (16)
#define SIZE_512 ((ROWS)*(COLS512))
//#define SIZE_1024 ((ROWS)*(COLS1024))
#define ROUNDS512 (10)
//#define ROUNDS1024 (14)
//#if LENGTH<=256
#define COLS (COLS512)
#define SIZE (SIZE512)
#define ROUNDS (ROUNDS512)
//#else
//#define COLS (COLS1024)
//#define SIZE (SIZE1024)
//#define ROUNDS (ROUNDS1024)
//#endif
#define SIZE256 (SIZE_512/16)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE256];
__attribute__ ((aligned (64))) __m512i buffer[SIZE256];
int hashlen; // byte
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
int databitlen; // bits
} groestl256_4way_context;
int groestl256_4way_init( groestl256_4way_context*, uint64_t );
//int reinit_groestl( hashState_groestl* );
//int groestl512_4way_update( groestl256_4way_context*, const void*,
// uint64_t );
//int groestl512_4way_close( groestl512_4way_context*, void* );
int groestl256_4way_update_close( groestl256_4way_context*, void*,
const void*, uint64_t );
#endif
#endif

View File

@@ -0,0 +1,526 @@
/* groestl-intr-aes.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3, sse4.1, and aes
* instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#if !defined(GROESTL256_INTR_4WAY_H__)
#define GROESTL256_INTR_4WAY_H__ 1
#include "groestl256-hash-4way.h"
#if defined(__VAES__)
/* global constants */
__m512i ROUND_CONST_Lx;
__m512i ROUND_CONST_L0[ROUNDS512];
__m512i ROUND_CONST_L7[ROUNDS512];
//__m512i ROUND_CONST_P[ROUNDS1024];
//__m512i ROUND_CONST_Q[ROUNDS1024];
__m512i TRANSP_MASK;
__m512i SUBSH_MASK[8];
__m512i ALL_1B;
__m512i ALL_FF;
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2(i, j, k){\
j = _mm512_xor_si512(j, j);\
j = _mm512_movm_epi8( _mm512_cmpgt_epi8_mask(j, i) );\
i = _mm512_add_epi8(i, i);\
j = _mm512_and_si512(j, k);\
i = _mm512_xor_si512(i, j);\
}
/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm512_xor_si512(a0, a1);\
b0 = a2;\
a1 = _mm512_xor_si512(a1, a2);\
b1 = a3;\
a2 = _mm512_xor_si512(a2, a3);\
b2 = a4;\
a3 = _mm512_xor_si512(a3, a4);\
b3 = a5;\
a4 = _mm512_xor_si512(a4, a5);\
b4 = a6;\
a5 = _mm512_xor_si512(a5, a6);\
b5 = a7;\
a6 = _mm512_xor_si512(a6, a7);\
a7 = _mm512_xor_si512(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm512_xor_si512(b0, a4);\
b6 = _mm512_xor_si512(b6, a4);\
b1 = _mm512_xor_si512(b1, a5);\
b7 = _mm512_xor_si512(b7, a5);\
b2 = _mm512_xor_si512(b2, a6);\
b0 = _mm512_xor_si512(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm512_xor_si512(b3, a7);\
b1 = _mm512_xor_si512(b1, a7);\
TEMP1 = b1;\
b4 = _mm512_xor_si512(b4, a0);\
b2 = _mm512_xor_si512(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm512_xor_si512(b5, a1);\
b3 = _mm512_xor_si512(b3, a1);\
b1 = a1;\
b6 = _mm512_xor_si512(b6, a2);\
b4 = _mm512_xor_si512(b4, a2);\
TEMP2 = a2;\
b7 = _mm512_xor_si512(b7, a3);\
b5 = _mm512_xor_si512(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm512_xor_si512(a0, a3);\
a1 = _mm512_xor_si512(a1, a4);\
a2 = _mm512_xor_si512(a2, a5);\
a3 = _mm512_xor_si512(a3, a6);\
a4 = _mm512_xor_si512(a4, a7);\
a5 = _mm512_xor_si512(a5, b0);\
a6 = _mm512_xor_si512(a6, b1);\
a7 = _mm512_xor_si512(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = m512_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm512_xor_si512(a0, TEMP0);\
MUL2(a1, b0, b1);\
a1 = _mm512_xor_si512(a1, TEMP1);\
MUL2(a2, b0, b1);\
a2 = _mm512_xor_si512(a2, b2);\
MUL2(a3, b0, b1);\
a3 = _mm512_xor_si512(a3, b3);\
MUL2(a4, b0, b1);\
a4 = _mm512_xor_si512(a4, b4);\
MUL2(a5, b0, b1);\
a5 = _mm512_xor_si512(a5, b5);\
MUL2(a6, b0, b1);\
a6 = _mm512_xor_si512(a6, b6);\
MUL2(a7, b0, b1);\
a7 = _mm512_xor_si512(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2(a0, b0, b1);\
b5 = _mm512_xor_si512(b5, a0);\
MUL2(a1, b0, b1);\
b6 = _mm512_xor_si512(b6, a1);\
MUL2(a2, b0, b1);\
b7 = _mm512_xor_si512(b7, a2);\
MUL2(a5, b0, b1);\
b2 = _mm512_xor_si512(b2, a5);\
MUL2(a6, b0, b1);\
b3 = _mm512_xor_si512(b3, a6);\
MUL2(a7, b0, b1);\
b4 = _mm512_xor_si512(b4, a7);\
MUL2(a3, b0, b1);\
MUL2(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm512_xor_si512(b0, a3);\
b1 = _mm512_xor_si512(b1, a4);\
}/*MixBytes*/
// calculate the round constants seperately and load at startup
#define SET_CONSTANTS(){\
ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\
TRANSP_MASK = _mm512_set_epi32( \
0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \
0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \
0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \
0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \
SUBSH_MASK[0] = _mm512_set_epi32( \
0x33363a3d, 0x38323539, 0x3c3f3134, 0x373b3e30, \
0x23262a2d, 0x28222529, 0x2c2f2124, 0x272b2e20, \
0x13161a1d, 0x18121519, 0x1c1f1114, 0x171b1e10, \
0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00 ); \
SUBSH_MASK[1] = _mm512_set_epi32( \
0x34373c3f, 0x3a33363b, 0x3e393235, 0x303d3831, \
0x24272c2f, 0x2a23262b, 0x2e292225, 0x202d2821, \
0x14171c1f, 0x1a13161b, 0x1e191215, 0x101d1801, \
0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801 );\
SUBSH_MASK[2] = _mm512_set_epi32( \
0x35303e39, 0x3c34373d, 0x383b3336, 0x313f3a32, \
0x25202e29, 0x2c24272d, 0x282b2326, 0x212f2a22, \
0x15101e19, 0x1c14171d, 0x181b1316, 0x111f1a12, \
0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02 );\
SUBSH_MASK[3] = _mm512_set_epi32( \
0x3631383b, 0x3e35303f, 0x3a3d3437, 0x32393c33, \
0x2621282b, 0x2e25202f, 0x2a2d2427, 0x22292c23, \
0x1611181b, 0x1e15101f, 0x1a1d1417, 0x12191c13, \
0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03 );\
SUBSH_MASK[4] = _mm512_set_epi32( \
0x3732393c, 0x3f363138, 0x3b3e3530, 0x333a3d34, \
0x2722292c, 0x2f262128, 0x2b2e2520, 0x232a2d24, \
0x1712191c, 0x1f161118, 0x1b1e1510, 0x131a1d14, \
0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04 );\
SUBSH_MASK[5] = _mm512_set_epi32( \
0x30333b3e, 0x3937323a, 0x3d383631, 0x343c3f35, \
0x20232b2e, 0x2927222a, 0x2d282621, 0x242c2f25, \
0x10131b1e, 0x1917121a, 0x1d181611, 0x141c1f15, \
0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05 );\
SUBSH_MASK[6] = _mm512_set_epi32( \
0x31343d38, 0x3b30333c, 0x3f3a3732, 0x353e3936, \
0x21242d28, 0x2b20232c, 0x2f2a2722, 0x252e2926, \
0x11141d18, 0x1b10131c, 0x1f1a1712, 0x151e1916, \
0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906 );\
SUBSH_MASK[7] = _mm512_set_epi32( \
0x32353f3a, 0x3d31343e, 0x393c3033, 0x36383b37, \
0x22252f2a, 0x2d21242e, 0x292c2023, 0x26282b27, \
0x12151f1a, 0x1d11141e, 0x191c1013, 0x16181b17, \
0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07 );\
for ( i = 0; i < ROUNDS512; i++ ) \
{\
ROUND_CONST_L0[i] = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x70605040 ^ ( i * 0x01010101 ), 0x30201000 ^ ( i * 0x01010101 ) ); \
ROUND_CONST_L7[i] = _mm512_set4_epi32( 0x8f9fafbf ^ ( i * 0x01010101 ), \
0xcfdfefff ^ ( i * 0x01010101 ), 0x00000000, 0x00000000 ); \
}\
ROUND_CONST_Lx = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x00000000, 0x00000000 ); \
}while(0);\
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
b1 = ROUND_CONST_Lx;\
a0 = _mm512_xor_si512( a0, (ROUND_CONST_L0[i]) );\
a1 = _mm512_xor_si512( a1, b1 );\
a2 = _mm512_xor_si512( a2, b1 );\
a3 = _mm512_xor_si512( a3, b1 );\
a4 = _mm512_xor_si512( a4, b1 );\
a5 = _mm512_xor_si512( a5, b1 );\
a6 = _mm512_xor_si512( a6, b1 );\
a7 = _mm512_xor_si512( a7, (ROUND_CONST_L7[i]) );\
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm512_xor_si512( b0, b0 );\
a0 = _mm512_shuffle_epi8( a0, (SUBSH_MASK[0]) );\
a0 = _mm512_aesenclast_epi128(a0, b0 );\
a1 = _mm512_shuffle_epi8( a1, (SUBSH_MASK[1]) );\
a1 = _mm512_aesenclast_epi128(a1, b0 );\
a2 = _mm512_shuffle_epi8( a2, (SUBSH_MASK[2]) );\
a2 = _mm512_aesenclast_epi128(a2, b0 );\
a3 = _mm512_shuffle_epi8( a3, (SUBSH_MASK[3]) );\
a3 = _mm512_aesenclast_epi128(a3, b0 );\
a4 = _mm512_shuffle_epi8( a4, (SUBSH_MASK[4]) );\
a4 = _mm512_aesenclast_epi128(a4, b0 );\
a5 = _mm512_shuffle_epi8( a5, (SUBSH_MASK[5]) );\
a5 = _mm512_aesenclast_epi128(a5, b0 );\
a6 = _mm512_shuffle_epi8( a6, (SUBSH_MASK[6]) );\
a6 = _mm512_aesenclast_epi128(a6, b0 );\
a7 = _mm512_shuffle_epi8( a7, (SUBSH_MASK[7]) );\
a7 = _mm512_aesenclast_epi128( a7, b0 );\
\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
\
}
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK;\
\
i0 = _mm512_shuffle_epi8( i0, t0 );\
i1 = _mm512_shuffle_epi8( i1, t0 );\
i2 = _mm512_shuffle_epi8( i2, t0 );\
i3 = _mm512_shuffle_epi8( i3, t0 );\
\
o1 = i0;\
t0 = i2;\
\
i0 = _mm512_unpacklo_epi16( i0, i1 );\
o1 = _mm512_unpackhi_epi16( o1, i1 );\
i2 = _mm512_unpacklo_epi16( i2, i3 );\
t0 = _mm512_unpackhi_epi16( t0, i3 );\
\
i0 = _mm512_shuffle_epi32( i0, 216 );\
o1 = _mm512_shuffle_epi32( o1, 216 );\
i2 = _mm512_shuffle_epi32( i2, 216 );\
t0 = _mm512_shuffle_epi32( t0, 216 );\
\
o2 = i0;\
o3 = o1;\
\
i0 = _mm512_unpacklo_epi32( i0, i2 );\
o1 = _mm512_unpacklo_epi32( o1, t0 );\
o2 = _mm512_unpackhi_epi32( o2, i2 );\
o3 = _mm512_unpackhi_epi32( o3, t0 );\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
o1 = i0;\
o2 = i1;\
i0 = _mm512_unpacklo_epi64( i0, i4 );\
o1 = _mm512_unpackhi_epi64( o1, i4 );\
o3 = i1;\
o4 = i2;\
o2 = _mm512_unpacklo_epi64( o2, i5 );\
o3 = _mm512_unpackhi_epi64( o3, i5 );\
o5 = i2;\
o6 = i3;\
o4 = _mm512_unpacklo_epi64( o4, i6 );\
o5 = _mm512_unpackhi_epi64( o5, i6 );\
o7 = i3;\
o6 = _mm512_unpacklo_epi64( o6, i7 );\
o7 = _mm512_unpackhi_epi64( o7, i7 );\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
o0 = i0;\
i0 = _mm512_unpacklo_epi64( i0, i1 );\
o0 = _mm512_unpackhi_epi64( o0, i1 );\
o1 = i2;\
i2 = _mm512_unpacklo_epi64( i2, i3 );\
o1 = _mm512_unpackhi_epi64( o1, i3 );\
o2 = i4;\
i4 = _mm512_unpacklo_epi64( i4, i5 );\
o2 = _mm512_unpackhi_epi64( o2, i5 );\
o3 = i6;\
i6 = _mm512_unpacklo_epi64( i6, i7 );\
o3 = _mm512_unpackhi_epi64( o3, i7 );\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
t0 = _mm512_xor_si512( t0, t0 );\
i1 = i0;\
i3 = i2;\
i5 = i4;\
i7 = i6;\
i0 = _mm512_unpacklo_epi64( i0, t0 );\
i1 = _mm512_unpackhi_epi64( i1, t0 );\
i2 = _mm512_unpacklo_epi64( i2, t0 );\
i3 = _mm512_unpackhi_epi64( i3, t0 );\
i4 = _mm512_unpacklo_epi64( i4, t0 );\
i5 = _mm512_unpackhi_epi64( i5, t0 );\
i6 = _mm512_unpacklo_epi64( i6, t0 );\
i7 = _mm512_unpackhi_epi64( i7, t0 );\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
i0 = _mm512_unpacklo_epi64( i0, i1 );\
i2 = _mm512_unpacklo_epi64( i2, i3 );\
i4 = _mm512_unpacklo_epi64( i4, i5 );\
i6 = _mm512_unpacklo_epi64( i6, i7 );\
}/**/
void INIT256_4way( __m512i* chaining )
{
static __m512i xmm0, xmm2, xmm6, xmm7;
static __m512i xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm12 - xmm15 */
xmm12 = chaining[0];
xmm13 = chaining[1];
xmm14 = chaining[2];
xmm15 = chaining[3];
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* store transposed IV */
chaining[0] = xmm12;
chaining[1] = xmm2;
chaining[2] = xmm6;
chaining[3] = xmm7;
}
void TF512_4way( __m512i* chaining, __m512i* message )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load message into registers xmm12 - xmm15 */
xmm12 = message[0];
xmm13 = message[1];
xmm14 = message[2];
xmm15 = message[3];
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* load previous chaining value */
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
xmm8 = chaining[0];
xmm0 = chaining[1];
xmm4 = chaining[2];
xmm5 = chaining[3];
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
xmm8 = _mm512_xor_si512( xmm8, xmm12 );
xmm0 = _mm512_xor_si512( xmm0, xmm2 );
xmm4 = _mm512_xor_si512( xmm4, xmm6 );
xmm5 = _mm512_xor_si512( xmm5, xmm7 );
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
xmm0 = _mm512_xor_si512( xmm0, xmm8 );
xmm1 = _mm512_xor_si512( xmm1, xmm10 );
xmm2 = _mm512_xor_si512( xmm2, xmm12 );
xmm3 = _mm512_xor_si512( xmm3, xmm14 );
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
xmm0 = _mm512_xor_si512( xmm0, (chaining[0]) );
xmm1 = _mm512_xor_si512( xmm1, (chaining[1]) );
xmm2 = _mm512_xor_si512( xmm2, (chaining[2]) );
xmm3 = _mm512_xor_si512( xmm3, (chaining[3]) );
/* store CV */
chaining[0] = xmm0;
chaining[1] = xmm1;
chaining[2] = xmm2;
chaining[3] = xmm3;
return;
}
void OF512_4way( __m512i* chaining )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
xmm8 = chaining[0];
xmm10 = chaining[1];
xmm12 = chaining[2];
xmm14 = chaining[3];
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[1]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[2]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[3]) );
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
/* we only need to return the truncated half of the state */
chaining[2] = xmm9;
chaining[3] = xmm11;
}
#endif // VAES
#endif // GROESTL512_INTR_4WAY_H__

View File

@@ -0,0 +1,146 @@
/* hash.c Aug 2011
* groestl512-hash-4way https://github.com/JayDDee/cpuminer-opt 2019-12.
*
* Groestl implementation for different versions.
* Author: Krystian Matusiewicz, Günther A. Roland, Martin Schläffer
*
* This code is placed in the public domain
*/
// Optimized for hash and data length that are integrals of __m128i
#include <memory.h>
#include "groestl512-intr-4way.h"
#include "miner.h"
#include "simd-utils.h"
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int groestl512_4way_init( groestl512_4way_context* ctx, uint64_t hashlen )
{
int i;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
memset_zero_512( ctx->chaining, SIZE512 );
memset_zero_512( ctx->buffer, SIZE512 );
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m512_const2_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
return 0;
}
int groestl512_4way_update_close( groestl512_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = 64 / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE512;
__m512i* in = (__m512i*)input;
int i;
// --- update ---
for ( i = 0; i < blocks; i++ )
TF1024_4way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem;
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
}
else
{
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0 ) );
}
TF1024_4way( ctx->chaining, ctx->buffer );
OF1024_4way( ctx->chaining );
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl512_4way_full( groestl512_4way_context* ctx, void* output,
const void* input, uint64_t datalen )
{
const int len = (int)datalen >> 4;
const int hashlen_m128i = 64 >> 4; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
uint64_t blocks = len / SIZE512;
__m512i* in = (__m512i*)input;
int i;
// --- init ---
SET_CONSTANTS();
memset_zero_512( ctx->chaining, SIZE512 );
memset_zero_512( ctx->buffer, SIZE512 );
ctx->chaining[ 6 ] = m512_const2_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
for ( i = 0; i < blocks; i++ )
TF1024_4way( ctx->chaining, &in[ i * SIZE512 ] );
ctx->buf_ptr = blocks * SIZE512;
for ( i = 0; i < len % SIZE512; i++ )
ctx->buffer[ ctx->rem_ptr + i ] = in[ ctx->buf_ptr + i ];
i += ctx->rem_ptr;
// --- close ---
blocks++;
if ( i == SIZE512 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( blocks << 56, 0x80 );
}
else
{
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = m512_zero;
ctx->buffer[i] = m512_const2_64( blocks << 56, 0 );
}
TF1024_4way( ctx->chaining, ctx->buffer );
OF1024_4way( ctx->chaining );
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
#endif // VAES

View File

@@ -0,0 +1,62 @@
#if !defined(GROESTL512_HASH_4WAY_H__)
#define GROESTL512_HASH_4WAY_H__ 1
#include "simd-utils.h"
#include <immintrin.h>
#include <stdint.h>
#include <stdio.h>
#if defined(_WIN64) || defined(__WINDOWS__)
#include <windows.h>
#endif
#include <stdlib.h>
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define LENGTH (512)
/* some sizes (number of bytes) */
#define ROWS (8)
#define LENGTHFIELDLEN (ROWS)
//#define COLS512 (8)
#define COLS1024 (16)
//#define SIZE512 ((ROWS)*(COLS512))
#define SIZE_1024 ((ROWS)*(COLS1024))
//#define ROUNDS512 (10)
#define ROUNDS1024 (14)
//#if LENGTH<=256
//#define COLS (COLS512)
//#define SIZE (SIZE512)
//#define ROUNDS (ROUNDS512)
//#else
#define COLS (COLS1024)
//#define SIZE (SIZE1024)
#define ROUNDS (ROUNDS1024)
//#endif
#define SIZE512 (SIZE_1024/16)
typedef struct {
__attribute__ ((aligned (128))) __m512i chaining[SIZE512];
__attribute__ ((aligned (64))) __m512i buffer[SIZE512];
int blk_count; // SIZE_m128i
int buf_ptr; // __m128i offset
int rem_ptr;
int databitlen; // bits
} groestl512_4way_context;
int groestl512_4way_init( groestl512_4way_context*, uint64_t );
//int reinit_groestl( hashState_groestl* );
int groestl512_4way_update( groestl512_4way_context*, const void*,
uint64_t );
int groestl512_4way_close( groestl512_4way_context*, void* );
int groestl512_4way_update_close( groestl512_4way_context*, void*,
const void*, uint64_t );
int groestl512_4way_full( groestl512_4way_context*, void*,
const void*, uint64_t );
#endif // VAES
#endif // GROESTL512_HASH_4WAY_H__

