345 lines
10 KiB
Plaintext
345 lines
10 KiB
Plaintext
#include <cuda_runtime.h>
|
|
#include <device_launch_parameters.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <vector>
|
|
#include <stdexcept>
|
|
|
|
// Include shared device functions
|
|
#include "rinhash_device.cuh"
|
|
#include "argon2d_device.cuh"
|
|
#include "sha3-256.cu"
|
|
#include "blake3_device.cuh"
|
|
|
|
|
|
// External references to our CUDA implementations
|
|
extern "C" void blake3_hash(const uint8_t* input, size_t input_len, uint8_t* output);
|
|
extern "C" void argon2d_hash_rinhash(uint8_t* output, const uint8_t* input, size_t input_len);
|
|
extern "C" void sha3_256_hash(const uint8_t* input, size_t input_len, uint8_t* output);
|
|
|
|
// Modified kernel to use device functions
|
|
extern "C" __global__ void rinhash_cuda_kernel(
|
|
const uint8_t* input,
|
|
size_t input_len,
|
|
uint8_t* output
|
|
) {
|
|
// Intermediate results in shared memory
|
|
__shared__ uint8_t blake3_out[32];
|
|
__shared__ uint8_t argon2_out[32];
|
|
// Only one thread should do this work
|
|
if (threadIdx.x == 0) {
|
|
// Step 1: BLAKE3 hash - now using light_hash_device
|
|
light_hash_device(input, input_len, blake3_out);
|
|
// Step 2: Argon2d hash
|
|
uint32_t m_cost = 64; // Example
|
|
size_t memory_size = m_cost * sizeof(block);
|
|
block* d_memory = (block*)malloc(memory_size);
|
|
uint8_t salt[11] = { 'R','i','n','C','o','i','n','S','a','l','t' };
|
|
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, d_memory, salt, 11);
|
|
|
|
// Step 3: SHA3-256 hash
|
|
uint8_t sha3_out[32];
|
|
sha3_256_device(argon2_out, 32, sha3_out);
|
|
|
|
}
|
|
|
|
// Use syncthreads to ensure all threads wait for the computation to complete
|
|
__syncthreads();
|
|
}
|
|
|
|
// RinHash CUDA implementation
|
|
extern "C" void rinhash_cuda(const uint8_t* input, size_t input_len, uint8_t* output) {
|
|
// Allocate device memory
|
|
uint8_t *d_input = nullptr;
|
|
uint8_t *d_output = nullptr;
|
|
|
|
cudaError_t err;
|
|
|
|
// Allocate memory on device
|
|
err = cudaMalloc(&d_input, input_len);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to allocate input memory: %s\n", cudaGetErrorString(err));
|
|
return;
|
|
}
|
|
|
|
err = cudaMalloc(&d_output, 32);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to allocate output memory: %s\n", cudaGetErrorString(err));
|
|
cudaFree(d_input);
|
|
return;
|
|
}
|
|
|
|
// Copy input data to device
|
|
err = cudaMemcpy(d_input, input, input_len, cudaMemcpyHostToDevice);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to copy input to device: %s\n", cudaGetErrorString(err));
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
return;
|
|
}
|
|
|
|
// Launch the kernel
|
|
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output);
|
|
|
|
// Wait for kernel to finish
|
|
err = cudaDeviceSynchronize();
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error during kernel execution: %s\n", cudaGetErrorString(err));
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
return;
|
|
}
|
|
|
|
// Copy result back to host
|
|
err = cudaMemcpy(output, d_output, 32, cudaMemcpyDeviceToHost);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to copy output from device: %s\n", cudaGetErrorString(err));
|
|
}
|
|
|
|
// Free device memory
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
}
|
|
|
|
|
