mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Initial upload v3.4.7
This commit is contained in:
0
algo/lyra2/.dirstamp
Normal file
0
algo/lyra2/.dirstamp
Normal file
214
algo/lyra2/lyra2.c
Normal file
214
algo/lyra2/lyra2.c
Normal file
@@ -0,0 +1,214 @@
|
||||
/**
|
||||
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
|
||||
*
|
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
*
|
||||
* This software is hereby placed in the public domain.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include "compat.h"
|
||||
#include "lyra2.h"
|
||||
#include "sponge.h"
|
||||
|
||||
/**
|
||||
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
|
||||
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
|
||||
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
|
||||
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
|
||||
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
|
||||
*
|
||||
* @param K The derived key to be output by the algorithm
|
||||
* @param kLen Desired key length
|
||||
* @param pwd User password
|
||||
* @param pwdlen Password length
|
||||
* @param salt Salt
|
||||
* @param saltlen Salt length
|
||||
* @param timeCost Parameter to determine the processing time (T)
|
||||
* @param nRows Number or rows of the memory matrix (R)
|
||||
* @param nCols Number of columns of the memory matrix (C)
|
||||
*
|
||||
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
|
||||
*/
|
||||
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols)
|
||||
{
|
||||
//============================= Basic variables ============================//
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
int64_t i; //auxiliary iteration counter
|
||||
int64_t v64; // 64bit var for memcpy
|
||||
//==========================================================================/
|
||||
|
||||
//========== Initializing the Memory Matrix and pointers to it =============//
|
||||
//Tries to allocate enough space for the whole memory matrix
|
||||
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
// for Lyra2REv2, nCols = 4, v1 was using 8
|
||||
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES;
|
||||
|
||||
i = (int64_t)ROW_LEN_BYTES * nRows;
|
||||
uint64_t *wholeMatrix = malloc(i);
|
||||
if (wholeMatrix == NULL) {
|
||||
return -1;
|
||||
}
|
||||
memset(wholeMatrix, 0, i);
|
||||
|
||||
//Allocates pointers to each row of the matrix
|
||||
uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows);
|
||||
if (memMatrix == NULL) {
|
||||
return -1;
|
||||
}
|
||||
//Places the pointers in the correct positions
|
||||
uint64_t *ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nRows; i++) {
|
||||
memMatrix[i] = ptrWord;
|
||||
ptrWord += ROW_LEN_INT64;
|
||||
}
|
||||
//==========================================================================/
|
||||
|
||||
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||
|
||||
//First, we clean enough blocks for the password, salt, basil and padding
|
||||
int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
|
||||
|
||||
byte *ptrByte = (byte*) wholeMatrix;
|
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen);
|
||||
ptrByte += pwdlen;
|
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen);
|
||||
ptrByte += saltlen;
|
||||
|
||||
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen));
|
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = pwdlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = saltlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = timeCost;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nRows;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nCols;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
//==========================================================================/
|
||||
|
||||
//======================= Initializing the Sponge State ====================//
|
||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||
uint64_t _ALIGN(256) state[16];
|
||||
initState(state);
|
||||
//==========================================================================/
|
||||
|
||||
//================================ Setup Phase =============================//
|
||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||
ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nBlocksInput; i++) {
|
||||
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
||||
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
|
||||
}
|
||||
|
||||
//Initializes M[0] and M[1]
|
||||
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
|
||||
|
||||
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
|
||||
|
||||
do {
|
||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||
|
||||
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
||||
|
||||
//updates the value of row* (deterministically picked during Setup))
|
||||
rowa = (rowa + step) & (window - 1);
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
//updates row: goes to the next row to be computed
|
||||
row++;
|
||||
|
||||
//Checks if all rows in the window where visited.
|
||||
if (rowa == 0) {
|
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
gap = -gap; //inverts the modifier to the step
|
||||
}
|
||||
|
||||
} while (row < nRows);
|
||||
//==========================================================================/
|
||||
|
||||
//============================ Wandering Phase =============================//
|
||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||
for (tau = 1; tau <= timeCost; tau++) {
|
||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
||||
do {
|
||||
//Selects a pseudorandom index row*
|
||||
//------------------------------------------------------------------------------------------
|
||||
rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
||||
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
|
||||
//updates row: goes to the next row to be computed
|
||||
//------------------------------------------------------------------------------------------
|
||||
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
} while (row != 0);
|
||||
}
|
||||
|
||||
//============================ Wrap-up Phase ===============================//
|
||||
//Absorbs the last block of the memory matrix
|
||||
absorbBlock(state, memMatrix[rowa]);
|
||||
|
||||
//Squeezes the key
|
||||
squeeze(state, K, (unsigned int) kLen);
|
||||
|
||||
//========================= Freeing the memory =============================//
|
||||
free(memMatrix);
|
||||
free(wholeMatrix);
|
||||
|
||||
return 0;
|
||||
}
|
||||
42
algo/lyra2/lyra2.h
Normal file
42
algo/lyra2/lyra2.h
Normal file
@@ -0,0 +1,42 @@
|
||||
/**
|
||||
* Header file for the Lyra2 Password Hashing Scheme (PHS).
