mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Initial upload v3.4.7
This commit is contained in:
0
algo/cryptonight/.dirstamp
Normal file
0
algo/cryptonight/.dirstamp
Normal file
365
algo/cryptonight/cryptolight.c
Normal file
365
algo/cryptonight/cryptolight.c
Normal file
@@ -0,0 +1,365 @@
|
||||
// Copyright (c) 2012-2013 The Cryptonote developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#if defined(__arm__) || defined(_MSC_VER)
|
||||
#ifndef NOASM
|
||||
#define NOASM
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include "crypto/oaes_lib.h"
|
||||
#include "crypto/c_keccak.h"
|
||||
#include "crypto/c_groestl.h"
|
||||
#include "crypto/c_blake256.h"
|
||||
#include "crypto/c_jh.h"
|
||||
#include "crypto/c_skein.h"
|
||||
#include "crypto/int-util.h"
|
||||
#include "crypto/hash-ops.h"
|
||||
|
||||
#if USE_INT128
|
||||
|
||||
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
|
||||
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
|
||||
#elif defined (_MSC_VER)
|
||||
/* only for mingw64 on windows */
|
||||
#undef USE_INT128
|
||||
#define USE_INT128 (0)
|
||||
#else
|
||||
typedef __uint128_t uint128_t;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#define LITE 1
|
||||
#if LITE /* cryptonight-light */
|
||||
#define MEMORY (1 << 20)
|
||||
#define ITER (1 << 19)
|
||||
#else
|
||||
#define MEMORY (1 << 21) /* 2 MiB */
|
||||
#define ITER (1 << 20)
|
||||
#endif
|
||||
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define AES_KEY_SIZE 32 /*16*/
|
||||
#define INIT_SIZE_BLK 8
|
||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union cn_slow_hash_state {
|
||||
union hash_state hs;
|
||||
struct {
|
||||
uint8_t k[64];
|
||||
uint8_t init[INIT_SIZE_BYTE];
|
||||
};
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
static void do_blake_hash(const void* input, size_t len, char* output) {
|
||||
blake256_hash((uint8_t*)output, input, len);
|
||||
}
|
||||
|
||||
static void do_groestl_hash(const void* input, size_t len, char* output) {
|
||||
groestl(input, len * 8, (uint8_t*)output);
|
||||
}
|
||||
|
||||
static void do_jh_hash(const void* input, size_t len, char* output) {
|
||||
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
|
||||
assert(likely(SUCCESS == r));
|
||||
}
|
||||
|
||||
static void do_skein_hash(const void* input, size_t len, char* output) {
|
||||
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
|
||||
assert(likely(SKEIN_SUCCESS == r));
|
||||
}
|
||||
|
||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
||||
#if !defined(_MSC_VER) && !defined(NOASM)
|
||||
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
||||
#else
|
||||
#define fast_aesb_single_round aesb_single_round
|
||||
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
|
||||
#endif
|
||||
|
||||
#if defined(NOASM) || !defined(__x86_64__)
|
||||
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
|
||||
// multiplier = ab = a * 2^32 + b
|
||||
// multiplicand = cd = c * 2^32 + d
|
||||
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
||||
uint64_t a = hi_dword(multiplier);
|
||||
uint64_t b = lo_dword(multiplier);
|
||||
uint64_t c = hi_dword(multiplicand);
|
||||
uint64_t d = lo_dword(multiplicand);
|
||||
|
||||
uint64_t ac = a * c;
|
||||
uint64_t ad = a * d;
|
||||
uint64_t bc = b * c;
|
||||
uint64_t bd = b * d;
|
||||
|
||||
uint64_t adbc = ad + bc;
|
||||
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
||||
|
||||
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
||||
uint64_t product_lo = bd + (adbc << 32);
|
||||
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
||||
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
||||
assert(ac <= *product_hi);
|
||||
|
||||
return product_lo;
|
||||
}
|
||||
#else
|
||||
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
|
||||
#endif
|
||||
|
||||
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
|
||||
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
|
||||
};
|
||||
|
||||
|
||||
static inline size_t e2i(const uint8_t* a) {
|
||||
#if !LITE
|
||||
return ((uint32_t *)a)[0] & 0x1FFFF0;
|
||||
#else
|
||||
return ((uint32_t *)a)[0] & 0xFFFF0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
|
||||
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
|
||||
hi += ((uint64_t*) c)[0];
|
||||
|
||||
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
|
||||
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
|
||||
((uint64_t*) dst)[0] = hi;
|
||||
((uint64_t*) dst)[1] = lo;
|
||||
}
|
||||
|
||||
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
|
