Files
cpuminer-opt-gpu/algo/lyra2/sponge.h
2016-09-22 13:16:18 -04:00

242 lines
8.4 KiB
C

/**
* Header file for Blake2b's internal permutation in the form of a sponge.
* This code is based on the original Blake2b's implementation provided by
* Samuel Neves (https://blake2.net/)
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SPONGE_H_
#define SPONGE_H_
#include <stdint.h>
/* Blake2b IV Array */
static const uint64_t blake2b_IV[8] =
{
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
/* Blake2b's rotation */
static __inline uint64_t rotr64(const uint64_t w, const unsigned c) {
#ifdef _MSC_VER
return _rotr64(w, c);
#else
return ( w >> c ) | ( w << ( 64 - c ) );
#endif
}
#if defined __AVX2__
// only available with avx2
// rotate each uint64 c bits
// returns _m256i
#define mm256_rotr_64(w,c) _mm256_or_si256(_mm256_srli_epi64(w, c), \
_mm256_slli_epi64(w, 64 - c))
// Rotate 4 uint64 (256 bits) by one uint64 (64 bits)
// returns __m256i
#define mm256_rotl256_1x64(s) _mm256_permute4x64_epi64( s, 0x39 )
#define mm256_rotr256_1x64(s) _mm256_permute4x64_epi64( s, 0x93 )
// swap hi and lo 128 bits in 256 bit vector
// returns _m256i
#define mm256_swap128(s) _mm256_permute2f128_si256( s, s, 1 )
// init vectors from memory
// returns void, updates defines and inits implicit args a, b, c, d
#define LYRA_INIT_AVX2 \
__m256i a[4]; \
a[0] = _mm256_load_si256( (__m256i*)(&v[ 0]) ); \
a[1] = _mm256_load_si256( (__m256i*)(&v[ 4]) ); \
a[2] = _mm256_load_si256( (__m256i*)(&v[ 8]) ); \
a[3] = _mm256_load_si256( (__m256i*)(&v[12]) );
// save to memory
// returns void
#define LYRA_CLOSE_AVX2 \
_mm256_store_si256( (__m256i*)(&v[ 0]), a[0] ); \
_mm256_store_si256( (__m256i*)(&v[ 4]), a[1] ); \
_mm256_store_si256( (__m256i*)(&v[ 8]), a[2] ); \
_mm256_store_si256( (__m256i*)(&v[12]), a[3] );
// process 4 rows in parallel
// returns void, updates all args
#define G_4X64(a,b,c,d) \
a = _mm256_add_epi64( a, b ); \
d = mm256_rotr_64( _mm256_xor_si256( d, a), 32 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 24 ); \
a = _mm256_add_epi64( a, b ); \
d = mm256_rotr_64( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_rotr_64( _mm256_xor_si256( b, c ), 63 );
#define LYRA_ROUND_AVX2 \
G_4X64( a[0], a[1], a[2], a[3] ); \
a[1] = mm256_rotl256_1x64( a[1]); \
a[2] = mm256_swap128( a[2] ); \
a[3] = mm256_rotr256_1x64( a[3] ); \
G_4X64( a[0], a[1], a[2], a[3] ); \
a[1] = mm256_rotr256_1x64( a[1] ); \
a[2] = mm256_swap128( a[2] ); \
a[3] = mm256_rotl256_1x64( a[3] );
#else
// only available with avx
#define LYRA_INIT_AVX \
__m128i a0[4], a1[4]; \
a0[0] = _mm_load_si128( (__m128i*)(&v[ 0]) ); \
a1[0] = _mm_load_si128( (__m128i*)(&v[ 2]) ); \
a0[1] = _mm_load_si128( (__m128i*)(&v[ 4]) ); \
a1[1] = _mm_load_si128( (__m128i*)(&v[ 6]) ); \
a0[2] = _mm_load_si128( (__m128i*)(&v[ 8]) ); \
a1[2] = _mm_load_si128( (__m128i*)(&v[10]) ); \
a0[3] = _mm_load_si128( (__m128i*)(&v[12]) ); \
a1[3] = _mm_load_si128( (__m128i*)(&v[14]) );
#define LYRA_CLOSE_AVX \
_mm_store_si128( (__m128i*)(&v[ 0]), a0[0] ); \
_mm_store_si128( (__m128i*)(&v[ 2]), a1[0] ); \
_mm_store_si128( (__m128i*)(&v[ 4]), a0[1] ); \
_mm_store_si128( (__m128i*)(&v[ 6]), a1[1] ); \
_mm_store_si128( (__m128i*)(&v[ 8]), a0[2] ); \
_mm_store_si128( (__m128i*)(&v[10]), a1[2] ); \
_mm_store_si128( (__m128i*)(&v[12]), a0[3] ); \