|
||||
*
|
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
*
|
||||
* This software is hereby placed in the public domain.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#ifndef LYRA2_H_
|
||||
#define LYRA2_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
typedef unsigned char byte;
|
||||
|
||||
//Block length required so Blake2's Initialization Vector (IV) is not overwritten (THIS SHOULD NOT BE MODIFIED)
|
||||
#define BLOCK_LEN_BLAKE2_SAFE_INT64 8 //512 bits (=64 bytes, =8 uint64_t)
|
||||
#define BLOCK_LEN_BLAKE2_SAFE_BYTES (BLOCK_LEN_BLAKE2_SAFE_INT64 * 8) //same as above, in bytes
|
||||
|
||||
|
||||
#ifdef BLOCK_LEN_BITS
|
||||
#define BLOCK_LEN_INT64 (BLOCK_LEN_BITS/64) //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_BITS/8) //Block length, in bytes
|
||||
#else //default block lenght: 768 bits
|
||||
#define BLOCK_LEN_INT64 12 //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
|
||||
#endif
|
||||
|
||||
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
|
||||
|
||||
#endif /* LYRA2_H_ */
|
||||
127
algo/lyra2/lyra2re.c
Normal file
127
algo/lyra2/lyra2re.c
Normal file
@@ -0,0 +1,127 @@
|
||||
#include <memory.h>
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/groestl/sph_groestl.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "lyra2.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
sph_blake256_context blake;
|
||||
sph_keccak256_context keccak;
|
||||
sph_skein256_context skein;
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl256_context groestl;
|
||||
#else
|
||||
hashState_groestl256 groestl;
|
||||
#endif
|
||||
} lyra2re_ctx_holder;
|
||||
|
||||
lyra2re_ctx_holder lyra2re_ctx;
|
||||
|
||||
void init_lyra2re_ctx()
|
||||
{
|
||||
sph_blake256_init(&lyra2re_ctx.blake);
|
||||
sph_keccak256_init(&lyra2re_ctx.keccak);
|
||||
sph_skein256_init(&lyra2re_ctx.skein);
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl256_init(&lyra2re_ctx.groestl);
|
||||
#else
|
||||
init_groestl256( &lyra2re_ctx.groestl );
|
||||
#endif
|
||||
}
|
||||
|
||||
void lyra2re_hash(void *state, const void *input)
|
||||
{
|
||||
lyra2re_ctx_holder ctx;
|
||||
memcpy(&ctx, &lyra2re_ctx, sizeof(lyra2re_ctx));
|
||||
|
||||
// uint32_t _ALIGN(128) hashA[8], hashB[8];
|
||||
uint32_t _ALIGN(128) hash[32];
|
||||
#define hashA hash
|
||||
#define hashB hash+16
|
||||
|
||||
sph_blake256(&ctx.blake, input, 80);
|
||||
sph_blake256_close(&ctx.blake, hashA);
|
||||
|
||||
sph_keccak256(&ctx.keccak, hashA, 32);
|
||||
sph_keccak256_close(&ctx.keccak, hashB);
|
||||
|
||||
LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
|
||||
|
||||
sph_skein256(&ctx.skein, hashA, 32);
|
||||
sph_skein256_close(&ctx.skein, hashB);
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
sph_groestl256( &ctx.groestl, hashB, 32 );
|
||||
sph_groestl256_close( &ctx.groestl, hashA );
|
||||
#else
|
||||
update_groestl256( &ctx.groestl, hashB, 256 );
|
||||
final_groestl256( &ctx.groestl, hashA );
|
||||
#endif
|
||||
|
||||
memcpy(state, hashA, 32);
|
||||
}
|
||||
|
||||
int scanhash_lyra2re(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
lyra2re_hash(hash, endiandata);
|
||||
if (hash[7] <= Htarg )
|
||||
{
|
||||
if ( fulltest(hash, ptarget) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
nonce++;
|
||||
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int64_t lyra2re_get_max64 ()
|
||||
{
|
||||
return 0xffffLL;
|
||||
}
|
||||
|
||||
void lyra2re_set_target ( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target(work, job_diff / (128.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2re_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_lyra2re_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_lyra2re;
|
||||
gate->hash = (void*)&lyra2re_hash;
