amd gpu scalffold

This commit is contained in:
Dobromir Popov
2025-09-05 03:36:28 +03:00
parent db60983796
commit f5b05ce531
9 changed files with 2181 additions and 0 deletions

View File

@@ -0,0 +1,21 @@
cmake_minimum_required(VERSION 3.21)
project(RinHashHIP LANGUAGES CXX HIP)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_HIP_STANDARD 17)
# Enable HIP
find_package(HIP REQUIRED)
set(SOURCES
rinhash.hip.cu
sha3-256.hip.cu
)
add_executable(rinhash-hip-miner ${SOURCES})
target_include_directories(rinhash-hip-miner PRIVATE ${CMAKE_CURRENT_SOURCE_DIR})
target_compile_definitions(rinhash-hip-miner PRIVATE __HIP_PLATFORM_AMD__)
target_link_libraries(rinhash-hip-miner PRIVATE HIP::device)

View File

@@ -0,0 +1,929 @@
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
//=== Argon2 定数 ===//
#define ARGON2_BLOCK_SIZE 1024
#define ARGON2_QWORDS_IN_BLOCK (ARGON2_BLOCK_SIZE / 8)
#define ARGON2_OWORDS_IN_BLOCK (ARGON2_BLOCK_SIZE / 16)
#define ARGON2_HWORDS_IN_BLOCK (ARGON2_BLOCK_SIZE / 32)
#define ARGON2_SYNC_POINTS 4
#define ARGON2_PREHASH_DIGEST_LENGTH 64
#define ARGON2_PREHASH_SEED_LENGTH 72
#define ARGON2_VERSION_10 0x10
#define ARGON2_VERSION_13 0x13
#define ARGON2_ADDRESSES_IN_BLOCK 128
//=== Blake2b 定数 ===//
#define BLAKE2B_BLOCKBYTES 128
#define BLAKE2B_OUTBYTES 64
#define BLAKE2B_KEYBYTES 64
#define BLAKE2B_SALTBYTES 16
#define BLAKE2B_PERSONALBYTES 16
#define BLAKE2B_ROUNDS 12
//=== 構造体定義 ===//
typedef struct __align__(64) block_ {
uint64_t v[ARGON2_QWORDS_IN_BLOCK];
} block;
typedef struct Argon2_instance_t {
block *memory; /* Memory pointer */
uint32_t version;
uint32_t passes; /* Number of passes */
uint32_t memory_blocks; /* Number of blocks in memory */
uint32_t segment_length;
uint32_t lane_length;
uint32_t lanes;
uint32_t threads;
int print_internals; /* whether to print the memory blocks */
} argon2_instance_t;
/*
* Argon2 position: where we construct the block right now. Used to distribute
* work between threads.
*/
typedef struct Argon2_position_t {
uint32_t pass;
uint32_t lane;
uint8_t slice;
uint32_t index;
} argon2_position_t;
typedef struct __blake2b_state {
uint64_t h[8];
uint64_t t[2];
uint64_t f[2];
uint8_t buf[BLAKE2B_BLOCKBYTES];
unsigned buflen;
unsigned outlen;
uint8_t last_node;
} blake2b_state;
typedef struct __blake2b_param {
uint8_t digest_length; /* 1 */
uint8_t key_length; /* 2 */
uint8_t fanout; /* 3 */
uint8_t depth; /* 4 */
uint32_t leaf_length; /* 8 */
uint64_t node_offset; /* 16 */
uint8_t node_depth; /* 17 */
uint8_t inner_length; /* 18 */
uint8_t reserved[14]; /* 32 */
uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */
uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */
} blake2b_param;
//=== 定数メモリ ===//
__constant__ uint64_t blake2b_IV[8] = {
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
__constant__ uint8_t blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}
};
//=== 共通ヘルパー関数 ===//
__device__ __forceinline__ uint64_t rotr64(uint64_t x, uint32_t n) {
return (x >> n) | (x << (64 - n));
}
// fBlaMka関数をCリファレンス実装と完全に一致させる
__device__ __forceinline__ uint64_t fBlaMka(uint64_t x, uint64_t y) {
const uint64_t m = 0xFFFFFFFFULL;
uint64_t xy = (x & m) * (y & m);
return x + y + 2 * xy;
}
// Blake2b G関数 - リファレンス実装と完全に一致させる
__device__ __forceinline__ void blake2b_G(uint64_t& a, uint64_t& b, uint64_t& c, uint64_t& d, uint64_t m1, uint64_t m2) {
a = a + b + m1;
d = rotr64(d ^ a, 32);
c = c + d;
b = rotr64(b ^ c, 24);
a = a + b + m2;