||||
#if USE_INT128
|
||||
*((uint128_t*) a) ^= *((uint128_t*) b);
|
||||
#else
|
||||
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
|
||||
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
|
||||
#if USE_INT128
|
||||
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
|
||||
#else
|
||||
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
|
||||
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
struct cryptonight_ctx {
|
||||
uint8_t _ALIGN(16) long_state[MEMORY];
|
||||
union cn_slow_hash_state state;
|
||||
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
|
||||
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
|
||||
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
|
||||
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
|
||||
oaes_ctx* aes_ctx;
|
||||
};
|
||||
|
||||
static void cryptolight_hash_ctx(void* output, const void* input, int len, struct cryptonight_ctx* ctx)
|
||||
{
|
||||
len = 76;
|
||||
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
|
||||
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
|
||||
size_t i, j;
|
||||
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||||
|
||||
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
|
||||
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
|
||||
}
|
||||
|
||||
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
|
||||
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
|
||||
|
||||
for (i = 0; likely(i < ITER / 4); ++i) {
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(ctx->a);
|
||||
aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
|
||||
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
|
||||
/* Iteration 2 */
|
||||
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
|
||||
/* Iteration 3 */
|
||||
j = e2i(ctx->a);
|
||||
aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
|
||||
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
|
||||
/* Iteration 4 */
|
||||
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
|
||||
}
|
||||
|
||||
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||||
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
}
|
||||
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&ctx->state.hs);
|
||||
/*memcpy(hash, &state, 32);*/
|
||||
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
||||
oaes_free((OAES_CTX **) &ctx->aes_ctx);
|
||||
}
|
||||
|
||||
void cryptolight_hash(void* output, const void* input, int len) {
|
||||
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
|
||||
cryptolight_hash_ctx(output, input, len, ctx);
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
static void cryptolight_hash_ctx_aes_ni(void* output, const void* input,
|
||||
int len, struct cryptonight_ctx* ctx)
|
||||
{
|
||||
hash_process(&ctx->state.hs, (const uint8_t*)input, len);
|
||||
ctx->aes_ctx = (oaes_ctx*) oaes_alloc();
|
||||
size_t i, j;
|
||||
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||||
|
||||
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], ctx->aes_ctx->key->exp_data);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], ctx->aes_ctx->key->exp_data);
|
||||
memcpy(&ctx->long_state[i], ctx->text, INIT_SIZE_BYTE);
|
||||
}
|
||||
|
||||
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], ctx->a);
|
||||
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], ctx->b);
|
||||
|
||||
for (i = 0; likely(i < ITER / 4); ++i) {
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(ctx->a);
|
||||
fast_aesb_single_round(&ctx->long_state[j], ctx->c, ctx->a);
|
||||
xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j]);
|
||||
/* Iteration 2 */
|
||||
mul_sum_xor_dst(ctx->c, ctx->a, &ctx->long_state[e2i(ctx->c)]);
|
||||
/* Iteration 3 */
|
||||
j = e2i(ctx->a);
|
||||
fast_aesb_single_round(&ctx->long_state[j], ctx->b, ctx->a);
|
||||
xor_blocks_dst(ctx->b, ctx->c, &ctx->long_state[j]);
|
||||
/* Iteration 4 */
|
||||
mul_sum_xor_dst(ctx->b, ctx->a, &ctx->long_state[e2i(ctx->b)]);
|
||||
}
|
||||
|
||||
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||||
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &ctx->long_state[i + 0 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &ctx->long_state[i + 1 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &ctx->long_state[i + 2 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &ctx->long_state[i + 3 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &ctx->long_state[i + 4 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &ctx->long_state[i + 5 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &ctx->long_state[i + 6 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &ctx->long_state[i + 7 * AES_BLOCK_SIZE]);