|
// Helper function to convert a block header to bytes
|
|
extern "C" void blockheader_to_bytes(
|
|
const uint32_t* version,
|
|
const uint32_t* prev_block,
|
|
const uint32_t* merkle_root,
|
|
const uint32_t* timestamp,
|
|
const uint32_t* bits,
|
|
const uint32_t* nonce,
|
|
uint8_t* output,
|
|
size_t* output_len
|
|
) {
|
|
size_t offset = 0;
|
|
|
|
// Version (4 bytes)
|
|
memcpy(output + offset, version, 4);
|
|
offset += 4;
|
|
|
|
// Previous block hash (32 bytes)
|
|
memcpy(output + offset, prev_block, 32);
|
|
offset += 32;
|
|
|
|
// Merkle root (32 bytes)
|
|
memcpy(output + offset, merkle_root, 32);
|
|
offset += 32;
|
|
|
|
// Timestamp (4 bytes)
|
|
memcpy(output + offset, timestamp, 4);
|
|
offset += 4;
|
|
|
|
// Bits (4 bytes)
|
|
memcpy(output + offset, bits, 4);
|
|
offset += 4;
|
|
|
|
// Nonce (4 bytes)
|
|
memcpy(output + offset, nonce, 4);
|
|
offset += 4;
|
|
|
|
*output_len = offset;
|
|
}
|
|
|
|
// Batch processing version for mining
|
|
extern "C" void rinhash_cuda_batch(
|
|
const uint8_t* block_headers,
|
|
size_t block_header_len,
|
|
uint8_t* outputs,
|
|
uint32_t num_blocks
|
|
) {
|
|
// Reset device to clear any previous errors
|
|
cudaError_t err = cudaDeviceReset();
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to reset device: %s\n",
|
|
cudaGetErrorString(err));
|
|
return;
|
|
}
|
|
|
|
|
|
// Check available memory
|
|
size_t free_mem, total_mem;
|
|
err = cudaMemGetInfo(&free_mem, &total_mem);
|
|
if (err != cudaSuccess) {
|
|
//fprintf(stderr, "CUDA error: Failed to get memory info: %s\n",
|
|
// cudaGetErrorString(err));
|
|
return;
|
|
}
|
|
|
|
size_t headers_size = num_blocks * block_header_len;
|
|
size_t outputs_size = num_blocks * 32;
|
|
size_t required_mem = headers_size + outputs_size;
|
|
|
|
if (required_mem > free_mem) {
|
|
fprintf(stderr, "CUDA error: Not enough memory (required: %zu, free: %zu)\n",
|
|
required_mem, free_mem);
|
|
return;
|
|
}
|
|
|
|
// Allocate device memory
|
|
uint8_t *d_headers = NULL;
|
|
uint8_t *d_outputs = NULL;
|
|
|
|
// Allocate memory for input block headers with error check
|
|
err = cudaMalloc((void**)&d_headers, headers_size);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to allocate device memory for headers (%zu bytes): %s\n",
|
|
headers_size, cudaGetErrorString(err));
|
|
return;
|
|
}
|
|
|
|
// Allocate memory for output hashes with error check
|
|
err = cudaMalloc((void**)&d_outputs, outputs_size);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to allocate device memory for outputs (%zu bytes): %s\n",
|
|
outputs_size, cudaGetErrorString(err));
|
|
cudaFree(d_headers);
|
|
return;
|
|
}
|
|
|
|
// Copy block headers from host to device
|
|
err = cudaMemcpy(d_headers, block_headers, headers_size, cudaMemcpyHostToDevice);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to copy headers to device: %s\n",
|
|
cudaGetErrorString(err));
|
|
cudaFree(d_headers);
|
|
cudaFree(d_outputs);
|
|
return;
|
|
}
|
|
|
|
// Process one header at a time to isolate any issues
|
|
for (uint32_t i = 0; i < num_blocks; i++) {
|
|
const uint8_t* input = d_headers + i * block_header_len;
|
|
uint8_t* output = d_outputs + i * 32;
|
|
|
|
// Call rinhash_cuda_kernel with device pointers and proper launch configuration
|
|
rinhash_cuda_kernel<<<1, 32>>>(input, block_header_len, output);
|
|
|
|