d = rotr64(d ^ a, 16);
c = c + d;
b = rotr64(b ^ c, 63);
}
// リトルエンディアンでの32ビット値の格納
__device__ __forceinline__ void store32(void *dst, uint32_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
__device__ __forceinline__ void blake2b_increment_counter(blake2b_state *S,
uint64_t inc) {
S->t[0] += inc;
S->t[1] += (S->t[0] < inc);
}
__device__ __forceinline__ void blake2b_set_lastnode(blake2b_state *S) {
S->f[1] = (uint64_t)-1;
}
__device__ __forceinline__ void blake2b_set_lastblock(blake2b_state *S) {
if (S->last_node) {
blake2b_set_lastnode(S);
}
S->f[0] = (uint64_t)-1;
}
// Add structure-specific memset function
__device__ void blake2b_state_memset(blake2b_state* S) {
for (int i = 0; i < sizeof(blake2b_state); i++) {
((uint8_t*)S)[i] = 0;
}
}
// Add missing xor_block function
__device__ void xor_block(block* dst, const block* src) {
for (int i = 0; i < ARGON2_QWORDS_IN_BLOCK; i++) {
dst->v[i] ^= src->v[i];
}
}
// custom memcpy, apparently cuda's memcpy is slow
// when called within a kernel
__device__ void c_memcpy(void *dest, const void *src, size_t n) {
uint8_t *d = (uint8_t*)dest;
const uint8_t *s = (const uint8_t*)src;
for (size_t i = 0; i < n; i++) {
d[i] = s[i];
}
}
// Add missing copy_block function
__device__ void copy_block(block* dst, const block* src) {
c_memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
}
// fill_blockをCリファレンス実装と完全に一致させる
__device__ void fill_block(const block* prev_block, const block* ref_block, block* next_block, int with_xor) {
block blockR = {};
block block_tmp = {};
unsigned i;
copy_block(&blockR, ref_block);
xor_block(&blockR, prev_block);
copy_block(&block_tmp, &blockR);
if (with_xor) {
xor_block(&block_tmp, next_block);
}
// G function without macro
auto g = [](uint64_t& a, uint64_t& b, uint64_t& c, uint64_t& d) {
a = fBlaMka(a, b);
d = rotr64(d ^ a, 32);
c = fBlaMka(c, d);
b = rotr64(b ^ c, 24);
a = fBlaMka(a, b);
d = rotr64(d ^ a, 16);
c = fBlaMka(c, d);
b = rotr64(b ^ c, 63);
};
// BLAKE2_ROUND_NOMSG function without macro
auto blake2_round = [&g](uint64_t& v0, uint64_t& v1, uint64_t& v2, uint64_t& v3,
uint64_t& v4, uint64_t& v5, uint64_t& v6, uint64_t& v7,
uint64_t& v8, uint64_t& v9, uint64_t& v10, uint64_t& v11,
uint64_t& v12, uint64_t& v13, uint64_t& v14, uint64_t& v15) {
do {
g(v0, v4, v8, v12);
g(v1, v5, v9, v13);
g(v2, v6, v10, v14);
g(v3, v7, v11, v15);
g(v0, v5, v10, v15);
g(v1, v6, v11, v12);
g(v2, v7, v8, v13);
g(v3, v4, v9, v14);
} while ((void)0, 0);
};
// Apply Blake2 on columns
for (i = 0; i < 8; ++i) {
blake2_round(
blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
blockR.v[16 * i + 15]
);
}
// Apply Blake2 on rows
for (i = 0; i < 8; i++) {
blake2_round(
blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
blockR.v[2 * i + 113]
);
}
copy_block(next_block, &block_tmp);
xor_block(next_block, &blockR);
}
template<typename T, typename ptr_t>
__device__ void c_memset(ptr_t dest, T val, int count) {
for(int i=0; i<count; i++)
dest[i] = val;
}
__device__ void init_block_value(block *b, uint8_t in) { c_memset(b->v, in, sizeof(b->v)); }
__device__ void next_addresses(block *address_block, block *input_block,
const block *zero_block) {
input_block->v[6]++;
fill_block(zero_block, input_block, address_block, 0);
fill_block(zero_block, address_block, address_block, 0);
}
__device__ void G1(uint64_t& a, uint64_t& b, uint64_t& c, uint64_t& d, uint64_t x, uint64_t y) {
a = a + b + x;
d = rotr64(d ^ a, 32);
c = c + d;
b = rotr64(b ^ c, 24);