|
||||
fast_aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data);
|
||||
}
|
||||
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&ctx->state.hs);
|
||||
/*memcpy(hash, &state, 32);*/
|
||||
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
||||
oaes_free((OAES_CTX **) &ctx->aes_ctx);
|
||||
}
|
||||
|
||||
int scanhash_cryptolight(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
|
||||
uint32_t n = *nonceptr - 1;
|
||||
const uint32_t first_nonce = n + 1;
|
||||
//const uint32_t Htarg = ptarget[7];
|
||||
uint32_t _ALIGN(32) hash[HASH_SIZE / 4];
|
||||
|
||||
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
do {
|
||||
*nonceptr = ++n;
|
||||
cryptolight_hash_ctx_aes_ni(hash, pdata, 76, ctx);
|
||||
if (unlikely(hash[7] < ptarget[7])) {
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
free(ctx);
|
||||
return true;
|
||||
}
|
||||
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
||||
#else
|
||||
do {
|
||||
*nonceptr = ++n;
|
||||
cryptolight_hash_ctx(hash, pdata, 76, ctx);
|
||||
if (unlikely(hash[7] < ptarget[7])) {
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
free(ctx);
|
||||
return true;
|
||||
}
|
||||
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
||||
#endif
|
||||
free(ctx);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool register_cryptolight_algo( algo_gate_t* gate )
|
||||
{
|
||||
register_json_rpc2( gate );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_cryptolight;
|
||||
gate->hash = (void*)&cryptolight_hash;
|
||||
gate->hash_suw = (void*)&cryptolight_hash;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
return true;
|
||||
};
|
||||
|
||||
244
algo/cryptonight/cryptonight-aesni.c
Normal file
244
algo/cryptonight/cryptonight-aesni.c
Normal file
@@ -0,0 +1,244 @@
|
||||
#include <x86intrin.h>
|
||||
#include <memory.h>
|
||||
#include "cryptonight.h"
|
||||
#include "miner.h"
|
||||
#include "crypto/c_keccak.h"
|
||||
|
||||
void aesni_parallel_noxor(uint8_t *long_state, uint8_t *text, uint8_t *ExpandedKey);
|
||||
void aesni_parallel_xor(uint8_t *text, uint8_t *ExpandedKey, uint8_t *long_state);
|
||||
void that_fucking_loop(uint8_t a[16], uint8_t b[16], uint8_t *long_state);
|
||||
|
||||
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||||
{
|
||||
__m128i tmp4;
|
||||
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
|
||||
tmp4 = _mm_slli_si128(*tmp1, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
|
||||
}
|
||||
|
||||
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
__m128i tmp2, tmp4;
|
||||
|
||||
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
|
||||
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
|
||||
tmp4 = _mm_slli_si128(*tmp3, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Special thanks to Intel for helping me
|
||||
// with ExpandAESKey256() and its subroutines
|
||||
static inline void ExpandAESKey256(char *keybuf)
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
__m128i tmp1, tmp2, tmp3, *keys;
|
||||
|
||||
keys = (__m128i *)keybuf;
|
||||
|
||||
tmp1 = _mm_load_si128((__m128i *)keybuf);
|
||||
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[2] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[3] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[4] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[5] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[6] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[7] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[8] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[9] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[10] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[11] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[12] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[13] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[14] = tmp1;
|
||||
#endif
|
||||
}
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint8_t long_state[MEMORY] __attribute((aligned(16)));
|
||||
union cn_slow_hash_state state;
|
||||
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
|
||||
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
|
||||
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
|
||||
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16)));
|
||||
// oaes_ctx* aes_ctx;
|
||||
} cryptonight_ctx;
|
||||
|
||||
static __thread cryptonight_ctx ctx;
|
||||
|
||||
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
|
||||
{
|
||||
#ifndef NO_AES_NI
|
||||
