#define OPENCL_PLATFORM_UNKNOWN 0 #define OPENCL_PLATFORM_NVIDIA 1 #define OPENCL_PLATFORM_AMD 2 #define OPENCL_PLATFORM_CLOVER 3 #ifndef MAX_OUTPUTS #define MAX_OUTPUTS 63U #endif #ifndef PLATFORM #define PLATFORM OPENCL_PLATFORM_AMD #endif #ifdef cl_clang_storage_class_specifiers #pragma OPENCL EXTENSION cl_clang_storage_class_specifiers : enable #endif #define HASHES_PER_GROUP (GROUP_SIZE / PROGPOW_LANES) typedef struct { uint32_t uint32s[32 / sizeof(uint32_t)]; } hash32_t; // Implementation based on: // https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c __constant const uint32_t keccakf_rndc[24] = {0x00000001, 0x00008082, 0x0000808a, 0x80008000, 0x0000808b, 0x80000001, 0x80008081, 0x00008009, 0x0000008a, 0x00000088, 0x80008009, 0x8000000a, 0x8000808b, 0x0000008b, 0x00008089, 0x00008003, 0x00008002, 0x00000080, 0x0000800a, 0x8000000a, 0x80008081, 0x00008080, 0x80000001, 0x80008008}; // Implementation of the Keccakf transformation with a width of 800 void keccak_f800_round(uint32_t st[25], const int r) { const uint32_t keccakf_rotc[24] = { 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44}; const uint32_t keccakf_piln[24] = { 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1}; uint32_t t, bc[5]; // Theta for (int i = 0; i < 5; i++) bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20]; for (int i = 0; i < 5; i++) { t = bc[(i + 4) % 5] ^ ROTL32(bc[(i + 1) % 5], 1u); for (uint32_t j = 0; j < 25; j += 5) st[j + i] ^= t; } // Rho Pi t = st[1]; for (int i = 0; i < 24; i++) { uint32_t j = keccakf_piln[i]; bc[0] = st[j]; st[j] = ROTL32(t, keccakf_rotc[i]); t = bc[0]; } // Chi for (uint32_t j = 0; j < 25; j += 5) { for (int i = 0; i < 5; i++) bc[i] = st[j + i]; for (int i = 0; i < 5; i++) st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5]; } // Iota st[0] ^= keccakf_rndc[r]; } // Keccak - implemented as a variant of SHAKE // The width is 800, with a bitrate of 576, a capacity of 224, and no padding // Only need 64 bits of output for mining uint64_t keccak_f800(__constant hash32_t const* g_header, uint64_t seed, hash32_t digest) { uint32_t st[25]; for (int i = 0; i < 25; i++) st[i] = 0; for (int i = 0; i < 8; i++) st[i] = g_header->uint32s[i]; st[8] = seed; st[9] = seed >> 32; for (int i = 0; i < 8; i++) st[10 + i] = digest.uint32s[i]; for (int r = 0; r < 21; r++) { keccak_f800_round(st, r); } // last round can be simplified due to partial output keccak_f800_round(st, 21); // Byte swap so byte 0 of hash is MSB of result uint64_t res = (uint64_t)st[1] << 32 | st[0]; return as_ulong(as_uchar8(res).s76543210); } #define fnv1a(h, d) (h = (h ^ d) * 0x1000193) typedef struct { uint32_t z, w, jsr, jcong; } kiss99_t; // KISS99 is simple, fast, and passes the TestU01 suite // https://en.wikipedia.org/wiki/KISS_(algorithm) // http://www.cse.yorku.ca/~oz/marsaglia-rng.html uint32_t kiss99(kiss99_t* st) { st->z = 36969 * (st->z & 65535) + (st->z >> 16); st->w = 18000 * (st->w & 65535) + (st->w >> 16); uint32_t MWC = ((st->z << 16) + st->w); st->jsr ^= (st->jsr << 17); st->jsr ^= (st->jsr >> 13); st->jsr ^= (st->jsr << 5); st->jcong = 69069 * st->jcong + 1234567; return ((MWC ^ st->jcong) + st->jsr); } void fill_mix(uint64_t seed, uint32_t lane_id, uint32_t mix[PROGPOW_REGS]) { // Use FNV to expand the per-warp seed to per-lane // Use KISS to expand the per-lane seed to fill mix uint32_t fnv_hash = 0x811c9dc5; kiss99_t st; st.z = fnv1a(fnv_hash, seed); st.w = fnv1a(fnv_hash, seed >> 32); st.jsr = fnv1a(fnv_hash, lane_id); st.jcong = fnv1a(fnv_hash, lane_id); #pragma unroll for (int i = 0; i < PROGPOW_REGS; i++) mix[i] = kiss99(&st); } typedef struct { uint32_t uint32s[PROGPOW_LANES]; uint64_t uint64s[PROGPOW_LANES / 2]; } shuffle_t; // NOTE: This struct must match the one defined in CLMiner.cpp struct SearchResults { struct { uint gid; uint mix[8]; uint pad[7]; // pad to 16 words for easy indexing } rslt[MAX_OUTPUTS]; uint count; uint hashCount; uint abort; }; #if PLATFORM != OPENCL_PLATFORM_NVIDIA // use maxrregs on nv __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) #endif __kernel void ethash_search(__global struct SearchResults* restrict g_output, __constant hash32_t const* g_header, __global dag_t const* g_dag, ulong start_nonce, ulong target, uint hack_false) { if (g_output->abort) return; __local shuffle_t share[HASHES_PER_GROUP]; __local uint32_t c_dag[PROGPOW_CACHE_WORDS]; uint32_t const lid = get_local_id(0); uint32_t const gid = get_global_id(0); uint64_t const nonce = start_nonce + gid; const uint32_t lane_id = lid & (PROGPOW_LANES - 1); const uint32_t group_id = lid / PROGPOW_LANES; // Load the first portion of the DAG into the cache for (uint32_t word = lid * PROGPOW_DAG_LOADS; word < PROGPOW_CACHE_WORDS; word += GROUP_SIZE * PROGPOW_DAG_LOADS) { dag_t load = g_dag[word / PROGPOW_DAG_LOADS]; for (int i = 0; i < PROGPOW_DAG_LOADS; i++) c_dag[word + i] = load.s[i]; } hash32_t digest; for (int i = 0; i < 8; i++) digest.uint32s[i] = 0; // keccak(header..nonce) uint64_t seed = keccak_f800(g_header, start_nonce + gid, digest); barrier(CLK_LOCAL_MEM_FENCE); #pragma unroll 1 for (uint32_t h = 0; h < PROGPOW_LANES; h++) { uint32_t mix[PROGPOW_REGS]; // share the hash's seed across all lanes if (lane_id == h) share[group_id].uint64s[0] = seed; barrier(CLK_LOCAL_MEM_FENCE); uint64_t hash_seed = share[group_id].uint64s[0]; // initialize mix for all lanes fill_mix(hash_seed, lane_id, mix); #pragma unroll 1 for (uint32_t l = 0; l < PROGPOW_CNT_DAG; l++) progPowLoop(l, mix, g_dag, c_dag, share[0].uint64s, hack_false); // Reduce mix data to a per-lane 32-bit digest uint32_t mix_hash = 0x811c9dc5; #pragma unroll for (int i = 0; i < PROGPOW_REGS; i++) fnv1a(mix_hash, mix[i]); // Reduce all lanes to a single 256-bit digest hash32_t digest_temp; for (int i = 0; i < 8; i++) digest_temp.uint32s[i] = 0x811c9dc5; share[group_id].uint32s[lane_id] = mix_hash; barrier(CLK_LOCAL_MEM_FENCE); #pragma unroll for (int i = 0; i < PROGPOW_LANES; i++) fnv1a(digest_temp.uint32s[i % 8], share[group_id].uint32s[i]); if (h == lane_id) digest = digest_temp; } if (lid == 0) atomic_inc(&g_output->hashCount); // keccak(header .. keccak(header..nonce) .. digest); if (keccak_f800(g_header, seed, digest) <= target) { uint slot = atomic_inc(&g_output->count); if (slot < MAX_OUTPUTS) { g_output->rslt[slot].gid = gid; for (int i = 0; i < 8; i++) g_output->rslt[slot].mix[i] = digest.uint32s[i]; } atomic_inc(&g_output->abort); } } // // DAG calculation logic // #ifndef LIGHT_WORDS #define LIGHT_WORDS 262139 #endif #define ETHASH_DATASET_PARENTS 256 #define NODE_WORDS (64 / 4) #define FNV_PRIME 0x01000193 __constant uint2 const Keccak_f1600_RC[24] = { (uint2)(0x00000001, 0x00000000), (uint2)(0x00008082, 0x00000000), (uint2)(0x0000808a, 0x80000000), (uint2)(0x80008000, 0x80000000), (uint2)(0x0000808b, 0x00000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008009, 0x80000000), (uint2)(0x0000008a, 0x00000000), (uint2)(0x00000088, 0x00000000), (uint2)(0x80008009, 0x00000000), (uint2)(0x8000000a, 0x00000000), (uint2)(0x8000808b, 0x00000000), (uint2)(0x0000008b, 0x80000000), (uint2)(0x00008089, 0x80000000), (uint2)(0x00008003, 0x80000000), (uint2)(0x00008002, 0x80000000), (uint2)(0x00000080, 0x80000000), (uint2)(0x0000800a, 0x00000000), (uint2)(0x8000000a, 0x80000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008080, 0x80000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008008, 0x80000000), }; #if PLATFORM == OPENCL_PLATFORM_NVIDIA && COMPUTE >= 35 static uint2 ROL2(const uint2 a, const int offset) { uint2 result; if (offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } return result; } #elif PLATFORM == OPENCL_PLATFORM_AMD #pragma OPENCL EXTENSION cl_amd_media_ops : enable static uint2 ROL2(const uint2 vv, const int r) { if (r <= 32) { return amd_bitalign((vv).xy, (vv).yx, 32 - r); } else { return amd_bitalign((vv).yx, (vv).xy, 64 - r); } } #else static uint2 ROL2(const uint2 v, const int n) { uint2 result; if (n <= 32) { result.y = ((v.y << (n)) | (v.x >> (32 - n))); result.x = ((v.x << (n)) | (v.y >> (32 - n))); } else { result.y = ((v.x << (n - 32)) | (v.y >> (64 - n))); result.x = ((v.y << (n - 32)) | (v.x >> (64 - n))); } return result; } #endif static void chi(uint2* a, const uint n, const uint2* t) { a[n + 0] = bitselect(t[n + 0] ^ t[n + 2], t[n + 0], t[n + 1]); a[n + 1] = bitselect(t[n + 1] ^ t[n + 3], t[n + 1], t[n + 2]); a[n + 2] = bitselect(t[n + 2] ^ t[n + 4], t[n + 2], t[n + 3]); a[n + 3] = bitselect(t[n + 3] ^ t[n + 0], t[n + 3], t[n + 4]); a[n + 4] = bitselect(t[n + 4] ^ t[n + 1], t[n + 4], t[n + 0]); } static void keccak_f1600_round(uint2* a, uint r) { uint2 t[25]; uint2 u; // Theta t[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]; t[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]; t[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]; t[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]; t[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]; u = t[4] ^ ROL2(t[1], 1); a[0] ^= u; a[5] ^= u; a[10] ^= u; a[15] ^= u; a[20] ^= u; u = t[0] ^ ROL2(t[2], 1); a[1] ^= u; a[6] ^= u; a[11] ^= u; a[16] ^= u; a[21] ^= u; u = t[1] ^ ROL2(t[3], 1); a[2] ^= u; a[7] ^= u; a[12] ^= u; a[17] ^= u; a[22] ^= u; u = t[2] ^ ROL2(t[4], 1); a[3] ^= u; a[8] ^= u; a[13] ^= u; a[18] ^= u; a[23] ^= u; u = t[3] ^ ROL2(t[0], 1); a[4] ^= u; a[9] ^= u; a[14] ^= u; a[19] ^= u; a[24] ^= u; // Rho