a = a + b + y;
d = rotr64(d ^ a, 16);
c = c + d;
b = rotr64(b ^ c, 63);
}
// Blake2b compression function F
__device__ void blake2b_compress(blake2b_state* S, const uint8_t block[BLAKE2B_BLOCKBYTES]) {
uint64_t m[16];
uint64_t v[16];
// Load message block into m[16]
for (int i = 0; i < 16; i++) {
const uint8_t* p = block + i * 8;
m[i] = ((uint64_t)p[0])
| ((uint64_t)p[1] << 8)
| ((uint64_t)p[2] << 16)
| ((uint64_t)p[3] << 24)
| ((uint64_t)p[4] << 32)
| ((uint64_t)p[5] << 40)
| ((uint64_t)p[6] << 48)
| ((uint64_t)p[7] << 56);
}
// Initialize v[0..15]
for (int i = 0; i < 8; i++) {
v[i] = S->h[i];
v[i + 8] = blake2b_IV[i];
}
v[12] ^= S->t[0];
v[13] ^= S->t[1];
v[14] ^= S->f[0];
v[15] ^= S->f[1];
for (int r = 0; r < BLAKE2B_ROUNDS; r++) {
const uint8_t* s = blake2b_sigma[r];
// Column step
G1(v[0], v[4], v[8], v[12], m[s[0]], m[s[1]]);
G1(v[1], v[5], v[9], v[13], m[s[2]], m[s[3]]);
G1(v[2], v[6], v[10], v[14], m[s[4]], m[s[5]]);
G1(v[3], v[7], v[11], v[15], m[s[6]], m[s[7]]);
// Diagonal step
G1(v[0], v[5], v[10], v[15], m[s[8]], m[s[9]]);
G1(v[1], v[6], v[11], v[12], m[s[10]], m[s[11]]);
G1(v[2], v[7], v[8], v[13], m[s[12]], m[s[13]]);
G1(v[3], v[4], v[9], v[14], m[s[14]], m[s[15]]);
}
// Finalization
for (int i = 0; i < 8; i++) {
S->h[i] ^= v[i] ^ v[i + 8];
}
}
// Helper functions to load/store 64-bit values in little-endian order
__device__ __forceinline__ uint64_t load64(const void* src) {
const uint8_t* p = (const uint8_t*)src;
return ((uint64_t)(p[0]))
| ((uint64_t)(p[1]) << 8)
| ((uint64_t)(p[2]) << 16)
| ((uint64_t)(p[3]) << 24)
| ((uint64_t)(p[4]) << 32)
| ((uint64_t)(p[5]) << 40)
| ((uint64_t)(p[6]) << 48)
| ((uint64_t)(p[7]) << 56);
}
__device__ __forceinline__ void store64(void* dst, uint64_t w) {
uint8_t* p = (uint8_t*)dst;
p[0] = (uint8_t)(w);
p[1] = (uint8_t)(w >> 8);
p[2] = (uint8_t)(w >> 16);
p[3] = (uint8_t)(w >> 24);
p[4] = (uint8_t)(w >> 32);
p[5] = (uint8_t)(w >> 40);
p[6] = (uint8_t)(w >> 48);
p[7] = (uint8_t)(w >> 56);
}
__device__ void load_block(block *dst, const void *input) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
}
}
__device__ void store_block(void *output, const block *src) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
}
}
// Blake2b init function to match reference implementation exactly
__device__ int blake2b_init(blake2b_state* S, size_t outlen) {
blake2b_param P;
// Clear state using our custom function
blake2b_state_memset(S);
// Set parameters according to Blake2b spec
P.digest_length = (uint8_t)outlen;
P.key_length = 0;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
c_memset(P.reserved, 0, sizeof(P.reserved));
c_memset(P.salt, 0, sizeof(P.salt));
c_memset(P.personal, 0, sizeof(P.personal));
// Initialize state vector with IV
for (int i = 0; i < 8; i++) {
S->h[i] = blake2b_IV[i];
}
const unsigned char *p = (const unsigned char *)(&P);
/* IV XOR Parameter Block */
for (int i = 0; i < 8; ++i) {
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
}
S->outlen = P.digest_length;
return 0; // Success
}
__device__ int FLAG_clear_internal_memory = 0;
__device__ void clear_internal_memory(void *v, size_t n) {
if (FLAG_clear_internal_memory && v) {
// secure_wipe_memory(v, n);
}
}
// Blake2b update function to match reference implementation
__device__ int blake2b_update(blake2b_state* S, const uint8_t* in, size_t inlen) {
const uint8_t *pin = (const uint8_t *)in;
if (inlen == 0) {
return 0;
}
/* Sanity check */
if (S == NULL || in == NULL) {