View File

@@ -0,0 +1,654 @@
/* groestl-intr-aes.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3, sse4.1, and aes
* instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#if !defined(GROESTL512_INTR_4WAY_H__)
#define GROESTL512_INTR_4WAY_H__ 1
#include "groestl512-hash-4way.h"
#if defined(__VAES__)
/* global constants */
__m512i ROUND_CONST_Lx;
//__m128i ROUND_CONST_L0[ROUNDS512];
//__m128i ROUND_CONST_L7[ROUNDS512];
__m512i ROUND_CONST_P[ROUNDS1024];
__m512i ROUND_CONST_Q[ROUNDS1024];
__m512i TRANSP_MASK;
__m512i SUBSH_MASK[8];
__m512i ALL_1B;
__m512i ALL_FF;
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2(i, j, k){\
j = _mm512_xor_si512(j, j);\
j = _mm512_movm_epi8( _mm512_cmpgt_epi8_mask(j, i) );\
i = _mm512_add_epi8(i, i);\
j = _mm512_and_si512(j, k);\
i = _mm512_xor_si512(i, j);\
}
/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
b6 = a0;\
b7 = a1;\
a0 = _mm512_xor_si512(a0, a1);\
b0 = a2;\
a1 = _mm512_xor_si512(a1, a2);\
b1 = a3;\
a2 = _mm512_xor_si512(a2, a3);\
b2 = a4;\
a3 = _mm512_xor_si512(a3, a4);\
b3 = a5;\
a4 = _mm512_xor_si512(a4, a5);\
b4 = a6;\
a5 = _mm512_xor_si512(a5, a6);\
b5 = a7;\
a6 = _mm512_xor_si512(a6, a7);\
a7 = _mm512_xor_si512(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm512_xor_si512(b0, a4);\
b6 = _mm512_xor_si512(b6, a4);\
b1 = _mm512_xor_si512(b1, a5);\
b7 = _mm512_xor_si512(b7, a5);\
b2 = _mm512_xor_si512(b2, a6);\
b0 = _mm512_xor_si512(b0, a6);\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
b3 = _mm512_xor_si512(b3, a7);\
b1 = _mm512_xor_si512(b1, a7);\
TEMP1 = b1;\
b4 = _mm512_xor_si512(b4, a0);\
b2 = _mm512_xor_si512(b2, a0);\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b5 = _mm512_xor_si512(b5, a1);\
b3 = _mm512_xor_si512(b3, a1);\
b1 = a1;\
b6 = _mm512_xor_si512(b6, a2);\
b4 = _mm512_xor_si512(b4, a2);\
TEMP2 = a2;\
b7 = _mm512_xor_si512(b7, a3);\
b5 = _mm512_xor_si512(b5, a3);\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm512_xor_si512(a0, a3);\
a1 = _mm512_xor_si512(a1, a4);\
a2 = _mm512_xor_si512(a2, a5);\
a3 = _mm512_xor_si512(a3, a6);\
a4 = _mm512_xor_si512(a4, a7);\
a5 = _mm512_xor_si512(a5, b0);\
a6 = _mm512_xor_si512(a6, b1);\
a7 = _mm512_xor_si512(a7, TEMP2);\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = m512_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm512_xor_si512(a0, TEMP0);\
MUL2(a1, b0, b1);\
a1 = _mm512_xor_si512(a1, TEMP1);\
MUL2(a2, b0, b1);\
a2 = _mm512_xor_si512(a2, b2);\
MUL2(a3, b0, b1);\
a3 = _mm512_xor_si512(a3, b3);\
MUL2(a4, b0, b1);\
a4 = _mm512_xor_si512(a4, b4);\
MUL2(a5, b0, b1);\
a5 = _mm512_xor_si512(a5, b5);\
MUL2(a6, b0, b1);\
a6 = _mm512_xor_si512(a6, b6);\
MUL2(a7, b0, b1);\
a7 = _mm512_xor_si512(a7, b7);\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2(a0, b0, b1);\
b5 = _mm512_xor_si512(b5, a0);\
MUL2(a1, b0, b1);\
b6 = _mm512_xor_si512(b6, a1);\
MUL2(a2, b0, b1);\
b7 = _mm512_xor_si512(b7, a2);\
MUL2(a5, b0, b1);\
b2 = _mm512_xor_si512(b2, a5);\
MUL2(a6, b0, b1);\
b3 = _mm512_xor_si512(b3, a6);\
MUL2(a7, b0, b1);\
b4 = _mm512_xor_si512(b4, a7);\
MUL2(a3, b0, b1);\
MUL2(a4, b0, b1);\
b0 = TEMP0;\
b1 = TEMP1;\
b0 = _mm512_xor_si512(b0, a3);\
b1 = _mm512_xor_si512(b1, a4);\
}/*MixBytes*/
// calculate the round constants seperately and load at startup
#define SET_CONSTANTS(){\
ALL_FF = _mm512_set1_epi32( 0xffffffff );\
ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\
TRANSP_MASK = _mm512_set_epi32( \
0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \
0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \
0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \
0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \
SUBSH_MASK[0] = _mm512_set_epi32( \
0x3336393c, 0x3f323538, 0x3b3e3134, 0x373a3d30, \
0x2326292c, 0x2f222528, 0x2b2e2124, 0x272a2d20, \
0x1316191c, 0x1f121518, 0x1b1e1114, 0x171a1d10, \
0x0306090c, 0x0f020508, 0x0b0e0104, 0x070a0d00 ); \
SUBSH_MASK[1] = _mm512_set_epi32( \
0x34373a3d, 0x30333639, 0x3c3f3235, 0x383b3e31, \
0x24272a2d, 0x20232629, 0x2c2f2225, 0x282b2e21, \
0x14171a1d, 0x10131619, 0x1c1f1215, 0x181b1e11, \
0x04070a0d, 0x00030609, 0x0c0f0205, 0x080b0e01 ); \
SUBSH_MASK[2] = _mm512_set_epi32( \
0x35383b3e, 0x3134373a, 0x3d303336, 0x393c3f32, \
0x25282b2e, 0x2124272a, 0x2d202326, 0x292c2f22, \
0x15181b1e, 0x1114171a, 0x1d101316, 0x191c1f12, \
0x05080b0e, 0x0104070a, 0x0d000306, 0x090c0f02 ); \
SUBSH_MASK[3] = _mm512_set_epi32( \
0x36393c3f, 0x3235383b, 0x3e313437, 0x3a3d3033, \
0x26292c2f, 0x2225282b, 0x2e212427, 0x2a2d2023, \
0x16191c1f, 0x1215181b, 0x1e111417, 0x1a1d1013, \
0x06090c0f, 0x0205080b, 0x0e010407, 0x0a0d0003 ); \
SUBSH_MASK[4] = _mm512_set_epi32( \
0x373a3d30, 0x3336393c, 0x3f323538, 0x3b3e3134, \
0x272a2d20, 0x2326292c, 0x2f222528, 0x2b2e2124, \
0x171a1d10, 0x1316191c, 0x1f121518, 0x1b1e1114, \
0x070a0d00, 0x0306090c, 0x0f020508, 0x0b0e0104 ); \
SUBSH_MASK[5] = _mm512_set_epi32( \
0x383b3e31, 0x34373a3d, 0x30333639, 0x3c3f3235, \
0x282b2e21, 0x24272a2d, 0x20232629, 0x2c2f2225, \
0x181b1e11, 0x14171a1d, 0x10131619, 0x1c1f1215, \
0x080b0e01, 0x04070a0d, 0x00030609, 0x0c0f0205 ); \
SUBSH_MASK[6] = _mm512_set_epi32( \
0x393c3f32, 0x35383b3e, 0x3134373a, 0x3d303336, \
0x292c2f22, 0x25282b2e, 0x2124272a, 0x2d202326, \
0x191c1f12, 0x15181b1e, 0x1114171a, 0x1d101316, \
0x090c0f02, 0x05080b0e, 0x0104070a, 0x0d000306 ); \
SUBSH_MASK[7] = _mm512_set_epi32( \
0x3e313437, 0x3a3d3033, 0x36393c3f, 0x3235383b, \
0x2e212427, 0x2a2d2023, 0x26292c2f, 0x2225282b, \
0x1e111417, 0x1a1d1013, 0x16191c1f, 0x1215181b, \
0x0e010407, 0x0a0d0003, 0x06090c0f, 0x0205080b ); \
for( i = 0; i < ROUNDS1024; i++ ) \
{ \
ROUND_CONST_P[i] = _mm512_set4_epi32( 0xf0e0d0c0 ^ (i * 0x01010101), \
0xb0a09080 ^ (i * 0x01010101), \
0x70605040 ^ (i * 0x01010101), \
0x30201000 ^ (i * 0x01010101) ); \
ROUND_CONST_Q[i] = _mm512_set4_epi32( 0x0f1f2f3f ^ (i * 0x01010101), \
0x4f5f6f7f ^ (i * 0x01010101), \
0x8f9fafbf ^ (i * 0x01010101), \
0xcfdfefff ^ (i * 0x01010101));\
} \
}while(0);\
/* one round
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define SUBMIX(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* SubBytes */\
b0 = _mm512_xor_si512( b0, b0 );\
a0 = _mm512_aesenclast_epi128( a0, b0 );\
a1 = _mm512_aesenclast_epi128( a1, b0 );\
a2 = _mm512_aesenclast_epi128( a2, b0 );\
a3 = _mm512_aesenclast_epi128( a3, b0 );\
a4 = _mm512_aesenclast_epi128( a4, b0 );\
a5 = _mm512_aesenclast_epi128( a5, b0 );\
a6 = _mm512_aesenclast_epi128( a6, b0 );\
a7 = _mm512_aesenclast_epi128( a7, b0 );\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
#define ROUNDS_P(){\
uint8_t round_counter = 0;\
for ( round_counter = 0; round_counter < 14; round_counter += 2 ) \
{ \
/* AddRoundConstant P1024 */\
xmm8 = _mm512_xor_si512( xmm8, ( ROUND_CONST_P[ round_counter ] ) );\
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[0] ) );\
xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[1] ) );\
xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[2] ) );\
xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[3] ) );\
xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[4] ) );\
xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[5] ) );\
xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[6] ) );\
xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[7] ) );\
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant P1024 */\
xmm0 = _mm512_xor_si512( xmm0, ( ROUND_CONST_P[ round_counter+1 ] ) );\
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[0] ) );\
xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[1] ) );\
xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[2] ) );\
xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[3] ) );\
xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[4] ) );\
xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[5] ) );\
xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[6] ) );\
xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[7] ) );\
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
}
#define ROUNDS_Q(){\
uint8_t round_counter = 0;\
for ( round_counter = 0; round_counter < 14; round_counter += 2) \
{ \
/* AddRoundConstant Q1024 */\
xmm1 = m512_neg1;\
xmm8 = _mm512_xor_si512( xmm8, xmm1 );\
xmm9 = _mm512_xor_si512( xmm9, xmm1 );\
xmm10 = _mm512_xor_si512( xmm10, xmm1 );\
xmm11 = _mm512_xor_si512( xmm11, xmm1 );\
xmm12 = _mm512_xor_si512( xmm12, xmm1 );\
xmm13 = _mm512_xor_si512( xmm13, xmm1 );\
xmm14 = _mm512_xor_si512( xmm14, xmm1 );\
xmm15 = _mm512_xor_si512( xmm15, ( ROUND_CONST_Q[ round_counter ] ) );\
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[1] ) );\
xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[3] ) );\
xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[5] ) );\
xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[7] ) );\
xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[0] ) );\
xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[2] ) );\
xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[4] ) );\
xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[6] ) );\
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant Q1024 */\
xmm9 = m512_neg1;\
xmm0 = _mm512_xor_si512( xmm0, xmm9 );\
xmm1 = _mm512_xor_si512( xmm1, xmm9 );\
xmm2 = _mm512_xor_si512( xmm2, xmm9 );\
xmm3 = _mm512_xor_si512( xmm3, xmm9 );\
xmm4 = _mm512_xor_si512( xmm4, xmm9 );\
xmm5 = _mm512_xor_si512( xmm5, xmm9 );\
xmm6 = _mm512_xor_si512( xmm6, xmm9 );\
xmm7 = _mm512_xor_si512( xmm7, ( ROUND_CONST_Q[ round_counter+1 ] ) );\
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[1] ) );\
xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[3] ) );\
xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[5] ) );\
xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[7] ) );\
xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[0] ) );\
xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[2] ) );\
xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[4] ) );\
xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[6] ) );\
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
}
/* Matrix Transpose
* input is a 1024-bit state with two columns in one xmm
* output is a 1024-bit state with two rows in one xmm
* inputs: i0-i7
* outputs: i0-i7
* clobbers: t0-t7
*/
#define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\
t0 = TRANSP_MASK;\
\
i6 = _mm512_shuffle_epi8(i6, t0);\
i0 = _mm512_shuffle_epi8(i0, t0);\
i1 = _mm512_shuffle_epi8(i1, t0);\
i2 = _mm512_shuffle_epi8(i2, t0);\
i3 = _mm512_shuffle_epi8(i3, t0);\
t1 = i2;\
i4 = _mm512_shuffle_epi8(i4, t0);\
i5 = _mm512_shuffle_epi8(i5, t0);\
t2 = i4;\
t3 = i6;\
i7 = _mm512_shuffle_epi8(i7, t0);\
\
/* continue with unpack using 4 temp registers */\
t0 = i0;\
t2 = _mm512_unpackhi_epi16(t2, i5);\
i4 = _mm512_unpacklo_epi16(i4, i5);\
t3 = _mm512_unpackhi_epi16(t3, i7);\
i6 = _mm512_unpacklo_epi16(i6, i7);\
t0 = _mm512_unpackhi_epi16(t0, i1);\
t1 = _mm512_unpackhi_epi16(t1, i3);\
i2 = _mm512_unpacklo_epi16(i2, i3);\
i0 = _mm512_unpacklo_epi16(i0, i1);\
\
/* shuffle with immediate */\
t0 = _mm512_shuffle_epi32(t0, 216);\
t1 = _mm512_shuffle_epi32(t1, 216);\
t2 = _mm512_shuffle_epi32(t2, 216);\
t3 = _mm512_shuffle_epi32(t3, 216);\
i0 = _mm512_shuffle_epi32(i0, 216);\
i2 = _mm512_shuffle_epi32(i2, 216);\
i4 = _mm512_shuffle_epi32(i4, 216);\
i6 = _mm512_shuffle_epi32(i6, 216);\
\
/* continue with unpack */\
t4 = i0;\
i0 = _mm512_unpacklo_epi32(i0, i2);\
t4 = _mm512_unpackhi_epi32(t4, i2);\
t5 = t0;\
t0 = _mm512_unpacklo_epi32(t0, t1);\
t5 = _mm512_unpackhi_epi32(t5, t1);\
t6 = i4;\
i4 = _mm512_unpacklo_epi32(i4, i6);\
t7 = t2;\
t6 = _mm512_unpackhi_epi32(t6, i6);\
i2 = t0;\
t2 = _mm512_unpacklo_epi32(t2, t3);\
i3 = t0;\
t7 = _mm512_unpackhi_epi32(t7, t3);\
\
/* there are now 2 rows in each xmm */\
/* unpack to get 1 row of CV in each xmm */\
i1 = i0;\
i1 = _mm512_unpackhi_epi64(i1, i4);\
i0 = _mm512_unpacklo_epi64(i0, i4);\
i4 = t4;\
i3 = _mm512_unpackhi_epi64(i3, t2);\
i5 = t4;\
i2 = _mm512_unpacklo_epi64(i2, t2);\
i6 = t5;\
i5 = _mm512_unpackhi_epi64(i5, t6);\
i7 = t5;\
i4 = _mm512_unpacklo_epi64(i4, t6);\
i7 = _mm512_unpackhi_epi64(i7, t7);\
i6 = _mm512_unpacklo_epi64(i6, t7);\
/* transpose done */\
}/**/
/* Matrix Transpose Inverse
* input is a 1024-bit state with two rows in one xmm
* output is a 1024-bit state with two columns in one xmm
* inputs: i0-i7
* outputs: (i0, o0, i1, i3, o1, o2, i5, i7)
* clobbers: t0-t4
*/
#define Matrix_Transpose_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, t0, t1, t2, t3, t4){\
/* transpose matrix to get output format */\
o1 = i0;\
i0 = _mm512_unpacklo_epi64(i0, i1);\
o1 = _mm512_unpackhi_epi64(o1, i1);\
t0 = i2;\
i2 = _mm512_unpacklo_epi64(i2, i3);\
t0 = _mm512_unpackhi_epi64(t0, i3);\
t1 = i4;\
i4 = _mm512_unpacklo_epi64(i4, i5);\
t1 = _mm512_unpackhi_epi64(t1, i5);\
t2 = i6;\
o0 = TRANSP_MASK;\
i6 = _mm512_unpacklo_epi64(i6, i7);\
t2 = _mm512_unpackhi_epi64(t2, i7);\
/* load transpose mask into a register, because it will be used 8 times */\
i0 = _mm512_shuffle_epi8(i0, o0);\
i2 = _mm512_shuffle_epi8(i2, o0);\
i4 = _mm512_shuffle_epi8(i4, o0);\
i6 = _mm512_shuffle_epi8(i6, o0);\
o1 = _mm512_shuffle_epi8(o1, o0);\
t0 = _mm512_shuffle_epi8(t0, o0);\
t1 = _mm512_shuffle_epi8(t1, o0);\
t2 = _mm512_shuffle_epi8(t2, o0);\
/* continue with unpack using 4 temp registers */\
t3 = i4;\
o2 = o1;\
o0 = i0;\
t4 = t1;\
\
t3 = _mm512_unpackhi_epi16(t3, i6);\
i4 = _mm512_unpacklo_epi16(i4, i6);\
o0 = _mm512_unpackhi_epi16(o0, i2);\
i0 = _mm512_unpacklo_epi16(i0, i2);\
o2 = _mm512_unpackhi_epi16(o2, t0);\
o1 = _mm512_unpacklo_epi16(o1, t0);\
t4 = _mm512_unpackhi_epi16(t4, t2);\
t1 = _mm512_unpacklo_epi16(t1, t2);\
/* shuffle with immediate */\
i4 = _mm512_shuffle_epi32(i4, 216);\
t3 = _mm512_shuffle_epi32(t3, 216);\
o1 = _mm512_shuffle_epi32(o1, 216);\
o2 = _mm512_shuffle_epi32(o2, 216);\
i0 = _mm512_shuffle_epi32(i0, 216);\
o0 = _mm512_shuffle_epi32(o0, 216);\
t1 = _mm512_shuffle_epi32(t1, 216);\
t4 = _mm512_shuffle_epi32(t4, 216);\
/* continue with unpack */\
i1 = i0;\
i3 = o0;\
i5 = o1;\
i7 = o2;\
i0 = _mm512_unpacklo_epi32(i0, i4);\
i1 = _mm512_unpackhi_epi32(i1, i4);\
o0 = _mm512_unpacklo_epi32(o0, t3);\
i3 = _mm512_unpackhi_epi32(i3, t3);\
o1 = _mm512_unpacklo_epi32(o1, t1);\
i5 = _mm512_unpackhi_epi32(i5, t1);\
o2 = _mm512_unpacklo_epi32(o2, t4);\
i7 = _mm512_unpackhi_epi32(i7, t4);\
/* transpose done */\
}/**/
void INIT_4way( __m512i* chaining )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* transform chaining value from column ordering into row ordering */
Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store transposed IV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
}
void TF1024_4way( __m512i* chaining, const __m512i* message )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i QTEMP[8];
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load message into registers xmm8 - xmm15 (Q = message) */
xmm8 = message[0];
xmm9 = message[1];
xmm10 = message[2];
xmm11 = message[3];
xmm12 = message[4];
xmm13 = message[5];
xmm14 = message[6];
xmm15 = message[7];
/* transform message M from column ordering into row ordering */
Matrix_Transpose(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
/* store message M (Q input) for later */
QTEMP[0] = xmm8;
QTEMP[1] = xmm9;
QTEMP[2] = xmm10;
QTEMP[3] = xmm11;
QTEMP[4] = xmm12;
QTEMP[5] = xmm13;
QTEMP[6] = xmm14;
QTEMP[7] = xmm15;
/* xor CV to message to get P input */
/* result: CV+M in xmm8...xmm15 */
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) );
xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) );
xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) );
xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) );
/* compute permutation P */
/* result: P(CV+M) in xmm8...xmm15 */
ROUNDS_P();
/* xor CV to P output (feed-forward) */
/* result: P(CV+M)+CV in xmm8...xmm15 */
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) );
xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) );
xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) );
xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) );
/* store P(CV+M)+CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
/* load message M (Q input) into xmm8-15 */
xmm8 = QTEMP[0];
xmm9 = QTEMP[1];
xmm10 = QTEMP[2];
xmm11 = QTEMP[3];
xmm12 = QTEMP[4];
xmm13 = QTEMP[5];
xmm14 = QTEMP[6];
xmm15 = QTEMP[7];
/* compute permutation Q */
/* result: Q(M) in xmm8...xmm15 */
ROUNDS_Q();
/* xor Q output */
/* result: P(CV+M)+CV+Q(M) in xmm8...xmm15 */
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) );
xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) );
xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) );
xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) );
/* store CV */
chaining[0] = xmm8;
chaining[1] = xmm9;
chaining[2] = xmm10;
chaining[3] = xmm11;
chaining[4] = xmm12;
chaining[5] = xmm13;
chaining[6] = xmm14;
chaining[7] = xmm15;
return;
}
void OF1024_4way( __m512i* chaining )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m512i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m512i TEMP0;
static __m512i TEMP1;
static __m512i TEMP2;
/* load CV into registers xmm8 - xmm15 */
xmm8 = chaining[0];
xmm9 = chaining[1];
xmm10 = chaining[2];
xmm11 = chaining[3];
xmm12 = chaining[4];
xmm13 = chaining[5];
xmm14 = chaining[6];
xmm15 = chaining[7];
/* compute permutation P */
/* result: P(CV) in xmm8...xmm15 */
ROUNDS_P();
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8...xmm15 */
xmm8 = _mm512_xor_si512( xmm8, (chaining[0]) );
xmm9 = _mm512_xor_si512( xmm9, (chaining[1]) );
xmm10 = _mm512_xor_si512( xmm10, (chaining[2]) );
xmm11 = _mm512_xor_si512( xmm11, (chaining[3]) );
xmm12 = _mm512_xor_si512( xmm12, (chaining[4]) );
xmm13 = _mm512_xor_si512( xmm13, (chaining[5]) );
xmm14 = _mm512_xor_si512( xmm14, (chaining[6]) );
xmm15 = _mm512_xor_si512( xmm15, (chaining[7]) );
/* transpose CV back from row ordering to column ordering */
/* result: final hash value in xmm0, xmm6, xmm13, xmm15 */
Matrix_Transpose_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm4, xmm0, xmm6, xmm1, xmm2, xmm3, xmm5, xmm7);
/* we only need to return the truncated half of the state */
chaining[4] = xmm0;
chaining[5] = xmm6;
chaining[6] = xmm13;
chaining[7] = xmm15;
return;
}
#endif // VAES
#endif // GROESTL512_INTR_4WAY_H__

View File

@@ -1,22 +1,20 @@
#include "myrgr-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#ifdef NO_AES_NI
#include "sph_groestl.h"
#else
#ifdef __AES__
#include "aes_ni/hash-groestl.h"
#else
#include "sph_groestl.h"
#endif
#include <openssl/sha.h>
typedef struct {
#ifdef NO_AES_NI
sph_groestl512_context groestl;
#else
#ifdef __AES__
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
#endif
SHA256_CTX sha;
} myrgr_ctx_holder;
@@ -25,10 +23,10 @@ myrgr_ctx_holder myrgr_ctx;
void init_myrgr_ctx()
{
#ifdef NO_AES_NI
sph_groestl512_init( &myrgr_ctx.groestl );
#else
#ifdef __AES__
init_groestl ( &myrgr_ctx.groestl, 64 );
#else
sph_groestl512_init( &myrgr_ctx.groestl );
#endif
SHA256_Init( &myrgr_ctx.sha );
}
@@ -40,12 +38,12 @@ void myriad_hash(void *output, const void *input)
uint32_t _ALIGN(32) hash[16];
#ifdef NO_AES_NI
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
#else
#ifdef __AES__
update_groestl( &ctx.groestl, (char*)input, 640 );
final_groestl( &ctx.groestl, (char*)hash);
#else
sph_groestl512(&ctx.groestl, input, 80);
sph_groestl512_close(&ctx.groestl, hash);
#endif
SHA256_Update( &ctx.sha, (unsigned char*)hash, 64 );

View File

@@ -1,14 +1,159 @@
#include "myrgr-gate.h"
#if defined(MYRGR_4WAY)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "aes_ni/hash-groestl.h"
#include "algo/sha/sha-hash-4way.h"
#if defined(__VAES__)
#include "groestl512-hash-4way.h"
#endif
#if defined(MYRGR_8WAY)
typedef struct {
#if defined(__VAES__)
groestl512_4way_context groestl;
#else
hashState_groestl groestl;
#endif
sha256_8way_context sha;
} myrgr_8way_ctx_holder;
myrgr_8way_ctx_holder myrgr_8way_ctx;
void init_myrgr_8way_ctx()
{
#if defined(__VAES__)
groestl512_4way_init( &myrgr_8way_ctx.groestl, 64 );
#else
init_groestl( &myrgr_8way_ctx.groestl, 64 );
#endif
sha256_8way_init( &myrgr_8way_ctx.sha );
}
void myriad_8way_hash( void *output, const void *input )
{
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint32_t vhashA[20*8] __attribute__ ((aligned (64)));
uint32_t vhashB[20*8] __attribute__ ((aligned (64)));
myrgr_8way_ctx_holder ctx;
memcpy( &ctx, &myrgr_8way_ctx, sizeof(myrgr_8way_ctx) );
#if defined(__VAES__)
rintrlv_8x64_4x128( vhashA, vhashB, input, 640 );
groestl512_4way_update_close( &ctx.groestl, vhashA, vhashA, 640 );
groestl512_4way_update_close( &ctx.groestl, vhashB, vhashB, 640 );
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t hash4[20] __attribute__ ((aligned (64)));
uint32_t hash5[20] __attribute__ ((aligned (64)));
uint32_t hash6[20] __attribute__ ((aligned (64)));
uint32_t hash7[20] __attribute__ ((aligned (64)));
// rintrlv_4x128_8x32( vhash, vhashA, vhashB, 512 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhashA );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhashB );
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5,
hash6, hash7 );
#else
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t hash4[20] __attribute__ ((aligned (64)));
uint32_t hash5[20] __attribute__ ((aligned (64)));
uint32_t hash6[20] __attribute__ ((aligned (64)));
uint32_t hash7[20] __attribute__ ((aligned (64)));
dintrlv_8x64( hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, input, 640 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 640 );
memcpy( &ctx.groestl, &myrgr_4way_ctx.groestl, sizeof(hashState_groestl) );
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 512 );
#endif
sha256_8way_update( &ctx.sha, vhash, 64 );
sha256_8way_close( &ctx.sha, output );
}
int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[7<<3]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
uint32_t *noncep = vdata + 64+3; // 4*16 + 3
int thr_id = mythr->id; // thr_id arg is deprecated
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm512_bswap32_intrlv80_4x128( vdata, pdata );
do
{
be32enc( noncep, n );
be32enc( noncep+ 8, n+1 );
be32enc( noncep+16, n+2 );
be32enc( noncep+24, n+3 );
be32enc( noncep+32, n+4 );
be32enc( noncep+40, n+5 );
be32enc( noncep+48, n+6 );
be32enc( noncep+64, n+7 );
myriad_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane ] <= Htarg )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(MYRGR_4WAY)
typedef struct {
hashState_groestl groestl;
@@ -45,7 +190,7 @@ void myriad_4way_hash( void *output, const void *input )
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
sha256_4way( &ctx.sha, vhash, 64 );
sha256_4way_update( &ctx.sha, vhash, 64 );
sha256_4way_close( &ctx.sha, output );
}

View File

@@ -2,16 +2,22 @@
bool register_myriad_algo( algo_gate_t* gate )
{
#if defined (MYRGR_4WAY)
#if defined (MYRGR_8WAY)
init_myrgr_8way_ctx();
gate->scanhash = (void*)&scanhash_myriad_8way;
gate->hash = (void*)&myriad_8way_hash;
gate->optimizations = AES_OPT | AVX2_OPT | VAES_OPT;
#elif defined (MYRGR_4WAY)
init_myrgr_4way_ctx();
gate->scanhash = (void*)&scanhash_myriad_4way;
gate->hash = (void*)&myriad_4way_hash;
gate->optimizations = AES_OPT | SSE2_OPT | AVX2_OPT | VAES_OPT;
#else
init_myrgr_ctx();
gate->scanhash = (void*)&scanhash_myriad;
gate->hash = (void*)&myriad_hash;
gate->optimizations = AES_OPT | SSE2_OPT | AVX2_OPT | SHA_OPT | VAES_OPT;
#endif
gate->optimizations = AES_OPT | AVX2_OPT;
return true;
};

View File

@@ -1,30 +1,35 @@
#ifndef MYRGR_GATE_H__
#define MYRGR_GATE_H__
#define MYRGR_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__) && !defined(__SHA__)
#define MYRGR_4WAY
#if defined(__VAES__) && defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define MYRGR_8WAY 1
#elif defined(__AVX2__) && defined(__AES__) && !defined(__SHA__)
#define MYRGR_4WAY 1
#endif
#if defined(MYRGR_4WAY)
#if defined(MYRGR_8WAY)
void myriad_8way_hash( void *state, const void *input );
int scanhash_myriad_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_myrgr_8way_ctx();
#elif defined(MYRGR_4WAY)
void myriad_4way_hash( void *state, const void *input );
int scanhash_myriad_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_myrgr_4way_ctx();
#endif
#else
void myriad_hash( void *state, const void *input );
int scanhash_myriad( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_myrgr_ctx();
#endif
#endif

View File

@@ -1171,7 +1171,8 @@ void hamsi512_4way_init( hamsi_4way_big_context *sc )
sc->h[7] = m256_const1_64( 0x6769756d2042656c );
}
void hamsi512_4way( hamsi_4way_big_context *sc, const void *data, size_t len )
void hamsi512_4way_update( hamsi_4way_big_context *sc, const void *data,
size_t len )
{
__m256i *vdata = (__m256i*)data;

View File

@@ -62,7 +62,7 @@ typedef hamsi_4way_big_context hamsi512_4way_context;
void hamsi512_4way_init( hamsi512_4way_context *sc );
void hamsi512_4way_update( hamsi512_4way_context *sc, const void *data,
size_t len );
#define hamsi512_4way hamsi512_4way_update
//#define hamsi512_4way hamsi512_4way_update
void hamsi512_4way_close( hamsi512_4way_context *sc, void *dst );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)

View File

@@ -38,7 +38,7 @@
#define SPH_XCAT_(a, b) a ## b
static void
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way)
SPH_XCAT(SPH_XCAT(haval, PASSES), _4way_update)
( haval_4way_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;

View File

@@ -479,9 +479,9 @@ haval ## xxx ## _ ## y ## _4way_init(void *cc) \
} \
\
void \
haval ## xxx ## _ ## y ## _4way (void *cc, const void *data, size_t len) \
haval ## xxx ## _ ## y ## _4way_update (void *cc, const void *data, size_t len) \
{ \
haval ## y ## _4way(cc, data, len); \
haval ## y ## _4way_update(cc, data, len); \
} \
\
void \

View File

@@ -85,7 +85,7 @@ typedef haval_4way_context haval256_5_4way_context;
void haval256_5_4way_init( void *cc );
void haval256_5_4way_update( void *cc, const void *data, size_t len );
#define haval256_5_4way haval256_5_4way_update
//#define haval256_5_4way haval256_5_4way_update
void haval256_5_4way_close( void *cc, void *dst );

View File

@@ -1,13 +1,10 @@
#include "algo-gate-api.h"
#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
#include <stdint.h>
#include <stdlib.h>
#include "sph_hefty1.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/skein/sph_skein.h"
@@ -16,9 +13,7 @@
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/skein/sse2/skein.c"
#ifndef NO_AES_NI
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#endif
@@ -26,29 +21,23 @@ void bastionhash(void *output, const void *input)
{
unsigned char hash[64] __attribute__ ((aligned (64)));
#ifdef NO_AES_NI
sph_echo512_context ctx_echo;
#ifdef __AES__
hashState_echo ctx_echo;
#else
hashState_echo ctx_echo;
sph_echo512_context ctx_echo;
#endif
hashState_luffa ctx_luffa;
hashState_luffa ctx_luffa;
sph_fugue512_context ctx_fugue;
sph_whirlpool_context ctx_whirlpool;
sph_shabal512_context ctx_shabal;
sph_hamsi512_context ctx_hamsi;
unsigned char hashbuf[128] __attribute__ ((aligned (16)));
sph_u64 hashctA;
// sph_u64 hashctB;
size_t hashptr;
sph_hamsi512_context ctx_hamsi;
sph_skein512_context ctx_skein;
HEFTY1(input, 80, hash);
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
if (hash[0] & 0x8)
{
@@ -56,10 +45,9 @@ void bastionhash(void *output, const void *input)
sph_fugue512(&ctx_fugue, hash, 64);
sph_fugue512_close(&ctx_fugue, hash);
} else {
DECL_SKN;
SKN_I;
SKN_U;
SKN_C;
sph_skein512_init( &ctx_skein );
sph_skein512( &ctx_skein, hash, 64 );
sph_skein512_close( &ctx_skein, hash );
}
sph_whirlpool_init(&ctx_whirlpool);
@@ -72,33 +60,28 @@ void bastionhash(void *output, const void *input)
if (hash[0] & 0x8)
{
#ifdef NO_AES_NI
#ifdef __AES__
init_echo( &ctx_echo, 512 );
update_final_echo ( &ctx_echo,(BitSequence*)hash,
(const BitSequence*)hash, 512 );
#else
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, hash, 64);
sph_echo512_close(&ctx_echo, hash);
#else
init_echo( &ctx_echo, 512 );
update_final_echo ( &ctx_echo,(BitSequence*)hash,
(const BitSequence*)hash, 512 );
// update_echo ( &ctx_echo, hash, 512 );
// final_echo( &ctx_echo, hash );
#endif
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
sph_shabal512_init(&ctx_shabal);
sph_shabal512(&ctx_shabal, hash, 64);
sph_shabal512_close(&ctx_shabal, hash);
DECL_SKN;
SKN_I;
SKN_U;
SKN_C;
sph_skein512_init( &ctx_skein );
sph_skein512( &ctx_skein, hash, 64 );
sph_skein512_close( &ctx_skein, hash );
if (hash[0] & 0x8)
{
@@ -121,11 +104,9 @@ void bastionhash(void *output, const void *input)
sph_hamsi512(&ctx_hamsi, hash, 64);
sph_hamsi512_close(&ctx_hamsi, hash);
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
// update_luffa( &ctx_luffa, hash, 64 );
// final_luffa( &ctx_luffa, hash );
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
memcpy(output, hash, 32);
@@ -152,10 +133,8 @@ int scanhash_bastion( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[19], n);
bastionhash(hash32, endiandata);
if (hash32[7] < Htarg && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
submit_solution( work, hash32, mythr );
}
n++;

View File

@@ -161,7 +161,7 @@ bool register_hodl_algo( algo_gate_t* gate )
// return false;
// }
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
gate->optimizations = AES_OPT | AVX_OPT | AVX2_OPT;
gate->optimizations = SSE42_OPT | AES_OPT | AVX2_OPT;
gate->scanhash = (void*)&hodl_scanhash;
gate->get_new_work = (void*)&hodl_get_new_work;
gate->longpoll_rpc_call = (void*)&hodl_longpoll_rpc_call;

