This commit is contained in:
Jay D Dee
2017-05-19 16:38:26 -04:00
parent e7dbd27636
commit 7544cb956c
8 changed files with 314 additions and 91 deletions

View File

@@ -90,6 +90,7 @@ cpuminer_SOURCES = \
algo/hodl/hodl-wolf.c \
algo/hodl/sha512_avx.c \
algo/hodl/sha512_avx2.c \
algo/jh/jha.c \
algo/lbry.c \
algo/luffa/luffa.c \
algo/luffa/sse2/luffa_for_sse2.c \

View File

@@ -35,6 +35,7 @@ Supported Algorithms
heavy Heavy
hmq1725 Espers
hodl Hodlcoin
jha jackpotcoin
keccak Keccak
lbry LBC, LBRY Credits
luffa Luffa
@@ -59,6 +60,7 @@ Supported Algorithms
skein Skein+Sha (Skeincoin)
skein2 Double Skein (Woodcoin)
timetravel Machinecoin (MAC)
timetravel10 Bitcore
vanilla blake256r8vnl (VCash)
veltor
whirlpool

View File

@@ -6,6 +6,9 @@ compile flag.
HW SHA support is only available when compiled from source, Windows binaries
are not yet available.
cpuminer-opt is a console program, if you're using a mouse you're doing it
wrong.
Compile Instructions
--------------------
@@ -118,6 +121,11 @@ Support for even older x86_64 without AES_NI or SSE2 is not availble.
Change Log
----------
v3.6.5
Cryptonight a little faster.
Added jha algo (Jackpotcoin) with AES optimizations.
v3.6.4
Added support for Bitcore (BTX) using the timetravel10 algo, optimized for

View File

@@ -169,6 +169,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_HEAVY: register_heavy_algo ( gate ); break;
case ALGO_HMQ1725: register_hmq1725_algo ( gate ); break;
case ALGO_HODL: register_hodl_algo ( gate ); break;
case ALGO_JHA: register_jha_algo ( gate ); break;
case ALGO_KECCAK: register_keccak_algo ( gate ); break;
case ALGO_LBRY: register_lbry_algo ( gate ); break;
case ALGO_LUFFA: register_luffa_algo ( gate ); break;
@@ -276,6 +277,7 @@ const char* const algo_alias_map[][2] =
{ "droplp", "drop" },
{ "espers", "hmq1725" },
{ "flax", "c11" },
{ "jackpot", "jha" },
{ "jane", "scryptjane" },
{ "lyra2", "lyra2re" },
{ "lyra2v2", "lyra2rev2" },