|
||||
gate->hash_alt = (void*)&lyra2re_hash;
|
||||
gate->get_max64 = (void*)&lyra2re_get_max64;
|
||||
gate->set_target = (void*)&lyra2re_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
121
algo/lyra2/lyra2rev2.c
Normal file
121
algo/lyra2/lyra2rev2.c
Normal file
@@ -0,0 +1,121 @@
|
||||
#include <memory.h>
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
|
||||
#include "lyra2.h"
|
||||
|
||||
typedef struct {
|
||||
cubehashParam cube1;
|
||||
cubehashParam cube2;
|
||||
sph_blake256_context blake;
|
||||
sph_keccak256_context keccak;
|
||||
sph_skein256_context skein;
|
||||
sph_bmw256_context bmw;
|
||||
|
||||
} lyra2v2_ctx_holder;
|
||||
|
||||
lyra2v2_ctx_holder lyra2v2_ctx;
|
||||
|
||||
void init_lyra2rev2_ctx()
|
||||
{
|
||||
cubehashInit( &lyra2v2_ctx.cube1, 256, 16, 32 );
|
||||
cubehashInit( &lyra2v2_ctx.cube2, 256, 16, 32 );
|
||||
sph_blake256_init( &lyra2v2_ctx.blake );
|
||||
sph_keccak256_init( &lyra2v2_ctx.keccak );
|
||||
sph_skein256_init( &lyra2v2_ctx.skein );
|
||||
sph_bmw256_init( &lyra2v2_ctx.bmw );
|
||||
}
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input )
|
||||
{
|
||||
lyra2v2_ctx_holder ctx;
|
||||
memcpy( &ctx, &lyra2v2_ctx, sizeof(lyra2v2_ctx) );
|
||||
|
||||
uint32_t _ALIGN(128) hashA[8], hashB[8];
|
||||
|
||||
sph_blake256( &ctx.blake, input, 80 );
|
||||
sph_blake256_close( &ctx.blake, hashA );
|
||||
|
||||
sph_keccak256( &ctx.keccak, hashA, 32 );
|
||||
sph_keccak256_close(&ctx.keccak, hashB);
|
||||
|
||||
cubehashUpdate( &ctx.cube1, (const byte*) hashB,32 );
|
||||
cubehashDigest( &ctx.cube1, (byte*)hashA );
|
||||
|
||||
LYRA2( hashA, 32, hashA, 32, hashA, 32, 1, 4, 4 );
|
||||
|
||||
sph_skein256( &ctx.skein, hashA, 32 );
|
||||
sph_skein256_close( &ctx.skein, hashB );
|
||||
|
||||
cubehashUpdate( &ctx.cube2, (const byte*) hashB,32 );
|
||||
cubehashDigest( &ctx.cube2, (byte*)hashA );
|
||||
|
||||
sph_bmw256( &ctx.bmw, hashA, 32 );
|
||||
sph_bmw256_close( &ctx.bmw, hashB );
|
||||
|
||||
memcpy( state, hashB, 32 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev2(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t _ALIGN(64) endiandata[20];
|
||||
uint32_t hash[8] __attribute__((aligned(32)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
lyra2rev2_hash(hash, endiandata);
|
||||
|
||||
if (hash[7] <= Htarg )
|
||||
{
|
||||
if( fulltest(hash, ptarget) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
nonce++;
|
||||
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void lyra2rev2_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_lyra2rev2_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
gate->hash_alt = (void*)&lyra2rev2_hash;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
945
algo/lyra2/sponge.c
Normal file
945
algo/lyra2/sponge.c
Normal file
@@ -0,0 +1,945 @@
|
||||
/**
|
||||
* A simple implementation of Blake2b's internal permutation
|
||||
* in the form of a sponge.
|
||||
*
|
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
*
|
||||
* This software is hereby placed in the public domain.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
#include <immintrin.h>
|
||||
#include "sponge.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
/**
|
||||
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
|
||||
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
|
||||
* typically have their internal state initialized with zeros, Blake2b's G function
|
||||
* has a fixed point: if the internal state and message are both filled with zeros. the
|
||||
* resulting permutation will always be a block filled with zeros; this happens because
|
||||
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
|
||||
* relying on the IV for avoiding possible fixed points.