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
|
||||
uint8_t ExpandedKey[256];
|
||||
size_t i, j;
|
||||
|
||||
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
|
||||
memcpy(ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE);
|
||||
ExpandAESKey256(ExpandedKey);
|
||||
|
||||
__m128i *longoutput, *expkey, *xmminput;
|
||||
longoutput = (__m128i *)ctx.long_state;
|
||||
expkey = (__m128i *)ExpandedKey;
|
||||
xmminput = (__m128i *)ctx.text;
|
||||
|
||||
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
|
||||
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
|
||||
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
|
||||
{
|
||||
for(j = 0; j < 10; j++)
|
||||
{
|
||||
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
||||
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
||||
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
||||
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
||||
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
||||
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
||||
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
||||
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
||||
}
|
||||
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
|
||||
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
|
||||
}
|
||||
|
||||
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
|
||||
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
|
||||
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
|
||||
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
|
||||
|
||||
// for (i = 0; i < 2; i++)
|
||||
// {
|
||||
// ctx.a[i] = ((uint64_t *)ctx.state.k)[i] ^ ((uint64_t *)ctx.state.k)[i+4];
|
||||
// ctx.b[i] = ((uint64_t *)ctx.state.k)[i+2] ^ ((uint64_t *)ctx.state.k)[i+6];
|
||||
// }
|
||||
|
||||
__m128i b_x = _mm_load_si128((__m128i *)ctx.b);
|
||||
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
|
||||
a[0] = ctx.a[0];
|
||||
a[1] = ctx.a[1];
|
||||
|
||||
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
|
||||
{
|
||||
__m128i c_x = _mm_load_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0]);
|
||||
__m128i a_x = _mm_load_si128((__m128i *)a);
|
||||
uint64_t c[2];
|
||||
c_x = _mm_aesenc_si128(c_x, a_x);
|
||||
|
||||
_mm_store_si128((__m128i *)c, c_x);
|
||||
__builtin_prefetch(&ctx.long_state[c[0] & 0x1FFFF0], 0, 1);
|
||||
|
||||
b_x = _mm_xor_si128(b_x, c_x);
|
||||
_mm_store_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0], b_x);
|
||||
|
||||
uint64_t *nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
uint64_t b[2];
|
||||
b[0] = nextblock[0];
|
||||
b[1] = nextblock[1];
|
||||
|
||||
{
|
||||
uint64_t hi, lo;
|
||||
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
|
||||
|
||||
__asm__("mulq %3\n\t"
|
||||
: "=d" (hi),
|
||||
"=a" (lo)
|
||||
: "%a" (c[0]),
|
||||
"rm" (b[0])
|
||||
: "cc" );
|
||||
|
||||
a[0] += hi;
|
||||
a[1] += lo;
|
||||
}
|
||||
uint64_t *dst = (uint64_t*)&ctx.long_state[c[0] & 0x1FFFF0];
|
||||
dst[0] = a[0];
|
||||
dst[1] = a[1];
|
||||
|
||||
a[0] ^= b[0];
|
||||
a[1] ^= b[1];
|
||||
b_x = c_x;
|
||||
__builtin_prefetch(&ctx.long_state[a[0] & 0x1FFFF0], 0, 3);
|
||||
}
|
||||
|
||||
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
|
||||
memcpy(ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE);
|
||||
ExpandAESKey256(ExpandedKey);
|
||||
|
||||
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
|
||||
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
|
||||
|
||||
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
|
||||
{
|
||||
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
|
||||
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
|
||||
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
|
||||
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
|
||||
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
|
||||
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
|
||||
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
|
||||
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
|
||||
|
||||
for(j = 0; j < 10; j++)
|
||||
{
|
||||
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
||||
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
||||
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
||||
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
||||
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
||||
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
||||
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
||||
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
|
||||