return -1;
}
/* Is this a reused state? */
if (S->f[0] != 0) {
return -1;
}
if (S->buflen + inlen > BLAKE2B_BLOCKBYTES) {
/* Complete current block */
size_t left = S->buflen;
size_t fill = BLAKE2B_BLOCKBYTES - left;
c_memcpy(&S->buf[left], pin, fill);
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, S->buf);
S->buflen = 0;
inlen -= fill;
pin += fill;
/* Avoid buffer copies when possible */
while (inlen > BLAKE2B_BLOCKBYTES) {
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, pin);
inlen -= BLAKE2B_BLOCKBYTES;
pin += BLAKE2B_BLOCKBYTES;
}
}
c_memcpy(&S->buf[S->buflen], pin, inlen);
S->buflen += (unsigned int)inlen;
return 0; // Success
}
// Blake2b final function to match reference implementation
__device__ int blake2b_final(blake2b_state* S, uint8_t* out, size_t outlen) {
if (!S || !out)
return -1;
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
unsigned int i;
blake2b_increment_counter(S, S->buflen);
blake2b_set_lastblock(S);
c_memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */
blake2b_compress(S, S->buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
store64(buffer + sizeof(S->h[i]) * i, S->h[i]);
}
c_memcpy(out, buffer, S->outlen);
return 0;
}
__device__ int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen) {
blake2b_param P;
if (S == NULL) {
return -1;
}
/* Setup Parameter Block for keyed BLAKE2 */
P.digest_length = (uint8_t)outlen;
P.key_length = (uint8_t)keylen;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
c_memset(P.reserved, 0, sizeof(P.reserved));
c_memset(P.salt, 0, sizeof(P.salt));
c_memset(P.personal, 0, sizeof(P.personal));
// Initialize state vector with IV
for (int i = 0; i < 8; i++) {
S->h[i] = blake2b_IV[i];
}
// XOR first element with param
const unsigned char *p = (const unsigned char *)(&P);
/* IV XOR Parameter Block */
for (int i = 0; i < 8; ++i) {
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
}
S->outlen = P.digest_length;
uint8_t block[BLAKE2B_BLOCKBYTES];
c_memset(block, 0, BLAKE2B_BLOCKBYTES);
c_memcpy(block, key, keylen);
blake2b_update(S, block, BLAKE2B_BLOCKBYTES);
/* Burn the key from stack */
clear_internal_memory(block, BLAKE2B_BLOCKBYTES);
return 0;
}
// Blake2b all-in-one function
__device__ int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
const void *key, size_t keylen) {
blake2b_state S;
int ret = -1;
/* Verify parameters */
if (NULL == in && inlen > 0) {
goto fail;
}
if (NULL == out || outlen == 0 || outlen > BLAKE2B_OUTBYTES) {
goto fail;
}
if ((NULL == key && keylen > 0) || keylen > BLAKE2B_KEYBYTES) {
goto fail;
}
if (keylen > 0) {
if (blake2b_init_key(&S, outlen, key, keylen) < 0) {
goto fail;
}
} else {
if (blake2b_init(&S, outlen) < 0) {
goto fail;
}
}
if (blake2b_update(&S, (const uint8_t*)in, inlen) < 0) {
goto fail;
}
ret = blake2b_final(&S, (uint8_t*)out, outlen);
fail:
clear_internal_memory(&S, sizeof(S));
return ret;
}
// index_alpha関数を完全にCリファレンス実装と一致させる関数のシグネチャも含め
__device__ uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane) {
uint32_t reference_area_size;
uint64_t relative_position;
uint32_t start_position, absolute_position;
if (0 == position->pass) {
/* First pass */
if (0 == position->slice) {
/* First slice */
reference_area_size =
position->index - 1; /* all but the previous */
} else {
if (same_lane) {
/* The same lane => add current segment */
reference_area_size =
position->slice * instance->segment_length +
position->index - 1;
} else {
reference_area_size =