Pi t[0] = a[0]; t[10] = ROL2(a[1], 1); t[20] = ROL2(a[2], 62); t[5] = ROL2(a[3], 28); t[15] = ROL2(a[4], 27); t[16] = ROL2(a[5], 36); t[1] = ROL2(a[6], 44); t[11] = ROL2(a[7], 6); t[21] = ROL2(a[8], 55); t[6] = ROL2(a[9], 20); t[7] = ROL2(a[10], 3); t[17] = ROL2(a[11], 10); t[2] = ROL2(a[12], 43); t[12] = ROL2(a[13], 25); t[22] = ROL2(a[14], 39); t[23] = ROL2(a[15], 41); t[8] = ROL2(a[16], 45); t[18] = ROL2(a[17], 15); t[3] = ROL2(a[18], 21); t[13] = ROL2(a[19], 8); t[14] = ROL2(a[20], 18); t[24] = ROL2(a[21], 2); t[9] = ROL2(a[22], 61); t[19] = ROL2(a[23], 56); t[4] = ROL2(a[24], 14); // Chi chi(a, 0, t); // Iota a[0] ^= Keccak_f1600_RC[r]; chi(a, 5, t); chi(a, 10, t); chi(a, 15, t); chi(a, 20, t); } static void keccak_f1600_no_absorb(uint2* a, uint out_size, uint isolate) { // Originally I unrolled the first and last rounds to interface // better with surrounding code, however I haven't done this // without causing the AMD compiler to blow up the VGPR usage. // uint o = 25; for (uint r = 0; r < 24;) { // This dynamic branch stops the AMD compiler unrolling the loop // and additionally saves about 33% of the VGPRs, enough to gain another // wavefront. Ideally we'd get 4 in flight, but 3 is the best I can // massage out of the compiler. It doesn't really seem to matter how // much we try and help the compiler save VGPRs because it seems to throw // that information away, hence the implementation of keccak here // doesn't bother. if (isolate) { keccak_f1600_round(a, r++); // if (r == 23) o = out_size; } } // final round optimised for digest size // keccak_f1600_round(a, 23, out_size); } #define copy(dst, src, count) \ for (uint i = 0; i != count; ++i) \ { \ (dst)[i] = (src)[i]; \ } static uint fnv(uint x, uint y) { return x * FNV_PRIME ^ y; } static uint4 fnv4(uint4 x, uint4 y) { return x * FNV_PRIME ^ y; } typedef union { uint words[64 / sizeof(uint)]; uint2 uint2s[64 / sizeof(uint2)]; uint4 uint4s[64 / sizeof(uint4)]; } hash64_t; typedef union { uint words[200 / sizeof(uint)]; uint2 uint2s[200 / sizeof(uint2)]; uint4 uint4s[200 / sizeof(uint4)]; } hash200_t; typedef struct { uint4 uint4s[128 / sizeof(uint4)]; } hash128_t; static void SHA3_512(uint2* s, uint isolate) { for (uint i = 8; i != 25; ++i) { s[i] = (uint2){0, 0}; } s[8].x = 0x00000001; s[8].y = 0x80000000; keccak_f1600_no_absorb(s, 8, isolate); } __kernel void ethash_calculate_dag_item( uint start, __global hash64_t const* g_light, __global hash64_t* g_dag, uint isolate) { uint const node_index = start + get_global_id(0); if (node_index * sizeof(hash64_t) >= PROGPOW_DAG_BYTES) return; hash200_t dag_node; copy(dag_node.uint4s, g_light[node_index % LIGHT_WORDS].uint4s, 4); dag_node.words[0] ^= node_index; SHA3_512(dag_node.uint2s, isolate); for (uint i = 0; i != ETHASH_DATASET_PARENTS; ++i) { uint parent_index = fnv(node_index ^ i, dag_node.words[i % NODE_WORDS]) % LIGHT_WORDS; for (uint w = 0; w != 4; ++w) { dag_node.uint4s[w] = fnv4(dag_node.uint4s[w], g_light[parent_index].uint4s[w]); } } SHA3_512(dag_node.uint2s, isolate); copy(g_dag[node_index].uint4s, dag_node.uint4s, 4); }