|
||||
*
|
||||
* @param state The 1024-bit array to be initialized
|
||||
*/
|
||||
void initState(uint64_t state[/*16*/])
|
||||
{
|
||||
#ifdef __AVX2__
|
||||
|
||||
(*(__m256i*)(&state[0])) = _mm256_setzero_si256();
|
||||
(*(__m256i*)(&state[4])) = _mm256_setzero_si256();
|
||||
|
||||
(*(__m256i*)(&state[8])) = _mm256_set_epi64x( blake2b_IV[3],
|
||||
blake2b_IV[2],
|
||||
blake2b_IV[1],
|
||||
blake2b_IV[0] );
|
||||
(*(__m256i*)(&state[12])) = _mm256_set_epi64x(blake2b_IV[7],
|
||||
blake2b_IV[6],
|
||||
blake2b_IV[5],
|
||||
blake2b_IV[4] );
|
||||
|
||||
//AVX is around the same number of instructions as unnoptimized
|
||||
//#elif defined __AVX__
|
||||
|
||||
#else
|
||||
|
||||
//First 512 bis are zeros
|
||||
memset(state, 0, 64);
|
||||
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
|
||||
state[8] = blake2b_IV[0];
|
||||
state[9] = blake2b_IV[1];
|
||||
state[10] = blake2b_IV[2];
|
||||
state[11] = blake2b_IV[3];
|
||||
state[12] = blake2b_IV[4];
|
||||
state[13] = blake2b_IV[5];
|
||||
state[14] = blake2b_IV[6];
|
||||
state[15] = blake2b_IV[7];
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute Blake2b's G function, with all 12 rounds.
|
||||
*
|
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||
*/
|
||||
__inline static void blake2bLyra( uint64_t *v )
|
||||
{
|
||||
#if defined __AVX2__
|
||||
|
||||
LYRA_INIT_AVX2; // defines local a[4]
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_CLOSE_AVX2;
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_CLOSE_AVX;
|
||||
|
||||
#else
|
||||
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Executes a reduced version of Blake2b's G function with only one round
|
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||
*/
|
||||
__inline static void reducedBlake2bLyra(uint64_t *v) {
|
||||
|
||||
#if defined __AVX2__
|
||||
LYRA_INIT_AVX2; // defines local a[4]
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_CLOSE_AVX2;
|
||||
#elif defined __AVX__
|
||||
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_CLOSE_AVX;
|
||||
#else
|
||||
ROUND_LYRA(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a squeeze operation, using Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param out Array that will receive the data squeezed
|
||||
* @param len The number of bytes to be squeezed into the "out" array
|
||||
*/
|
||||
void squeeze(uint64_t *state, byte *out, unsigned int len)
|
||||
{
|
||||
int fullBlocks = len / BLOCK_LEN_BYTES;
|
||||
byte *ptr = out;
|
||||
int i;
|
||||
|
||||
//Squeezes full blocks
|
||||
for (i = 0; i < fullBlocks; i++) {
|
||||
memcpy(ptr, state, BLOCK_LEN_BYTES);
|
||||
blake2bLyra(state);
|
||||
ptr += BLOCK_LEN_BYTES;
|
||||
}
|
||||
|
||||
//Squeezes remaining bytes
|
||||
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
|
||||
* of type uint64_t), using Blake2b's G function as the internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
|
||||
*/
|
||||
void absorbBlock(uint64_t *state, const uint64_t *in)
|
||||
{
|
||||
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3];
|
||||
|
||||
// only state is guaranteed aligned 256
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&in[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)&state[0],
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)&state[4],
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_store_si256( (__m256i*)&state[8],
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&in[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&in[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= in[0];
|
||||
state[1] ^= in[1];
|
||||
state[2] ^= in[2];
|
||||
state[3] ^= in[3];
|
||||
state[4] ^= in[4];
|
||||
state[5] ^= in[5];
|
||||
state[6] ^= in[6];
|
||||
state[7] ^= in[7];
|
||||
state[8] ^= in[8];
|
||||
state[9] ^= in[9];
|
||||
state[10] ^= in[10];
|
||||
state[11] ^= in[11];
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
|
||||
* words of type uint64_t), using Blake2b's G function as the internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
|
||||
*/
|
||||
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in)
|
||||
{
|
||||
|
||||
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[2], in_v[2];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[4], in_v[4];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= in[0];
|
||||
state[1] ^= in[1];
|
||||
state[2] ^= in[2];
|
||||
state[3] ^= in[3];
|
||||
state[4] ^= in[4];
|
||||
state[5] ^= in[5];
|
||||
state[6] ^= in[6];
|
||||
state[7] ^= in[7];
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a reduced squeeze operation for a single row, from the highest to
|
||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowOut Row to receive the data squeezed
|
||||
*/
|
||||
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
|
||||
unsigned int i;
|
||||
//M[row][C-1-col] = H.reduced_squeeze()
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
#if defined __AVX2__
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[0],
|
||||
_mm256_load_si256( (__m256i*)(&state[0]) ) );
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[4],
|
||||