View File

@@ -41,57 +41,10 @@
extern "C"{
#endif
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_JH
#define SPH_SMALL_FOOTPRINT_JH 1
#endif
#if !defined SPH_JH_64 && SPH_64_TRUE
#define SPH_JH_64 1
#endif
#if !SPH_64
#undef SPH_JH_64
#endif
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
/*
* The internal bitslice representation may use either big-endian or
* little-endian (true bitslice operations do not care about the bit
* ordering, and the bit-swapping linear operations in JH happen to
* be invariant through endianness-swapping). The constants must be
* defined according to the chosen endianness; we use some
* byte-swapping macros for that.
*/
#if SPH_LITTLE_ENDIAN
#if SPH_64
#define C64e(x) ((SPH_C64(x) >> 56) \
| ((SPH_C64(x) >> 40) & SPH_C64(0x000000000000FF00)) \
| ((SPH_C64(x) >> 24) & SPH_C64(0x0000000000FF0000)) \
| ((SPH_C64(x) >> 8) & SPH_C64(0x00000000FF000000)) \
| ((SPH_C64(x) << 8) & SPH_C64(0x000000FF00000000)) \
| ((SPH_C64(x) << 24) & SPH_C64(0x0000FF0000000000)) \
| ((SPH_C64(x) << 40) & SPH_C64(0x00FF000000000000)) \
| ((SPH_C64(x) << 56) & SPH_C64(0xFF00000000000000)))
#define dec64e_aligned sph_dec64le_aligned
#define enc64e sph_enc64le
#endif
#else
#if SPH_64
#define C64e(x) SPH_C64(x)
#define dec64e_aligned sph_dec64be_aligned
#define enc64e sph_enc64be
#endif
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define Sb_8W(x0, x1, x2, x3, c) \
@@ -152,8 +105,97 @@ do { \
x3 = _mm256_xor_si256( x3, x4 ); \
} while (0)
#if SPH_JH_64
static const uint64_t C[] =
{
0x67f815dfa2ded572, 0x571523b70a15847b,
0xf6875a4d90d6ab81, 0x402bd1c3c54f9f4e,
0x9cfa455ce03a98ea, 0x9a99b26699d2c503,
0x8a53bbf2b4960266, 0x31a2db881a1456b5,
0xdb0e199a5c5aa303, 0x1044c1870ab23f40,
0x1d959e848019051c, 0xdccde75eadeb336f,
0x416bbf029213ba10, 0xd027bbf7156578dc,
0x5078aa3739812c0a, 0xd3910041d2bf1a3f,
0x907eccf60d5a2d42, 0xce97c0929c9f62dd,
0xac442bc70ba75c18, 0x23fcc663d665dfd1,
0x1ab8e09e036c6e97, 0xa8ec6c447e450521,
0xfa618e5dbb03f1ee, 0x97818394b29796fd,
0x2f3003db37858e4a, 0x956a9ffb2d8d672a,
0x6c69b8f88173fe8a, 0x14427fc04672c78a,
0xc45ec7bd8f15f4c5, 0x80bb118fa76f4475,
0xbc88e4aeb775de52, 0xf4a3a6981e00b882,
0x1563a3a9338ff48e, 0x89f9b7d524565faa,
0xfde05a7c20edf1b6, 0x362c42065ae9ca36,
0x3d98fe4e433529ce, 0xa74b9a7374f93a53,
0x86814e6f591ff5d0, 0x9f5ad8af81ad9d0e,
0x6a6234ee670605a7, 0x2717b96ebe280b8b,
0x3f1080c626077447, 0x7b487ec66f7ea0e0,
0xc0a4f84aa50a550d, 0x9ef18e979fe7e391,
0xd48d605081727686, 0x62b0e5f3415a9e7e,
0x7a205440ec1f9ffc, 0x84c9f4ce001ae4e3,
0xd895fa9df594d74f, 0xa554c324117e2e55,
0x286efebd2872df5b, 0xb2c4a50fe27ff578,
0x2ed349eeef7c8905, 0x7f5928eb85937e44,
0x4a3124b337695f70, 0x65e4d61df128865e,
0xe720b95104771bc7, 0x8a87d423e843fe74,
0xf2947692a3e8297d, 0xc1d9309b097acbdd,
0xe01bdc5bfb301b1d, 0xbf829cf24f4924da,
0xffbf70b431bae7a4, 0x48bcf8de0544320d,
0x39d3bb5332fcae3b, 0xa08b29e0c1c39f45,
0x0f09aef7fd05c9e5, 0x34f1904212347094,
0x95ed44e301b771a2, 0x4a982f4f368e3be9,
0x15f66ca0631d4088, 0xffaf52874b44c147,
0x30c60ae2f14abb7e, 0xe68c6eccc5b67046,
0x00ca4fbd56a4d5a4, 0xae183ec84b849dda,
0xadd1643045ce5773, 0x67255c1468cea6e8,
0x16e10ecbf28cdaa3, 0x9a99949a5806e933,
0x7b846fc220b2601f, 0x1885d1a07facced1,
0xd319dd8da15b5932, 0x46b4a5aac01c9a50,
0xba6b04e467633d9f, 0x7eee560bab19caf6,
0x742128a9ea79b11f, 0xee51363b35f7bde9,
0x76d350755aac571d, 0x01707da3fec2463a,
0x42d8a498afc135f7, 0x79676b9e20eced78,
0xa8db3aea15638341, 0x832c83324d3bc3fa,
0xf347271c1f3b40a7, 0x9a762db734f04059,
0xfd4f21d26c4e3ee7, 0xef5957dc398dfdb8,
0xdaeb492b490c9b8d, 0x0d70f36849d7a25b,
0x84558d7ad0ae3b7d, 0x658ef8e4f0e9a5f5,
0x533b1036f4a2b8a0, 0x5aec3e759e07a80c,
0x4f88e85692946891, 0x4cbcbaf8555cb05b,
0x7b9487f3993bbbe3, 0x5d1c6b72d6f4da75,
0x6db334dc28acae64, 0x71db28b850a5346c,
0x2a518d10f2e261f8, 0xfc75dd593364dbe3,
0xa23fce43f1bcac1c, 0xb043e8023cd1bb67,
0x75a12988ca5b0a33, 0x5c5316b44d19347f,
0x1e4d790ec3943b92, 0x3fafeeb6d7757479,
0x21391abef7d4a8ea, 0x5127234c097ef45c,
0xd23c32ba5324a326, 0xadd5a66d4a17a344,
0x08c9f2afa63e1db5, 0x563c6b91983d5983,
0x4d608672a17cf84c, 0xf6c76e08cc3ee246,
0x5e76bcb1b333982f, 0x2ae6c4efa566d62b,
0x36d4c1bee8b6f406, 0x6321efbc1582ee74,
0x69c953f40d4ec1fd, 0x26585806c45a7da7,
0x16fae0061614c17e, 0x3f9d63283daf907e,
0x0cd29b00e3f2c9d2, 0x300cd4b730ceaa5f,
0x9832e0f216512a74, 0x9af8cee3d830eb0d,
0x9279f1b57b9ec54b, 0xd36886046ee651ff,
0x316796e6574d239b, 0x05750a17f3a6e6cc,
0xce6c3213d98176b1, 0x62a205f88452173c,
0x47154778b3cb2bf4, 0x486a9323825446ff,
0x65655e4e0758df38, 0x8e5086fc897cfcf2,
0x86ca0bd0442e7031, 0x4e477830a20940f0,
0x8338f7d139eea065, 0xbd3a2ce437e95ef7,
0x6ff8130126b29721, 0xe7de9fefd1ed44a3,
0xd992257615dfa08b, 0xbe42dc12f6f7853c,
0x7eb027ab7ceca7d8, 0xdea83eaada7d8d53,
0xd86902bd93ce25aa, 0xf908731afd43f65a,
0xa5194a17daef5fc0, 0x6a21fd4c33664d97,
0x701541db3198b435, 0x9b54cdedbb0f1eea,
0x72409751a163d09a, 0xe26f4791bf9d75f6
};
// Big endian version
/*
static const sph_u64 C[] = {
C64e(0x72d5dea2df15f867), C64e(0x7b84150ab7231557),
C64e(0x81abd6904d5a87f6), C64e(0x4e9f4fc5c3d12b40),
@@ -240,6 +282,7 @@ static const sph_u64 C[] = {
C64e(0x35b49831db411570), C64e(0xea1e0fbbedcd549b),
C64e(0x9ad063a151974072), C64e(0xf6759dbf91476fe2)
};
*/
#define Ceven_hi(r) (C[((r) << 2) + 0])
#define Ceven_lo(r) (C[((r) << 2) + 1])
@@ -427,7 +470,7 @@ do { \
h7h = _mm256_xor_si256( h7h, m3h ); \
h7l = _mm256_xor_si256( h7l, m3l ); \
/*
static const sph_u64 IV256[] = {
C64e(0xeb98a3412c20d3eb), C64e(0x92cdbe7b9cb245c1),
C64e(0x1c93519160d4c7fa), C64e(0x260082d67e508a03),
@@ -450,11 +493,8 @@ static const sph_u64 IV512[] = {
C64e(0xcf57f6ec9db1f856), C64e(0xa706887c5716b156),
C64e(0xe3c2fcdfe68517fb), C64e(0x545a4678cc8cdd4b)
};
*/
#else
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -484,57 +524,6 @@ static const sph_u64 IV512[] = {
W ## ro(h7); \
} while (0)
#if SPH_SMALL_FOOTPRINT_JH
#if SPH_JH_64
/*
* The "small footprint" 64-bit version just uses a partially unrolled
* loop.
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define E8_8W do { \
unsigned r; \
for (r = 0; r < 42; r += 7) { \
SL_8W(0); \
SL_8W(1); \
SL_8W(2); \
SL_8W(3); \
SL_8W(4); \
SL_8W(5); \
SL_8W(6); \
} \
} while (0)
#endif
#define E8 do { \
unsigned r; \
for (r = 0; r < 42; r += 7) { \
SL(0); \
SL(1); \
SL(2); \
SL(3); \
SL(4); \
SL(5); \
SL(6); \
} \
} while (0)
#else
#endif
#else
#if SPH_JH_64
/*
* On a "true 64-bit" architecture, we can unroll at will.
*/
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -585,6 +574,7 @@ static const sph_u64 IV512[] = {
#endif // AVX512
#define E8 do { \
SLu( 0, 0); \
SLu( 1, 1); \
@@ -630,13 +620,6 @@ static const sph_u64 IV512[] = {
SLu(41, 6); \
} while (0)
#else
#endif
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
void jh256_8way_init( jh_8way_context *sc )
@@ -732,12 +715,12 @@ jh_8way_core( jh_8way_context *sc, const void *data, size_t len )
static void
jh_8way_close( jh_8way_context *sc, unsigned ub, unsigned n, void *dst,
size_t out_size_w32, const void *iv )
size_t out_size_w32 )
{
__m512i buf[16*4];
__m512i *dst512 = (__m512i*)dst;
size_t numz, u;
sph_u64 l0, l1, l0e, l1e;
uint64_t l0, l1;
buf[0] = m512_const1_64( 0x80ULL );
@@ -748,12 +731,10 @@ jh_8way_close( jh_8way_context *sc, unsigned ub, unsigned n, void *dst,
memset_zero_512( buf+1, (numz>>3) - 1 );
l0 = SPH_T64(sc->block_count << 9) + (sc->ptr << 3);
l1 = SPH_T64(sc->block_count >> 55);
sph_enc64be( &l0e, l0 );
sph_enc64be( &l1e, l1 );
*(buf + (numz>>3) ) = _mm512_set1_epi64( l1e );
*(buf + (numz>>3) + 1) = _mm512_set1_epi64( l0e );
l0 = ( sc->block_count << 9 ) + ( sc->ptr << 3 );
l1 = ( sc->block_count >> 55 );
*(buf + (numz>>3) ) = _mm512_set1_epi64( bswap_64( l1 ) );
*(buf + (numz>>3) + 1) = _mm512_set1_epi64( bswap_64( l0 ) );
jh_8way_core( sc, buf, numz + 16 );
@@ -772,7 +753,7 @@ jh256_8way_update(void *cc, const void *data, size_t len)
void
jh256_8way_close(void *cc, void *dst)
{
jh_8way_close(cc, 0, 0, dst, 8, IV256);
jh_8way_close(cc, 0, 0, dst, 8);
}
void
@@ -784,7 +765,7 @@ jh512_8way_update(void *cc, const void *data, size_t len)
void
jh512_8way_close(void *cc, void *dst)
{
jh_8way_close(cc, 0, 0, dst, 16, IV512);
jh_8way_close(cc, 0, 0, dst, 16);
}
#endif
@@ -882,12 +863,12 @@ jh_4way_core( jh_4way_context *sc, const void *data, size_t len )
static void
jh_4way_close( jh_4way_context *sc, unsigned ub, unsigned n, void *dst,
size_t out_size_w32, const void *iv )
size_t out_size_w32 )
{
__m256i buf[16*4];
__m256i *dst256 = (__m256i*)dst;
size_t numz, u;
sph_u64 l0, l1, l0e, l1e;
uint64_t l0, l1;
buf[0] = m256_const1_64( 0x80ULL );
@@ -898,12 +879,10 @@ jh_4way_close( jh_4way_context *sc, unsigned ub, unsigned n, void *dst,
memset_zero_256( buf+1, (numz>>3) - 1 );
l0 = SPH_T64(sc->block_count << 9) + (sc->ptr << 3);
l1 = SPH_T64(sc->block_count >> 55);
sph_enc64be( &l0e, l0 );
sph_enc64be( &l1e, l1 );
*(buf + (numz>>3) ) = _mm256_set1_epi64x( l1e );
*(buf + (numz>>3) + 1) = _mm256_set1_epi64x( l0e );
l0 = ( sc->block_count << 9 ) + ( sc->ptr << 3 );
l1 = ( sc->block_count >> 55 );
*(buf + (numz>>3) ) = _mm256_set1_epi64x( bswap_64( l1 ) );
*(buf + (numz>>3) + 1) = _mm256_set1_epi64x( bswap_64( l0 ) );
jh_4way_core( sc, buf, numz + 16 );
@@ -922,7 +901,7 @@ jh256_4way_update(void *cc, const void *data, size_t len)
void
jh256_4way_close(void *cc, void *dst)
{
jh_4way_close(cc, 0, 0, dst, 8, IV256);
jh_4way_close(cc, 0, 0, dst, 8 );
}
void
@@ -934,7 +913,7 @@ jh512_4way_update(void *cc, const void *data, size_t len)
void
jh512_4way_close(void *cc, void *dst)
{
jh_4way_close(cc, 0, 0, dst, 16, IV512);
jh_4way_close(cc, 0, 0, dst, 16 );
}

View File

@@ -43,7 +43,6 @@ extern "C"{
#endif
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "simd-utils.h"
#define SPH_SIZE_jh256 256
@@ -103,14 +102,12 @@ typedef jh_4way_context jh512_4way_context;
void jh256_4way_init( jh_4way_context *sc);
void jh256_4way_update(void *cc, const void *data, size_t len);
#define jh256_4way jh256_4way_update
void jh256_4way_close(void *cc, void *dst);
void jh512_4way_init( jh_4way_context *sc );
void jh512_4way_update(void *cc, const void *data, size_t len);
#define jh512_4way jh512_4way_update
void jh512_4way_close(void *cc, void *dst);

View File

@@ -33,7 +33,7 @@ void jha_hash_4way( void *out, const void *input )
keccak512_4way_context ctx_keccak;
keccak512_4way_init( &ctx_keccak );
keccak512_4way( &ctx_keccak, input, 80 );
keccak512_4way_update( &ctx_keccak, input, 80 );
keccak512_4way_close( &ctx_keccak, vhash );
// Heavy & Light Pair Loop
@@ -58,18 +58,18 @@ void jha_hash_4way( void *out, const void *input )
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 512 );
skein512_4way_init( &ctx_skein );
skein512_4way( &ctx_skein, vhash, 64 );
skein512_4way_update( &ctx_skein, vhash, 64 );
skein512_4way_close( &ctx_skein, vhashB );
for ( int i = 0; i < 8; i++ )
vh[i] = _mm256_blendv_epi8( vhA[i], vhB[i], vh_mask );
blake512_4way_init( &ctx_blake );
blake512_4way( &ctx_blake, vhash, 64 );
blake512_4way_update( &ctx_blake, vhash, 64 );
blake512_4way_close( &ctx_blake, vhashA );
jh512_4way_init( &ctx_jh );
jh512_4way( &ctx_jh, vhash, 64 );
jh512_4way_update( &ctx_jh, vhash, 64 );
jh512_4way_close( &ctx_jh, vhashB );
for ( int i = 0; i < 8; i++ )