_mm_store_si128( (__m128i*)(&v[14]), a1[3] );
// process 2 rows in parallel
// returns void, all args updated
#define G_2X64(a,b,c,d) \
a = _mm_add_epi64( a, b ); \
d = mm_rotr_64( _mm_xor_si128( d, a), 32 ); \
c = _mm_add_epi64( c, d ); \
b = mm_rotr_64( _mm_xor_si128( b, c ), 24 ); \
a = _mm_add_epi64( a, b ); \
d = mm_rotr_64( _mm_xor_si128( d, a ), 16 ); \
c = _mm_add_epi64( c, d ); \
b = mm_rotr_64( _mm_xor_si128( b, c ), 63 );
#define LYRA_ROUND_AVX \
G_2X64( a0[0], a0[1], a0[2], a0[3] ); \
G_2X64( a1[0], a1[1], a1[2], a1[3] ); \
mm128_rotl256_1x64( a0[1], a1[1] ); \
mm128_swap128( a0[2], a1[2] ); \
mm128_rotr256_1x64( a0[3], a1[3] ); \
G_2X64( a0[0], a0[1], a0[2], a0[3] ); \
G_2X64( a1[0], a1[1], a1[2], a1[3] ); \
mm128_rotr256_1x64( a0[1], a1[1] ); \
mm128_swap128( a0[2], a1[2] ); \
mm128_rotl256_1x64( a0[3], a1[3] );
#endif // AVX2
#if defined __AVX__
// can coexist with AVX2
// rotate each uint64 c bits
// _m128i
#define mm_rotr_64(w,c) _mm_or_si128(_mm_srli_epi64(w, c), \
_mm_slli_epi64(w, 64 - c))
// swap 128 bit source vectors, equivalent of rotating 256 bits by 128 bits
// void
#define mm128_swap128(s0, s1) s0 = _mm_xor_si128(s0, s1); \
s1 = _mm_xor_si128(s0, s1); \
s0 = _mm_xor_si128(s0, s1);
// swap uint64 in 128 bit source vector, equivalent of rotating 128 bits by
// 64 bits (8 bytes)
// __m128i
#define mm128_swap64(s) _mm_or_si128( _mm_slli_si128( s, 8 ), \
_mm_srli_si128( s, 8 ) )
// rotate 2 128 bit vectors as one 256 vector by 1 uint64, very inefficient
// returns void, args updated
#define mm128_rotl256_1x64(s0, s1) do { \
__m128i t; \
s0 = mm128_swap64( s0); \
s1 = mm128_swap64( s1); \
t = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0ull,0xffffffffffffffffull) ), \
_mm_and_si128( s1, _mm_set_epi64x(0xffffffffffffffffull,0ull) ) ); \
s1 = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0xffffffffffffffffull,0ull) ), \
_mm_and_si128( s1, _mm_set_epi64x(0ull,0xffffffffffffffffull) ) ); \
s0 = t; \
} while(0)
#define mm128_rotr256_1x64(s0, s1) do { \
__m128i t; \
s0 = mm128_swap64( s0); \
s1 = mm128_swap64( s1); \
t = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0xffffffffffffffffull,0ull) ), \
_mm_and_si128( s1, _mm_set_epi64x(0ull,0xffffffffffffffffull) ) ); \
s1 = _mm_or_si128( _mm_and_si128( s0, _mm_set_epi64x(0ull,0xffffffffffffffffull) ), \
_mm_and_si128( s1, _mm_set_epi64x(0xffffffffffffffffull,0ull) ) ); \
s0 = t; \
} while(0)
#endif // AVX
/* Blake2b's G function */
#define G(r,i,a,b,c,d) do { \
a = a + b; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while(0)
/*One Round of the Blake2b's compression function*/
#define ROUND_LYRA(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
//---- Housekeeping
void initState(uint64_t state[/*16*/]);
//---- Squeezes
void squeeze(uint64_t *state, unsigned char *out, unsigned int len);
void reducedSqueezeRow0(uint64_t* state, uint64_t* row, const uint32_t nCols);
//---- Absorbs
void absorbBlock(uint64_t *state, const uint64_t *in);
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in);
//---- Duplexes
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols);
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols);
//---- Misc
void printArray(unsigned char *array, unsigned int size, char *name);
#endif /* SPONGE_H_ */