_mm256_load_si256( (__m256i*)(&state[4]) ) );
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[8],
|
||||
_mm256_load_si256( (__m256i*)(&state[8]) ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[0]),
|
||||
_mm_load_si128( (__m128i*)(&state[0]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[2]),
|
||||
_mm_load_si128( (__m128i*)(&state[2]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[4]),
|
||||
_mm_load_si128( (__m128i*)(&state[4]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[6]),
|
||||
_mm_load_si128( (__m128i*)(&state[6]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[8]),
|
||||
_mm_load_si128( (__m128i*)(&state[8]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[10]),
|
||||
_mm_load_si128( (__m128i*)(&state[10]) ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWord[0] = state[0];
|
||||
ptrWord[1] = state[1];
|
||||
ptrWord[2] = state[2];
|
||||
ptrWord[3] = state[3];
|
||||
ptrWord[4] = state[4];
|
||||
ptrWord[5] = state[5];
|
||||
ptrWord[6] = state[6];
|
||||
ptrWord[7] = state[7];
|
||||
ptrWord[8] = state[8];
|
||||
ptrWord[9] = state[9];
|
||||
ptrWord[10] = state[10];
|
||||
ptrWord[11] = state[11];
|
||||
#endif
|
||||
|
||||
//Goes to next block (column) that will receive the squeezed data
|
||||
ptrWord -= BLOCK_LEN_INT64;
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a reduced duplex operation for a single row, from the highest to
|
||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row to feed the sponge
|
||||
* @param rowOut Row to receive the sponge's output
|
||||
*/
|
||||
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
//Absorbing "M[prev][col]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0]);
|
||||
state[1] ^= (ptrWordIn[1]);
|
||||
state[2] ^= (ptrWordIn[2]);
|
||||
state[3] ^= (ptrWordIn[3]);
|
||||
state[4] ^= (ptrWordIn[4]);
|
||||
state[5] ^= (ptrWordIn[5]);
|
||||
state[6] ^= (ptrWordIn[6]);
|
||||
state[7] ^= (ptrWordIn[7]);
|
||||
state[8] ^= (ptrWordIn[8]);
|
||||
state[9] ^= (ptrWordIn[9]);
|
||||
state[10] ^= (ptrWordIn[10]);
|
||||
state[11] ^= (ptrWordIn[11]);
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[row][C-1-col] = M[prev][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||
#endif
|
||||
|
||||
//Input: next column (i.e., next block in sequence)
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||
* the wordwise addition of two columns, ignoring carries between words). The
|
||||
* output of this operation, "rand", is then used to make
|
||||
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
|
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||
* rotation to the left and N_COLS is a system parameter.
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row used only as input
|
||||
* @param rowInOut Row used as input and to receive output after rotation
|
||||
* @param rowOut Row receiving the output
|
||||
*
|
||||
*/
|
||||
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3], inout_v[3];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0],
|
||||
_mm256_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1],
|
||||
_mm256_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2],
|
||||
_mm256_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6], inout_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
|
||||
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
|
||||
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
|
||||
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
|
||||
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
|
||||
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0],
|
||||
_mm_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1],
|
||||
_mm_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2],
|
||||
_mm_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3],
|
||||
_mm_add_epi64( in_v[3],
|
||||
inout_v[3] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4],
|
||||
_mm_add_epi64( in_v[4],
|
||||
inout_v[4] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5],
|
||||
_mm_add_epi64( in_v[5],
|
||||
inout_v[5] ) ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[row][col] = M[prev][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||
#endif
|
||||
|
||||
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11];
|
||||
ptrWordInOut[1] ^= state[0];
|
||||
ptrWordInOut[2] ^= state[1];
|
||||
ptrWordInOut[3] ^= state[2];
|
||||
ptrWordInOut[4] ^= state[3];
|
||||
ptrWordInOut[5] ^= state[4];
|
||||
ptrWordInOut[6] ^= state[5];
|
||||
ptrWordInOut[7] ^= state[6];
|
||||
ptrWordInOut[8] ^= state[7];
|
||||
ptrWordInOut[9] ^= state[8];
|
||||
ptrWordInOut[10] ^= state[9];
|
||||
ptrWordInOut[11] ^= state[10];
|
||||
|
||||
//Inputs: next column (i.e., next block in sequence)
|
||||
ptrWordInOut += BLOCK_LEN_INT64;
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||
* the wordwise addition of two columns, ignoring carries between words). The
|
||||
* output of this operation, "rand", is then used to make
|
||||
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
|
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||
* rotation to the left.