View File

@@ -1,19 +1,16 @@
#include "jha-gate.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/sph_blake.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#ifdef NO_AES_NI
#include "algo/groestl/sph_groestl.h"
#else
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
static __thread sph_keccak512_context jha_kec_mid __attribute__ ((aligned (64)));
@@ -28,12 +25,12 @@ void jha_hash(void *output, const void *input)
{
uint8_t _ALIGN(128) hash[64];
#ifdef NO_AES_NI
sph_groestl512_context ctx_groestl;
#ifdef __AES__
hashState_groestl ctx_groestl;
#else
hashState_groestl ctx_groestl;
sph_groestl512_context ctx_groestl;
#endif
sph_blake512_context ctx_blake;
sph_blake512_context ctx_blake;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
@@ -46,36 +43,36 @@ void jha_hash(void *output, const void *input)
for (int round = 0; round < 3; round++)
{
if (hash[0] & 0x01)
{
#ifdef NO_AES_NI
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, hash, 64 );
sph_groestl512_close(&ctx_groestl, hash );
{
#ifdef __AES__
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash,
(char*)hash, 512 );
#else
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash,
(char*)hash, 512 );
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, hash, 64 );
sph_groestl512_close(&ctx_groestl, hash );
#endif
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, hash, 64);
sph_skein512_close(&ctx_skein, hash );
}
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, hash, 64);
sph_skein512_close(&ctx_skein, hash );
}
if (hash[0] & 0x01)
{
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash );
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, hash, 64 );
sph_jh512_close(&ctx_jh, hash );
}
if (hash[0] & 0x01)
{
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash );
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, hash, 64 );
sph_jh512_close(&ctx_jh, hash );
}
}
memcpy(output, hash, 32);
@@ -117,9 +114,6 @@ int scanhash_jha( struct work *work, uint32_t max_nonce,
jha_kec_midstate( endiandata );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
@@ -127,25 +121,9 @@ int scanhash_jha( struct work *work, uint32_t max_nonce,
pdata[19] = ++n;
be32enc(&endiandata[19], n);
jha_hash(hash32, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash32[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
}
#endif
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget))
submit_solution( work, hash32, mythr );
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,465 +0,0 @@
/* This program gives the optimized SSE2 bitslice implementation of JH for 32-bit platform (with 8 128-bit XMM registers).
-----------------------------------------
Performance:
Microprocessor: Intel CORE 2 processor (Core 2 Duo Mobile T6600 2.2GHz)
Operating System: 32-bit Ubuntu 10.04 (Linux kernel 2.6.32-22-generic)
Speed for long message:
1) 23.6 cycles/byte compiler: Intel C++ Compiler 11.1 compilation option: icc -O2
2) 24.1 cycles/byte compiler: gcc 4.4.3 compilation option: gcc -msse2 -O3
------------------------------------------
Comparing with the original JH sse2 code for 32-bit platform, the following modifications are made:
a) The Sbox implementation follows exactly the description given in the document
b) Data alignment definition is improved so that the code can be compiled by GCC, Intel C++ compiler and Microsoft Visual C compiler
c) Using y0,y1,..,y7 variables in Function F8 for performance improvement (local variable in function F8 so that compiler can optimize the code easily)
d) Removed a number of intermediate variables from the program (so as to given compiler more freedom to optimize the code)
e) Using "for" loop to implement 42 rounds (with 7 rounds in each loop), so as to reduce the code size.
------------------------------------------
Last Modified: January 16, 2011
*/
#include <emmintrin.h>
#include <string.h>
typedef unsigned int uint32;
typedef __m128i word128; /*word128 defines a 128-bit SSE2 word*/
typedef unsigned char BitSequence;
typedef unsigned long long DataLength;
typedef enum {SUCCESS = 0, FAIL = 1, BAD_HASHLEN = 2} HashReturn;
/*define data alignment for different C compilers*/
#if defined(__GNUC__)
#define DATA_ALIGN16(x) x __attribute__ ((aligned(16)))
#else
#define DATA_ALIGN16(x) __declspec(align(16)) x
#endif
typedef struct {
int hashbitlen; /*the message digest size*/
unsigned long long databitlen; /*the message size in bits*/
unsigned long long datasize_in_buffer; /*the size of the message remained in buffer; assumed to be multiple of 8bits except for the last partial block at the end of the message*/
word128 x0,x1,x2,x3,x4,x5,x6,x7; /*1024-bit state;*/
unsigned char buffer[64]; /*512-bit message block;*/
} hashState;
/*The initial hash value H(0)*/
DATA_ALIGN16(const unsigned char JH224_H0[128])={0x2d,0xfe,0xdd,0x62,0xf9,0x9a,0x98,0xac,0xae,0x7c,0xac,0xd6,0x19,0xd6,0x34,0xe7,0xa4,0x83,0x10,0x5,0xbc,0x30,0x12,0x16,0xb8,0x60,0x38,0xc6,0xc9,0x66,0x14,0x94,0x66,0xd9,0x89,0x9f,0x25,0x80,0x70,0x6f,0xce,0x9e,0xa3,0x1b,0x1d,0x9b,0x1a,0xdc,0x11,0xe8,0x32,0x5f,0x7b,0x36,0x6e,0x10,0xf9,0x94,0x85,0x7f,0x2,0xfa,0x6,0xc1,0x1b,0x4f,0x1b,0x5c,0xd8,0xc8,0x40,0xb3,0x97,0xf6,0xa1,0x7f,0x6e,0x73,0x80,0x99,0xdc,0xdf,0x93,0xa5,0xad,0xea,0xa3,0xd3,0xa4,0x31,0xe8,0xde,0xc9,0x53,0x9a,0x68,0x22,0xb4,0xa9,0x8a,0xec,0x86,0xa1,0xe4,0xd5,0x74,0xac,0x95,0x9c,0xe5,0x6c,0xf0,0x15,0x96,0xd,0xea,0xb5,0xab,0x2b,0xbf,0x96,0x11,0xdc,0xf0,0xdd,0x64,0xea,0x6e};
DATA_ALIGN16(const unsigned char JH256_H0[128])={0xeb,0x98,0xa3,0x41,0x2c,0x20,0xd3,0xeb,0x92,0xcd,0xbe,0x7b,0x9c,0xb2,0x45,0xc1,0x1c,0x93,0x51,0x91,0x60,0xd4,0xc7,0xfa,0x26,0x0,0x82,0xd6,0x7e,0x50,0x8a,0x3,0xa4,0x23,0x9e,0x26,0x77,0x26,0xb9,0x45,0xe0,0xfb,0x1a,0x48,0xd4,0x1a,0x94,0x77,0xcd,0xb5,0xab,0x26,0x2,0x6b,0x17,0x7a,0x56,0xf0,0x24,0x42,0xf,0xff,0x2f,0xa8,0x71,0xa3,0x96,0x89,0x7f,0x2e,0x4d,0x75,0x1d,0x14,0x49,0x8,0xf7,0x7d,0xe2,0x62,0x27,0x76,0x95,0xf7,0x76,0x24,0x8f,0x94,0x87,0xd5,0xb6,0x57,0x47,0x80,0x29,0x6c,0x5c,0x5e,0x27,0x2d,0xac,0x8e,0xd,0x6c,0x51,0x84,0x50,0xc6,0x57,0x5,0x7a,0xf,0x7b,0xe4,0xd3,0x67,0x70,0x24,0x12,0xea,0x89,0xe3,0xab,0x13,0xd3,0x1c,0xd7,0x69};
DATA_ALIGN16(const unsigned char JH384_H0[128])={0x48,0x1e,0x3b,0xc6,0xd8,0x13,0x39,0x8a,0x6d,0x3b,0x5e,0x89,0x4a,0xde,0x87,0x9b,0x63,0xfa,0xea,0x68,0xd4,0x80,0xad,0x2e,0x33,0x2c,0xcb,0x21,0x48,0xf,0x82,0x67,0x98,0xae,0xc8,0x4d,0x90,0x82,0xb9,0x28,0xd4,0x55,0xea,0x30,0x41,0x11,0x42,0x49,0x36,0xf5,0x55,0xb2,0x92,0x48,0x47,0xec,0xc7,0x25,0xa,0x93,0xba,0xf4,0x3c,0xe1,0x56,0x9b,0x7f,0x8a,0x27,0xdb,0x45,0x4c,0x9e,0xfc,0xbd,0x49,0x63,0x97,0xaf,0xe,0x58,0x9f,0xc2,0x7d,0x26,0xaa,0x80,0xcd,0x80,0xc0,0x8b,0x8c,0x9d,0xeb,0x2e,0xda,0x8a,0x79,0x81,0xe8,0xf8,0xd5,0x37,0x3a,0xf4,0x39,0x67,0xad,0xdd,0xd1,0x7a,0x71,0xa9,0xb4,0xd3,0xbd,0xa4,0x75,0xd3,0x94,0x97,0x6c,0x3f,0xba,0x98,0x42,0x73,0x7f};
DATA_ALIGN16(const unsigned char JH512_H0[128])={0x6f,0xd1,0x4b,0x96,0x3e,0x0,0xaa,0x17,0x63,0x6a,0x2e,0x5,0x7a,0x15,0xd5,0x43,0x8a,0x22,0x5e,0x8d,0xc,0x97,0xef,0xb,0xe9,0x34,0x12,0x59,0xf2,0xb3,0xc3,0x61,0x89,0x1d,0xa0,0xc1,0x53,0x6f,0x80,0x1e,0x2a,0xa9,0x5,0x6b,0xea,0x2b,0x6d,0x80,0x58,0x8e,0xcc,0xdb,0x20,0x75,0xba,0xa6,0xa9,0xf,0x3a,0x76,0xba,0xf8,0x3b,0xf7,0x1,0x69,0xe6,0x5,0x41,0xe3,0x4a,0x69,0x46,0xb5,0x8a,0x8e,0x2e,0x6f,0xe6,0x5a,0x10,0x47,0xa7,0xd0,0xc1,0x84,0x3c,0x24,0x3b,0x6e,0x71,0xb1,0x2d,0x5a,0xc1,0x99,0xcf,0x57,0xf6,0xec,0x9d,0xb1,0xf8,0x56,0xa7,0x6,0x88,0x7c,0x57,0x16,0xb1,0x56,0xe3,0xc2,0xfc,0xdf,0xe6,0x85,0x17,0xfb,0x54,0x5a,0x46,0x78,0xcc,0x8c,0xdd,0x4b};
/*42 round constants, each round constant is 32-byte (256-bit)*/
DATA_ALIGN16(const unsigned char E8_bitslice_roundconstant[42][32])={
{0x72,0xd5,0xde,0xa2,0xdf,0x15,0xf8,0x67,0x7b,0x84,0x15,0xa,0xb7,0x23,0x15,0x57,0x81,0xab,0xd6,0x90,0x4d,0x5a,0x87,0xf6,0x4e,0x9f,0x4f,0xc5,0xc3,0xd1,0x2b,0x40},
{0xea,0x98,0x3a,0xe0,0x5c,0x45,0xfa,0x9c,0x3,0xc5,0xd2,0x99,0x66,0xb2,0x99,0x9a,0x66,0x2,0x96,0xb4,0xf2,0xbb,0x53,0x8a,0xb5,0x56,0x14,0x1a,0x88,0xdb,0xa2,0x31},
{0x3,0xa3,0x5a,0x5c,0x9a,0x19,0xe,0xdb,0x40,0x3f,0xb2,0xa,0x87,0xc1,0x44,0x10,0x1c,0x5,0x19,0x80,0x84,0x9e,0x95,0x1d,0x6f,0x33,0xeb,0xad,0x5e,0xe7,0xcd,0xdc},
{0x10,0xba,0x13,0x92,0x2,0xbf,0x6b,0x41,0xdc,0x78,0x65,0x15,0xf7,0xbb,0x27,0xd0,0xa,0x2c,0x81,0x39,0x37,0xaa,0x78,0x50,0x3f,0x1a,0xbf,0xd2,0x41,0x0,0x91,0xd3},
{0x42,0x2d,0x5a,0xd,0xf6,0xcc,0x7e,0x90,0xdd,0x62,0x9f,0x9c,0x92,0xc0,0x97,0xce,0x18,0x5c,0xa7,0xb,0xc7,0x2b,0x44,0xac,0xd1,0xdf,0x65,0xd6,0x63,0xc6,0xfc,0x23},
{0x97,0x6e,0x6c,0x3,0x9e,0xe0,0xb8,0x1a,0x21,0x5,0x45,0x7e,0x44,0x6c,0xec,0xa8,0xee,0xf1,0x3,0xbb,0x5d,0x8e,0x61,0xfa,0xfd,0x96,0x97,0xb2,0x94,0x83,0x81,0x97},
{0x4a,0x8e,0x85,0x37,0xdb,0x3,0x30,0x2f,0x2a,0x67,0x8d,0x2d,0xfb,0x9f,0x6a,0x95,0x8a,0xfe,0x73,0x81,0xf8,0xb8,0x69,0x6c,0x8a,0xc7,0x72,0x46,0xc0,0x7f,0x42,0x14},
{0xc5,0xf4,0x15,0x8f,0xbd,0xc7,0x5e,0xc4,0x75,0x44,0x6f,0xa7,0x8f,0x11,0xbb,0x80,0x52,0xde,0x75,0xb7,0xae,0xe4,0x88,0xbc,0x82,0xb8,0x0,0x1e,0x98,0xa6,0xa3,0xf4},
{0x8e,0xf4,0x8f,0x33,0xa9,0xa3,0x63,0x15,0xaa,0x5f,0x56,0x24,0xd5,0xb7,0xf9,0x89,0xb6,0xf1,0xed,0x20,0x7c,0x5a,0xe0,0xfd,0x36,0xca,0xe9,0x5a,0x6,0x42,0x2c,0x36},
{0xce,0x29,0x35,0x43,0x4e,0xfe,0x98,0x3d,0x53,0x3a,0xf9,0x74,0x73,0x9a,0x4b,0xa7,0xd0,0xf5,0x1f,0x59,0x6f,0x4e,0x81,0x86,0xe,0x9d,0xad,0x81,0xaf,0xd8,0x5a,0x9f},
{0xa7,0x5,0x6,0x67,0xee,0x34,0x62,0x6a,0x8b,0xb,0x28,0xbe,0x6e,0xb9,0x17,0x27,0x47,0x74,0x7,0x26,0xc6,0x80,0x10,0x3f,0xe0,0xa0,0x7e,0x6f,0xc6,0x7e,0x48,0x7b},
{0xd,0x55,0xa,0xa5,0x4a,0xf8,0xa4,0xc0,0x91,0xe3,0xe7,0x9f,0x97,0x8e,0xf1,0x9e,0x86,0x76,0x72,0x81,0x50,0x60,0x8d,0xd4,0x7e,0x9e,0x5a,0x41,0xf3,0xe5,0xb0,0x62},
{0xfc,0x9f,0x1f,0xec,0x40,0x54,0x20,0x7a,0xe3,0xe4,0x1a,0x0,0xce,0xf4,0xc9,0x84,0x4f,0xd7,0x94,0xf5,0x9d,0xfa,0x95,0xd8,0x55,0x2e,0x7e,0x11,0x24,0xc3,0x54,0xa5},
{0x5b,0xdf,0x72,0x28,0xbd,0xfe,0x6e,0x28,0x78,0xf5,0x7f,0xe2,0xf,0xa5,0xc4,0xb2,0x5,0x89,0x7c,0xef,0xee,0x49,0xd3,0x2e,0x44,0x7e,0x93,0x85,0xeb,0x28,0x59,0x7f},
{0x70,0x5f,0x69,0x37,0xb3,0x24,0x31,0x4a,0x5e,0x86,0x28,0xf1,0x1d,0xd6,0xe4,0x65,0xc7,0x1b,0x77,0x4,0x51,0xb9,0x20,0xe7,0x74,0xfe,0x43,0xe8,0x23,0xd4,0x87,0x8a},
{0x7d,0x29,0xe8,0xa3,0x92,0x76,0x94,0xf2,0xdd,0xcb,0x7a,0x9,0x9b,0x30,0xd9,0xc1,0x1d,0x1b,0x30,0xfb,0x5b,0xdc,0x1b,0xe0,0xda,0x24,0x49,0x4f,0xf2,0x9c,0x82,0xbf},
{0xa4,0xe7,0xba,0x31,0xb4,0x70,0xbf,0xff,0xd,0x32,0x44,0x5,0xde,0xf8,0xbc,0x48,0x3b,0xae,0xfc,0x32,0x53,0xbb,0xd3,0x39,0x45,0x9f,0xc3,0xc1,0xe0,0x29,0x8b,0xa0},
{0xe5,0xc9,0x5,0xfd,0xf7,0xae,0x9,0xf,0x94,0x70,0x34,0x12,0x42,0x90,0xf1,0x34,0xa2,0x71,0xb7,0x1,0xe3,0x44,0xed,0x95,0xe9,0x3b,0x8e,0x36,0x4f,0x2f,0x98,0x4a},
{0x88,0x40,0x1d,0x63,0xa0,0x6c,0xf6,0x15,0x47,0xc1,0x44,0x4b,0x87,0x52,0xaf,0xff,0x7e,0xbb,0x4a,0xf1,0xe2,0xa,0xc6,0x30,0x46,0x70,0xb6,0xc5,0xcc,0x6e,0x8c,0xe6},
{0xa4,0xd5,0xa4,0x56,0xbd,0x4f,0xca,0x0,0xda,0x9d,0x84,0x4b,0xc8,0x3e,0x18,0xae,0x73,0x57,0xce,0x45,0x30,0x64,0xd1,0xad,0xe8,0xa6,0xce,0x68,0x14,0x5c,0x25,0x67},
{0xa3,0xda,0x8c,0xf2,0xcb,0xe,0xe1,0x16,0x33,0xe9,0x6,0x58,0x9a,0x94,0x99,0x9a,0x1f,0x60,0xb2,0x20,0xc2,0x6f,0x84,0x7b,0xd1,0xce,0xac,0x7f,0xa0,0xd1,0x85,0x18},
{0x32,0x59,0x5b,0xa1,0x8d,0xdd,0x19,0xd3,0x50,0x9a,0x1c,0xc0,0xaa,0xa5,0xb4,0x46,0x9f,0x3d,0x63,0x67,0xe4,0x4,0x6b,0xba,0xf6,0xca,0x19,0xab,0xb,0x56,0xee,0x7e},
{0x1f,0xb1,0x79,0xea,0xa9,0x28,0x21,0x74,0xe9,0xbd,0xf7,0x35,0x3b,0x36,0x51,0xee,0x1d,0x57,0xac,0x5a,0x75,0x50,0xd3,0x76,0x3a,0x46,0xc2,0xfe,0xa3,0x7d,0x70,0x1},
{0xf7,0x35,0xc1,0xaf,0x98,0xa4,0xd8,0x42,0x78,0xed,0xec,0x20,0x9e,0x6b,0x67,0x79,0x41,0x83,0x63,0x15,0xea,0x3a,0xdb,0xa8,0xfa,0xc3,0x3b,0x4d,0x32,0x83,0x2c,0x83},
{0xa7,0x40,0x3b,0x1f,0x1c,0x27,0x47,0xf3,0x59,0x40,0xf0,0x34,0xb7,0x2d,0x76,0x9a,0xe7,0x3e,0x4e,0x6c,0xd2,0x21,0x4f,0xfd,0xb8,0xfd,0x8d,0x39,0xdc,0x57,0x59,0xef},
{0x8d,0x9b,0xc,0x49,0x2b,0x49,0xeb,0xda,0x5b,0xa2,0xd7,0x49,0x68,0xf3,0x70,0xd,0x7d,0x3b,0xae,0xd0,0x7a,0x8d,0x55,0x84,0xf5,0xa5,0xe9,0xf0,0xe4,0xf8,0x8e,0x65},
{0xa0,0xb8,0xa2,0xf4,0x36,0x10,0x3b,0x53,0xc,0xa8,0x7,0x9e,0x75,0x3e,0xec,0x5a,0x91,0x68,0x94,0x92,0x56,0xe8,0x88,0x4f,0x5b,0xb0,0x5c,0x55,0xf8,0xba,0xbc,0x4c},
{0xe3,0xbb,0x3b,0x99,0xf3,0x87,0x94,0x7b,0x75,0xda,0xf4,0xd6,0x72,0x6b,0x1c,0x5d,0x64,0xae,0xac,0x28,0xdc,0x34,0xb3,0x6d,0x6c,0x34,0xa5,0x50,0xb8,0x28,0xdb,0x71},
{0xf8,0x61,0xe2,0xf2,0x10,0x8d,0x51,0x2a,0xe3,0xdb,0x64,0x33,0x59,0xdd,0x75,0xfc,0x1c,0xac,0xbc,0xf1,0x43,0xce,0x3f,0xa2,0x67,0xbb,0xd1,0x3c,0x2,0xe8,0x43,0xb0},
{0x33,0xa,0x5b,0xca,0x88,0x29,0xa1,0x75,0x7f,0x34,0x19,0x4d,0xb4,0x16,0x53,0x5c,0x92,0x3b,0x94,0xc3,0xe,0x79,0x4d,0x1e,0x79,0x74,0x75,0xd7,0xb6,0xee,0xaf,0x3f},
{0xea,0xa8,0xd4,0xf7,0xbe,0x1a,0x39,0x21,0x5c,0xf4,0x7e,0x9,0x4c,0x23,0x27,0x51,0x26,0xa3,0x24,0x53,0xba,0x32,0x3c,0xd2,0x44,0xa3,0x17,0x4a,0x6d,0xa6,0xd5,0xad},
{0xb5,0x1d,0x3e,0xa6,0xaf,0xf2,0xc9,0x8,0x83,0x59,0x3d,0x98,0x91,0x6b,0x3c,0x56,0x4c,0xf8,0x7c,0xa1,0x72,0x86,0x60,0x4d,0x46,0xe2,0x3e,0xcc,0x8,0x6e,0xc7,0xf6},
{0x2f,0x98,0x33,0xb3,0xb1,0xbc,0x76,0x5e,0x2b,0xd6,0x66,0xa5,0xef,0xc4,0xe6,0x2a,0x6,0xf4,0xb6,0xe8,0xbe,0xc1,0xd4,0x36,0x74,0xee,0x82,0x15,0xbc,0xef,0x21,0x63},
{0xfd,0xc1,0x4e,0xd,0xf4,0x53,0xc9,0x69,0xa7,0x7d,0x5a,0xc4,0x6,0x58,0x58,0x26,0x7e,0xc1,0x14,0x16,0x6,0xe0,0xfa,0x16,0x7e,0x90,0xaf,0x3d,0x28,0x63,0x9d,0x3f},
{0xd2,0xc9,0xf2,0xe3,0x0,0x9b,0xd2,0xc,0x5f,0xaa,0xce,0x30,0xb7,0xd4,0xc,0x30,0x74,0x2a,0x51,0x16,0xf2,0xe0,0x32,0x98,0xd,0xeb,0x30,0xd8,0xe3,0xce,0xf8,0x9a},
{0x4b,0xc5,0x9e,0x7b,0xb5,0xf1,0x79,0x92,0xff,0x51,0xe6,0x6e,0x4,0x86,0x68,0xd3,0x9b,0x23,0x4d,0x57,0xe6,0x96,0x67,0x31,0xcc,0xe6,0xa6,0xf3,0x17,0xa,0x75,0x5},
{0xb1,0x76,0x81,0xd9,0x13,0x32,0x6c,0xce,0x3c,0x17,0x52,0x84,0xf8,0x5,0xa2,0x62,0xf4,0x2b,0xcb,0xb3,0x78,0x47,0x15,0x47,0xff,0x46,0x54,0x82,0x23,0x93,0x6a,0x48},
{0x38,0xdf,0x58,0x7,0x4e,0x5e,0x65,0x65,0xf2,0xfc,0x7c,0x89,0xfc,0x86,0x50,0x8e,0x31,0x70,0x2e,0x44,0xd0,0xb,0xca,0x86,0xf0,0x40,0x9,0xa2,0x30,0x78,0x47,0x4e},
{0x65,0xa0,0xee,0x39,0xd1,0xf7,0x38,0x83,0xf7,0x5e,0xe9,0x37,0xe4,0x2c,0x3a,0xbd,0x21,0x97,0xb2,0x26,0x1,0x13,0xf8,0x6f,0xa3,0x44,0xed,0xd1,0xef,0x9f,0xde,0xe7},
{0x8b,0xa0,0xdf,0x15,0x76,0x25,0x92,0xd9,0x3c,0x85,0xf7,0xf6,0x12,0xdc,0x42,0xbe,0xd8,0xa7,0xec,0x7c,0xab,0x27,0xb0,0x7e,0x53,0x8d,0x7d,0xda,0xaa,0x3e,0xa8,0xde},
{0xaa,0x25,0xce,0x93,0xbd,0x2,0x69,0xd8,0x5a,0xf6,0x43,0xfd,0x1a,0x73,0x8,0xf9,0xc0,0x5f,0xef,0xda,0x17,0x4a,0x19,0xa5,0x97,0x4d,0x66,0x33,0x4c,0xfd,0x21,0x6a},
{0x35,0xb4,0x98,0x31,0xdb,0x41,0x15,0x70,0xea,0x1e,0xf,0xbb,0xed,0xcd,0x54,0x9b,0x9a,0xd0,0x63,0xa1,0x51,0x97,0x40,0x72,0xf6,0x75,0x9d,0xbf,0x91,0x47,0x6f,0xe2}};
void F8(hashState *state); /* the compression function F8 */
/*The API functions*/
HashReturn Init(hashState *state, int hashbitlen);
HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen);
HashReturn Final(hashState *state, BitSequence *hashval);
HashReturn Hash(int hashbitlen, const BitSequence *data,DataLength databitlen, BitSequence *hashval);
/*The following defines operations on 128-bit word(s)*/
#define CONSTANT(b) _mm_set1_epi8((b)) /*set each byte in a 128-bit register to be "b"*/
#define XOR(x,y) _mm_xor_si128((x),(y)) /*XOR(x,y) = x ^ y, where x and y are two 128-bit word*/
#define AND(x,y) _mm_and_si128((x),(y)) /*AND(x,y) = x & y, where x and y are two 128-bit word*/
#define ANDNOT(x,y) _mm_andnot_si128((x),(y)) /*ANDNOT(x,y) = (!x) & y, where x and y are two 128-bit word*/
#define OR(x,y) _mm_or_si128((x),(y)) /*OR(x,y) = x | y, where x and y are two 128-bit word*/
#define SHR1(x) _mm_srli_epi16((x), 1) /*SHR1(x) = x >> 1, where x is a 128 bit word*/
#define SHR2(x) _mm_srli_epi16((x), 2) /*SHR2(x) = x >> 2, where x is a 128 bit word*/
#define SHR4(x) _mm_srli_epi16((x), 4) /*SHR4(x) = x >> 4, where x is a 128 bit word*/
#define SHR8(x) _mm_slli_epi16((x), 8) /*SHR8(x) = x >> 8, where x is a 128 bit word*/
#define SHR16(x) _mm_slli_epi32((x), 16) /*SHR16(x) = x >> 16, where x is a 128 bit word*/
#define SHR32(x) _mm_slli_epi64((x), 32) /*SHR32(x) = x >> 32, where x is a 128 bit word*/
#define SHR64(x) _mm_slli_si128((x), 8) /*SHR64(x) = x >> 64, where x is a 128 bit word*/
#define SHL1(x) _mm_slli_epi16((x), 1) /*SHL1(x) = x << 1, where x is a 128 bit word*/
#define SHL2(x) _mm_slli_epi16((x), 2) /*SHL2(x) = x << 2, where x is a 128 bit word*/
#define SHL4(x) _mm_slli_epi16((x), 4) /*SHL4(x) = x << 4, where x is a 128 bit word*/
#define SHL8(x) _mm_srli_epi16((x), 8) /*SHL8(x) = x << 8, where x is a 128 bit word*/
#define SHL16(x) _mm_srli_epi32((x), 16) /*SHL16(x) = x << 16, where x is a 128 bit word*/
#define SHL32(x) _mm_srli_epi64((x), 32) /*SHL32(x) = x << 32, where x is a 128 bit word*/
#define SHL64(x) _mm_srli_si128((x), 8) /*SHL64(x) = x << 64, where x is a 128 bit word*/
#define SWAP1(x) OR(SHR1(AND((x),CONSTANT(0xaa))),SHL1(AND((x),CONSTANT(0x55)))) /*swapping bit 2i with bit 2i+1 of the 128-bit x */
#define SWAP2(x) OR(SHR2(AND((x),CONSTANT(0xcc))),SHL2(AND((x),CONSTANT(0x33)))) /*swapping bit 4i||4i+1 with bit 4i+2||4i+3 of the 128-bit x */
#define SWAP4(x) OR(SHR4(AND((x),CONSTANT(0xf0))),SHL4(AND((x),CONSTANT(0xf)))) /*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 of the 128-bit x */
#define SWAP8(x) OR(SHR8(x),SHL8(x)) /*swapping bits 16i||16i+1||...||16i+7 with bits 16i+8||16i+9||...||16i+15 of the 128-bit x */
#define SWAP16(x) OR(SHR16(x),SHL16(x)) /*swapping bits 32i||32i+1||...||32i+15 with bits 32i+16||32i+17||...||32i+31 of the 128-bit x */
#define SWAP32(x) _mm_shuffle_epi32((x),_MM_SHUFFLE(2,3,0,1)) /*swapping bits 64i||64i+1||...||64i+31 with bits 64i+32||64i+33||...||64i+63 of the 128-bit x*/
#define SWAP64(x) _mm_shuffle_epi32((x),_MM_SHUFFLE(1,0,3,2)) /*swapping bits 128i||128i+1||...||128i+63 with bits 128i+64||128i+65||...||128i+127 of the 128-bit x*/
#define STORE(x,p) _mm_store_si128((__m128i *)(p), (x)) /*store the 128-bit word x into memeory address p, where p is the multile of 16 bytes*/
#define LOAD(p) _mm_load_si128((__m128i *)(p)) /*load 16 bytes from the memory address p, return a 128-bit word, where p is the multile of 16 bytes*/
/*The MDS code*/
#define L(m0,m1,m2,m3,m4,m5,m6,m7) \
(m4) = XOR((m4),(m1)); \
(m5) = XOR((m5),(m2)); \
(m6) = XOR(XOR((m6),(m3)),(m0)); \
(m7) = XOR((m7),(m0)); \
(m0) = XOR((m0),(m5)); \
(m1) = XOR((m1),(m6)); \
(m2) = XOR(XOR((m2),(m7)),(m4)); \
(m3) = XOR((m3),(m4));
/*The Sbox, it implements S0 and S1, selected by a constant bit*/
#define S(m0,m1,m2,m3,c0) \
m3 = XOR(m3,CONSTANT(0xff)); \
m0 = XOR(m0,ANDNOT(m2,c0)); \
temp0 = XOR(c0,AND(m0,m1)); \
m0 = XOR(m0,AND(m3,m2)); \
m3 = XOR(m3,ANDNOT(m1,m2)); \
m1 = XOR(m1,AND(m0,m2)); \
m2 = XOR(m2,ANDNOT(m3,m0)); \
m0 = XOR(m0,OR(m1,m3)); \
m3 = XOR(m3,AND(m1,m2)); \
m2 = XOR(m2,temp0); \
m1 = XOR(m1,AND(temp0,m0));
/* The linear transform of the (7i+0)th round*/
#define lineartransform_R00(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bit 2i with bit 2i+1 for m4,m5,m6 and m7 */ \
m4 = SWAP1(m4); m5 = SWAP1(m5); m6 = SWAP1(m6); m7 = SWAP1(m7);
/* The linear transform of the (7i+1)th round*/
#define lineartransform_R01(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bit 4i||4i+1 with bit 4i+2||4i+3 for m4,m5,m6 and m7 */ \
m4 = SWAP2(m4); m5 = SWAP2(m5); m6 = SWAP2(m6); m7 = SWAP2(m7);
/* The linear transform of the (7i+2)th round*/
#define lineartransform_R02(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 for m4,m5,m6 and m7*/ \
m4 = SWAP4(m4); m5 = SWAP4(m5); m6 = SWAP4(m6); m7 = SWAP4(m7);
/* The linear transform of the (7i+3)th round*/
#define lineartransform_R03(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 16i||16i+1||...||16i+7 with bits 16i+8||16i+9||...||16i+15 for m4,m5,m6 and m7*/ \
m4 = SWAP8(m4); m5 = SWAP8(m5); m6 = SWAP8(m6); m7 = SWAP8(m7);
/* The linear transform of the (7i+4)th round*/
#define lineartransform_R04(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 32i||32i+1||...||32i+15 with bits 32i+16||32i+17||...||32i+31 for m0,m1,m2 and m3*/ \
m4 = SWAP16(m4); m5 = SWAP16(m5); m6 = SWAP16(m6); m7 = SWAP16(m7);
/* The linear transform of the (7i+5)th round -- faster*/
#define lineartransform_R05(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 64i||64i+1||...||64i+31 with bits 64i+32||64i+33||...||64i+63 for m0,m1,m2 and m3*/ \
m4 = SWAP32(m4); m5 = SWAP32(m5); m6 = SWAP32(m6); m7 = SWAP32(m7);
/* The linear transform of the (7i+6)th round -- faster*/
#define lineartransform_R06(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
L(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 128i||128i+1||...||128i+63 with bits 128i+64||128i+65||...||128i+127 for m0,m1,m2 and m3*/ \
m4 = SWAP64(m4); m5 = SWAP64(m5); m6 = SWAP64(m6); m7 = SWAP64(m7);
/*the round function of E8 */
#define round_function(nn,r) \
S(y0,y2,y4,y6, LOAD(E8_bitslice_roundconstant[r]) ); \
S(y1,y3,y5,y7, LOAD(E8_bitslice_roundconstant[r]+16) ); \
lineartransform_R##nn(y0,y2,y4,y6,y1,y3,y5,y7);
/*the compression function F8 */
void F8(hashState *state)
{
uint32 i;
word128 y0,y1,y2,y3,y4,y5,y6,y7;
word128 temp0;
y0 = state->x0;
y1 = state->x1;
y2 = state->x2;
y3 = state->x3;
y4 = state->x4;
y5 = state->x5;
y6 = state->x6;
y7 = state->x7;
/*xor the 512-bit message with the fist half of the 1024-bit hash state*/
y0 = XOR(y0, LOAD(state->buffer));
y1 = XOR(y1, LOAD(state->buffer+16));
y2 = XOR(y2, LOAD(state->buffer+32));
y3 = XOR(y3, LOAD(state->buffer+48));
/*perform 42 rounds*/
for (i = 0; i < 42; i = i+7) {
round_function(00,i);
round_function(01,i+1);
round_function(02,i+2);
round_function(03,i+3);
round_function(04,i+4);
round_function(05,i+5);
round_function(06,i+6);
}
/*xor the 512-bit message with the second half of the 1024-bit hash state*/
y4 = XOR(y4, LOAD(state->buffer));
y5 = XOR(y5, LOAD(state->buffer+16));
y6 = XOR(y6, LOAD(state->buffer+32));
y7 = XOR(y7, LOAD(state->buffer+48));
state->x0 = y0;
state->x1 = y1;
state->x2 = y2;
state->x3 = y3;
state->x4 = y4;
state->x5 = y5;
state->x6 = y6;
state->x7 = y7;
}
/*before hashing a message, initialize the hash state as H0 */
HashReturn Init(hashState *state, int hashbitlen)
{
state->databitlen = 0;
state->datasize_in_buffer = 0;
state->hashbitlen = hashbitlen;
/*initialize the initial hash value of JH*/
/*load the intital hash value into state*/
switch(hashbitlen)
{
case 224:
state->x0 = LOAD(JH224_H0);
state->x1 = LOAD(JH224_H0+16);
state->x2 = LOAD(JH224_H0+32);
state->x3 = LOAD(JH224_H0+48);
state->x4 = LOAD(JH224_H0+64);
state->x5 = LOAD(JH224_H0+80);
state->x6 = LOAD(JH224_H0+96);
state->x7 = LOAD(JH224_H0+112);
break;
case 256:
state->x0 = LOAD(JH256_H0);
state->x1 = LOAD(JH256_H0+16);
state->x2 = LOAD(JH256_H0+32);
state->x3 = LOAD(JH256_H0+48);
state->x4 = LOAD(JH256_H0+64);
state->x5 = LOAD(JH256_H0+80);
state->x6 = LOAD(JH256_H0+96);
state->x7 = LOAD(JH256_H0+112);
break;
case 384:
state->x0 = LOAD(JH384_H0);
state->x1 = LOAD(JH384_H0+16);
state->x2 = LOAD(JH384_H0+32);
state->x3 = LOAD(JH384_H0+48);
state->x4 = LOAD(JH384_H0+64);
state->x5 = LOAD(JH384_H0+80);
state->x6 = LOAD(JH384_H0+96);
state->x7 = LOAD(JH384_H0+112);
break;
case 512:
state->x0 = LOAD(JH512_H0);
state->x1 = LOAD(JH512_H0+16);
state->x2 = LOAD(JH512_H0+32);
state->x3 = LOAD(JH512_H0+48);
state->x4 = LOAD(JH512_H0+64);
state->x5 = LOAD(JH512_H0+80);
state->x6 = LOAD(JH512_H0+96);
state->x7 = LOAD(JH512_H0+112);
break;
}
return(SUCCESS);
}
/*hash each 512-bit message block, except the last partial block*/
HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen)
{
DataLength index; /*the starting address of the data to be compressed*/
state->databitlen += databitlen;
index = 0;
/*if there is remaining data in the buffer, fill it to a full message block first*/
/*we assume that the size of the data in the buffer is the multiple of 8 bits if it is not at the end of a message*/
/*There is data in the buffer, but the incoming data is insufficient for a full block*/
if ( (state->datasize_in_buffer > 0 ) && (( state->datasize_in_buffer + databitlen) < 512) ) {
if ( (databitlen & 7) == 0 ) {
memcpy(state->buffer + (state->datasize_in_buffer >> 3), data, 64-(state->datasize_in_buffer >> 3)) ;
}
else memcpy(state->buffer + (state->datasize_in_buffer >> 3), data, 64-(state->datasize_in_buffer >> 3)+1) ;
state->datasize_in_buffer += databitlen;
databitlen = 0;
}
/*There is data in the buffer, and the incoming data is sufficient for a full block*/
if ( (state->datasize_in_buffer > 0 ) && (( state->datasize_in_buffer + databitlen) >= 512) ) {
memcpy( state->buffer + (state->datasize_in_buffer >> 3), data, 64-(state->datasize_in_buffer >> 3) ) ;
index = 64-(state->datasize_in_buffer >> 3);
databitlen = databitlen - (512 - state->datasize_in_buffer);
F8(state);
state->datasize_in_buffer = 0;
}
/*hash the remaining full message blocks*/
for ( ; databitlen >= 512; index = index+64, databitlen = databitlen - 512) {
memcpy(state->buffer, data+index, 64);
F8(state);
}
/*store the partial block into buffer, assume that -- if part of the last byte is not part of the message, then that part consists of 0 bits*/
if ( databitlen > 0) {
if ((databitlen & 7) == 0)
memcpy(state->buffer, data+index, (databitlen & 0x1ff) >> 3);
else
memcpy(state->buffer, data+index, ((databitlen & 0x1ff) >> 3)+1);
state->datasize_in_buffer = databitlen;
}
return(SUCCESS);
}
/*pad the message, process the padded block(s), truncate the hash value H to obtain the message digest*/
HashReturn Final(hashState *state, BitSequence *hashval)
{
unsigned int i;
DATA_ALIGN16(unsigned char t[64]);
if ( (state->databitlen & 0x1ff) == 0 )
{
/*pad the message when databitlen is multiple of 512 bits, then process the padded block*/
memset(state->buffer,0,64);
state->buffer[0] = 0x80;
state->buffer[63] = state->databitlen & 0xff;
state->buffer[62] = (state->databitlen >> 8) & 0xff;
state->buffer[61] = (state->databitlen >> 16) & 0xff;
state->buffer[60] = (state->databitlen >> 24) & 0xff;
state->buffer[59] = (state->databitlen >> 32) & 0xff;
state->buffer[58] = (state->databitlen >> 40) & 0xff;
state->buffer[57] = (state->databitlen >> 48) & 0xff;
state->buffer[56] = (state->databitlen >> 56) & 0xff;
F8(state);
}
else {
/*set the rest of the bytes in the buffer to 0*/
if ( (state->datasize_in_buffer & 7) == 0)
for (i = (state->databitlen & 0x1ff) >> 3; i < 64; i++) state->buffer[i] = 0;
else
for (i = ((state->databitlen & 0x1ff) >> 3)+1; i < 64; i++) state->buffer[i] = 0;
/*pad and process the partial block when databitlen is not multiple of 512 bits, then hash the padded blocks*/
state->buffer[((state->databitlen & 0x1ff) >> 3)] |= 1 << (7- (state->databitlen & 7));
F8(state);
memset(state->buffer,0,64);
state->buffer[63] = state->databitlen & 0xff;
state->buffer[62] = (state->databitlen >> 8) & 0xff;
state->buffer[61] = (state->databitlen >> 16) & 0xff;
state->buffer[60] = (state->databitlen >> 24) & 0xff;
state->buffer[59] = (state->databitlen >> 32) & 0xff;
state->buffer[58] = (state->databitlen >> 40) & 0xff;
state->buffer[57] = (state->databitlen >> 48) & 0xff;
state->buffer[56] = (state->databitlen >> 56) & 0xff;
F8(state);
}
/*truncting the final hash value to generate the message digest*/
STORE(state->x4,t);
STORE(state->x5,t+16);
STORE(state->x6,t+32);
STORE(state->x7,t+48);
switch (state->hashbitlen)
{
case 224: memcpy(hashval,t+36,28); break;
case 256: memcpy(hashval,t+32,32); break;
case 384: memcpy(hashval,t+16,48); break;
case 512: memcpy(hashval,t,64); break;
}
return(SUCCESS);
}
/* hash a message,
three inputs: message digest size in bits (hashbitlen); message (data); message length in bits (databitlen)
one output: message digest (hashval)
*/
HashReturn Hash(int hashbitlen, const BitSequence *data,DataLength databitlen, BitSequence *hashval)
{
hashState state;
if ( hashbitlen == 224 || hashbitlen == 256 || hashbitlen == 384 || hashbitlen == 512 )
{
Init(&state, hashbitlen);
Update(&state, data, databitlen);
Final(&state, hashval);
return SUCCESS;
}
else
return(BAD_HASHLEN);
}

