# GPU Performance Analysis & Optimization ## 🔍 **Performance Bottleneck Discovery** ### Initial Problem: - **CPU Mining**: 294 kH/s (4 threads) - **GPU Mining**: 132 H/s (1,024 threads) - **Performance Gap**: GPU is **2,200x slower** per thread! ### Root Cause Analysis: #### ❌ **GPU Implementation Issues Found:** 1. **Memory Allocation Per Hash** - GPU was calling `hipMalloc()`/`hipFree()` for **every single hash** - Each memory allocation = ~100Ξs overhead - **Solution**: ✅ Implemented memory caching with reuse 2. **Single-Thread GPU Utilization** - Kernel used only **1 thread out of 1,024** (`if (threadIdx.x == 0)`) - 1,023 threads sitting completely idle - **Solution**: ✅ Reduced to minimal 32-thread kernel for lower latency 3. **Sequential Algorithm Nature** - RinHash: BLAKE3 → Argon2d → SHA3 (inherently sequential) - Can't parallelize a single hash across multiple threads effectively - **Reality**: GPU isn't optimal for this algorithm type ### Current Optimization Status: #### ✅ **Optimizations Implemented:** 1. **Memory Caching** ```c static uint8_t *d_input_cache = nullptr; // Reused across calls static uint8_t *d_output_cache = nullptr; // No allocation per hash static block *d_memory_cache = nullptr; // Persistent Argon2 memory ``` 2. **Minimal Kernel Launch** ```c dim3 blocks(1); // Single block dim3 threads_per_block(32); // Minimal threads for low latency ``` 3. **Reduced Memory Footprint** ```c hipMalloc(&d_input_cache, 80); // Fixed 80-byte headers hipMalloc(&d_output_cache, 32); // 32-byte outputs hipMalloc(&d_memory_cache, 64 * sizeof(block)); // Argon2 workspace ``` ## 📊 **Expected Performance After Optimization** | Configuration | Before | After | Improvement | |---------------|---------|-------|-------------| | **Memory Alloc** | Per-hash | Cached | **100x faster** | | **GPU Threads** | 1,024 (1 active) | 32 (optimized) | **32x less overhead** | | **Kernel Launch** | High overhead | Minimal | **10x faster** | ### Realistic Performance Target: - **Previous**: 132 H/s - **Optimized**: ~5-15 kH/s (estimated) - **CPU Still Faster**: Sequential algorithm favors CPU threads ## 🚀 **Build Commands for Optimized Version** ```bash cd /mnt/shared/DEV/repos/d-popov.com/mines/rin/miner/gpu/RinHash-hip # Compile optimized kernel /opt/rocm-6.4.3/bin/hipcc -c -O3 -fPIC rinhash.hip.cu -o build/rinhash.o /opt/rocm-6.4.3/bin/hipcc -c -O3 -fPIC sha3-256.hip.cu -o build/sha3-256.o # Link optimized library /opt/rocm-6.4.3/bin/hipcc -shared -O3 build/rinhash.o build/sha3-256.o \ -o rocm-direct-output/gpu-libs/librinhash_hip.so \ -L/opt/rocm-6.4.3/lib -lamdhip64 # Install system-wide sudo cp rocm-direct-output/gpu-libs/librinhash_hip.so /usr/local/lib/ sudo ldconfig ``` ## 🔎 **Technical Analysis** ### Why GPU Struggles with RinHash: 1. **Algorithm Characteristics**: - **Sequential dependency chain**: Each step needs previous result - **Memory-bound operations**: Argon2d requires significant memory bandwidth - **Small data sizes**: 80-byte headers don't saturate GPU throughput 2. **GPU Architecture Mismatch**: - **GPU Optimal**: Parallel, compute-intensive, large datasets - **RinHash Reality**: Sequential, memory-bound, small datasets - **CPU Advantage**: Better single-thread performance, lower latency 3. **Overhead vs. Compute Ratio**: - **GPU Overhead**: Kernel launch + memory transfers + sync - **Actual Compute**: ~100Ξs of hash operations - **CPU**: Direct function calls, no overhead ## ðŸ’Ą **Recommendations** ### For Maximum Performance: 1. **Use CPU mining** (`-a rinhash`) for RinHash algorithm 2. **Reserve GPU** for algorithms with massive parallelization potential 3. **Hybrid approach**: CPU for RinHash, GPU for other algorithms ### When to Use GPU: - **Batch processing**: Multiple hashes simultaneously - **Different algorithms**: SHA256, Scrypt, Ethash (more GPU-friendly) - **Large-scale operations**: When latency isn't critical The optimized GPU implementation is now **available for testing**, but CPU remains the optimal choice for RinHash mining due to algorithmic characteristics.