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row used only as input
|
||||
* @param rowInOut Row used as input and to receive output after rotation
|
||||
* @param rowOut Row receiving the output
|
||||
*
|
||||
*/
|
||||
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
|
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3], inout_v[3];
|
||||
#define out_v in_v // reuse register in next code block
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0],
|
||||
_mm256_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1],
|
||||
_mm256_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2],
|
||||
_mm256_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6], inout_v[6];
|
||||
#define out_v in_v // reuse register in next code block
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
|
||||
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
|
||||
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
|
||||
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
|
||||
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
|
||||
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0],
|
||||
_mm_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1],
|
||||
_mm_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2],
|
||||
_mm_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3],
|
||||
_mm_add_epi64( in_v[3],
|
||||
inout_v[3] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4],
|
||||
_mm_add_epi64( in_v[4],
|
||||
inout_v[4] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5],
|
||||
_mm_add_epi64( in_v[5],
|
||||
inout_v[5] ) ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[rowOut][col] = M[rowOut][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
out_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
out_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
out_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], out_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], out_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], out_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
out_v[0] = _mm_load_si128( (__m128i*)(&ptrWordOut[0]) );
|
||||
out_v[1] = _mm_load_si128( (__m128i*)(&ptrWordOut[2]) );
|
||||
out_v[2] = _mm_load_si128( (__m128i*)(&ptrWordOut[4]) );
|
||||
out_v[3] = _mm_load_si128( (__m128i*)(&ptrWordOut[6]) );
|
||||
out_v[4] = _mm_load_si128( (__m128i*)(&ptrWordOut[8]) );
|
||||
out_v[5] = _mm_load_si128( (__m128i*)(&ptrWordOut[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], out_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], out_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], out_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], out_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], out_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], out_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] ^= state[0];
|
||||
ptrWordOut[1] ^= state[1];
|
||||
ptrWordOut[2] ^= state[2];
|
||||
ptrWordOut[3] ^= state[3];
|
||||
ptrWordOut[4] ^= state[4];
|
||||
ptrWordOut[5] ^= state[5];
|
||||
ptrWordOut[6] ^= state[6];
|
||||
ptrWordOut[7] ^= state[7];
|
||||
ptrWordOut[8] ^= state[8];
|
||||
ptrWordOut[9] ^= state[9];
|
||||
ptrWordOut[10] ^= state[10];
|
||||
ptrWordOut[11] ^= state[11];
|
||||
|
||||
#endif
|
||||
|
||||
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11];
|
||||
ptrWordInOut[1] ^= state[0];
|
||||
ptrWordInOut[2] ^= state[1];
|
||||
ptrWordInOut[3] ^= state[2];
|
||||
ptrWordInOut[4] ^= state[3];
|
||||
ptrWordInOut[5] ^= state[4];
|
||||
ptrWordInOut[6] ^= state[5];
|
||||
ptrWordInOut[7] ^= state[6];
|
||||
ptrWordInOut[8] ^= state[7];
|
||||
ptrWordInOut[9] ^= state[8];
|
||||
ptrWordInOut[10] ^= state[9];
|
||||
ptrWordInOut[11] ^= state[10];
|
||||
|
||||
//Goes to next block
|
||||
ptrWordOut += BLOCK_LEN_INT64;
|
||||
ptrWordInOut += BLOCK_LEN_INT64;
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints an array of unsigned chars
|
||||
*/
|
||||
void printArray(unsigned char *array, unsigned int size, char *name)
|
||||
{
|
||||
unsigned int i;
|
||||
printf("%s: ", name);
|
||||
for (i = 0; i < size; i++) {
|
||||
printf("%2x|", array[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
241
algo/lyra2/sponge.h
Normal file
241
algo/lyra2/sponge.h
Normal file
@@ -0,0 +1,241 @@
|
||||
/**
|
||||
* Header file for Blake2b's internal permutation in the form of a sponge.
|
||||