View File

@@ -1,357 +0,0 @@
/*This program gives the optimized SSE2 bitslice implementation of JH for 64-bit platform (with 16 128-bit XMM registers).
--------------------------------
Performance
Microprocessor: Intel CORE 2 processor (Core 2 Duo Mobile T6600 2.2GHz)
Operating System: 64-bit Ubuntu 10.04 (Linux kernel 2.6.32-22-generic)
Speed for long message:
1) 19.9 cycles/byte compiler: Intel C++ Compiler 11.1 compilation option: icc -O3
2) 20.9 cycles/byte compiler: gcc 4.4.3 compilation option: gcc -msse2 -O3
--------------------------------
Compare with the original JH sse2 code (October 2008) for 64-bit platform, we made the modifications:
a) The Sbox implementation follows exactly the description given in the document
b) Data alignment definition is improved so that the code can be compiled by GCC, Intel C++ compiler and Microsoft Visual C compiler
c) Using y0,y1,..,y7 variables in Function F8 for performance improvement (local variable in function F8 so that compiler can optimize the code easily)
d) Removed a number of intermediate variables from the program (so as to given compiler more freedom to optimize the code)
e) Using "for" loop to implement 42 rounds (with 7 rounds in each loop), so as to reduce the code size.
--------------------------------
Last Modified: January 16, 2011
*/
#include <emmintrin.h>
#include <stdint.h>
#include <string.h>
#include "algo/sha/sha3-defs.h"
typedef __m128i word128; /*word128 defines a 128-bit SSE2 word*/
typedef enum {jhSUCCESS = 0, jhFAIL = 1, jhBAD_HASHLEN = 2} jhReturn;
/*define data alignment for different C compilers*/
#if defined(__GNUC__)
#define DATA_ALIGN16(x) x __attribute__ ((aligned(16)))
#else
#define DATA_ALIGN16(x) __declspec(align(16)) x
#endif
typedef struct {
DataLength jhbitlen; /*the message digest size*/
DataLength databitlen; /*the message size in bits*/
DataLength datasize_in_buffer; /*the size of the message remained in buffer; assumed to be multiple of 8bits except for the last partial block at the end of the message*/
word128 x0,x1,x2,x3,x4,x5,x6,x7; /*1024-bit state;*/
unsigned char buffer[64]; /*512-bit message block;*/
} jhState;
#define DECL_JH \
word128 jhSx0,jhSx1,jhSx2,jhSx3,jhSx4,jhSx5,jhSx6,jhSx7; \
unsigned char jhSbuffer[64];
/*The initial hash value H(0)*/
static DATA_ALIGN16(const unsigned char JH512_H0[128])={0x6f,0xd1,0x4b,0x96,0x3e,0x0,0xaa,0x17,0x63,0x6a,0x2e,0x5,0x7a,0x15,0xd5,0x43,0x8a,0x22,0x5e,0x8d,0xc,0x97,0xef,0xb,0xe9,0x34,0x12,0x59,0xf2,0xb3,0xc3,0x61,0x89,0x1d,0xa0,0xc1,0x53,0x6f,0x80,0x1e,0x2a,0xa9,0x5,0x6b,0xea,0x2b,0x6d,0x80,0x58,0x8e,0xcc,0xdb,0x20,0x75,0xba,0xa6,0xa9,0xf,0x3a,0x76,0xba,0xf8,0x3b,0xf7,0x1,0x69,0xe6,0x5,0x41,0xe3,0x4a,0x69,0x46,0xb5,0x8a,0x8e,0x2e,0x6f,0xe6,0x5a,0x10,0x47,0xa7,0xd0,0xc1,0x84,0x3c,0x24,0x3b,0x6e,0x71,0xb1,0x2d,0x5a,0xc1,0x99,0xcf,0x57,0xf6,0xec,0x9d,0xb1,0xf8,0x56,0xa7,0x6,0x88,0x7c,0x57,0x16,0xb1,0x56,0xe3,0xc2,0xfc,0xdf,0xe6,0x85,0x17,0xfb,0x54,0x5a,0x46,0x78,0xcc,0x8c,0xdd,0x4b};
/*42 round constants, each round constant is 32-byte (256-bit)*/
static DATA_ALIGN16(const unsigned char jhE8_bitslice_roundconstant[42][32])={
{0x72,0xd5,0xde,0xa2,0xdf,0x15,0xf8,0x67,0x7b,0x84,0x15,0xa,0xb7,0x23,0x15,0x57,0x81,0xab,0xd6,0x90,0x4d,0x5a,0x87,0xf6,0x4e,0x9f,0x4f,0xc5,0xc3,0xd1,0x2b,0x40},
{0xea,0x98,0x3a,0xe0,0x5c,0x45,0xfa,0x9c,0x3,0xc5,0xd2,0x99,0x66,0xb2,0x99,0x9a,0x66,0x2,0x96,0xb4,0xf2,0xbb,0x53,0x8a,0xb5,0x56,0x14,0x1a,0x88,0xdb,0xa2,0x31},
{0x3,0xa3,0x5a,0x5c,0x9a,0x19,0xe,0xdb,0x40,0x3f,0xb2,0xa,0x87,0xc1,0x44,0x10,0x1c,0x5,0x19,0x80,0x84,0x9e,0x95,0x1d,0x6f,0x33,0xeb,0xad,0x5e,0xe7,0xcd,0xdc},
{0x10,0xba,0x13,0x92,0x2,0xbf,0x6b,0x41,0xdc,0x78,0x65,0x15,0xf7,0xbb,0x27,0xd0,0xa,0x2c,0x81,0x39,0x37,0xaa,0x78,0x50,0x3f,0x1a,0xbf,0xd2,0x41,0x0,0x91,0xd3},
{0x42,0x2d,0x5a,0xd,0xf6,0xcc,0x7e,0x90,0xdd,0x62,0x9f,0x9c,0x92,0xc0,0x97,0xce,0x18,0x5c,0xa7,0xb,0xc7,0x2b,0x44,0xac,0xd1,0xdf,0x65,0xd6,0x63,0xc6,0xfc,0x23},
{0x97,0x6e,0x6c,0x3,0x9e,0xe0,0xb8,0x1a,0x21,0x5,0x45,0x7e,0x44,0x6c,0xec,0xa8,0xee,0xf1,0x3,0xbb,0x5d,0x8e,0x61,0xfa,0xfd,0x96,0x97,0xb2,0x94,0x83,0x81,0x97},
{0x4a,0x8e,0x85,0x37,0xdb,0x3,0x30,0x2f,0x2a,0x67,0x8d,0x2d,0xfb,0x9f,0x6a,0x95,0x8a,0xfe,0x73,0x81,0xf8,0xb8,0x69,0x6c,0x8a,0xc7,0x72,0x46,0xc0,0x7f,0x42,0x14},
{0xc5,0xf4,0x15,0x8f,0xbd,0xc7,0x5e,0xc4,0x75,0x44,0x6f,0xa7,0x8f,0x11,0xbb,0x80,0x52,0xde,0x75,0xb7,0xae,0xe4,0x88,0xbc,0x82,0xb8,0x0,0x1e,0x98,0xa6,0xa3,0xf4},
{0x8e,0xf4,0x8f,0x33,0xa9,0xa3,0x63,0x15,0xaa,0x5f,0x56,0x24,0xd5,0xb7,0xf9,0x89,0xb6,0xf1,0xed,0x20,0x7c,0x5a,0xe0,0xfd,0x36,0xca,0xe9,0x5a,0x6,0x42,0x2c,0x36},
{0xce,0x29,0x35,0x43,0x4e,0xfe,0x98,0x3d,0x53,0x3a,0xf9,0x74,0x73,0x9a,0x4b,0xa7,0xd0,0xf5,0x1f,0x59,0x6f,0x4e,0x81,0x86,0xe,0x9d,0xad,0x81,0xaf,0xd8,0x5a,0x9f},
{0xa7,0x5,0x6,0x67,0xee,0x34,0x62,0x6a,0x8b,0xb,0x28,0xbe,0x6e,0xb9,0x17,0x27,0x47,0x74,0x7,0x26,0xc6,0x80,0x10,0x3f,0xe0,0xa0,0x7e,0x6f,0xc6,0x7e,0x48,0x7b},
{0xd,0x55,0xa,0xa5,0x4a,0xf8,0xa4,0xc0,0x91,0xe3,0xe7,0x9f,0x97,0x8e,0xf1,0x9e,0x86,0x76,0x72,0x81,0x50,0x60,0x8d,0xd4,0x7e,0x9e,0x5a,0x41,0xf3,0xe5,0xb0,0x62},
{0xfc,0x9f,0x1f,0xec,0x40,0x54,0x20,0x7a,0xe3,0xe4,0x1a,0x0,0xce,0xf4,0xc9,0x84,0x4f,0xd7,0x94,0xf5,0x9d,0xfa,0x95,0xd8,0x55,0x2e,0x7e,0x11,0x24,0xc3,0x54,0xa5},
{0x5b,0xdf,0x72,0x28,0xbd,0xfe,0x6e,0x28,0x78,0xf5,0x7f,0xe2,0xf,0xa5,0xc4,0xb2,0x5,0x89,0x7c,0xef,0xee,0x49,0xd3,0x2e,0x44,0x7e,0x93,0x85,0xeb,0x28,0x59,0x7f},
{0x70,0x5f,0x69,0x37,0xb3,0x24,0x31,0x4a,0x5e,0x86,0x28,0xf1,0x1d,0xd6,0xe4,0x65,0xc7,0x1b,0x77,0x4,0x51,0xb9,0x20,0xe7,0x74,0xfe,0x43,0xe8,0x23,0xd4,0x87,0x8a},
{0x7d,0x29,0xe8,0xa3,0x92,0x76,0x94,0xf2,0xdd,0xcb,0x7a,0x9,0x9b,0x30,0xd9,0xc1,0x1d,0x1b,0x30,0xfb,0x5b,0xdc,0x1b,0xe0,0xda,0x24,0x49,0x4f,0xf2,0x9c,0x82,0xbf},
{0xa4,0xe7,0xba,0x31,0xb4,0x70,0xbf,0xff,0xd,0x32,0x44,0x5,0xde,0xf8,0xbc,0x48,0x3b,0xae,0xfc,0x32,0x53,0xbb,0xd3,0x39,0x45,0x9f,0xc3,0xc1,0xe0,0x29,0x8b,0xa0},
{0xe5,0xc9,0x5,0xfd,0xf7,0xae,0x9,0xf,0x94,0x70,0x34,0x12,0x42,0x90,0xf1,0x34,0xa2,0x71,0xb7,0x1,0xe3,0x44,0xed,0x95,0xe9,0x3b,0x8e,0x36,0x4f,0x2f,0x98,0x4a},
{0x88,0x40,0x1d,0x63,0xa0,0x6c,0xf6,0x15,0x47,0xc1,0x44,0x4b,0x87,0x52,0xaf,0xff,0x7e,0xbb,0x4a,0xf1,0xe2,0xa,0xc6,0x30,0x46,0x70,0xb6,0xc5,0xcc,0x6e,0x8c,0xe6},
{0xa4,0xd5,0xa4,0x56,0xbd,0x4f,0xca,0x0,0xda,0x9d,0x84,0x4b,0xc8,0x3e,0x18,0xae,0x73,0x57,0xce,0x45,0x30,0x64,0xd1,0xad,0xe8,0xa6,0xce,0x68,0x14,0x5c,0x25,0x67},
{0xa3,0xda,0x8c,0xf2,0xcb,0xe,0xe1,0x16,0x33,0xe9,0x6,0x58,0x9a,0x94,0x99,0x9a,0x1f,0x60,0xb2,0x20,0xc2,0x6f,0x84,0x7b,0xd1,0xce,0xac,0x7f,0xa0,0xd1,0x85,0x18},
{0x32,0x59,0x5b,0xa1,0x8d,0xdd,0x19,0xd3,0x50,0x9a,0x1c,0xc0,0xaa,0xa5,0xb4,0x46,0x9f,0x3d,0x63,0x67,0xe4,0x4,0x6b,0xba,0xf6,0xca,0x19,0xab,0xb,0x56,0xee,0x7e},
{0x1f,0xb1,0x79,0xea,0xa9,0x28,0x21,0x74,0xe9,0xbd,0xf7,0x35,0x3b,0x36,0x51,0xee,0x1d,0x57,0xac,0x5a,0x75,0x50,0xd3,0x76,0x3a,0x46,0xc2,0xfe,0xa3,0x7d,0x70,0x1},
{0xf7,0x35,0xc1,0xaf,0x98,0xa4,0xd8,0x42,0x78,0xed,0xec,0x20,0x9e,0x6b,0x67,0x79,0x41,0x83,0x63,0x15,0xea,0x3a,0xdb,0xa8,0xfa,0xc3,0x3b,0x4d,0x32,0x83,0x2c,0x83},
{0xa7,0x40,0x3b,0x1f,0x1c,0x27,0x47,0xf3,0x59,0x40,0xf0,0x34,0xb7,0x2d,0x76,0x9a,0xe7,0x3e,0x4e,0x6c,0xd2,0x21,0x4f,0xfd,0xb8,0xfd,0x8d,0x39,0xdc,0x57,0x59,0xef},
{0x8d,0x9b,0xc,0x49,0x2b,0x49,0xeb,0xda,0x5b,0xa2,0xd7,0x49,0x68,0xf3,0x70,0xd,0x7d,0x3b,0xae,0xd0,0x7a,0x8d,0x55,0x84,0xf5,0xa5,0xe9,0xf0,0xe4,0xf8,0x8e,0x65},
{0xa0,0xb8,0xa2,0xf4,0x36,0x10,0x3b,0x53,0xc,0xa8,0x7,0x9e,0x75,0x3e,0xec,0x5a,0x91,0x68,0x94,0x92,0x56,0xe8,0x88,0x4f,0x5b,0xb0,0x5c,0x55,0xf8,0xba,0xbc,0x4c},
{0xe3,0xbb,0x3b,0x99,0xf3,0x87,0x94,0x7b,0x75,0xda,0xf4,0xd6,0x72,0x6b,0x1c,0x5d,0x64,0xae,0xac,0x28,0xdc,0x34,0xb3,0x6d,0x6c,0x34,0xa5,0x50,0xb8,0x28,0xdb,0x71},
{0xf8,0x61,0xe2,0xf2,0x10,0x8d,0x51,0x2a,0xe3,0xdb,0x64,0x33,0x59,0xdd,0x75,0xfc,0x1c,0xac,0xbc,0xf1,0x43,0xce,0x3f,0xa2,0x67,0xbb,0xd1,0x3c,0x2,0xe8,0x43,0xb0},
{0x33,0xa,0x5b,0xca,0x88,0x29,0xa1,0x75,0x7f,0x34,0x19,0x4d,0xb4,0x16,0x53,0x5c,0x92,0x3b,0x94,0xc3,0xe,0x79,0x4d,0x1e,0x79,0x74,0x75,0xd7,0xb6,0xee,0xaf,0x3f},
{0xea,0xa8,0xd4,0xf7,0xbe,0x1a,0x39,0x21,0x5c,0xf4,0x7e,0x9,0x4c,0x23,0x27,0x51,0x26,0xa3,0x24,0x53,0xba,0x32,0x3c,0xd2,0x44,0xa3,0x17,0x4a,0x6d,0xa6,0xd5,0xad},
{0xb5,0x1d,0x3e,0xa6,0xaf,0xf2,0xc9,0x8,0x83,0x59,0x3d,0x98,0x91,0x6b,0x3c,0x56,0x4c,0xf8,0x7c,0xa1,0x72,0x86,0x60,0x4d,0x46,0xe2,0x3e,0xcc,0x8,0x6e,0xc7,0xf6},
{0x2f,0x98,0x33,0xb3,0xb1,0xbc,0x76,0x5e,0x2b,0xd6,0x66,0xa5,0xef,0xc4,0xe6,0x2a,0x6,0xf4,0xb6,0xe8,0xbe,0xc1,0xd4,0x36,0x74,0xee,0x82,0x15,0xbc,0xef,0x21,0x63},
{0xfd,0xc1,0x4e,0xd,0xf4,0x53,0xc9,0x69,0xa7,0x7d,0x5a,0xc4,0x6,0x58,0x58,0x26,0x7e,0xc1,0x14,0x16,0x6,0xe0,0xfa,0x16,0x7e,0x90,0xaf,0x3d,0x28,0x63,0x9d,0x3f},
{0xd2,0xc9,0xf2,0xe3,0x0,0x9b,0xd2,0xc,0x5f,0xaa,0xce,0x30,0xb7,0xd4,0xc,0x30,0x74,0x2a,0x51,0x16,0xf2,0xe0,0x32,0x98,0xd,0xeb,0x30,0xd8,0xe3,0xce,0xf8,0x9a},
{0x4b,0xc5,0x9e,0x7b,0xb5,0xf1,0x79,0x92,0xff,0x51,0xe6,0x6e,0x4,0x86,0x68,0xd3,0x9b,0x23,0x4d,0x57,0xe6,0x96,0x67,0x31,0xcc,0xe6,0xa6,0xf3,0x17,0xa,0x75,0x5},
{0xb1,0x76,0x81,0xd9,0x13,0x32,0x6c,0xce,0x3c,0x17,0x52,0x84,0xf8,0x5,0xa2,0x62,0xf4,0x2b,0xcb,0xb3,0x78,0x47,0x15,0x47,0xff,0x46,0x54,0x82,0x23,0x93,0x6a,0x48},
{0x38,0xdf,0x58,0x7,0x4e,0x5e,0x65,0x65,0xf2,0xfc,0x7c,0x89,0xfc,0x86,0x50,0x8e,0x31,0x70,0x2e,0x44,0xd0,0xb,0xca,0x86,0xf0,0x40,0x9,0xa2,0x30,0x78,0x47,0x4e},
{0x65,0xa0,0xee,0x39,0xd1,0xf7,0x38,0x83,0xf7,0x5e,0xe9,0x37,0xe4,0x2c,0x3a,0xbd,0x21,0x97,0xb2,0x26,0x1,0x13,0xf8,0x6f,0xa3,0x44,0xed,0xd1,0xef,0x9f,0xde,0xe7},
{0x8b,0xa0,0xdf,0x15,0x76,0x25,0x92,0xd9,0x3c,0x85,0xf7,0xf6,0x12,0xdc,0x42,0xbe,0xd8,0xa7,0xec,0x7c,0xab,0x27,0xb0,0x7e,0x53,0x8d,0x7d,0xda,0xaa,0x3e,0xa8,0xde},
{0xaa,0x25,0xce,0x93,0xbd,0x2,0x69,0xd8,0x5a,0xf6,0x43,0xfd,0x1a,0x73,0x8,0xf9,0xc0,0x5f,0xef,0xda,0x17,0x4a,0x19,0xa5,0x97,0x4d,0x66,0x33,0x4c,0xfd,0x21,0x6a},
{0x35,0xb4,0x98,0x31,0xdb,0x41,0x15,0x70,0xea,0x1e,0xf,0xbb,0xed,0xcd,0x54,0x9b,0x9a,0xd0,0x63,0xa1,0x51,0x97,0x40,0x72,0xf6,0x75,0x9d,0xbf,0x91,0x47,0x6f,0xe2}};
//static void jhF8(jhState *state); /* the compression function F8 */
/*The API functions*/
/*The following defines operations on 128-bit word(s)*/
#define jhCONSTANT(b) _mm_set1_epi8((b)) /*set each byte in a 128-bit register to be "b"*/
#define jhXOR(x,y) _mm_xor_si128((x),(y)) /*jhXOR(x,y) = x ^ y, where x and y are two 128-bit word*/
#define jhAND(x,y) _mm_and_si128((x),(y)) /*jhAND(x,y) = x & y, where x and y are two 128-bit word*/
#define jhANDNOT(x,y) _mm_andnot_si128((x),(y)) /*jhANDNOT(x,y) = (!x) & y, where x and y are two 128-bit word*/
#define jhOR(x,y) _mm_or_si128((x),(y)) /*jhOR(x,y) = x | y, where x and y are two 128-bit word*/
#define jhSHR1(x) _mm_srli_epi16((x), 1) /*jhSHR1(x) = x >> 1, where x is a 128 bit word*/
#define jhSHR2(x) _mm_srli_epi16((x), 2) /*jhSHR2(x) = x >> 2, where x is a 128 bit word*/
#define jhSHR4(x) _mm_srli_epi16((x), 4) /*jhSHR4(x) = x >> 4, where x is a 128 bit word*/
#define jhSHR8(x) _mm_slli_epi16((x), 8) /*jhSHR8(x) = x >> 8, where x is a 128 bit word*/
#define jhSHR16(x) _mm_slli_epi32((x), 16) /*jhSHR16(x) = x >> 16, where x is a 128 bit word*/
#define jhSHR32(x) _mm_slli_epi64((x), 32) /*jhSHR32(x) = x >> 32, where x is a 128 bit word*/
#define jhSHR64(x) _mm_slli_si128((x), 8) /*jhSHR64(x) = x >> 64, where x is a 128 bit word*/
#define jhSHL1(x) _mm_slli_epi16((x), 1) /*jhSHL1(x) = x << 1, where x is a 128 bit word*/
#define jhSHL2(x) _mm_slli_epi16((x), 2) /*jhSHL2(x) = x << 2, where x is a 128 bit word*/
#define jhSHL4(x) _mm_slli_epi16((x), 4) /*jhSHL4(x) = x << 4, where x is a 128 bit word*/
#define jhSHL8(x) _mm_srli_epi16((x), 8) /*jhSHL8(x) = x << 8, where x is a 128 bit word*/
#define jhSHL16(x) _mm_srli_epi32((x), 16) /*jhSHL16(x) = x << 16, where x is a 128 bit word*/
#define jhSHL32(x) _mm_srli_epi64((x), 32) /*jhSHL32(x) = x << 32, where x is a 128 bit word*/
#define jhSHL64(x) _mm_srli_si128((x), 8) /*jhSHL64(x) = x << 64, where x is a 128 bit word*/
#define jhSWAP1(x) jhOR(jhSHR1(jhAND((x),jhCONSTANT(0xaa))),jhSHL1(jhAND((x),jhCONSTANT(0x55)))) /*swapping bit 2i with bit 2i+1 of the 128-bit x */
#define jhSWAP2(x) jhOR(jhSHR2(jhAND((x),jhCONSTANT(0xcc))),jhSHL2(jhAND((x),jhCONSTANT(0x33)))) /*swapping bit 4i||4i+1 with bit 4i+2||4i+3 of the 128-bit x */
#define jhSWAP4(x) jhOR(jhSHR4(jhAND((x),jhCONSTANT(0xf0))),jhSHL4(jhAND((x),jhCONSTANT(0xf)))) /*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 of the 128-bit x */
#define jhSWAP8(x) jhOR(jhSHR8(x),jhSHL8(x)) /*swapping bits 16i||16i+1||...||16i+7 with bits 16i+8||16i+9||...||16i+15 of the 128-bit x */
#define jhSWAP16(x) jhOR(jhSHR16(x),jhSHL16(x)) /*swapping bits 32i||32i+1||...||32i+15 with bits 32i+16||32i+17||...||32i+31 of the 128-bit x */
#define jhSWAP32(x) _mm_shuffle_epi32((x),_MM_SHUFFLE(2,3,0,1)) /*swapping bits 64i||64i+1||...||64i+31 with bits 64i+32||64i+33||...||64i+63 of the 128-bit x*/
#define jhSWAP64(x) _mm_shuffle_epi32((x),_MM_SHUFFLE(1,0,3,2)) /*swapping bits 128i||128i+1||...||128i+63 with bits 128i+64||128i+65||...||128i+127 of the 128-bit x*/
#define jhSTORE(x,p) _mm_store_si128((__m128i *)(p), (x)) /*store the 128-bit word x into memeory address p, where p is the multile of 16 bytes*/
#define jhLOAD(p) _mm_load_si128((__m128i *)(p)) /*load 16 bytes from the memory address p, return a 128-bit word, where p is the multile of 16 bytes*/
/*The MDS code*/
#define jhL(m0,m1,m2,m3,m4,m5,m6,m7) \
(m4) = jhXOR((m4),(m1)); \
(m5) = jhXOR((m5),(m2)); \
(m6) = jhXOR(jhXOR((m6),(m3)),(m0)); \
(m7) = jhXOR((m7),(m0)); \
(m0) = jhXOR((m0),(m5)); \
(m1) = jhXOR((m1),(m6)); \
(m2) = jhXOR(jhXOR((m2),(m7)),(m4)); \
(m3) = jhXOR((m3),(m4));
/*Two Sboxes computed in parallel, each Sbox implements S0 and S1, selected by a constant bit*/
/*The reason to compute two Sboxes in parallel is to try to fully utilize the parallel processing power of SSE2 instructions*/
#define jhSS(m0,m1,m2,m3,m4,m5,m6,m7,constant0,constant1) \
m3 = jhXOR(m3,jhCONSTANT(0xff)); \
m7 = jhXOR(m7,jhCONSTANT(0xff)); \
m0 = jhXOR(m0,jhANDNOT(m2,constant0)); \
m4 = jhXOR(m4,jhANDNOT(m6,constant1)); \
a0 = jhXOR(constant0,jhAND(m0,m1)); \
a1 = jhXOR(constant1,jhAND(m4,m5)); \
m0 = jhXOR(m0,jhAND(m3,m2)); \
m4 = jhXOR(m4,jhAND(m7,m6)); \
m3 = jhXOR(m3,jhANDNOT(m1,m2)); \
m7 = jhXOR(m7,jhANDNOT(m5,m6)); \
m1 = jhXOR(m1,jhAND(m0,m2)); \
m5 = jhXOR(m5,jhAND(m4,m6)); \
m2 = jhXOR(m2,jhANDNOT(m3,m0)); \
m6 = jhXOR(m6,jhANDNOT(m7,m4)); \
m0 = jhXOR(m0,jhOR(m1,m3)); \
m4 = jhXOR(m4,jhOR(m5,m7)); \
m3 = jhXOR(m3,jhAND(m1,m2)); \
m7 = jhXOR(m7,jhAND(m5,m6)); \
m2 = jhXOR(m2,a0); \
m6 = jhXOR(m6,a1); \
m1 = jhXOR(m1,jhAND(a0,m0)); \
m5 = jhXOR(m5,jhAND(a1,m4));
/* The linear transform of the (7*i+0)th round*/
#define jhlineartransform_R00(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bit 2i with bit 2i+1 for m4,m5,m6 and m7 */ \
m4 = jhSWAP1(m4); m5 = jhSWAP1(m5); m6 = jhSWAP1(m6); m7 = jhSWAP1(m7);
/* The linear transform of the (7*i+1)th round*/
#define jhlineartransform_R01(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bit 4i||4i+1 with bit 4i+2||4i+3 for m4,m5,m6 and m7 */ \
m4 = jhSWAP2(m4); m5 = jhSWAP2(m5); m6 = jhSWAP2(m6); m7 = jhSWAP2(m7);
/* The linear transform of the (7*i+2)th round*/
#define jhlineartransform_R02(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 for m4,m5,m6 and m7*/ \
m4 = jhSWAP4(m4); m5 = jhSWAP4(m5); m6 = jhSWAP4(m6); m7 = jhSWAP4(m7);
/* The linear transform of the (7*i+3)th round*/
#define jhlineartransform_R03(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 16i||16i+1||...||16i+7 with bits 16i+8||16i+9||...||16i+15 for m4,m5,m6 and m7*/ \
m4 = jhSWAP8(m4); m5 = jhSWAP8(m5); m6 = jhSWAP8(m6); m7 = jhSWAP8(m7);
/* The linear transform of the (7*i+4)th round*/
#define jhlineartransform_R04(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 32i||32i+1||...||32i+15 with bits 32i+16||32i+17||...||32i+31 for m0,m1,m2 and m3*/ \
m4 = jhSWAP16(m4); m5 = jhSWAP16(m5); m6 = jhSWAP16(m6); m7 = jhSWAP16(m7);
/* The linear transform of the (7*i+5)th round -- faster*/
#define jhlineartransform_R05(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 64i||64i+1||...||64i+31 with bits 64i+32||64i+33||...||64i+63 for m0,m1,m2 and m3*/ \
m4 = jhSWAP32(m4); m5 = jhSWAP32(m5); m6 = jhSWAP32(m6); m7 = jhSWAP32(m7);
/* The linear transform of the (7*i+6)th round -- faster*/
#define jhlineartransform_R06(m0,m1,m2,m3,m4,m5,m6,m7) \
/*MDS layer*/ \
jhL(m0,m1,m2,m3,m4,m5,m6,m7); \
/*swapping bits 128i||128i+1||...||128i+63 with bits 128i+64||128i+65||...||128i+127 for m0,m1,m2 and m3*/ \
m4 = jhSWAP64(m4); m5 = jhSWAP64(m5); m6 = jhSWAP64(m6); m7 = jhSWAP64(m7);
/*the round function of E8 */
#define jhround_function(nn,r) \
jhSS(y0,y2,y4,y6,y1,y3,y5,y7, jhLOAD(jhE8_bitslice_roundconstant[r]), jhLOAD(jhE8_bitslice_roundconstant[r]+16) ); \
jhlineartransform_R##nn(y0,y2,y4,y6,y1,y3,y5,y7);
/*the round function of E8 */
#define jhround_functionI(nn,r) \
jhSS(jhSx0,jhSx2,jhSx4,jhSx6,jhSx1,jhSx3,jhSx5,jhSx7, jhLOAD(jhE8_bitslice_roundconstant[r]), jhLOAD(jhE8_bitslice_roundconstant[r]+16) ); \
jhlineartransform_R##nn(jhSx0,jhSx2,jhSx4,jhSx6,jhSx1,jhSx3,jhSx5,jhSx7);
/*
//the compression function F8
static void jhF8(jhState *state)
{
return;
uint64_t i;
word128 y0,y1,y2,y3,y4,y5,y6,y7;
word128 a0,a1;
y0 = state->x0,
y0 = jhXOR(y0, jhLOAD(state->buffer));
y1 = state->x1,
y1 = jhXOR(y1, jhLOAD(state->buffer+16));
y2 = state->x2,
y2 = jhXOR(y2, jhLOAD(state->buffer+32));
y3 = state->x3,
y3 = jhXOR(y3, jhLOAD(state->buffer+48));
y4 = state->x4;
y5 = state->x5;
y6 = state->x6;
y7 = state->x7;
//xor the 512-bit message with the fist half of the 1024-bit hash state
//perform 42 rounds
for (i = 0; i < 42; i = i+7) {
jhround_function(00,i);
jhround_function(01,i+1);
jhround_function(02,i+2);
jhround_function(03,i+3);
jhround_function(04,i+4);
jhround_function(05,i+5);
jhround_function(06,i+6);
}
//xor the 512-bit message with the second half of the 1024-bit hash state
state->x0 = y0;
state->x1 = y1;
state->x2 = y2;
state->x3 = y3;
y4 = jhXOR(y4, jhLOAD(state->buffer)),
state->x4 = y4;
y5 = jhXOR(y5, jhLOAD(state->buffer+16)),
state->x5 = y5;
y6 = jhXOR(y6, jhLOAD(state->buffer+32)),
state->x6 = y6;
y7 = jhXOR(y7, jhLOAD(state->buffer+48)),
state->x7 = y7;
}
*/
#define jhF8I \
do { \
uint64_t i; \
word128 a0,a1; \
jhSx0 = jhXOR(jhSx0, jhLOAD(jhSbuffer)); \
jhSx1 = jhXOR(jhSx1, jhLOAD(jhSbuffer+16)); \
jhSx2 = jhXOR(jhSx2, jhLOAD(jhSbuffer+32)); \
jhSx3 = jhXOR(jhSx3, jhLOAD(jhSbuffer+48)); \
for (i = 0; i < 42; i = i+7) { \
jhround_functionI(00,i); \
jhround_functionI(01,i+1); \
jhround_functionI(02,i+2); \
jhround_functionI(03,i+3); \
jhround_functionI(04,i+4); \
jhround_functionI(05,i+5); \
jhround_functionI(06,i+6); \
} \
jhSx4 = jhXOR(jhSx4, jhLOAD(jhSbuffer)); \
jhSx5 = jhXOR(jhSx5, jhLOAD(jhSbuffer+16)); \
jhSx6 = jhXOR(jhSx6, jhLOAD(jhSbuffer+32)); \
jhSx7 = jhXOR(jhSx7, jhLOAD(jhSbuffer+48)); \
} while (0)
/* the whole thing
* load from hash
* hash = JH512(loaded)
*/
#define JH_H \
do { \
jhSx0 = jhLOAD(JH512_H0); \
jhSx1 = jhLOAD(JH512_H0+16); \
jhSx2 = jhLOAD(JH512_H0+32); \
jhSx3 = jhLOAD(JH512_H0+48); \
jhSx4 = jhLOAD(JH512_H0+64); \
jhSx5 = jhLOAD(JH512_H0+80); \
jhSx6 = jhLOAD(JH512_H0+96); \
jhSx7 = jhLOAD(JH512_H0+112); \
/* for break loop */ \
/* one inlined copy of JHF8i */ \
int b = false; \
memcpy(jhSbuffer, hash, 64); \
for(;;) { \
jhF8I; \
if (b) break; \
memset(jhSbuffer,0,48); \
jhSbuffer[0] = 0x80; \
jhSbuffer[48] = 0x00, \
jhSbuffer[49] = 0x00, \
jhSbuffer[50] = 0x00, \
jhSbuffer[51] = 0x00, \
jhSbuffer[52] = 0x00, \
jhSbuffer[53] = 0x00, \
jhSbuffer[54] = 0x00, \
jhSbuffer[55] = 0x00; \
jhSbuffer[56] = ((char)((uint64_t)(64*8) >> 56)) & 0xff, \
jhSbuffer[57] = ((char)((uint64_t)(64*8) >> 48)) & 0xff, \
jhSbuffer[58] = ((char)((uint64_t)(64*8) >> 40)) & 0xff, \
jhSbuffer[59] = ((char)((uint64_t)(64*8) >> 32)) & 0xff, \
jhSbuffer[60] = ((char)((uint64_t)(64*8) >> 24)) & 0xff, \
jhSbuffer[61] = ((char)((uint64_t)(64*8) >> 16)) & 0xff, \
jhSbuffer[62] = ((char)((uint64_t)(64*8) >> 8)) & 0xff, \
jhSbuffer[63] = (64*8) & 0xff; \
b = true; \
} \
jhSTORE(jhSx4,(char *)(hash)); \
jhSTORE(jhSx5,(char *)(hash)+16); \
jhSTORE(jhSx6,(char *)(hash)+32); \
jhSTORE(jhSx7,(char *)(hash)+48); \
} while (0)