View File

@@ -109,43 +109,43 @@ static __thread cryptonight_ctx ctx;
void cryptonight_hash_aes( void *restrict output, const void *input, int len )
{
#ifndef NO_AES_NI
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
uint8_t ExpandedKey[256] __attribute__((aligned(64)));
__m128i *longoutput, *expkey, *xmminput;
size_t i, j;
memcpy(ctx.text, ctx.state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
keccak( (const uint8_t*)input, 76, (char*)&ctx.state.hs.b, 200 );
memcpy( ExpandedKey, ctx.state.hs.b, AES_KEY_SIZE );
ExpandAESKey256( ExpandedKey );
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *)ctx.long_state;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx.text;
longoutput = (__m128i*)ctx.long_state;
xmminput = (__m128i*)ctx.text;
expkey = (__m128i*)ExpandedKey;
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
// prefetch expkey, xmminput and enough longoutput for 4 iterations
_mm_prefetch( xmminput, _MM_HINT_T0 );
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
for ( i = 0; i < 64; i += 16 )
{
_mm_prefetch( longoutput + i, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 4, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 8, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 12, _MM_HINT_T0 );
}
_mm_prefetch( expkey, _MM_HINT_T0 );
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
for ( i = 0; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
for ( i = 0; i < 64; i += 16 )
{
// prefetch 4 loops ahead,
__builtin_prefetch( longoutput + i, 1, 0 );
__builtin_prefetch( longoutput + i + 4, 1, 0 );
__builtin_prefetch( longoutput + i + 8, 1, 0 );
__builtin_prefetch( longoutput + i + 12, 1, 0 );
}
// n-4 iterations
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
i += INIT_SIZE_M128I )
{
// prefetch 4 iterations ahead.
__builtin_prefetch( longoutput + i + 64, 1, 0 );
__builtin_prefetch( longoutput + i + 68, 1, 0 );
for (j = 0; j < 10; j++ )
for ( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
@@ -165,84 +165,99 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
}
// last 4 iterations
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
{
for ( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
_mm_store_si128( &( longoutput[i ] ), xmminput[0] );
_mm_store_si128( &( longoutput[i+1] ), xmminput[1] );
_mm_store_si128( &( longoutput[i+2] ), xmminput[2] );
_mm_store_si128( &( longoutput[i+3] ), xmminput[3] );
_mm_store_si128( &( longoutput[i+4] ), xmminput[4] );
_mm_store_si128( &( longoutput[i+5] ), xmminput[5] );
_mm_store_si128( &( longoutput[i+6] ), xmminput[6] );
_mm_store_si128( &( longoutput[i+7] ), xmminput[7] );
}
// cast_m128i( ctx.a ) = _mm_xor_si128( casti_m128i( ctx.state.k, 0 ) ,
// casti_m128i( ctx.state.k, 2 ) );
// cast_m128i( ctx.b ) = _mm_xor_si128( casti_m128i( ctx.state.k, 1 ),
// casti_m128i( ctx.state.k, 3 ) );
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
ctx.a[0] = ((uint64_t *)ctx.state.k)[0] ^ ((uint64_t *)ctx.state.k)[4];
ctx.b[0] = ((uint64_t *)ctx.state.k)[2] ^ ((uint64_t *)ctx.state.k)[6];
ctx.a[1] = ((uint64_t *)ctx.state.k)[1] ^ ((uint64_t *)ctx.state.k)[5];
ctx.b[1] = ((uint64_t *)ctx.state.k)[3] ^ ((uint64_t *)ctx.state.k)[7];
// for (i = 0; i < 2; i++)
// {
// ctx.a[i] = ((uint64_t *)ctx.state.k)[i] ^ ((uint64_t *)ctx.state.k)[i+4];
// ctx.b[i] = ((uint64_t *)ctx.state.k)[i+2] ^ ((uint64_t *)ctx.state.k)[i+6];
// }
__m128i b_x = _mm_load_si128((__m128i *)ctx.b);
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
uint64_t a[2] __attribute((aligned(16))),
b[2] __attribute((aligned(16))),
c[2] __attribute((aligned(16)));
a[0] = ctx.a[0];
a[1] = ctx.a[1];
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
__m128i b_x = _mm_load_si128( (__m128i*)ctx.b );
__m128i a_x = _mm_load_si128( (__m128i*)a );
__m128i* lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
__m128i c_x = _mm_load_si128( lsa );
uint64_t *nextblock;
uint64_t hi, lo;
// n-1 iterations
for( i = 0; __builtin_expect( i < 0x7ffff, 1 ); i++ )
{
uint64_t c[2];