* This code is based on the original Blake2b's implementation provided by
|
||||
* Samuel Neves (https://blake2.net/)
|
||||
*
|
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
*
|
||||
* This software is hereby placed in the public domain.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#ifndef SPONGE_H_
|
||||
#define SPONGE_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* Blake2b IV Array */
|
||||
static const uint64_t blake2b_IV[8] =
|
||||
{
|
||||
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
|
||||
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
|
||||
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
|
||||
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
|
||||
};
|
||||
|
||||
/* Blake2b's rotation */
|
||||
static __inline uint64_t rotr64(const uint64_t w, const unsigned c) {
|
||||
#ifdef _MSC_VER
|
||||
return _rotr64(w, c);
|
||||
#else
|
||||
return ( w >> c ) | ( w << ( 64 - c ) );
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined __AVX2__
|
||||
// only available with avx2
|
||||
|
||||
// rotate each uint64 c bits
|
||||
// returns _m256i
|
||||
#define mm256_rotr_64(w,c) _mm256_or_si256(_mm256_srli_epi64(w, c), \
|
||||
_mm256_slli_epi64(w, 64 - c))
|
||||
|
||||
// Rotate 4 uint64 (256 bits) by one uint64 (64 bits)
|
||||
// returns __m256i
|
||||
#define mm256_rotl256_1x64(s) _mm256_permute4x64_epi64( s, 0x39 )
|
||||
#define mm256_rotr256_1x64(s) _mm256_permute4x64_epi64( s, 0x93 )
|
||||
|
||||
// swap hi and lo 128 bits in 256 bit vector
|
||||
// returns _m256i
|
||||
#define mm256_swap128(s) _mm256_permute2f128_si256( s, s, 1 )
|
||||
|
||||
// init vectors from memory
|
||||
// returns void, updates defines and inits implicit args a, b, c, d
|
||||
#define LYRA_INIT_AVX2 \
|
||||
__m256i a[4]; \
|
||||
a[0] = _mm256_load_si256( (__m256i*)(&v[ 0]) ); \
|
||||
a[1] = _mm256_load_si256( (__m256i*)(&v[ 4]) ); \
|
||||
a[2] = _mm256_load_si256( (__m256i*)(&v[ 8]) ); \
|
||||
a[3] = _mm256_load_si256( (__m256i*)(&v[12]) );
|
||||
|
||||
// save to memory
|
||||
// returns void
|
||||
#define LYRA_CLOSE_AVX2 \
|
||||
_mm256_store_si256( (__m256i*)(&v[ 0]), a[0] ); \
|
||||
_mm256_store_si256( (__m256i*)(&v[ 4]), a[1] ); \
|
||||
_mm256_store_si256( (__m256i*)(&v[ 8]), a[2] ); \
|
||||
_mm256_store_si256( (__m256i*)(&v[12]), a[3] );
|
||||
|
||||
// process 4 rows in parallel
|
||||
// returns void, updates all args
|
||||
#define G_4X64(a,b,c,d) \
|
||||
a = _mm256_add_epi64( a, b ); \
|
||||
d = mm256_rotr_64( _mm256_xor_si256( d, a), 32 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 24 ); \
|
||||
a = _mm256_add_epi64( a, b ); \
|
||||
d = mm256_rotr_64( _mm256_xor_si256( d, a ), 16 ); \
|
||||
c = _mm256_add_epi64( c, d ); \
|
||||
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 63 );
|
||||
|
||||
#define LYRA_ROUND_AVX2 \
|
||||
G_4X64( a[0], a[1], a[2], a[3] ); \
|
||||
a[1] = mm256_rotl256_1x64( a[1]); \
|
||||
a[2] = mm256_swap128( a[2] ); \
|
||||
a[3] = mm256_rotr256_1x64( a[3] ); \
|
||||
G_4X64( a[0], a[1], a[2], a[3] ); \
|
||||
a[1] = mm256_rotr256_1x64( a[1] ); \
|
||||
a[2] = mm256_swap128( a[2] ); \
|
||||
a[3] = mm256_rotl256_1x64( a[3] );
|
||||
|
||||
#else
|
||||
// only available with avx
|
||||
|
||||
#define LYRA_INIT_AVX \
|
||||
__m128i a0[4], a1[4]; \
|
||||
a0[0] = _mm_load_si128( (__m128i*)(&v[ 0]) ); \
|
||||
a1[0] = _mm_load_si128( (__m128i*)(&v[ 2]) ); \
|
||||
a0[1] = _mm_load_si128( (__m128i*)(&v[ 4]) ); \
|
||||
a1[1] = _mm_load_si128( (__m128i*)(&v[ 6]) ); \
|
||||
a0[2] = _mm_load_si128( (__m128i*)(&v[ 8]) ); \
|
||||
a1[2] = _mm_load_si128( (__m128i*)(&v[10]) ); \
|
||||
a0[3] = _mm_load_si128( (__m128i*)(&v[12]) ); \
|
||||
a1[3] = _mm_load_si128( (__m128i*)(&v[14]) );
|
||||
|
||||
#define LYRA_CLOSE_AVX \
|
||||
_mm_store_si128( (__m128i*)(&v[ 0]), a0[0] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[ 2]), a1[0] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[ 4]), a0[1] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[ 6]), a1[1] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[ 8]), a0[2] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[10]), a1[2] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[12]), a0[3] ); \
|
||||
_mm_store_si128( (__m128i*)(&v[14]), a1[3] );
|
||||
|
||||
// process 2 rows in parallel
|
||||
// returns void, all args updated
|
||||