View File

@@ -1,127 +0,0 @@
/* $Id: sph_jh.h 216 2010-06-08 09:46:57Z tp $ */
/**
* JH interface. JH is a family of functions which differ by
* their output size; this implementation defines JH for output
* sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_jh.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_JH_H__
#define SPH_JH_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "sph_types.h"
#define QSTATIC static
/**
* Output size (in bits) for JH-512.
*/
#define SPH_SIZE_jh512 512
/**
* This structure is a context for JH computations: it contains the
* intermediate values and some data from the last entered block. Once
* a JH computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running JH computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
size_t ptr;
union {
sph_u64 wide[16];
sph_u32 narrow[32];
} H;
sph_u64 block_count;
} sph_jh_context;
/**
* Type for a JH-512 context (identical to the common context).
*/
typedef sph_jh_context sph_jh512_context;
/**
* Initialize a JH-512 context. This process performs no memory allocation.
*
* @param cc the JH-512 context (pointer to a
* <code>sph_jh512_context</code>)
*/
QSTATIC void sph_jh512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the JH-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
QSTATIC void sph_jh512(void *cc, const void *data, size_t len);
/**
* Terminate the current JH-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the JH-512 context
* @param dst the destination buffer
*/
QSTATIC void sph_jh512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the JH-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
QSTATIC void sph_jh512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -28,26 +28,28 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
keccakhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = n + lane;
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
@@ -79,27 +81,28 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
keccakhash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
if ( valid_hash( lane_hash, ptarget ))
{
pdata[19] = n + lane;
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;

View File

@@ -1,5 +1,9 @@
#include "keccak-gate.h"
#include "sph_keccak.h"
int hard_coded_eb = 1;
// KECCAK
bool register_keccak_algo( algo_gate_t* gate )
{
@@ -19,6 +23,8 @@ bool register_keccak_algo( algo_gate_t* gate )
return true;
};
// KECCAKC
bool register_keccakc_algo( algo_gate_t* gate )
{
gate->optimizations = AVX2_OPT | AVX512_OPT;
@@ -37,3 +43,50 @@ bool register_keccakc_algo( algo_gate_t* gate )
return true;
};
// SHA3D
void sha3d( void *state, const void *input, int len )
{
uint32_t _ALIGN(64) buffer[16], hash[16];
sph_keccak_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, len );
sph_keccak256_close( &ctx_keccak, (void*) buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, (void*) hash );
memcpy(state, hash, 32);
}
void sha3d_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
{
sha3d( merkle_root, sctx->job.coinbase, (int) sctx->job.coinbase_size );
for ( int i = 0; i < sctx->job.merkle_count; i++ )
{
memcpy( merkle_root + 32, sctx->job.merkle[i], 32 );
sha256d( merkle_root, merkle_root, 64 );
}
}
bool register_sha3d_algo( algo_gate_t* gate )
{
hard_coded_eb = 6;
opt_extranonce = false;
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&sha3d_gen_merkle_root;
#if defined (KECCAK_8WAY)
gate->scanhash = (void*)&scanhash_sha3d_8way;
gate->hash = (void*)&sha3d_hash_8way;
#elif defined (KECCAK_4WAY)
gate->scanhash = (void*)&scanhash_sha3d_4way;
gate->hash = (void*)&sha3d_hash_4way;
#else
gate->scanhash = (void*)&scanhash_sha3d;
gate->hash = (void*)&sha3d_hash;
#endif
return true;
};

View File

@@ -10,24 +10,37 @@
#define KECCAK_4WAY 1
#endif
extern int hard_coded_eb;
#if defined(KECCAK_8WAY)
void keccakhash_8way( void *state, const void *input );
int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_8way( void *state, const void *input );
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(KECCAK_4WAY)
void keccakhash_4way( void *state, const void *input );
int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_4way( void *state, const void *input );
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void keccakhash( void *state, const void *input );
int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
void sha3d_hash( void *state, const void *input );
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -1,6 +1,7 @@
#include <stddef.h>
#include <stdint.h>
#include "keccak-hash-4way.h"
#include "keccak-gate.h"
static const uint64_t RC[] = {
0x0000000000000001, 0x0000000000008082,
@@ -163,12 +164,12 @@ static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
unsigned eb;
union {
__m512i tmp[lim + 1];
sph_u64 dummy; /* for alignment */
uint64_t dummy; /* for alignment */
} u;
size_t j;
size_t m512_len = byte_len >> 3;
eb = 0x100 >> 8;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;
@@ -344,12 +345,12 @@ static void keccak64_close( keccak64_ctx_m256i *kc, void *dst, size_t byte_len,
unsigned eb;
union {
__m256i tmp[lim + 1];
sph_u64 dummy; /* for alignment */
uint64_t dummy; /* for alignment */
} u;
size_t j;
size_t m256_len = byte_len >> 3;
eb = 0x100 >> 8;
eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) )
{
const uint64_t t = eb | 0x8000000000000000;

View File

@@ -43,16 +43,8 @@ extern "C"{
#ifdef __AVX2__
#include <stddef.h>
#include "algo/sha/sph_types.h"
#include "simd-utils.h"
#define SPH_SIZE_keccak256 256
/**
* Output size (in bits) for Keccak-512.
*/
#define SPH_SIZE_keccak512 512
/**
* This structure is a context for Keccak computations: it contains the
* intermediate values and some data from the last entered block. Once a
@@ -99,14 +91,12 @@ typedef keccak64_ctx_m256i keccak512_4way_context;
void keccak256_4way_init(void *cc);
void keccak256_4way_update(void *cc, const void *data, size_t len);
void keccak256_4way_close(void *cc, void *dst);
#define keccak256_4way keccak256_4way_update
void keccak512_4way_init(void *cc);
void keccak512_4way_update(void *cc, const void *data, size_t len);
void keccak512_4way_close(void *cc, void *dst);
void keccak512_4way_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#define keccak512_4way keccak512_4way_update
#endif

View File

@@ -18,36 +18,34 @@ void keccakhash(void *state, const void *input)
memcpy(state, hash, 32);
}
int scanhash_keccak( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr )
int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
//const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[32];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
uint32_t _ALIGN(32) hash64[8];
uint32_t endiandata[32];
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
do {
be32enc( &endiandata[19], n );
keccakhash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
keccakhash(hash64, endiandata);
if (((hash64[7]&0xFFFFFF00)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

126
algo/keccak/sha3d-4way.c Normal file
View File

@@ -0,0 +1,126 @@
#include "keccak-gate.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
#include "keccak-hash-4way.h"
#if defined(KECCAK_8WAY)
void sha3d_hash_8way(void *state, const void *input)
{
uint32_t buffer[16*8] __attribute__ ((aligned (128)));
keccak256_8way_context ctx;
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, input, 80 );
keccak256_8way_close( &ctx, buffer );
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, buffer, 32 );
keccak256_8way_close( &ctx, state );
}
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do {
sha3d_hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(KECCAK_4WAY)
void sha3d_hash_4way(void *state, const void *input)
{
uint32_t buffer[16*4] __attribute__ ((aligned (64)));
keccak256_4way_context ctx;
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, input, 80 );
keccak256_4way_close( &ctx, buffer );
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, buffer, 32 );
keccak256_4way_close( &ctx, state );
}
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
sha3d_hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#endif

50
algo/keccak/sha3d.c Normal file
View File

@@ -0,0 +1,50 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
void sha3d_hash(void *state, const void *input)
{
uint32_t buffer[16];
sph_keccak256_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, 80 );
sph_keccak256_close( &ctx_keccak, buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, state );
}
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[32];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
do {
be32enc( &endiandata[19], n );
sha3d_hash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -32,8 +32,8 @@
#include <stddef.h>
#include <string.h>
#include "sph_keccak.h"
#include "keccak-gate.h"
#ifdef __cplusplus
extern "C"{
@@ -1616,7 +1616,7 @@ keccak_core(sph_keccak_context *kc, const void *data, size_t len, size_t lim)
} u; \
size_t j; \
\
eb = (0x100 | (ub & 0xFF)) >> (8 - n); \
eb = hard_coded_eb; \
if (kc->ptr == (lim - 1)) { \
if (n == 7) { \
u.tmp[0] = eb; \

View File

@@ -1,845 +0,0 @@
/* $Id: keccak.c 259 2011-07-19 22:11:27Z tp $ */
/*
* Keccak implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#define QSTATIC static
#include <stddef.h>
#include <string.h>
#include <stdio.h>
#include "sph_keccak.h"
#ifdef __cplusplus
extern "C"{
#endif
/*
* Parameters:
*
* SPH_KECCAK_64 use a 64-bit type
* SPH_KECCAK_INTERLEAVE use bit-interleaving (32-bit type only)
* SPH_KECCAK_NOCOPY do not copy the state into local variables
*
* If there is no usable 64-bit type, the code automatically switches
* back to the 32-bit implementation.
*
* Some tests on an Intel Core2 Q6600 (both 64-bit and 32-bit, 32 kB L1
* code cache), a PowerPC (G3, 32 kB L1 code cache), an ARM920T core
* (16 kB L1 code cache), and a small MIPS-compatible CPU (Broadcom BCM3302,
* 8 kB L1 code cache), seem to show that the following are optimal:
*
* -- x86, 64-bit: use the 64-bit implementation, unroll 8 rounds,
* do not copy the state; unrolling 2, 6 or all rounds also provides
* near-optimal performance.
* -- x86, 32-bit: use the 32-bit implementation, unroll 6 rounds,
* interleave, do not copy the state. Unrolling 1, 2, 4 or 8 rounds
* also provides near-optimal performance.
* -- PowerPC: use the 64-bit implementation, unroll 8 rounds,
* copy the state. Unrolling 4 or 6 rounds is near-optimal.
* -- ARM: use the 64-bit implementation, unroll 2 or 4 rounds,
* copy the state.
* -- MIPS: use the 64-bit implementation, unroll 2 rounds, copy
* the state. Unrolling only 1 round is also near-optimal.
*
* Also, interleaving does not always yield actual improvements when
* using a 32-bit implementation; in particular when the architecture
* does not offer a native rotation opcode (interleaving replaces one
* 64-bit rotation with two 32-bit rotations, which is a gain only if
* there is a native 32-bit rotation opcode and not a native 64-bit
* rotation opcode; also, interleaving implies a small overhead when
* processing input words).
*
* To sum up:
* -- when possible, use the 64-bit code
* -- exception: on 32-bit x86, use 32-bit code
* -- when using 32-bit code, use interleaving
* -- copy the state, except on x86
* -- unroll 8 rounds on "big" machine, 2 rounds on "small" machines
*/
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
/*
static const sph_u64 RC[] = {
SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082),
SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000),
SPH_C64(0x000000000000808B), SPH_C64(0x0000000080000001),
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008009),
SPH_C64(0x000000000000008A), SPH_C64(0x0000000000000088),
SPH_C64(0x0000000080008009), SPH_C64(0x000000008000000A),
SPH_C64(0x000000008000808B), SPH_C64(0x800000000000008B),
SPH_C64(0x8000000000008089), SPH_C64(0x8000000000008003),
SPH_C64(0x8000000000008002), SPH_C64(0x8000000000000080),
SPH_C64(0x000000000000800A), SPH_C64(0x800000008000000A),
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080),
SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008)
};
*/
#define kekDECL_STATE \
sph_u64 keca00, keca01, keca02, keca03, keca04; \
sph_u64 keca10, keca11, keca12, keca13, keca14; \
sph_u64 keca20, keca21, keca22, keca23, keca24; \
sph_u64 keca30, keca31, keca32, keca33, keca34; \
sph_u64 keca40, keca41, keca42, keca43, keca44;
#define kekREAD_STATE(state) do { \
keca00 = (state)->kecu.wide[ 0]; \
keca10 = (state)->kecu.wide[ 1]; \
keca20 = (state)->kecu.wide[ 2]; \
keca30 = (state)->kecu.wide[ 3]; \
keca40 = (state)->kecu.wide[ 4]; \
keca01 = (state)->kecu.wide[ 5]; \
keca11 = (state)->kecu.wide[ 6]; \
keca21 = (state)->kecu.wide[ 7]; \
keca31 = (state)->kecu.wide[ 8]; \
keca41 = (state)->kecu.wide[ 9]; \
keca02 = (state)->kecu.wide[10]; \
keca12 = (state)->kecu.wide[11]; \
keca22 = (state)->kecu.wide[12]; \
keca32 = (state)->kecu.wide[13]; \
keca42 = (state)->kecu.wide[14]; \
keca03 = (state)->kecu.wide[15]; \
keca13 = (state)->kecu.wide[16]; \
keca23 = (state)->kecu.wide[17]; \
keca33 = (state)->kecu.wide[18]; \
keca43 = (state)->kecu.wide[19]; \
keca04 = (state)->kecu.wide[20]; \
keca14 = (state)->kecu.wide[21]; \
keca24 = (state)->kecu.wide[22]; \
keca34 = (state)->kecu.wide[23]; \
keca44 = (state)->kecu.wide[24]; \
} while (0)
#define kecREAD_STATE(state) do { \
keca00 = kecu.wide[ 0]; \
keca10 = kecu.wide[ 1]; \
keca20 = kecu.wide[ 2]; \
keca30 = kecu.wide[ 3]; \
keca40 = kecu.wide[ 4]; \
keca01 = kecu.wide[ 5]; \
keca11 = kecu.wide[ 6]; \
keca21 = kecu.wide[ 7]; \
keca31 = kecu.wide[ 8]; \
keca41 = kecu.wide[ 9]; \
keca02 = kecu.wide[10]; \
keca12 = kecu.wide[11]; \
keca22 = kecu.wide[12]; \
keca32 = kecu.wide[13]; \
keca42 = kecu.wide[14]; \
keca03 = kecu.wide[15]; \
keca13 = kecu.wide[16]; \
keca23 = kecu.wide[17]; \
keca33 = kecu.wide[18]; \
keca43 = kecu.wide[19]; \
keca04 = kecu.wide[20]; \
keca14 = kecu.wide[21]; \
keca24 = kecu.wide[22]; \
keca34 = kecu.wide[23]; \
keca44 = kecu.wide[24]; \
} while (0)
#define kecINIT_STATE() do { \
keca00 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 0); \
keca10 = 0xFFFFFFFFFFFFFFFF \
^ sph_dec64le_aligned(buf + 8); \
keca20 = 0xFFFFFFFFFFFFFFFF \
^ sph_dec64le_aligned(buf + 16); \
keca30 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 24); \
keca40 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 32); \
keca01 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 40); \
keca11 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 48); \
keca21 = 0x0000000000000000 \
^ sph_dec64le_aligned(buf + 56); \
keca31 = 0xFFFFFFFFFFFFFFFF \
^ sph_dec64le_aligned(buf + 64); \
keca41 = 0x0000000000000000, \
keca02 = 0x0000000000000000, \
keca12 = 0x0000000000000000, \
keca32 = 0x0000000000000000, \
keca42 = 0x0000000000000000, \
keca03 = 0x0000000000000000, \
keca13 = 0x0000000000000000, \
keca33 = 0x0000000000000000, \
keca43 = 0x0000000000000000, \
keca14 = 0x0000000000000000, \
keca24 = 0x0000000000000000, \
keca34 = 0x0000000000000000, \
keca44 = 0x0000000000000000; \
keca23 = 0xFFFFFFFFFFFFFFFF, \
keca04 = 0xFFFFFFFFFFFFFFFF, \
keca22 = 0xFFFFFFFFFFFFFFFF; \
} while (0)
#define kekWRITE_STATE(state) do { \
(state)->kecu.wide[ 0] = keca00; \
(state)->kecu.wide[ 1] = ~keca10; \
(state)->kecu.wide[ 2] = ~keca20; \
(state)->kecu.wide[ 3] = keca30; \
(state)->kecu.wide[ 4] = keca40; \
(state)->kecu.wide[ 5] = keca01; \
(state)->kecu.wide[ 6] = keca11; \
(state)->kecu.wide[ 7] = keca21; \
(state)->kecu.wide[ 8] = ~keca31; \
(state)->kecu.wide[ 9] = keca41; \
(state)->kecu.wide[10] = keca02; \
(state)->kecu.wide[11] = keca12; \
(state)->kecu.wide[12] = ~keca22; \
(state)->kecu.wide[13] = keca32; \
(state)->kecu.wide[14] = keca42; \
(state)->kecu.wide[15] = keca03; \
(state)->kecu.wide[16] = keca13; \
(state)->kecu.wide[17] = ~keca23; \
(state)->kecu.wide[18] = keca33; \
(state)->kecu.wide[19] = keca43; \
(state)->kecu.wide[20] = ~keca04; \
(state)->kecu.wide[21] = keca14; \
(state)->kecu.wide[22] = keca24; \
(state)->kecu.wide[23] = keca34; \
(state)->kecu.wide[24] = keca44; \
} while (0)
/* only usefull for one round final */
#define kecWRITE_STATE(state) do { \
kecu.wide[ 0] = keca00; \
kecu.wide[ 1] = ~keca10; \
kecu.wide[ 2] = ~keca20; \
kecu.wide[ 3] = keca30; \
kecu.wide[ 4] = keca40; \
kecu.wide[ 5] = keca01; \
kecu.wide[ 6] = keca11; \
kecu.wide[ 7] = keca21; \
kecu.wide[ 8] = ~keca31; \
kecu.wide[ 9] = keca41; \
kecu.wide[10] = keca02; \
kecu.wide[11] = keca12; \
kecu.wide[12] = ~keca22; \
kecu.wide[13] = keca32; \
kecu.wide[14] = keca42; \
kecu.wide[15] = keca03; \
kecu.wide[16] = keca13; \
kecu.wide[17] = ~keca23; \
kecu.wide[18] = keca33; \
kecu.wide[19] = keca43; \
kecu.wide[20] = ~keca04; \
kecu.wide[21] = keca14; \
kecu.wide[22] = keca24; \
kecu.wide[23] = keca34; \
kecu.wide[24] = keca44; \
} while (0)
#define kecPRINT_STATE(state) do { \
printf("keca00=%lX\n", keca00); \
printf("keca10=%lX\n", keca10); \
printf("keca20=%lX\n", keca20); \
printf("keca30=%lX\n", keca30); \
printf("keca40=%lX\n", keca40); \
printf("keca01=%lX\n", keca01); \
printf("keca11=%lX\n", keca11); \
printf("keca21=%lX\n", keca21); \
printf("keca31=%lX\n", keca31); \
printf("keca41=%lX\n", keca41); \
printf("keca02=%lX\n", keca02); \
printf("keca12=%lX\n", keca12); \
printf("keca22=%lX\n", keca22); \
printf("keca32=%lX\n", keca32); \
printf("keca42=%lX\n", keca42); \
printf("keca03=%lX\n", keca03); \
printf("keca13=%lX\n", keca13); \
printf("keca23=%lX\n", keca23); \
printf("keca33=%lX\n", keca33); \
printf("keca43=%lX\n", keca43); \
printf("keca04=%lX\n", keca04); \
printf("keca14=%lX\n", keca14); \
printf("keca24=%lX\n", keca24); \
printf("keca34=%lX\n", keca34); \
printf("keca44=%lX\n", keca44); \
abort(); \
} while (0)
#define kekINPUT_BUF() do { \
} while (0)
#define kekDECL64(x) sph_u64 x
#define MOV64(d, s) (d = s)
#define XOR64(d, a, b) (d = a ^ b)
#define AND64(d, a, b) (d = a & b)
#define OR64(d, a, b) (d = a | b)
#define NOT64(d, s) (d = SPH_T64(~s))
#define ROL64(d, v, n) (d = SPH_ROTL64(v, n))
#define XOR64_IOTA XOR64
#define TH_ELT(t, c0, c1, c2, c3, c4, d0, d1, d2, d3, d4) do { \
kekDECL64(tt0); \
kekDECL64(tt1); \
kekDECL64(tt2); \
kekDECL64(tt3); \
XOR64(tt0, d0, d1); \
XOR64(tt1, d2, d3); \
XOR64(tt0, tt0, d4); \
XOR64(tt0, tt0, tt1); \
ROL64(tt0, tt0, 1); \
XOR64(tt2, c0, c1); \
XOR64(tt3, c2, c3); \
XOR64(tt0, tt0, c4); \
XOR64(tt2, tt2, tt3); \
XOR64(t, tt0, tt2); \
} while (0)
#define THETA(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
kekDECL64(t0); \
kekDECL64(t1); \
kekDECL64(t2); \
kekDECL64(t3); \
kekDECL64(t4); \
TH_ELT(t0, b40, b41, b42, b43, b44, b10, b11, b12, b13, b14); \
TH_ELT(t1, b00, b01, b02, b03, b04, b20, b21, b22, b23, b24); \
TH_ELT(t2, b10, b11, b12, b13, b14, b30, b31, b32, b33, b34); \
TH_ELT(t3, b20, b21, b22, b23, b24, b40, b41, b42, b43, b44); \
TH_ELT(t4, b30, b31, b32, b33, b34, b00, b01, b02, b03, b04); \
XOR64(b00, b00, t0); \
XOR64(b01, b01, t0); \
XOR64(b02, b02, t0); \
XOR64(b03, b03, t0); \
XOR64(b04, b04, t0); \
XOR64(b10, b10, t1); \
XOR64(b11, b11, t1); \
XOR64(b12, b12, t1); \
XOR64(b13, b13, t1); \
XOR64(b14, b14, t1); \
XOR64(b20, b20, t2); \
XOR64(b21, b21, t2); \
XOR64(b22, b22, t2); \
XOR64(b23, b23, t2); \
XOR64(b24, b24, t2); \
XOR64(b30, b30, t3); \
XOR64(b31, b31, t3); \
XOR64(b32, b32, t3); \
XOR64(b33, b33, t3); \
XOR64(b34, b34, t3); \
XOR64(b40, b40, t4); \
XOR64(b41, b41, t4); \
XOR64(b42, b42, t4); \
XOR64(b43, b43, t4); \
XOR64(b44, b44, t4); \
} while (0)
#define RHO(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
/* ROL64(b00, b00, 0); */ \
ROL64(b01, b01, 36); \
ROL64(b02, b02, 3); \
ROL64(b03, b03, 41); \
ROL64(b04, b04, 18); \
ROL64(b10, b10, 1); \
ROL64(b11, b11, 44); \
ROL64(b12, b12, 10); \
ROL64(b13, b13, 45); \
ROL64(b14, b14, 2); \
ROL64(b20, b20, 62); \
ROL64(b21, b21, 6); \
ROL64(b22, b22, 43); \
ROL64(b23, b23, 15); \
ROL64(b24, b24, 61); \
ROL64(b30, b30, 28); \
ROL64(b31, b31, 55); \
ROL64(b32, b32, 25); \
ROL64(b33, b33, 21); \
ROL64(b34, b34, 56); \
ROL64(b40, b40, 27); \
ROL64(b41, b41, 20); \
ROL64(b42, b42, 39); \
ROL64(b43, b43, 8); \
ROL64(b44, b44, 14); \
} while (0)
/*
* The KHI macro integrates the "lane complement" optimization. On input,
* some words are complemented:
* keca00 keca01 keca02 keca04 keca13 keca20 keca21 keca22 keca30 keca33 keca34 keca43
* On output, the following words are complemented:
* keca04 keca10 keca20 keca22 keca23 keca31
*
* The (implicit) permutation and the theta expansion will bring back
* the input mask for the next round.
*/
#define KHI_XO(d, a, b, c) do { \
kekDECL64(kt); \
OR64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#define KHI_XA(d, a, b, c) do { \
kekDECL64(kt); \
AND64(kt, b, c); \
XOR64(d, a, kt); \
} while (0)
#define KHI(b00, b01, b02, b03, b04, b10, b11, b12, b13, b14, \
b20, b21, b22, b23, b24, b30, b31, b32, b33, b34, \
b40, b41, b42, b43, b44) \
do { \
kekDECL64(c0); \
kekDECL64(c1); \
kekDECL64(c2); \
kekDECL64(c3); \
kekDECL64(c4); \
kekDECL64(bnn); \
NOT64(bnn, b20); \
KHI_XO(c0, b00, b10, b20); \
KHI_XO(c1, b10, bnn, b30); \
KHI_XA(c2, b20, b30, b40); \
KHI_XO(c3, b30, b40, b00); \
KHI_XA(c4, b40, b00, b10); \
MOV64(b00, c0); \
MOV64(b10, c1); \
MOV64(b20, c2); \
MOV64(b30, c3); \
MOV64(b40, c4); \
NOT64(bnn, b41); \
KHI_XO(c0, b01, b11, b21); \
KHI_XA(c1, b11, b21, b31); \
KHI_XO(c2, b21, b31, bnn); \
KHI_XO(c3, b31, b41, b01); \
KHI_XA(c4, b41, b01, b11); \
MOV64(b01, c0); \
MOV64(b11, c1); \
MOV64(b21, c2); \
MOV64(b31, c3); \
MOV64(b41, c4); \
NOT64(bnn, b32); \
KHI_XO(c0, b02, b12, b22); \
KHI_XA(c1, b12, b22, b32); \
KHI_XA(c2, b22, bnn, b42); \
KHI_XO(c3, bnn, b42, b02); \
KHI_XA(c4, b42, b02, b12); \
MOV64(b02, c0); \
MOV64(b12, c1); \
MOV64(b22, c2); \
MOV64(b32, c3); \
MOV64(b42, c4); \
NOT64(bnn, b33); \
KHI_XA(c0, b03, b13, b23); \
KHI_XO(c1, b13, b23, b33); \
KHI_XO(c2, b23, bnn, b43); \
KHI_XA(c3, bnn, b43, b03); \
KHI_XO(c4, b43, b03, b13); \
MOV64(b03, c0); \
MOV64(b13, c1); \
MOV64(b23, c2); \
MOV64(b33, c3); \
MOV64(b43, c4); \
NOT64(bnn, b14); \
KHI_XA(c0, b04, bnn, b24); \
KHI_XO(c1, bnn, b24, b34); \
KHI_XA(c2, b24, b34, b44); \
KHI_XO(c3, b34, b44, b04); \
KHI_XA(c4, b44, b04, b14); \
MOV64(b04, c0); \
MOV64(b14, c1); \
MOV64(b24, c2); \
MOV64(b34, c3); \
MOV64(b44, c4); \
} while (0)
#define IOTA(r) XOR64_IOTA(keca00, keca00, r)
#define P0 keca00, keca01, keca02, keca03, keca04, keca10, keca11, keca12, keca13, keca14, keca20, keca21, \
keca22, keca23, keca24, keca30, keca31, keca32, keca33, keca34, keca40, keca41, keca42, keca43, keca44
#define P1 keca00, keca30, keca10, keca40, keca20, keca11, keca41, keca21, keca01, keca31, keca22, keca02, \
keca32, keca12, keca42, keca33, keca13, keca43, keca23, keca03, keca44, keca24, keca04, keca34, keca14
#define P2 keca00, keca33, keca11, keca44, keca22, keca41, keca24, keca02, keca30, keca13, keca32, keca10, \
keca43, keca21, keca04, keca23, keca01, keca34, keca12, keca40, keca14, keca42, keca20, keca03, keca31
#define P3 keca00, keca23, keca41, keca14, keca32, keca24, keca42, keca10, keca33, keca01, keca43, keca11, \
keca34, keca02, keca20, keca12, keca30, keca03, keca21, keca44, keca31, keca04, keca22, keca40, keca13
#define P4 keca00, keca12, keca24, keca31, keca43, keca42, keca04, keca11, keca23, keca30, keca34, keca41, \
keca03, keca10, keca22, keca21, keca33, keca40, keca02, keca14, keca13, keca20, keca32, keca44, keca01
#define P5 keca00, keca21, keca42, keca13, keca34, keca04, keca20, keca41, keca12, keca33, keca03, keca24, \
keca40, keca11, keca32, keca02, keca23, keca44, keca10, keca31, keca01, keca22, keca43, keca14, keca30
#define P6 keca00, keca02, keca04, keca01, keca03, keca20, keca22, keca24, keca21, keca23, keca40, keca42, \
keca44, keca41, keca43, keca10, keca12, keca14, keca11, keca13, keca30, keca32, keca34, keca31, keca33
#define P7 keca00, keca10, keca20, keca30, keca40, keca22, keca32, keca42, keca02, keca12, keca44, keca04, \
keca14, keca24, keca34, keca11, keca21, keca31, keca41, keca01, keca33, keca43, keca03, keca13, keca23
#define P8 keca00, keca11, keca22, keca33, keca44, keca32, keca43, keca04, keca10, keca21, keca14, keca20, \
keca31, keca42, keca03, keca41, keca02, keca13, keca24, keca30, keca23, keca34, keca40, keca01, keca12
#define P9 keca00, keca41, keca32, keca23, keca14, keca43, keca34, keca20, keca11, keca02, keca31, keca22, \
keca13, keca04, keca40, keca24, keca10, keca01, keca42, keca33, keca12, keca03, keca44, keca30, keca21
#define P10 keca00, keca24, keca43, keca12, keca31, keca34, keca03, keca22, keca41, keca10, keca13, keca32, \
keca01, keca20, keca44, keca42, keca11, keca30, keca04, keca23, keca21, keca40, keca14, keca33, keca02
#define P11 keca00, keca42, keca34, keca21, keca13, keca03, keca40, keca32, keca24, keca11, keca01, keca43, \
keca30, keca22, keca14, keca04, keca41, keca33, keca20, keca12, keca02, keca44, keca31, keca23, keca10
#define P12 keca00, keca04, keca03, keca02, keca01, keca40, keca44, keca43, keca42, keca41, keca30, keca34, \
keca33, keca32, keca31, keca20, keca24, keca23, keca22, keca21, keca10, keca14, keca13, keca12, keca11
#define P13 keca00, keca20, keca40, keca10, keca30, keca44, keca14, keca34, keca04, keca24, keca33, keca03, \
keca23, keca43, keca13, keca22, keca42, keca12, keca32, keca02, keca11, keca31, keca01, keca21, keca41
#define P14 keca00, keca22, keca44, keca11, keca33, keca14, keca31, keca03, keca20, keca42, keca23, keca40, \
keca12, keca34, keca01, keca32, keca04, keca21, keca43, keca10, keca41, keca13, keca30, keca02, keca24
#define P15 keca00, keca32, keca14, keca41, keca23, keca31, keca13, keca40, keca22, keca04, keca12, keca44, \
keca21, keca03, keca30, keca43, keca20, keca02, keca34, keca11, keca24, keca01, keca33, keca10, keca42
#define P16 keca00, keca43, keca31, keca24, keca12, keca13, keca01, keca44, keca32, keca20, keca21, keca14, \
keca02, keca40, keca33, keca34, keca22, keca10, keca03, keca41, keca42, keca30, keca23, keca11, keca04
#define P17 keca00, keca34, keca13, keca42, keca21, keca01, keca30, keca14, keca43, keca22, keca02, keca31, \
keca10, keca44, keca23, keca03, keca32, keca11, keca40, keca24, keca04, keca33, keca12, keca41, keca20
#define P18 keca00, keca03, keca01, keca04, keca02, keca30, keca33, keca31, keca34, keca32, keca10, keca13, \
keca11, keca14, keca12, keca40, keca43, keca41, keca44, keca42, keca20, keca23, keca21, keca24, keca22
#define P19 keca00, keca40, keca30, keca20, keca10, keca33, keca23, keca13, keca03, keca43, keca11, keca01, \
keca41, keca31, keca21, keca44, keca34, keca24, keca14, keca04, keca22, keca12, keca02, keca42, keca32
#define P20 keca00, keca44, keca33, keca22, keca11, keca23, keca12, keca01, keca40, keca34, keca41, keca30, \
keca24, keca13, keca02, keca14, keca03, keca42, keca31, keca20, keca32, keca21, keca10, keca04, keca43
#define P21 keca00, keca14, keca23, keca32, keca41, keca12, keca21, keca30, keca44, keca03, keca24, keca33, \
keca42, keca01, keca10, keca31, keca40, keca04, keca13, keca22, keca43, keca02, keca11, keca20, keca34
#define P22 keca00, keca31, keca12, keca43, keca24, keca21, keca02, keca33, keca14, keca40, keca42, keca23, \
keca04, keca30, keca11, keca13, keca44, keca20, keca01, keca32, keca34, keca10, keca41, keca22, keca03
#define P23 keca00, keca13, keca21, keca34, keca42, keca02, keca10, keca23, keca31, keca44, keca04, keca12, \
keca20, keca33, keca41, keca01, keca14, keca22, keca30, keca43, keca03, keca11, keca24, keca32, keca40
#define P1_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca30); \
MOV64(keca30, keca33); \
MOV64(keca33, keca23); \
MOV64(keca23, keca12); \
MOV64(keca12, keca21); \
MOV64(keca21, keca02); \
MOV64(keca02, keca10); \
MOV64(keca10, keca11); \
MOV64(keca11, keca41); \
MOV64(keca41, keca24); \
MOV64(keca24, keca42); \
MOV64(keca42, keca04); \
MOV64(keca04, keca20); \
MOV64(keca20, keca22); \
MOV64(keca22, keca32); \
MOV64(keca32, keca43); \
MOV64(keca43, keca34); \
MOV64(keca34, keca03); \
MOV64(keca03, keca40); \
MOV64(keca40, keca44); \
MOV64(keca44, keca14); \
MOV64(keca14, keca31); \
MOV64(keca31, keca13); \
MOV64(keca13, t); \
} while (0)
#define P2_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca33); \
MOV64(keca33, keca12); \
MOV64(keca12, keca02); \
MOV64(keca02, keca11); \
MOV64(keca11, keca24); \
MOV64(keca24, keca04); \
MOV64(keca04, keca22); \
MOV64(keca22, keca43); \
MOV64(keca43, keca03); \
MOV64(keca03, keca44); \
MOV64(keca44, keca31); \
MOV64(keca31, t); \
MOV64(t, keca10); \
MOV64(keca10, keca41); \
MOV64(keca41, keca42); \
MOV64(keca42, keca20); \
MOV64(keca20, keca32); \
MOV64(keca32, keca34); \
MOV64(keca34, keca40); \
MOV64(keca40, keca14); \
MOV64(keca14, keca13); \
MOV64(keca13, keca30); \
MOV64(keca30, keca23); \
MOV64(keca23, keca21); \
MOV64(keca21, t); \
} while (0)
#define P4_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca12); \
MOV64(keca12, keca11); \
MOV64(keca11, keca04); \
MOV64(keca04, keca43); \
MOV64(keca43, keca44); \
MOV64(keca44, t); \
MOV64(t, keca02); \
MOV64(keca02, keca24); \
MOV64(keca24, keca22); \
MOV64(keca22, keca03); \
MOV64(keca03, keca31); \
MOV64(keca31, keca33); \
MOV64(keca33, t); \
MOV64(t, keca10); \
MOV64(keca10, keca42); \
MOV64(keca42, keca32); \
MOV64(keca32, keca40); \
MOV64(keca40, keca13); \
MOV64(keca13, keca23); \
MOV64(keca23, t); \
MOV64(t, keca14); \
MOV64(keca14, keca30); \
MOV64(keca30, keca21); \
MOV64(keca21, keca41); \
MOV64(keca41, keca20); \
MOV64(keca20, keca34); \
MOV64(keca34, t); \
} while (0)
#define P6_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca02); \
MOV64(keca02, keca04); \
MOV64(keca04, keca03); \
MOV64(keca03, t); \
MOV64(t, keca10); \
MOV64(keca10, keca20); \
MOV64(keca20, keca40); \
MOV64(keca40, keca30); \
MOV64(keca30, t); \
MOV64(t, keca11); \
MOV64(keca11, keca22); \
MOV64(keca22, keca44); \
MOV64(keca44, keca33); \
MOV64(keca33, t); \
MOV64(t, keca12); \
MOV64(keca12, keca24); \
MOV64(keca24, keca43); \
MOV64(keca43, keca31); \
MOV64(keca31, t); \
MOV64(t, keca13); \
MOV64(keca13, keca21); \
MOV64(keca21, keca42); \
MOV64(keca42, keca34); \
MOV64(keca34, t); \
MOV64(t, keca14); \
MOV64(keca14, keca23); \
MOV64(keca23, keca41); \
MOV64(keca41, keca32); \
MOV64(keca32, t); \
} while (0)
#define P8_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca11); \
MOV64(keca11, keca43); \
MOV64(keca43, t); \
MOV64(t, keca02); \
MOV64(keca02, keca22); \
MOV64(keca22, keca31); \
MOV64(keca31, t); \
MOV64(t, keca03); \
MOV64(keca03, keca33); \
MOV64(keca33, keca24); \
MOV64(keca24, t); \
MOV64(t, keca04); \
MOV64(keca04, keca44); \
MOV64(keca44, keca12); \
MOV64(keca12, t); \
MOV64(t, keca10); \
MOV64(keca10, keca32); \
MOV64(keca32, keca13); \
MOV64(keca13, t); \
MOV64(t, keca14); \
MOV64(keca14, keca21); \
MOV64(keca21, keca20); \
MOV64(keca20, t); \
MOV64(t, keca23); \
MOV64(keca23, keca42); \
MOV64(keca42, keca40); \
MOV64(keca40, t); \
MOV64(t, keca30); \
MOV64(keca30, keca41); \
MOV64(keca41, keca34); \
MOV64(keca34, t); \
} while (0)
#define P12_TO_P0 do { \
kekDECL64(t); \
MOV64(t, keca01); \
MOV64(keca01, keca04); \
MOV64(keca04, t); \
MOV64(t, keca02); \
MOV64(keca02, keca03); \
MOV64(keca03, t); \
MOV64(t, keca10); \
MOV64(keca10, keca40); \
MOV64(keca40, t); \
MOV64(t, keca11); \
MOV64(keca11, keca44); \
MOV64(keca44, t); \
MOV64(t, keca12); \
MOV64(keca12, keca43); \
MOV64(keca43, t); \
MOV64(t, keca13); \
MOV64(keca13, keca42); \
MOV64(keca42, t); \
MOV64(t, keca14); \
MOV64(keca14, keca41); \
MOV64(keca41, t); \
MOV64(t, keca20); \
MOV64(keca20, keca30); \
MOV64(keca30, t); \
MOV64(t, keca21); \
MOV64(keca21, keca34); \
MOV64(keca34, t); \
MOV64(t, keca22); \
MOV64(keca22, keca33); \
MOV64(keca33, t); \
MOV64(t, keca23); \
MOV64(keca23, keca32); \
MOV64(keca32, t); \
MOV64(t, keca24); \
MOV64(keca24, keca31); \
MOV64(keca31, t); \
} while (0)
#define LPAR (
#define RPAR )
#define KF_ELT(r, s, k) do { \
THETA LPAR P ## r RPAR; \
RHO LPAR P ## r RPAR; \
KHI LPAR P ## s RPAR; \
IOTA(k); \
} while (0)
#define DO(x) x
#define KECCAK_F_1600 DO(KECCAK_F_1600_)
/*
* removed loop unrolling
* tested faster saving space
*/
#define KECCAK_F_1600_ do { \
static const sph_u64 RC[] = { \
SPH_C64(0x0000000000000001), SPH_C64(0x0000000000008082), \
SPH_C64(0x800000000000808A), SPH_C64(0x8000000080008000), \
SPH_C64(0x000000000000808B), SPH_C64(0x0000000080000001), \
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008009), \
SPH_C64(0x000000000000008A), SPH_C64(0x0000000000000088), \
SPH_C64(0x0000000080008009), SPH_C64(0x000000008000000A), \
SPH_C64(0x000000008000808B), SPH_C64(0x800000000000008B), \
SPH_C64(0x8000000000008089), SPH_C64(0x8000000000008003), \
SPH_C64(0x8000000000008002), SPH_C64(0x8000000000000080), \
SPH_C64(0x000000000000800A), SPH_C64(0x800000008000000A), \
SPH_C64(0x8000000080008081), SPH_C64(0x8000000000008080), \
SPH_C64(0x0000000080000001), SPH_C64(0x8000000080008008) \
}; \
int j; \
for (j = 0; j < 24; j += 4) { \
KF_ELT( 0, 1, RC[j + 0]); \
KF_ELT( 1, 2, RC[j + 1]); \
KF_ELT( 2, 3, RC[j + 2]); \
KF_ELT( 3, 4, RC[j + 3]); \
P4_TO_P0; \
} \
} while (0)
/*
KF_ELT( 0, 1, RC[j + 0]); \
KF_ELT( 1, 2, RC[j + 1]); \
KF_ELT( 2, 3, RC[j + 2]); \
KF_ELT( 3, 4, RC[j + 3]); \
KF_ELT( 4, 5, RC[j + 4]); \
KF_ELT( 5, 6, RC[j + 5]); \
KF_ELT( 6, 7, RC[j + 6]); \
KF_ELT( 7, 8, RC[j + 7]); \
kekDECL_STATE \
*/
#define DECL_KEC
/*
sph_u64 keca00, keca01, keca02, keca03, keca04; \
sph_u64 keca10, keca11, keca12, keca13, keca14; \
sph_u64 keca20, keca21, keca22, keca23, keca24; \
sph_u64 keca30, keca31, keca32, keca33, keca34; \
sph_u64 keca40, keca41, keca42, keca43, keca44;
*/
/* load initial constants */
#define KEC_I
//static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 };
/*
unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 }; \
*/
/* load hash for loop */
#define KEC_U \
do { \
static unsigned char keczword[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80 }; \
/*memcpy(hashbuf, hash, 64); */ \
memcpy(hash + 64, keczword, 8); \
} while (0);
/* keccak512 hash loaded */
/* hash = keccak512(loaded */
#define KEC_C \
do { \
kekDECL_STATE \
unsigned char *buf = hash; \
/*BEGIN CORE */ \
kecINIT_STATE(); \
KECCAK_F_1600; \
/*END CORE */ \
/* Finalize the "lane complement" */ \
sph_enc64le_aligned((unsigned char*)(hash) + 0, keca00); \
sph_enc64le_aligned((unsigned char*)(hash) + 8, ~keca10); \
sph_enc64le_aligned((unsigned char*)(hash) + 16, ~keca20); \
sph_enc64le_aligned((unsigned char*)(hash) + 24, keca30); \
sph_enc64le_aligned((unsigned char*)(hash) + 32, keca40); \
sph_enc64le_aligned((unsigned char*)(hash) + 40, keca01); \
sph_enc64le_aligned((unsigned char*)(hash) + 48, keca11); \
sph_enc64le_aligned((unsigned char*)(hash) + 56, keca21); \
} while (0);
#ifdef __cplusplus
}
#endif