__builtin_prefetch( &ctx.long_state[c[0] & 0x1FFFF0], 0, 1 );
__m128i c_x = _mm_load_si128(
(__m128i *)&ctx.long_state[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *)a);
c_x = _mm_aesenc_si128(c_x, a_x);
_mm_store_si128((__m128i *)c, c_x);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i *)&ctx.long_state[a[0] & 0x1FFFF0], b_x);
uint64_t *nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
// uint64_t b[2];
c_x = _mm_aesenc_si128( c_x, a_x );
_mm_store_si128( (__m128i*)c, c_x );
b_x = _mm_xor_si128( b_x, c_x );
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
_mm_store_si128( lsa, b_x );
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__( "mulq %3\n\t"
: "=d" ( hi ),
"=a" ( lo )
: "%a" ( c[0] ),
"rm" ( b[0] )
: "cc" );
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
uint64_t *dst = (uint64_t*)&ctx.long_state[c[0] & 0x1FFFF0];
// __m128i *dst = (__m128i*)&ctx.long_state[c[0] & 0x1FFFF0];
// *dst = cast_m128i( a );
dst[0] = a[0];
dst[1] = a[1];
// cast_m128i( a ) = _mm_xor_si128( cast_m128i( a ), cast_m128i( b ) );
a[0] ^= b[0];
a[1] ^= b[1];
b_x = c_x;
__builtin_prefetch( &ctx.long_state[a[0] & 0x1FFFF0], 0, 3 );
b_x = c_x;
nextblock[0] = a[0] + hi;
nextblock[1] = a[1] + lo;
a[0] = b[0] ^ nextblock[0];
a[1] = b[1] ^ nextblock[1];
lsa = (__m128i*)&ctx.long_state[ a[0] & 0x1FFFF0 ];
a_x = _mm_load_si128( (__m128i*)a );
c_x = _mm_load_si128( lsa );
}
// abreviated nth iteration
c_x = _mm_aesenc_si128( c_x, a_x );
_mm_store_si128( (__m128i*)c, c_x );
b_x = _mm_xor_si128( b_x, c_x );
nextblock = (uint64_t *)&ctx.long_state[c[0] & 0x1FFFF0];
_mm_store_si128( lsa, b_x );
b[0] = nextblock[0];
b[1] = nextblock[1];
__asm__( "mulq %3\n\t"
: "=d" ( hi ),
"=a" ( lo )
: "%a" ( c[0] ),
"rm" ( b[0] )
: "cc" );
nextblock[0] = a[0] + hi;
nextblock[1] = a[1] + lo;
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
memcpy( ExpandedKey, &ctx.state.hs.b[32], AES_KEY_SIZE );
ExpandAESKey256( ExpandedKey );
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
memcpy( ctx.text, ctx.state.init, INIT_SIZE_BYTE );
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
_mm_prefetch( xmminput, _MM_HINT_T0 );
_mm_prefetch( xmminput + 4, _MM_HINT_T0 );
for ( i = 0; i < 64; i += 16 )
@@ -256,9 +271,11 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
_mm_prefetch( expkey + 4, _MM_HINT_T0 );
_mm_prefetch( expkey + 8, _MM_HINT_T0 );
for ( i = 0; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
// n-4 iterations
for ( i = 0; likely( i < MEMORY_M128I - 4*INIT_SIZE_M128I );
i += INIT_SIZE_M128I )
{
// stay 4 loops ahead,
// stay 4 iterations ahead.
_mm_prefetch( longoutput + i + 64, _MM_HINT_T0 );
_mm_prefetch( longoutput + i + 68, _MM_HINT_T0 );
@@ -283,10 +300,34 @@ void cryptonight_hash_aes( void *restrict output, const void *input, int len )
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
}
// last 4 iterations
for ( ; likely( i < MEMORY_M128I ); i += INIT_SIZE_M128I )
{
xmminput[0] = _mm_xor_si128( longoutput[i ], xmminput[0] );
xmminput[1] = _mm_xor_si128( longoutput[i+1], xmminput[1] );
xmminput[2] = _mm_xor_si128( longoutput[i+2], xmminput[2] );
xmminput[3] = _mm_xor_si128( longoutput[i+3], xmminput[3] );
xmminput[4] = _mm_xor_si128( longoutput[i+4], xmminput[4] );
xmminput[5] = _mm_xor_si128( longoutput[i+5], xmminput[5] );
xmminput[6] = _mm_xor_si128( longoutput[i+6], xmminput[6] );
xmminput[7] = _mm_xor_si128( longoutput[i+7], xmminput[7] );
for( j = 0; j < 10; j++ )
{
xmminput[0] = _mm_aesenc_si128( xmminput[0], expkey[j] );
xmminput[1] = _mm_aesenc_si128( xmminput[1], expkey[j] );
xmminput[2] = _mm_aesenc_si128( xmminput[2], expkey[j] );
xmminput[3] = _mm_aesenc_si128( xmminput[3], expkey[j] );
xmminput[4] = _mm_aesenc_si128( xmminput[4], expkey[j] );
xmminput[5] = _mm_aesenc_si128( xmminput[5], expkey[j] );
xmminput[6] = _mm_aesenc_si128( xmminput[6], expkey[j] );
xmminput[7] = _mm_aesenc_si128( xmminput[7], expkey[j] );
}
}
memcpy( ctx.state.init, ctx.text, INIT_SIZE_BYTE);
keccakf( (uint64_t*)&ctx.state.hs.w, 24 );
extra_hashes[ctx.state.hs.b[0] & 3](&ctx.state, 200, output);
#endif
}