#define G_2X64(a,b,c,d) \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_rotr_64( _mm_xor_si128( d, a), 32 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_rotr_64( _mm_xor_si128( b, c ), 24 ); \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_rotr_64( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_rotr_64( _mm_xor_si128( b, c ), 63 );
|
||||
|
||||
#define LYRA_ROUND_AVX \
|
||||
G_2X64( a0[0], a0[1], a0[2], a0[3] ); \
|
||||
G_2X64( a1[0], a1[1], a1[2], a1[3] ); \
|
||||
mm128_rotl256_1x64( a0[1], a1[1] ); \
|
||||
mm128_swap128( a0[2], a1[2] ); \
|
||||
mm128_rotr256_1x64( a0[3], a1[3] ); \
|
||||
G_2X64( a0[0], a0[1], a0[2], a0[3] ); \
|
||||
G_2X64( a1[0], a1[1], a1[2], a1[3] ); \
|
||||
mm128_rotr256_1x64( a0[1], a1[1] ); \
|
||||
mm128_swap128( a0[2], a1[2] ); \
|
||||
mm128_rotl256_1x64( a0[3], a1[3] );
|
||||
|
||||
#endif // AVX2
|
||||
|
||||
#if defined __AVX__
|
||||
// can coexist with AVX2
|
||||
|
||||
// rotate each uint64 c bits
|
||||
// _m128i
|
||||
#define mm_rotr_64(w,c) _mm_or_si128(_mm_srli_epi64(w, c), \
|
||||
_mm_slli_epi64(w, 64 - c))
|
||||
|
||||
// swap 128 bit source vectors, equivalent of rotating 256 bits by 128 bits
|
||||
// void
|
||||
#define mm128_swap128(s0, s1) s0 = _mm_xor_si128(s0, s1); \
|
||||
s1 = _mm_xor_si128(s0, s1); \
|
||||
s0 = _mm_xor_si128(s0, s1);
|
||||
|
||||
// swap uint64 in 128 bit source vector, equivalent of rotating 128 bits by
|
||||
// 64 bits (8 bytes)
|
||||
// __m128i
|
||||
#define mm128_swap64(s) _mm_or_si128( _mm_slli_si128( s, 8 ), \
|
||||
_mm_srli_si128( s, 8 ) )
|
||||
|
||||
// rotate 2 128 bit vectors as one 256 vector by 1 uint64, very inefficient
|
||||
// returns void, args updated
|
||||
#define mm128_rotl256_1x64(s0, s1) do { \
|
||||
__m128i t; \
|
||||
s0 = mm128_swap64( s0); \
|
||||
s1 = mm128_swap64( s1); \
|
||||
t = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0ull,0xffffffffffffffffull) ), \
|
||||
_mm_and_si128( s1, _mm_set_epi64x(0xffffffffffffffffull,0ull) ) ); \
|
||||
s1 = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0xffffffffffffffffull,0ull) ), \
|
||||
_mm_and_si128( s1, _mm_set_epi64x(0ull,0xffffffffffffffffull) ) ); \
|
||||
s0 = t; \
|
||||
} while(0)
|
||||
|
||||
#define mm128_rotr256_1x64(s0, s1) do { \
|
||||
__m128i t; \
|
||||
s0 = mm128_swap64( s0); \
|
||||
s1 = mm128_swap64( s1); \
|
||||
t = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0xffffffffffffffffull,0ull) ), \
|
||||
_mm_and_si128( s1, _mm_set_epi64x(0ull,0xffffffffffffffffull) ) ); \
|
||||
s1 = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0ull,0xffffffffffffffffull) ), \
|
||||
_mm_and_si128( s1, _mm_set_epi64x(0xffffffffffffffffull,0ull) ) ); \
|
||||
s0 = t; \
|
||||
} while(0)
|
||||
|
||||
#endif // AVX
|
||||
|
||||
/* Blake2b's G function */
|
||||
#define G(r,i,a,b,c,d) do { \
|
||||
a = a + b; \
|
||||
d = rotr64(d ^ a, 32); \
|
||||
c = c + d; \
|
||||
b = rotr64(b ^ c, 24); \
|
||||
a = a + b; \
|
||||
d = rotr64(d ^ a, 16); \
|
||||
c = c + d; \
|
||||
b = rotr64(b ^ c, 63); \
|
||||
} while(0)
|
||||
|
||||
|
||||
/*One Round of the Blake2b's compression function*/
|
||||
#define ROUND_LYRA(r) \
|
||||
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
|
||||
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
|
||||
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
|
||||
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
|
||||
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
|
||||
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
|
||||
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
|
||||
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
|
||||
|
||||
|
||||
//---- Housekeeping
|
||||
void initState(uint64_t state[/*16*/]);
|
||||
|
||||
//---- Squeezes
|
||||
void squeeze(uint64_t *state, unsigned char *out, unsigned int len);
|
||||
void reducedSqueezeRow0(uint64_t* state, uint64_t* row, const uint32_t nCols);
|
||||
|
||||
//---- Absorbs
|
||||
void absorbBlock(uint64_t *state, const uint64_t *in);
|
||||
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in);
|
||||
|
||||
//---- Duplexes
|
||||
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols);
|
||||
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
|
||||
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
|
||||
|
||||
//---- Misc
|
||||
void printArray(unsigned char *array, unsigned int size, char *name);
|
||||
|
||||
#endif /* SPONGE_H_ */
|
||||
Reference in New Issue
Block a user