View File

@@ -1,102 +0,0 @@
/* $Id: sph_keccak.h 216 2010-06-08 09:46:57Z tp $ */
/**
* Keccak interface. This is the interface for Keccak with the
* recommended parameters for SHA-3, with output lengths 224, 256,
* 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_keccak.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_KECCAK_H__
#define SPH_KECCAK_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha/sph_types.h"
#define QSTATIC static
/**
* Output size (in bits) for Keccak-512.
*/
#define SPH_SIZE_keccak512 512
/**
* This structure is a context for Keccak computations: it contains the
* intermediate values and some data from the last entered block. Once a
* Keccak computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running Keccak computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
/**
* Type for a Keccak-512 context (identical to the common context).
*/
/**
* Initialize a Keccak-512 context. This process performs no memory allocation.
*
* @param cc the Keccak-512 context (pointer to a
* <code>sph_keccak512_context</code>)
*/
/**
* Terminate the current Keccak-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the Keccak-512 context
* @param dst the destination buffer
*/
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the Keccak-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -459,6 +459,11 @@ int luffa_4way_init( luffa_4way_context *state, int hashbitlen )
return 0;
}
int luffa512_4way_init( luffa_4way_context *state )
{
return luffa_4way_init( state, 512 );
}
// Do not call luffa_update_close after having called luffa_update.
// Once luffa_update has been called only call luffa_update or luffa_close.
int luffa_4way_update( luffa_4way_context *state, const void *data,
@@ -496,6 +501,14 @@ int luffa_4way_update( luffa_4way_context *state, const void *data,
return 0;
}
/*
int luffa512_4way_update( luffa_4way_context *state, const void *data,
size_t len )
{
return luffa_4way_update( state, data, len );
}
*/
int luffa_4way_close( luffa_4way_context *state, void *hashval )
{
__m512i *buffer = (__m512i*)state->buffer;
@@ -518,6 +531,77 @@ int luffa_4way_close( luffa_4way_context *state, void *hashval )
return 0;
}
/*
int luffa512_4way_close( luffa_4way_context *state, void *hashval )
{
return luffa_4way_close( state, hashval );
}
*/
int luffa512_4way_full( luffa_4way_context *state, void *output,
const void *data, size_t inlen )
{
state->hashbitlen = 512;
__m128i *iv = (__m128i*)IV;
state->chainv[0] = m512_const1_128( iv[0] );
state->chainv[1] = m512_const1_128( iv[1] );
state->chainv[2] = m512_const1_128( iv[2] );
state->chainv[3] = m512_const1_128( iv[3] );
state->chainv[4] = m512_const1_128( iv[4] );
state->chainv[5] = m512_const1_128( iv[5] );
state->chainv[6] = m512_const1_128( iv[6] );
state->chainv[7] = m512_const1_128( iv[7] );
state->chainv[8] = m512_const1_128( iv[8] );
state->chainv[9] = m512_const1_128( iv[9] );
((__m512i*)state->buffer)[0] = m512_zero;
((__m512i*)state->buffer)[1] = m512_zero;
const __m512i *vdata = (__m512i*)data;
__m512i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m512i shuff_bswap32 = m512_const_64(
0x3c3d3e3f38393a3b, 0x3435363730313233,
0x2c2d2e2f28292a2b, 0x2425262720212223,
0x1c1d1e1f18191a1b, 0x1415161710111213,
0x0c0d0e0f08090a0b, 0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm512_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_4way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm512_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m512_const2_64( 0, 0x0000000080000000 );
rnd512_4way( state, msg );
}
else
{
// empty pad block
msg[0] = m512_const2_64( 0, 0x0000000080000000 );
msg[1] = m512_zero;
rnd512_4way( state, msg );
}
finalization512_4way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_4way( state, (uint32*)( output+64 ) );
return 0;
}
int luffa_4way_update_close( luffa_4way_context *state,
void *output, const void *data, size_t inlen )
{
@@ -1031,6 +1115,69 @@ int luffa_2way_close( luffa_2way_context *state, void *hashval )
return 0;
}
int luffa512_2way_full( luffa_2way_context *state, void *output,
const void *data, size_t inlen )
{
state->hashbitlen = 512;
__m128i *iv = (__m128i*)IV;
state->chainv[0] = m256_const1_128( iv[0] );
state->chainv[1] = m256_const1_128( iv[1] );
state->chainv[2] = m256_const1_128( iv[2] );
state->chainv[3] = m256_const1_128( iv[3] );
state->chainv[4] = m256_const1_128( iv[4] );
state->chainv[5] = m256_const1_128( iv[5] );
state->chainv[6] = m256_const1_128( iv[6] );
state->chainv[7] = m256_const1_128( iv[7] );
state->chainv[8] = m256_const1_128( iv[8] );
state->chainv[9] = m256_const1_128( iv[9] );
((__m256i*)state->buffer)[0] = m256_zero;
((__m256i*)state->buffer)[1] = m256_zero;
const __m256i *vdata = (__m256i*)data;
__m256i msg[2];
int i;
const int blocks = (int)( inlen >> 5 );
const __m256i shuff_bswap32 = m256_const_64( 0x1c1d1e1f18191a1b,
0x1415161710111213,
0x0c0d0e0f08090a0b,
0x0405060700010203 );
state->rembytes = inlen & 0x1F;
// full blocks
for ( i = 0; i < blocks; i++, vdata+=2 )
{
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = _mm256_shuffle_epi8( vdata[ 1 ], shuff_bswap32 );
rnd512_2way( state, msg );
}
// 16 byte partial block exists for 80 byte len
if ( state->rembytes )
{
// padding of partial block
msg[0] = _mm256_shuffle_epi8( vdata[ 0 ], shuff_bswap32 );
msg[1] = m256_const2_64( 0, 0x0000000080000000 );
rnd512_2way( state, msg );
}
else
{
// empty pad block
msg[0] = m256_const2_64( 0, 0x0000000080000000 );
msg[1] = m256_zero;
rnd512_2way( state, msg );
}
finalization512_2way( state, (uint32*)output );
if ( state->hashbitlen > 512 )
finalization512_2way( state, (uint32*)( output+32 ) );
return 0;
}
int luffa_2way_update_close( luffa_2way_context *state,
void *output, const void *data, size_t inlen )
{

View File

@@ -61,11 +61,23 @@ typedef struct {
} luffa_4way_context __attribute((aligned(128)));
int luffa_4way_init( luffa_4way_context *state, int hashbitlen );
int luffa_4way_update( luffa_4way_context *state, const void *data,
size_t len );
int luffa_4way_close( luffa_4way_context *state, void *hashval );
//int luffa_4way_update( luffa_4way_context *state, const void *data,
// size_t len );
//int luffa_4way_close( luffa_4way_context *state, void *hashval );
int luffa_4way_update_close( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_4way_full( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_4way_init( luffa_4way_context *state );
int luffa512_4way_update( luffa_4way_context *state, const void *data,
size_t len );
int luffa512_4way_close( luffa_4way_context *state, void *hashval );
int luffa512_4way_update_close( luffa_4way_context *state, void *output,
const void *data, size_t inlen );
#define luffa_4way_update luffa512_4way_update
#define luffa_4way_close luffa512_4way_close
#define luffa_4way_update_close luffa512_4way_update_close
#endif
@@ -82,6 +94,8 @@ int luffa_2way_update( luffa_2way_context *state, const void *data,
int luffa_2way_close( luffa_2way_context *state, void *hashval );
int luffa_2way_update_close( luffa_2way_context *state, void *output,
const void *data, size_t inlen );
int luffa512_2way_full( luffa_2way_context *state, void *output,
const void *data, size_t inlen );
#endif
#endif

View File

@@ -7,33 +7,44 @@
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/groestl/aes_ni/hash-groestl256.h"
#if defined(__VAES__)
#include "algo/groestl/groestl256-hash-4way.h"
#endif
#if defined (ALLIUM_8WAY)
#if defined (ALLIUM_16WAY)
typedef struct {
blake256_8way_context blake;
blake256_16way_context blake;
keccak256_8way_context keccak;
cube_4way_context cube;
skein256_8way_context skein;
#if defined(__VAES__)
groestl256_4way_context groestl;
#else
hashState_groestl256 groestl;
} allium_8way_ctx_holder;
#endif
} allium_16way_ctx_holder;
static __thread allium_8way_ctx_holder allium_8way_ctx;
static __thread allium_16way_ctx_holder allium_16way_ctx;
bool init_allium_8way_ctx()
bool init_allium_16way_ctx()
{
keccak256_8way_init( &allium_8way_ctx.keccak );
cube_4way_init( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &allium_8way_ctx.skein );
init_groestl256( &allium_8way_ctx.groestl, 32 );
keccak256_8way_init( &allium_16way_ctx.keccak );
cube_4way_init( &allium_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &allium_16way_ctx.skein );
#if defined(__VAES__)
groestl256_4way_init( &allium_16way_ctx.groestl, 32 );
#else
init_groestl256( &allium_16way_ctx.groestl, 32 );
#endif
return true;
}
void allium_8way_hash( void *state, const void *input )
void allium_16way_hash( void *state, const void *input )
{
uint32_t vhash[8*8] __attribute__ ((aligned (128)));
uint32_t vhashA[8*8] __attribute__ ((aligned (64)));
uint32_t vhashB[8*8] __attribute__ ((aligned (64)));
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint32_t vhashA[16*8] __attribute__ ((aligned (64)));
uint32_t vhashB[16*8] __attribute__ ((aligned (64)));
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (64)));
uint32_t hash2[8] __attribute__ ((aligned (64)));
@@ -42,19 +53,39 @@ void allium_8way_hash( void *state, const void *input )
uint32_t hash5[8] __attribute__ ((aligned (64)));
uint32_t hash6[8] __attribute__ ((aligned (64)));
uint32_t hash7[8] __attribute__ ((aligned (64)));
allium_8way_ctx_holder ctx __attribute__ ((aligned (64)));
uint32_t hash8[8] __attribute__ ((aligned (64)));
uint32_t hash9[8] __attribute__ ((aligned (64)));
uint32_t hash10[8] __attribute__ ((aligned (64)));
uint32_t hash11[8] __attribute__ ((aligned (64)));
uint32_t hash12[8] __attribute__ ((aligned (64)));
uint32_t hash13[8] __attribute__ ((aligned (64)));
uint32_t hash14[8] __attribute__ ((aligned (64)));
uint32_t hash15[8] __attribute__ ((aligned (64)));
allium_16way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_8way_ctx, sizeof(allium_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
memcpy( &ctx, &allium_16way_ctx, sizeof(allium_16way_ctx) );
blake256_16way_update( &ctx.blake, input + (64<<4), 16 );
blake256_16way_close( &ctx.blake, vhash );
rintrlv_8x32_8x64( vhashA, vhash, 256 );
dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhash, 256 );
intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
256 );
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
// rintrlv_8x32_8x64( vhashA, vhash, 256 );
keccak256_8way_update( &ctx.keccak, vhashA, 32 );
keccak256_8way_close( &ctx.keccak, vhash );
keccak256_8way_close( &ctx.keccak, vhashA);
keccak256_8way_init( &ctx.keccak );
keccak256_8way_update( &ctx.keccak, vhashB, 32 );
keccak256_8way_close( &ctx.keccak, vhashB);
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 256 );
vhashA, 256 );
dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
@@ -68,20 +99,19 @@ void allium_8way_hash( void *state, const void *input )
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
/*
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 );
LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 );
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
*/
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, 256 );
@@ -92,6 +122,17 @@ void allium_8way_hash( void *state, const void *input )
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
intrlv_4x128( vhashA, hash8, hash9, hash10, hash11, 256 );
intrlv_4x128( vhashB, hash12, hash13, hash14, hash15, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
dintrlv_4x128( hash8, hash9, hash10, hash11, vhashA, 256 );
dintrlv_4x128( hash12, hash13, hash14, hash15, vhashB, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash0, hash1, vhash, 256 );
@@ -104,9 +145,208 @@ void allium_8way_hash( void *state, const void *input )
intrlv_2x256( vhash, hash6, hash7, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash6, hash7, vhash, 256 );
intrlv_2x256( vhash, hash8, hash9, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash8, hash9, vhash, 256 );
intrlv_2x256( vhash, hash10, hash11, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash10, hash11, vhash, 256 );
intrlv_2x256( vhash, hash12, hash13, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash12, hash13, vhash, 256 );
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14,
hash15, 256 );
skein256_8way_update( &ctx.skein, vhashA, 32 );
skein256_8way_close( &ctx.skein, vhashA );
skein256_8way_init( &ctx.skein );
skein256_8way_update( &ctx.skein, vhashB, 32 );
skein256_8way_close( &ctx.skein, vhashB );
/*
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
vhashB, 256 );
#if defined(__VAES__)
intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state, state+32, state+64, state+96, vhash, 256 );
intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+128, state+160, state+192, state+224, vhash, 256 );
intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+256, state+288, state+320, state+352, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+384, state+416, state+448, state+480, vhash, 256 );
#else
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+128, hash4, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+160, hash5, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+192, hash6, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+224, hash7, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+256, hash8, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+288, hash9, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+320, hash10, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+352, hash11, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+384, hash12, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+416, hash13, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+448, hash14, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+480, hash15, 256 );
#endif
}
int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 16;
__m512i *noncev = (__m512i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
blake256_16way_init( &allium_16way_ctx.blake );
blake256_16way_update( &allium_16way_ctx.blake, vdata, 64 );
do {
allium_16way_hash( hash, vdata );
for ( int lane = 0; lane < 16; lane++ )
if unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (ALLIUM_8WAY)
typedef struct {
blake256_8way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
hashState_groestl256 groestl;
} allium_8way_ctx_holder;
static __thread allium_8way_ctx_holder allium_8way_ctx;
bool init_allium_8way_ctx()
{
keccak256_4way_init( &allium_8way_ctx.keccak );
cubehashInit( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_8way_ctx.skein );
init_groestl256( &allium_8way_ctx.groestl, 32 );
return true;
}
void allium_8way_hash( void *hash, const void *input )
{
uint64_t vhashA[4*8] __attribute__ ((aligned (64)));
uint64_t vhashB[4*8] __attribute__ ((aligned (64)));
// uint64_t hash[4*8] __attribute__ ((aligned (64)));
uint64_t *hash0 = (uint64_t*)hash;
uint64_t *hash1 = (uint64_t*)hash+ 4;
uint64_t *hash2 = (uint64_t*)hash+ 8;
uint64_t *hash3 = (uint64_t*)hash+12;
uint64_t *hash4 = (uint64_t*)hash+16;
uint64_t *hash5 = (uint64_t*)hash+20;
uint64_t *hash6 = (uint64_t*)hash+24;
uint64_t *hash7 = (uint64_t*)hash+28;
allium_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_8way_ctx, sizeof(allium_8way_ctx) );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhashA );
dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
keccak256_4way_update( &ctx.keccak, vhashA, 32 );
keccak256_4way_close( &ctx.keccak, vhashA );
keccak256_4way_init( &ctx.keccak );
keccak256_4way_update( &ctx.keccak, vhashB, 32 );
keccak256_4way_close( &ctx.keccak, vhashB );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
@@ -115,136 +355,6 @@ void allium_8way_hash( void *state, const void *input )
LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 );
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
*/
intrlv_8x64( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, 256 );
skein256_8way_update( &ctx.skein, vhash, 32 );
skein256_8way_close( &ctx.skein, vhash );
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash, 256 );
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+128, hash4, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+160, hash5, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+192, hash6, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+224, hash7, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
}
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 8;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256_8way_init( &allium_8way_ctx.blake );
blake256_8way_update( &allium_8way_ctx.blake, vdata, 64 );
do {
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
allium_8way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 8; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg )
{
if ( fulltest( hash+(lane<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
}
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined (ALLIUM_4WAY)
typedef struct {
blake256_4way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
hashState_groestl256 groestl;
} allium_4way_ctx_holder;
static __thread allium_4way_ctx_holder allium_4way_ctx;
bool init_allium_4way_ctx()
{
keccak256_4way_init( &allium_4way_ctx.keccak );
cubehashInit( &allium_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_4way_ctx.skein );
init_groestl256( &allium_4way_ctx.groestl, 32 );
return true;
}
void allium_4way_hash( void *state, const void *input )
{
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
uint32_t hash3[8] __attribute__ ((aligned (32)));
uint32_t vhash32[8*4] __attribute__ ((aligned (64)));
uint32_t vhash64[8*4] __attribute__ ((aligned (64)));
allium_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_4way_ctx, sizeof(allium_4way_ctx) );
blake256_4way( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash32 );
rintrlv_4x32_4x64( vhash64, vhash32, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*)hash0, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
@@ -253,69 +363,97 @@ void allium_4way_hash( void *state, const void *input )
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*)hash2, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*)hash3, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4, (const byte*)hash4, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5, (const byte*)hash5, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6, (const byte*)hash6, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7, (const byte*)hash7, 32 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 );
LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 );
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
skein256_4way_update( &ctx.skein, vhashA, 32 );
skein256_4way_close( &ctx.skein, vhashA );
skein256_4way_init( &ctx.skein );
skein256_4way_update( &ctx.skein, vhashB, 32 );
skein256_4way_close( &ctx.skein, vhashB );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash0, hash0, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash1, hash1, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
update_and_final_groestl256( &ctx.groestl, hash2, hash2, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
update_and_final_groestl256( &ctx.groestl, hash3, hash3, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash4, hash4, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash5, hash5, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash6, hash6, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash7, hash7, 256 );
}
int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint64_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint64_t *ptarget = (uint64_t*)work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &allium_4way_ctx.blake );
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );
blake256_8way_init( &allium_8way_ctx.blake );
blake256_8way_update( &allium_8way_ctx.blake, vdata, 64 );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
allium_8way_hash( hash, vdata );
allium_4way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 4; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg )
for ( int lane = 0; lane < 8; lane++ )
{
if ( fulltest( hash+(lane<<3), ptarget ) && !opt_benchmark )
const uint64_t *lane_hash = hash + (lane<<2);
if unlikely( valid_hash( lane_hash, ptarget ) && !bench )
{
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
n += 8;
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
} while likely( (n <= last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -78,7 +78,7 @@ bool register_lyra2rev3_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2rev3;
gate->hash = (void*)&lyra2rev3_hash;
#endif
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev3_thread_init;
opt_target_factor = 256.0;
return true;
@@ -119,7 +119,7 @@ bool register_lyra2rev2_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2rev2;
gate->hash = (void*)&lyra2rev2_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
opt_target_factor = 256.0;
return true;
@@ -146,7 +146,7 @@ bool register_lyra2z_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2z;
gate->hash = (void*)&lyra2z_hash;
#endif
gate->optimizations = SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -165,7 +165,7 @@ bool register_lyra2h_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2h;
gate->hash = (void*)&lyra2h_hash;
#endif
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -174,20 +174,20 @@ bool register_lyra2h_algo( algo_gate_t* gate )
bool register_allium_algo( algo_gate_t* gate )
{
#if defined (ALLIUM_8WAY)
#if defined (ALLIUM_16WAY)
gate->miner_thread_init = (void*)&init_allium_16way_ctx;
gate->scanhash = (void*)&scanhash_allium_16way;
gate->hash = (void*)&allium_16way_hash;
#elif defined (ALLIUM_8WAY)
gate->miner_thread_init = (void*)&init_allium_8way_ctx;
gate->scanhash = (void*)&scanhash_allium_8way;
gate->hash = (void*)&allium_8way_hash;
#elif defined (ALLIUM_4WAY)
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
gate->scanhash = (void*)&scanhash_allium_4way;
gate->hash = (void*)&allium_4way_hash;
#else
gate->miner_thread_init = (void*)&init_allium_ctx;
gate->scanhash = (void*)&scanhash_allium;
gate->hash = (void*)&allium_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
opt_target_factor = 256.0;
return true;
};
@@ -220,7 +220,7 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
// Assemble block header
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) );
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits), NULL );
for ( t = 0; t < 16; t++ )
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
}
@@ -229,7 +229,7 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
bool register_phi2_algo( algo_gate_t* gate )
{
// init_phi2_ctx();
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->get_work_data_size = (void*)&phi2_get_work_data_size;
gate->decode_extra_data = (void*)&phi2_decode_extra_data;
gate->build_extraheader = (void*)&phi2_build_extraheader;