// Check for errors after each processing
|
|
err = cudaGetLastError();
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error in block %u: %s\n", i, cudaGetErrorString(err));
|
|
cudaFree(d_headers);
|
|
cudaFree(d_outputs);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Synchronize device to ensure all operations are complete
|
|
err = cudaDeviceSynchronize();
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error during synchronization: %s\n", cudaGetErrorString(err));
|
|
cudaFree(d_headers);
|
|
cudaFree(d_outputs);
|
|
return;
|
|
}
|
|
|
|
// Copy results back from device to host
|
|
err = cudaMemcpy(outputs, d_outputs, outputs_size, cudaMemcpyDeviceToHost);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "CUDA error: Failed to copy results from device: %s\n",
|
|
cudaGetErrorString(err));
|
|
}
|
|
|
|
// Free device memory
|
|
cudaFree(d_headers);
|
|
cudaFree(d_outputs);
|
|
}
|
|
|
|
// Main RinHash function that would be called from outside
|
|
extern "C" void RinHash(
|
|
const uint32_t* version,
|
|
const uint32_t* prev_block,
|
|
const uint32_t* merkle_root,
|
|
const uint32_t* timestamp,
|
|
const uint32_t* bits,
|
|
const uint32_t* nonce,
|
|
uint8_t* output
|
|
) {
|
|
uint8_t block_header[80]; // Standard block header size
|
|
size_t block_header_len;
|
|
|
|
// Convert block header to bytes
|
|
blockheader_to_bytes(
|
|
version,
|
|
prev_block,
|
|
merkle_root,
|
|
timestamp,
|
|
bits,
|
|
nonce,
|
|
block_header,
|
|
&block_header_len
|
|
);
|
|
|
|
// Calculate RinHash
|
|
rinhash_cuda(block_header, block_header_len, output);
|
|
}
|
|
|
|
// Mining function that tries different nonces
|
|
extern "C" void RinHash_mine(
|
|
const uint32_t* version,
|
|
const uint32_t* prev_block,
|
|
const uint32_t* merkle_root,
|
|
const uint32_t* timestamp,
|
|
const uint32_t* bits,
|
|
uint32_t start_nonce,
|
|
uint32_t num_nonces,
|
|
uint32_t* found_nonce,
|
|
uint8_t* target_hash,
|
|
uint8_t* best_hash
|
|
) {
|
|
const size_t block_header_len = 80;
|
|
std::vector<uint8_t> block_headers(block_header_len * num_nonces);
|
|
std::vector<uint8_t> hashes(32 * num_nonces);
|
|
|
|
// Prepare block headers with different nonces
|
|
for (uint32_t i = 0; i < num_nonces; i++) {
|
|
uint32_t current_nonce = start_nonce + i;
|
|
|
|
// Fill in the common parts of the header
|
|
uint8_t* header = block_headers.data() + i * block_header_len;
|
|
size_t header_len;
|
|
|
|
blockheader_to_bytes(
|
|
version,
|
|
prev_block,
|
|
merkle_root,
|
|
timestamp,
|
|
bits,
|
|
¤t_nonce,
|
|
header,
|
|
&header_len
|
|
);
|
|
}
|
|
|
|
// Calculate hashes for all nonces
|
|
rinhash_cuda_batch(block_headers.data(), block_header_len, hashes.data(), num_nonces);
|
|
|
|
// Find the best hash (lowest value)
|
|
memcpy(best_hash, hashes.data(), 32);
|
|
*found_nonce = start_nonce;
|
|
|
|
for (uint32_t i = 1; i < num_nonces; i++) {
|
|
uint8_t* current_hash = hashes.data() + i * 32;
|
|
|
|
// Compare current hash with best hash (byte by byte, from most significant to least)
|
|
bool is_better = false;
|
|
for (int j = 0; j < 32; j++) {
|
|
if (current_hash[j] < best_hash[j]) {
|
|
is_better = true;
|
|
break;
|
|
}
|
|
else if (current_hash[j] > best_hash[j]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_better) {
|
|
memcpy(best_hash, current_hash, 32);
|
|
*found_nonce = start_nonce + i;
|
|
}
|
|
}
|
|
}
|