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
|
||||
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
#endif
|
||||
}
|
||||
110
algo/cryptonight/cryptonight-common.c
Normal file
110
algo/cryptonight/cryptonight-common.c
Normal file
@@ -0,0 +1,110 @@
|
||||
// Copyright (c) 2012-2013 The Cryptonote developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
// Modified for CPUminer by Lucas Jones
|
||||
|
||||
#include "cpuminer-config.h"
|
||||
//#include "miner.h"
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#endif
|
||||
|
||||
#include "crypto/c_groestl.h"
|
||||
#include "crypto/c_blake256.h"
|
||||
#include "crypto/c_jh.h"
|
||||
#include "crypto/c_skein.h"
|
||||
#include "cryptonight.h"
|
||||
|
||||
/*
|
||||
#if defined __unix__ && (!defined __APPLE__)
|
||||
#include <sys/mman.h>
|
||||
#elif defined _WIN32
|
||||
#include <windows.h>
|
||||
#endif
|
||||
*/
|
||||
|
||||
void do_blake_hash(const void* input, size_t len, char* output) {
|
||||
blake256_hash((uint8_t*)output, input, len);
|
||||
}
|
||||
|
||||
void do_groestl_hash(const void* input, size_t len, char* output) {
|
||||
#ifdef NO_AES_NI
|
||||
groestl(input, len * 8, (uint8_t*)output);
|
||||
#else
|
||||
hashState_groestl256 ctx;
|
||||
init_groestl256( &ctx );
|
||||
update_groestl256( &ctx, input, len * 8 );
|
||||
final_groestl256( &ctx, output );
|
||||
#endif
|
||||
}
|
||||
|
||||
void do_jh_hash(const void* input, size_t len, char* output) {
|
||||
jh_hash(32 * 8, input, 8 * len, (uint8_t*)output);
|
||||
}
|
||||
|
||||
void do_skein_hash(const void* input, size_t len, char* output) {
|
||||
skein_hash(8 * 32, input, 8 * len, (uint8_t*)output);
|
||||
}
|
||||
|
||||
void (* const extra_hashes[4])( const void *, size_t, char *) =
|
||||
{ do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash };
|
||||
|
||||
void cryptonight_hash( void *restrict output, const void *input, int len )
|
||||
{
|
||||
|
||||
#ifdef NO_AES_NI
|
||||
cryptonight_hash_ctx ( output, input, len );
|
||||
#else
|
||||
cryptonight_hash_aes( output, input, len );
|
||||
#endif
|
||||
}
|
||||
|
||||
void cryptonight_hash_suw( void *restrict output, const void *input )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
cryptonight_hash_ctx ( output, input, 76 );
|
||||
#else
|
||||
cryptonight_hash_aes( output, input, 76 );
|
||||
#endif
|
||||
}
|
||||
|
||||
int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
|
||||
uint32_t n = *nonceptr - 1;
|
||||
const uint32_t first_nonce = n + 1;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t hash[32 / 4] __attribute__((aligned(32)));
|
||||
do
|
||||
{
|
||||
*nonceptr = ++n;
|
||||
cryptonight_hash( hash, pdata, 76 );
|
||||
if (unlikely( hash[7] < Htarg ))
|
||||
{
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return true;
|
||||
}
|
||||
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool register_cryptonight_algo( algo_gate_t* gate )
|
||||
{
|
||||
register_json_rpc2( gate );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT;
|
||||
gate->scanhash = (void*)&scanhash_cryptonight;
|
||||
gate->hash = (void*)&cryptonight_hash;
|
||||
gate->hash_suw = (void*)&cryptonight_hash_suw;
|
||||
gate->get_max64 = (void*)&get_max64_0x40LL;
|
||||
return true;
|
||||
};
|
||||
|
||||
242
algo/cryptonight/cryptonight.c
Normal file
242
algo/cryptonight/cryptonight.c
Normal file
@@ -0,0 +1,242 @@
|
||||
// Copyright (c) 2012-2013 The Cryptonote developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
// Modified for CPUminer by Lucas Jones
|
||||
|
||||
#include "miner.h"
|
||||
|
||||
#if defined(__arm__) || defined(_MSC_VER)
|
||||
#ifndef NOASM
|
||||
#define NOASM
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include "crypto/oaes_lib.h"
|
||||
#include "crypto/c_keccak.h"
|
||||
#include "crypto/c_groestl.h"
|
||||
#include "crypto/c_blake256.h"
|
||||
#include "crypto/c_jh.h"
|
||||
#include "crypto/c_skein.h"
|
||||
#include "crypto/int-util.h"
|
||||
#include "crypto/hash-ops.h"
|
||||
//#include "cryptonight.h"
|
||||
|
||||
#if USE_INT128
|
||||
|
||||
#if __GNUC__ == 4 && __GNUC_MINOR__ >= 4 && __GNUC_MINOR__ < 6
|
||||
typedef unsigned int uint128_t __attribute__ ((__mode__ (TI)));
|
||||
#elif defined (_MSC_VER)
|
||||
/* only for mingw64 on windows */
|
||||
#undef USE_INT128
|
||||
#define USE_INT128 (0)
|
||||
#else
|
||||
typedef __uint128_t uint128_t;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#define LITE 0
|
||||
#if LITE /* cryptonight-light */
|
||||
#define MEMORY (1 << 20)
|
||||
#define ITER (1 << 19)
|
||||
#else
|
||||