View File

@@ -153,27 +153,27 @@ bool lyra2h_thread_init();
//////////////////////////////////
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define ALLIUM_8WAY 1
#define ALLIUM_16WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define ALLIUM_4WAY 1
#define ALLIUM_8WAY 1
#endif
bool register_allium_algo( algo_gate_t* gate );
#if defined(ALLIUM_8WAY)
#if defined(ALLIUM_16WAY)
void allium_16way_hash( void *state, const void *input );
int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_16way_ctx();
#elif defined(ALLIUM_8WAY)
void allium_8way_hash( void *state, const void *input );
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_8way_ctx();
#elif defined(ALLIUM_4WAY)
void allium_4way_hash( void *state, const void *input );
int scanhash_allium_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_allium_4way_ctx();
#else
void allium_hash( void *state, const void *input );

View File

@@ -575,4 +575,138 @@ int LYRA2RE_2WAY( void *K, uint64_t kLen, const void *pwd,
return 0;
}
int LYRA2X_2WAY( void *K, uint64_t kLen, const void *pwd,
const uint64_t pwdlen, const uint64_t timeCost,
const uint64_t nRows, const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[32];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa0 = 0;
int64_t rowa1 = 0;
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
//====================================================================/
//=== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
i = (int64_t)ROW_LEN_BYTES * nRows;
uint64_t *wholeMatrix = _mm_malloc( 2*i, 64 );
if (wholeMatrix == NULL)
return -1;
memset_zero_512( (__m512i*)wholeMatrix, i>>5 );
uint64_t *ptrWord = wholeMatrix;
uint64_t *pw = (uint64_t*)pwd;
//First, we clean enough blocks for the password, salt, basil and padding
int64_t nBlocksInput = ( ( pwdlen + pwdlen + 6 * sizeof(uint64_t) )
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
uint64_t *ptr = wholeMatrix;
memcpy( ptr, pw, 2*pwdlen ); // password
ptr += pwdlen>>2;
memcpy( ptr, pw, 2*pwdlen ); // password lane 1
ptr += pwdlen>>2;
// now build the rest interleaving on the fly.
ptr[0] = ptr[ 4] = kLen;
ptr[1] = ptr[ 5] = pwdlen;
ptr[2] = ptr[ 6] = pwdlen; // saltlen
ptr[3] = ptr[ 7] = timeCost;
ptr[8] = ptr[12] = nRows;
ptr[9] = ptr[13] = nCols;
ptr[10] = ptr[14] = 0x80;
ptr[11] = ptr[15] = 0x0100000000000000;
absorbBlockBlake2Safe_2way( state, ptrWord, nBlocksInput, BLOCK_LEN );
//Initializes M[0] and M[1]
reducedSqueezeRow0_2way( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
reducedDuplexRow1_2way( state, &wholeMatrix[0],
&wholeMatrix[ 2 * ROW_LEN_INT64], nCols );
do
{
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup_2way( state, &wholeMatrix[ 2* prev*ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa0*ROW_LEN_INT64 ],
&wholeMatrix[ 2* row*ROW_LEN_INT64 ],
nCols );
//updates the value of row* (deterministically picked during Setup))
rowa0 = (rowa0 + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa0 == 0)
{
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//===================== Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++)
{
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
do
{
rowa0 = state[ 0 ] & (unsigned int)(nRows-1);
rowa1 = state[ 4 ] & (unsigned int)(nRows-1);
reducedDuplexRow_2way_X( state, &wholeMatrix[ 2* prev * ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa0 * ROW_LEN_INT64 ],
&wholeMatrix[ 2* rowa1 * ROW_LEN_INT64 ],
&wholeMatrix[ 2* row *ROW_LEN_INT64 ],
nCols );
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//----------------------------------------------------
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//----------------------------------------------------
} while (row != 0);
}
//===================== Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock_2way( state, &wholeMatrix[ 2 * rowa0 *ROW_LEN_INT64],
&wholeMatrix[ 2 * rowa1 *ROW_LEN_INT64] );
//Squeezes the key
squeeze_2way( state, K, (unsigned int) kLen );
//================== Freeing the memory =============================//
_mm_free(wholeMatrix);
return 0;
}
#endif

View File

@@ -74,6 +74,9 @@ int LYRA2REV3_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
int LYRA2Z_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols );
int LYRA2X_2WAY( void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
#endif
#endif /* LYRA2_H_ */

View File

@@ -20,7 +20,7 @@ static __thread blake256_4way_context l2h_4way_blake_mid;
void lyra2h_4way_midstate( const void* input )
{
blake256_4way_init( &l2h_4way_blake_mid );
blake256_4way( &l2h_4way_blake_mid, input, 64 );
blake256_4way_update( &l2h_4way_blake_mid, input, 64 );
}
void lyra2h_4way_hash( void *state, const void *input )
@@ -33,7 +33,7 @@ void lyra2h_4way_hash( void *state, const void *input )
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2h_4way_blake_mid, sizeof l2h_4way_blake_mid );
blake256_4way( &ctx_blake, input + (64*4), 16 );
blake256_4way_update( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );

View File

@@ -44,7 +44,7 @@ void lyra2rev2_8way_hash( void *state, const void *input )
lyra2v2_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_8way_ctx, sizeof(l2v2_8way_ctx) );
blake256_8way( &ctx.blake, input + (64<<3), 16 );
blake256_8way_update( &ctx.blake, input + (64<<3), 16 );
blake256_8way_close( &ctx.blake, vhash );
rintrlv_8x32_8x64( vhashA, vhash, 256 );
@@ -176,12 +176,12 @@ void lyra2rev2_4way_hash( void *state, const void *input )
lyra2v2_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) );
blake256_4way( &ctx.blake, input + (64<<2), 16 );
blake256_4way_update( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash );
rintrlv_4x32_4x64( vhash64, vhash, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_update( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
@@ -201,7 +201,7 @@ void lyra2rev2_4way_hash( void *state, const void *input )
intrlv_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_update( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
@@ -217,7 +217,7 @@ void lyra2rev2_4way_hash( void *state, const void *input )
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_update( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, state );
}
@@ -242,7 +242,7 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &l2v2_4way_ctx.blake );
blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 );
blake256_4way_update( &l2v2_4way_ctx.blake, vdata, 64 );
do
{

View File

@@ -209,7 +209,7 @@ void lyra2rev3_8way_hash( void *state, const void *input )
lyra2v3_8way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_8way_ctx, sizeof(l2v3_8way_ctx) );
blake256_8way( &ctx.blake, input + (64*8), 16 );
blake256_8way_update( &ctx.blake, input + (64*8), 16 );
blake256_8way_close( &ctx.blake, vhash );
dintrlv_8x32( hash0, hash1, hash2, hash3,
@@ -252,7 +252,7 @@ void lyra2rev3_8way_hash( void *state, const void *input )
intrlv_8x32( vhash, hash0, hash1, hash2, hash3,
hash4, hash5, hash6, hash7, 256 );
bmw256_8way( &ctx.bmw, vhash, 32 );
bmw256_8way_update( &ctx.bmw, vhash, 32 );
bmw256_8way_close( &ctx.bmw, state );
}
@@ -277,7 +277,7 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
mm256_bswap32_intrlv80_8x32( vdata, pdata );
blake256_8way_init( &l2v3_8way_ctx.blake );
blake256_8way( &l2v3_8way_ctx.blake, vdata, 64 );
blake256_8way_update( &l2v3_8way_ctx.blake, vdata, 64 );
do
{
@@ -334,8 +334,7 @@ void lyra2rev3_4way_hash( void *state, const void *input )
lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) );
// blake256_4way( &ctx.blake, input, 80 );
blake256_4way( &ctx.blake, input + (64*4), 16 );
blake256_4way_update( &ctx.blake, input + (64*4), 16 );
blake256_4way_close( &ctx.blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
@@ -358,7 +357,7 @@ void lyra2rev3_4way_hash( void *state, const void *input )
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_update( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, state );
}
@@ -383,7 +382,7 @@ int scanhash_lyra2rev3_4way( struct work *work, const uint32_t max_nonce,
mm128_bswap32_intrlv80_4x32( vdata, pdata );
blake256_4way_init( &l2v3_4way_ctx.blake );
blake256_4way( &l2v3_4way_ctx.blake, vdata, 64 );
blake256_4way_update( &l2v3_4way_ctx.blake, vdata, 64 );
do
{

View File

@@ -149,7 +149,7 @@ static __thread blake256_8way_context l2z_8way_blake_mid;
void lyra2z_8way_midstate( const void* input )
{
blake256_8way_init( &l2z_8way_blake_mid );
blake256_8way( &l2z_8way_blake_mid, input, 64 );
blake256_8way_update( &l2z_8way_blake_mid, input, 64 );
}
void lyra2z_8way_hash( void *state, const void *input )
@@ -166,7 +166,7 @@ void lyra2z_8way_hash( void *state, const void *input )
blake256_8way_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2z_8way_blake_mid, sizeof l2z_8way_blake_mid );
blake256_8way( &ctx_blake, input + (64*8), 16 );
blake256_8way_update( &ctx_blake, input + (64*8), 16 );
blake256_8way_close( &ctx_blake, vhash );
dintrlv_8x32( hash0, hash1, hash2, hash3,
@@ -247,7 +247,7 @@ static __thread blake256_4way_context l2z_4way_blake_mid;
void lyra2z_4way_midstate( const void* input )
{
blake256_4way_init( &l2z_4way_blake_mid );
blake256_4way( &l2z_4way_blake_mid, input, 64 );
blake256_4way_update( &l2z_4way_blake_mid, input, 64 );
}
void lyra2z_4way_hash( void *state, const void *input )
@@ -260,7 +260,7 @@ void lyra2z_4way_hash( void *state, const void *input )
blake256_4way_context ctx_blake __attribute__ ((aligned (64)));
memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid );
blake256_4way( &ctx_blake, input + (64*4), 16 );
blake256_4way_update( &ctx_blake, input + (64*4), 16 );
blake256_4way_close( &ctx_blake, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 );

View File

@@ -196,7 +196,6 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
__m512i* in = (__m512i*)rowIn;
__m512i* inout = (__m512i*)rowInOut;
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I );
__m512i t0, t1, t2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
@@ -218,24 +217,27 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
out[1] = _mm512_xor_si512( state1, in[1] );
out[2] = _mm512_xor_si512( state2, in[2] );
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
{
register __m512i t0, t1, t2;
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi32( 0x0303, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi32( 0x0303, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi32( 0x0303, t2, t1 ) );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
}
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
@@ -244,12 +246,235 @@ inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// big ugly workaound for pointer aliasing, use a union of pointers.
// Access matrix using m512i for in and out, m256i for inout
// reduced duplex row has three version depending on rows inout.
// If they are the same the fastest version can be used, equivalent to
// linear version.
// If either rowinout overlaps with rowout the slowest version is used,
// to refresh local data after overwriting rowout.
// Otherwise the normal version is used, slower than unified, faster than
// overlap.
//
// The likelyhood of each case depends on the number of rows. More rows
// means unified and overlap are both less likely.
// Unified has a 1 in Nrows chances,
// Overlap has 2 in Nrows chance reduced to 1 in Nrows because if both
// overlap it's unified.
// As a result normal is Nrows-2 / Nrows.
// for 4 rows: 1 unified, 2 overlap, 1 normal.
// for 8 rows: 1 unified, 2 overlap, 56 normal.
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
static inline void reducedDuplexRow_2way_normal( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout0 = (__m512i*)rowInOut0;
__m512i *inout1 = (__m512i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
register __m512i io0, io1, io2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
io0 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io1 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io2 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0 ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1 ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2 ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
register __m512i t0, t1, t2;
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
io0 = _mm512_xor_si512( io0, _mm512_mask_blend_epi64( 0x11, t0, t2 ) );
io1 = _mm512_xor_si512( io1, _mm512_mask_blend_epi64( 0x11, t1, t0 ) );
io2 = _mm512_xor_si512( io2, _mm512_mask_blend_epi64( 0x11, t2, t1 ) );
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
}
_mm512_mask_store_epi64( inout0, 0x0f, io0 );
_mm512_mask_store_epi64( inout1, 0xf0, io0 );
_mm512_mask_store_epi64( inout0 +1, 0x0f, io1 );
_mm512_mask_store_epi64( inout1 +1, 0xf0, io1 );
_mm512_mask_store_epi64( inout0 +2, 0x0f, io2 );
_mm512_mask_store_epi64( inout1 +2, 0xf0, io2 );
//Goes to next block
in += BLOCK_LEN_M256I;
inout0 += BLOCK_LEN_M256I;
inout1 += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
static inline void reducedDuplexRow_2way_overlap( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout0 = (__m512i*)rowInOut0;
__m512i *inout1 = (__m512i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
// inout_ovly io;
ovly_512 io0, io1, io2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
io0.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io1.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io2.v512 = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io0.v512 ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io1.v512 ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io2.v512 ) );
/*
io.v512[0] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 ),
_mm512_load_si512( (__m512i*)inout1 ) );
io.v512[1] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +1 ),
_mm512_load_si512( (__m512i*)inout1 +1 ) );
io.v512[2] = _mm512_mask_blend_epi64( 0xf0,
_mm512_load_si512( (__m512i*)inout0 +2 ),
_mm512_load_si512( (__m512i*)inout1 +2 ) );
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], io.v512[0] ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], io.v512[1] ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], io.v512[2] ) );
*/
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
__m512i t0, t1, t2;
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
// if out is the same row as inout, update with new data.
if ( rowOut == rowInOut0 )
{
io0.v512 = _mm512_mask_blend_epi64( 0x0f, io0.v512, out[0] );
io1.v512 = _mm512_mask_blend_epi64( 0x0f, io1.v512, out[1] );
io2.v512 = _mm512_mask_blend_epi64( 0x0f, io2.v512, out[2] );
}
if ( rowOut == rowInOut1 )
{
io0.v512 = _mm512_mask_blend_epi64( 0xf0, io0.v512, out[0] );
io1.v512 = _mm512_mask_blend_epi64( 0xf0, io1.v512, out[1] );
io2.v512 = _mm512_mask_blend_epi64( 0xf0, io2.v512, out[2] );
}
/*
if ( rowOut == rowInOut0 )
{
io.v512[0] = _mm512_mask_blend_epi64( 0x0f, io.v512[0], out[0] );
io.v512[1] = _mm512_mask_blend_epi64( 0x0f, io.v512[1], out[1] );
io.v512[2] = _mm512_mask_blend_epi64( 0x0f, io.v512[2], out[2] );
}
if ( rowOut == rowInOut1 )
{
io.v512[0] = _mm512_mask_blend_epi64( 0xf0, io.v512[0], out[0] );
io.v512[1] = _mm512_mask_blend_epi64( 0xf0, io.v512[1], out[1] );
io.v512[2] = _mm512_mask_blend_epi64( 0xf0, io.v512[2], out[2] );
}
*/
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
io0.v512 = _mm512_xor_si512( io0.v512,
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
io1.v512 = _mm512_xor_si512( io1.v512,
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
io2.v512 = _mm512_xor_si512( io2.v512,
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
}
casti_m256i( inout0, 0 ) = io0.v256lo;
casti_m256i( inout1, 1 ) = io0.v256hi;
casti_m256i( inout0, 2 ) = io1.v256lo;
casti_m256i( inout1, 3 ) = io1.v256hi;
casti_m256i( inout0, 4 ) = io2.v256lo;
casti_m256i( inout1, 5 ) = io2.v256hi;
/*
_mm512_mask_store_epi64( inout0, 0x0f, io.v512[0] );
_mm512_mask_store_epi64( inout1, 0xf0, io.v512[0] );
_mm512_mask_store_epi64( inout0 +1, 0x0f, io.v512[1] );
_mm512_mask_store_epi64( inout1 +1, 0xf0, io.v512[1] );
_mm512_mask_store_epi64( inout0 +2, 0x0f, io.v512[2] );
_mm512_mask_store_epi64( inout1 +2, 0xf0, io.v512[2] );
*/
//Goes to next block
in += BLOCK_LEN_M256I;
inout0 += BLOCK_LEN_M256I;
inout1 += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
static inline void reducedDuplexRow_2way_overlap_X( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
@@ -257,30 +482,14 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
__m256i *inout0 = (__m256i*)rowInOut0;
__m256i *inout1 = (__m256i*)rowInOut1;
__m512i *out = (__m512i*)rowOut;
__m512i io[3];
povly inout;
inout.v512 = &io[0];
__m512i t0, t1, t2;
inout_ovly inout;
__m512i t0, t1, t2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
_mm_prefetch( in, _MM_HINT_T0 );
_mm_prefetch( inout0, _MM_HINT_T0 );
_mm_prefetch( inout1, _MM_HINT_T0 );
_mm_prefetch( in + 2, _MM_HINT_T0 );
_mm_prefetch( inout0 + 2, _MM_HINT_T0 );
_mm_prefetch( inout1 + 2, _MM_HINT_T0 );
_mm_prefetch( in + 4, _MM_HINT_T0 );
_mm_prefetch( inout0 + 4, _MM_HINT_T0 );
_mm_prefetch( inout1 + 4, _MM_HINT_T0 );
_mm_prefetch( in + 6, _MM_HINT_T0 );
_mm_prefetch( inout0 + 6, _MM_HINT_T0 );
_mm_prefetch( inout1 + 6, _MM_HINT_T0 );
for ( i = 0; i < nCols; i++ )
{
@@ -311,15 +520,15 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
// if inout is the same row as out it was just overwritten, reload.
if ( rowOut == rowInOut0 )
{
inout.v256[0] = inout0[0];
inout.v256[2] = inout0[2];
inout.v256[4] = inout0[4];
inout.v256[0] = ( (__m256i*)out )[0];
inout.v256[2] = ( (__m256i*)out )[2];
inout.v256[4] = ( (__m256i*)out )[4];
}
if ( rowOut == rowInOut1 )
{
inout.v256[1] = inout1[1];
inout.v256[3] = inout1[3];
inout.v256[5] = inout1[5];
inout.v256[1] = ( (__m256i*)out )[1];
inout.v256[3] = ( (__m256i*)out )[3];
inout.v256[5] = ( (__m256i*)out )[5];
}
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
@@ -328,12 +537,12 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout.v512[0] = _mm512_xor_si512( inout.v512[0],
_mm512_mask_blend_epi32( 0x0303, t0, t2 ) );
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout.v512[1] = _mm512_xor_si512( inout.v512[1],
_mm512_mask_blend_epi32( 0x0303, t1, t0 ) );
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout.v512[2] = _mm512_xor_si512( inout.v512[2],
_mm512_mask_blend_epi32( 0x0303, t2, t1 ) );
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
inout0[0] = inout.v256[0];
inout1[1] = inout.v256[1];
inout0[2] = inout.v256[2];
@@ -354,4 +563,108 @@ inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// rowInOut0 == rowInOut1, fastest, least likely: 1 / nrows
static inline void reducedDuplexRow_2way_unified( uint64_t *State,
uint64_t *rowIn, uint64_t *rowInOut0,
uint64_t *rowOut, uint64_t nCols)
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)rowIn;
__m512i *inout = (__m512i*)rowInOut0;
__m512i *out = (__m512i*)rowOut;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
//Absorbing "M[prev] [+] M[row*]"
state0 = _mm512_xor_si512( state0, _mm512_add_epi64( in[0], inout[0] ) );
state1 = _mm512_xor_si512( state1, _mm512_add_epi64( in[1], inout[1] ) );
state2 = _mm512_xor_si512( state2, _mm512_add_epi64( in[2], inout[2] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
{
register __m512i t0, t1, t2;
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi64( 0x11, t0, t2 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi64( 0x11, t1, t0 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi64( 0x11, t2, t1 ) );
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
}
//Goes to next block
in += BLOCK_LEN_M256I;
inout += BLOCK_LEN_M256I;
out += BLOCK_LEN_M256I;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// Multi level specialization.
// There are three cases that need to be handled:
// unified: inout data is contiguous, fastest, unlikely.
// normal: inout data is not contiguous with no overlap with out, likely.
// overlap: inout data is not contiguous and one lane overlaps with out
// slowest, unlikely.
//
// In adition different algos prefer different coding. x25x and x22i prefer
// 256 bit memory acceses to handle the diverged data while all other
// algos prefer 512 bit memory accesses with masking and blending.
// Wrapper
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols )
{
if ( rowInOut0 == rowInOut1 )
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
reducedDuplexRow_2way_overlap( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
else
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
inline void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols )
{
if ( rowInOut0 == rowInOut1 )
reducedDuplexRow_2way_unified( State, rowIn, rowInOut0, rowOut, nCols );
else if ( ( rowInOut0 == rowOut ) || ( rowInOut1 == rowOut ) )
{
asm volatile ( "nop" ); // Prevent GCC from optimizing
reducedDuplexRow_2way_overlap_X( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
else
reducedDuplexRow_2way_normal( State, rowIn, rowInOut0, rowInOut1,
rowOut, nCols );
}
#endif // AVX512

View File

@@ -203,13 +203,24 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
union _povly
union _ovly_512
{
__m512i *v512;
__m256i *v256;
uint64_t *u64;
__m512i v512;
struct
{
__m256i v256lo;
__m256i v256hi;
};
};
typedef union _povly povly;
typedef union _ovly_512 ovly_512;
union _inout_ovly
{
__m512i v512[3];
__m256i v256[6];
};
typedef union _inout_ovly inout_ovly;
//---- Housekeeping
void initState_2way( uint64_t State[/*16*/] );
@@ -234,6 +245,10 @@ void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols);
void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut0, uint64_t *rowInOut1,
uint64_t *rowOut, uint64_t nCols);
#endif

View File

@@ -149,7 +149,7 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
char data_str[161], hash_str[65], target_str[65];
//uint8_t *bdata = 0;
uint8_t bdata[8192] __attribute__ ((aligned (64)));
int rc = 0, i, digits;
int i, digits;
int bytes;
size_t p = sizeof(unsigned long), a = 64/p, b = 32/p;
@@ -267,47 +267,41 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
SHA256_Final( (unsigned char*) hash, &ctxf_sha256 );
}
const unsigned char *hash_ = (const unsigned char *)hash;
const unsigned char *target_ = (const unsigned char *)ptarget;
for ( i = 31; i >= 0; i-- )
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !opt_benchmark ) )
// if ( unlikely( hash[7] <= ptarget[7] ) )
// if ( likely( fulltest( hash, ptarget ) && !opt_benchmark ) )
{
if ( hash_[i] != target_[i] )
if ( opt_debug )
{
rc = hash_[i] < target_[i];
break;
}
}
if ( unlikely(rc) )
{
if ( opt_debug )
{
bin2hex(hash_str, (unsigned char *)hash, 32);
bin2hex(target_str, (unsigned char *)ptarget, 32);
bin2hex(data_str, (unsigned char *)data, 80);
applog(LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s", thr_id,
data_str,
hash_str,
target_str);
bin2hex( hash_str, (unsigned char *)hash, 32 );
bin2hex( target_str, (unsigned char *)ptarget, 32 );
bin2hex( data_str, (unsigned char *)data, 80 );
applog( LOG_DEBUG, "DEBUG: [%d thread] Found share!\ndata %s\nhash %s\ntarget %s",
thr_id, data_str, hash_str, target_str );
}
pdata[19] = data[19];
submit_solution( work, hash, mythr );
}
} while (n < max_nonce && !work_restart[thr_id].restart);
} while ( n < max_nonce && !work_restart[thr_id].restart );
pdata[19] = n;
mpf_set_prec_raw(magifpi, prec0);
mpf_set_prec_raw(magifpi0, prec0);
mpf_set_prec_raw(mptmp, prec0);
mpf_set_prec_raw(mpt1, prec0);
mpf_set_prec_raw(mpt2, prec0);
mpf_clear(magifpi);
mpf_clear(magifpi0);
mpf_clear(mpten);
mpf_clear(mptmp);
mpf_clear(mpt1);
mpf_clear(mpt2);
mpz_clears(magipi, magisw, product, bns0, bns1, NULL);
mpf_set_prec_raw( magifpi, prec0 );
mpf_set_prec_raw( magifpi0, prec0 );
mpf_set_prec_raw( mptmp, prec0 );
mpf_set_prec_raw( mpt1, prec0 );
mpf_set_prec_raw( mpt2, prec0 );
mpf_clear( magifpi );
mpf_clear( magifpi0 );
mpf_clear( mpten );
mpf_clear( mptmp );
mpf_clear( mpt1 );
mpf_clear( mpt2 );
mpz_clears( magipi, magisw, product, bns0, bns1, NULL );
*hashes_done = n - first_nonce + 1;
return 0;

View File

@@ -102,7 +102,7 @@ int scanhash_nist5_8way( struct work *work, uint32_t max_nonce,
nist5hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
@@ -133,7 +133,7 @@ void nist5hash_4way( void *out, const void *input )
keccak512_4way_context ctx_keccak;
blake512_4way_init( &ctx_blake );
blake512_4way( &ctx_blake, input, 80 );
blake512_4way_update( &ctx_blake, input, 80 );
blake512_4way_close( &ctx_blake, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -154,15 +154,15 @@ void nist5hash_4way( void *out, const void *input )
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
jh512_4way_init( &ctx_jh );
jh512_4way( &ctx_jh, vhash, 64 );
jh512_4way_update( &ctx_jh, vhash, 64 );
jh512_4way_close( &ctx_jh, vhash );
keccak512_4way_init( &ctx_keccak );
keccak512_4way( &ctx_keccak, vhash, 64 );
keccak512_4way_update( &ctx_keccak, vhash, 64 );
keccak512_4way_close( &ctx_keccak, vhash );
skein512_4way_init( &ctx_skein );
skein512_4way( &ctx_skein, vhash, 64 );
skein512_4way_update( &ctx_skein, vhash, 64 );
skein512_4way_close( &ctx_skein, out );
}
@@ -190,7 +190,7 @@ int scanhash_nist5_4way( struct work *work, uint32_t max_nonce,
nist5hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
if ( hash7[ lane<<1 ] <= Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )

Some files were not shown because too many files have changed in this diff Show More