position->slice * instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
} else {
/* Second pass */
if (same_lane) {
reference_area_size = instance->lane_length -
instance->segment_length + position->index -
1;
} else {
reference_area_size = instance->lane_length -
instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
* relative position */
relative_position = pseudo_rand;
relative_position = relative_position * relative_position >> 32;
relative_position = reference_area_size - 1 -
(reference_area_size * relative_position >> 32);
/* 1.2.5 Computing starting position */
start_position = 0;
if (0 != position->pass) {
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
? 0
: (position->slice + 1) * instance->segment_length;
}
/* 1.2.6. Computing absolute position */
absolute_position = (start_position + relative_position) %
instance->lane_length; /* absolute position */
return absolute_position;
}
// fill_segment関数を追加Cリファレンス実装と完全に一致
__device__ void fill_segment(const argon2_instance_t *instance,
argon2_position_t position) {
block *ref_block = NULL, *curr_block = NULL;
block address_block, input_block, zero_block;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index;
uint32_t i;
int data_independent_addressing;
data_independent_addressing = false;
if (data_independent_addressing) {
init_block_value(&zero_block, 0);
init_block_value(&input_block, 0);
input_block.v[0] = position.pass;
input_block.v[1] = position.lane;
input_block.v[2] = position.slice;
input_block.v[3] = instance->memory_blocks;
input_block.v[4] = instance->passes;
input_block.v[5] = 0;
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
/* Don't forget to generate the first block of addresses: */
if (data_independent_addressing) {
next_addresses(&address_block, &input_block, &zero_block);
}
}
/* Offset of the current block */
curr_offset = position.lane * instance->lane_length +
position.slice * instance->segment_length + starting_index;
if (0 == curr_offset % instance->lane_length) {
/* Last block in this lane */
prev_offset = curr_offset + instance->lane_length - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
for (i = starting_index; i < instance->segment_length;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % instance->lane_length == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
next_addresses(&address_block, &input_block, &zero_block);
}
pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block =
instance->memory + instance->lane_length * ref_lane + ref_index;
curr_block = instance->memory + curr_offset;
if (ARGON2_VERSION_10 == instance->version) {
/* version 1.2.1 and earlier: overwrite, not XOR */
fill_block(instance->memory + prev_offset, ref_block, curr_block, 0);
} else {
if(0 == position.pass) {
fill_block(instance->memory + prev_offset, ref_block,
curr_block, 0);
} else {
fill_block(instance->memory + prev_offset, ref_block,
curr_block, 1);
}
}
}
}
// fill_memory関数をCリファレンス実装と完全に一致させる
__device__ void fill_memory(block* memory, uint32_t passes, uint32_t lanes, uint32_t lane_length, uint32_t segment_length) {
argon2_instance_t instance;
instance.version = ARGON2_VERSION_13;
instance.passes = passes;
instance.memory = memory;
instance.memory_blocks = lanes * lane_length;
instance.segment_length = segment_length;
instance.lane_length = lane_length;
instance.lanes = lanes;
instance.threads = lanes;
instance.print_internals = 0;
argon2_position_t position;
for (uint32_t pass = 0; pass < passes; ++pass) {