#define MEMORY (1 << 21) /* 2 MiB */
|
||||
#define ITER (1 << 20)
|
||||
#endif
|
||||
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define AES_KEY_SIZE 32 /*16*/
|
||||
#define INIT_SIZE_BLK 8
|
||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union cn_slow_hash_state {
|
||||
union hash_state hs;
|
||||
struct {
|
||||
uint8_t k[64];
|
||||
uint8_t init[INIT_SIZE_BYTE];
|
||||
};
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
static void do_blake_hash(const void* input, size_t len, char* output) {
|
||||
blake256_hash((uint8_t*)output, input, len);
|
||||
}
|
||||
|
||||
static void do_groestl_hash(const void* input, size_t len, char* output) {
|
||||
groestl(input, len * 8, (uint8_t*)output);
|
||||
}
|
||||
|
||||
static void do_jh_hash(const void* input, size_t len, char* output) {
|
||||
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
|
||||
assert(likely(SUCCESS == r));
|
||||
}
|
||||
|
||||
static void do_skein_hash(const void* input, size_t len, char* output) {
|
||||
int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
|
||||
assert(likely(SKEIN_SUCCESS == r));
|
||||
}
|
||||
|
||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
||||
#if !defined(_MSC_VER) && !defined(NOASM)
|
||||
extern int fast_aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int fast_aesb_pseudo_round_mut(uint8_t *val, uint8_t *expandedKey);
|
||||
#else
|
||||
#define fast_aesb_single_round aesb_single_round
|
||||
#define fast_aesb_pseudo_round_mut aesb_pseudo_round_mut
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(NOASM) || !defined(__x86_64__)
|
||||
static uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) {
|
||||
// multiplier = ab = a * 2^32 + b
|
||||
// multiplicand = cd = c * 2^32 + d
|
||||
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
||||
uint64_t a = hi_dword(multiplier);
|
||||
uint64_t b = lo_dword(multiplier);
|
||||
uint64_t c = hi_dword(multiplicand);
|
||||
uint64_t d = lo_dword(multiplicand);
|
||||
|
||||
uint64_t ac = a * c;
|
||||
uint64_t ad = a * d;
|
||||
uint64_t bc = b * c;
|
||||
uint64_t bd = b * d;
|
||||
|
||||
uint64_t adbc = ad + bc;
|
||||
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
||||
|
||||
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
||||
uint64_t product_lo = bd + (adbc << 32);
|
||||
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
||||
*product_hi = ac + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
||||
assert(ac <= *product_hi);
|
||||
|
||||
return product_lo;
|
||||
}
|
||||
#else
|
||||
extern uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi);
|
||||
#endif
|
||||
|
||||
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
|
||||
do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash
|
||||
};
|
||||
|
||||
static inline size_t e2i(const uint8_t* a) {
|
||||
#if !LITE
|
||||
return ((uint32_t *)a)[0] & 0x1FFFF0;
|
||||
#else
|
||||
return ((uint32_t *)a)[0] & 0xFFFF0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
|
||||
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
|
||||
hi += ((uint64_t*) c)[0];
|
||||
|
||||
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
|
||||
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
|
||||
((uint64_t*) dst)[0] = hi;
|
||||
((uint64_t*) dst)[1] = lo;
|
||||
}
|
||||
|
||||
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
|
||||
#if USE_INT128
|
||||
*((uint128_t*) a) ^= *((uint128_t*) b);
|
||||
#else
|
||||
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
|
||||
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
|
||||
#if USE_INT128
|
||||
*((uint128_t*) dst) = *((uint128_t*) a) ^ *((uint128_t*) b);
|
||||
#else
|
||||
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
|
||||
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
uint8_t _ALIGN(16) long_state[MEMORY];
|
||||
union cn_slow_hash_state state;
|
||||
uint8_t _ALIGN(16) text[INIT_SIZE_BYTE];
|
||||
uint8_t _ALIGN(16) a[AES_BLOCK_SIZE];
|
||||
uint8_t _ALIGN(16) b[AES_BLOCK_SIZE];
|
||||
uint8_t _ALIGN(16) c[AES_BLOCK_SIZE];
|
||||
oaes_ctx* aes_ctx;
|
||||
} cryptonight_ctx;
|
||||
|
||||
static __thread cryptonight_ctx ctx;
|
||||
|
||||
void cryptonight_hash_ctx(void* output, const void* input, int len)
|
||||
{
|
||||
hash_process(&ctx.state.hs, (const uint8_t*) input, len);
|
||||
ctx.aes_ctx = (oaes_ctx*) oaes_alloc();
|
||||
size_t i, j;
|
||||
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
|
||||
|
||||