166
algo/jh/jha.c Normal file
View File

@@ -0,0 +1,166 @@
#include "miner.h"
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/sph_blake.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#ifdef NO_AES_NI
#include "algo/groestl/sph_groestl.h"
#else
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
static __thread sph_keccak512_context jha_kec_mid __attribute__ ((aligned (64)));
void jha_kec_midstate( const void* input )
{
sph_keccak512_init( &jha_kec_mid );
sph_keccak512( &jha_kec_mid, input, 64 );
}
void jha_hash(void *output, const void *input)
{
uint8_t _ALIGN(128) hash[64];
#ifdef NO_AES_NI
sph_groestl512_context ctx_groestl;
#else
hashState_groestl ctx_groestl;
#endif
sph_blake512_context ctx_blake;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
sph_keccak512_init(&ctx_keccak);
memcpy( &ctx_keccak, &jha_kec_mid, sizeof jha_kec_mid );
sph_keccak512(&ctx_keccak, input+64, 16 );
sph_keccak512_close(&ctx_keccak, hash );
// Heavy & Light Pair Loop
for (int round = 0; round < 3; round++)
{
if (hash[0] & 0x01)
{
#ifdef NO_AES_NI
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, hash, 64 );
sph_groestl512_close(&ctx_groestl, hash );
#else
init_groestl( &ctx_groestl, 64 );
update_and_final_groestl( &ctx_groestl, (char*)hash,
(char*)hash, 512 );
#endif
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, hash, 64);
sph_skein512_close(&ctx_skein, hash );
}
if (hash[0] & 0x01)
{
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, hash, 64);
sph_blake512_close(&ctx_blake, hash );
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, hash, 64 );
sph_jh512_close(&ctx_jh, hash );
}
}
memcpy(output, hash, 32);
}
int scanhash_jha(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t n = pdata[19] - 1;
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
for (int i=0; i < 19; i++) {
be32enc(&endiandata[i], pdata[i]);
}
jha_kec_midstate( endiandata );
#ifdef DEBUG_ALGO
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
jha_hash(hash32, endiandata);
#ifndef DEBUG_ALGO
if ((!(hash32[7] & mask)) && fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash32[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash32, ptarget)) {
work_set_target_ratio(work, hash32);
*hashes_done = n - first_nonce + 1;
return 1;
}
}
#endif
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_jha_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_jha;
gate->hash = (void*)&jha_hash;
gate->set_target = (void*)&scrypt_set_target;
return true;
};

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.6.4])
AC_INIT([cpuminer-opt], [3.6.5])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@@ -495,6 +495,7 @@ enum algos {
ALGO_HEAVY,
ALGO_HMQ1725,
ALGO_HODL,
ALGO_JHA,
ALGO_KECCAK,
ALGO_LBRY,
ALGO_LUFFA,
@@ -558,6 +559,7 @@ static const char* const algo_names[] = {
"heavy",
"hmq1725",
"hodl",
"jha",
"keccak",
"lbry",
"luffa",
@@ -675,6 +677,7 @@ Options:\n\
heavy Heavy\n\
hmq1725 Espers\n\
hodl Hodlcoin\n\
jha jackppot (Jackpotcoin)\n\
keccak Keccak\n\
lbry LBC, LBRY Credits\n\
luffa Luffa\n\