oaes_key_import_data(ctx.aes_ctx, ctx.state.hs.b, AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 0], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 1], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 2], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 3], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 4], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 5], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 6], ctx.aes_ctx->key->exp_data);
|
||||
aesb_pseudo_round_mut(&ctx.text[AES_BLOCK_SIZE * 7], ctx.aes_ctx->key->exp_data);
|
||||
memcpy(&ctx.long_state[i], ctx.text, INIT_SIZE_BYTE);
|
||||
}
|
||||
|
||||
xor_blocks_dst(&ctx.state.k[0], &ctx.state.k[32], ctx.a);
|
||||
xor_blocks_dst(&ctx.state.k[16], &ctx.state.k[48], ctx.b);
|
||||
|
||||
for (i = 0; likely(i < ITER / 4); ++i) {
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.c, ctx.a);
|
||||
xor_blocks_dst(ctx.c, ctx.b, &ctx.long_state[j]);
|
||||
/* Iteration 2 */
|
||||
mul_sum_xor_dst(ctx.c, ctx.a, &ctx.long_state[e2i(ctx.c)]);
|
||||
/* Iteration 3 */
|
||||
j = e2i(ctx.a);
|
||||
aesb_single_round(&ctx.long_state[j], ctx.b, ctx.a);
|
||||
xor_blocks_dst(ctx.b, ctx.c, &ctx.long_state[j]);
|
||||
/* Iteration 4 */
|
||||
mul_sum_xor_dst(ctx.b, ctx.a, &ctx.long_state[e2i(ctx.b)]);
|
||||
}
|
||||
|
||||
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
|
||||
oaes_key_import_data(ctx.aes_ctx, &ctx.state.hs.b[32], AES_KEY_SIZE);
|
||||
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
|
||||
xor_blocks(&ctx.text[0 * AES_BLOCK_SIZE], &ctx.long_state[i + 0 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[0 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[1 * AES_BLOCK_SIZE], &ctx.long_state[i + 1 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[1 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[2 * AES_BLOCK_SIZE], &ctx.long_state[i + 2 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[2 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[3 * AES_BLOCK_SIZE], &ctx.long_state[i + 3 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[3 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[4 * AES_BLOCK_SIZE], &ctx.long_state[i + 4 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[4 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[5 * AES_BLOCK_SIZE], &ctx.long_state[i + 5 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[5 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[6 * AES_BLOCK_SIZE], &ctx.long_state[i + 6 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[6 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
xor_blocks(&ctx.text[7 * AES_BLOCK_SIZE], &ctx.long_state[i + 7 * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round_mut(&ctx.text[7 * AES_BLOCK_SIZE], ctx.aes_ctx->key->exp_data);
|
||||
}
|
||||
memcpy(ctx.state.init, ctx.text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&ctx.state.hs);
|
||||
/*memcpy(hash, &state, 32);*/
|
||||
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
|
||||
oaes_free((OAES_CTX **) &ctx.aes_ctx);
|
||||
}
|
||||
|
||||
47
algo/cryptonight/cryptonight.h
Normal file
47
algo/cryptonight/cryptonight.h
Normal file
@@ -0,0 +1,47 @@
|
||||
#ifndef __CRYPTONIGHT_H_INCLUDED
|
||||
#define __CRYPTONIGHT_H_INCLUDED
|
||||
|
||||
#include <stddef.h>
|
||||
#include "crypto/oaes_lib.h"
|
||||
#include "miner.h"
|
||||
|
||||
#define MEMORY (1 << 21) /* 2 MiB */
|
||||
#define ITER (1 << 20)
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define AES_KEY_SIZE 32 /*16*/
|
||||
#define INIT_SIZE_BLK 8
|
||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128
|
||||
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union hash_state {
|
||||
uint8_t b[200];
|
||||
uint64_t w[25];
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union cn_slow_hash_state {
|
||||
union hash_state hs;
|
||||
struct {
|
||||
uint8_t k[64];
|
||||
uint8_t init[INIT_SIZE_BYTE];
|
||||
};
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
void do_blake_hash(const void* input, size_t len, char* output);
|
||||
void do_groestl_hash(const void* input, size_t len, char* output);
|
||||
void do_jh_hash(const void* input, size_t len, char* output);
|
||||
void do_skein_hash(const void* input, size_t len, char* output);
|
||||
void cryptonight_hash_ctx(void* output, const void* input, int len);
|
||||
void keccakf(uint64_t st[25], int rounds);
|
||||
extern void (* const extra_hashes[4])(const void *, size_t, char *);
|
||||
|
||||
int scanhash_cryptonight( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
void cryptonight_hash_aes( void *restrict output, const void *input, int len );
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user