position.pass = pass;
for (uint32_t slice = 0; slice < ARGON2_SYNC_POINTS; ++slice) {
position.slice = slice;
for (uint32_t lane = 0; lane < lanes; ++lane) {
position.lane = lane;
fill_segment(&instance, position);
}
}
}
}
// blake2b_long関数をCリファレンス実装と完全に一致させる
__device__ int blake2b_long(void *pout, size_t outlen, const void *in, size_t inlen) {
uint8_t *out = (uint8_t *)pout;
blake2b_state blake_state;
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
int ret = -1;
if (outlen > UINT32_MAX) {
goto fail;
}
/* Ensure little-endian byte order! */
store32(outlen_bytes, (uint32_t)outlen);
#define TRY(statement) \
do { \
ret = statement; \
if (ret < 0) { \
goto fail; \
} \
} while ((void)0, 0)
if (outlen <= BLAKE2B_OUTBYTES) {
TRY(blake2b_init(&blake_state, outlen));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, (const uint8_t*)in, inlen));
TRY(blake2b_final(&blake_state, out, outlen));
} else {
uint32_t toproduce;
uint8_t out_buffer[BLAKE2B_OUTBYTES];
uint8_t in_buffer[BLAKE2B_OUTBYTES];
TRY(blake2b_init(&blake_state, BLAKE2B_OUTBYTES));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, (const uint8_t*)in, inlen));
TRY(blake2b_final(&blake_state, out_buffer, BLAKE2B_OUTBYTES));
c_memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce = (uint32_t)outlen - BLAKE2B_OUTBYTES / 2;
while (toproduce > BLAKE2B_OUTBYTES) {
c_memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, BLAKE2B_OUTBYTES, in_buffer, BLAKE2B_OUTBYTES, NULL, 0));
c_memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce -= BLAKE2B_OUTBYTES / 2;
}
c_memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, toproduce, in_buffer, BLAKE2B_OUTBYTES, NULL,
0));
c_memcpy(out, out_buffer, toproduce);
}
fail:
clear_internal_memory(&blake_state, sizeof(blake_state));
return ret;
#undef TRY
}
// device_argon2d_hash関数を完全にCリファレンス実装と一致させる
__device__ void device_argon2d_hash(
uint8_t* output,
const uint8_t* input, size_t input_len,
uint32_t t_cost, uint32_t m_cost, uint32_t lanes,
block* memory,
const uint8_t* salt, size_t salt_len
) {
argon2_instance_t instance;
// 1. メモリサイズの調整
uint32_t memory_blocks = m_cost;
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * lanes) {
memory_blocks = 2 * ARGON2_SYNC_POINTS * lanes;
}
uint32_t segment_length = memory_blocks / (lanes * ARGON2_SYNC_POINTS);
memory_blocks = segment_length * (lanes * ARGON2_SYNC_POINTS);
uint32_t lane_length = segment_length * ARGON2_SYNC_POINTS;
// Initialize instance with the provided memory pointer
instance.version = ARGON2_VERSION_13;
instance.memory = memory; // Use the provided memory pointer
instance.passes = t_cost;
instance.memory_blocks = memory_blocks;
instance.segment_length = segment_length;
instance.lane_length = lane_length;
instance.lanes = lanes;
instance.threads = 1;
// 2. 初期ハッシュの計算
uint8_t blockhash[ARGON2_PREHASH_DIGEST_LENGTH];
blake2b_state BlakeHash;
blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);
uint8_t value[sizeof(uint32_t)];
store32(&value, lanes);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, 32);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, memory_blocks);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, t_cost);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, ARGON2_VERSION_13);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, 0);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, input_len);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
blake2b_update(&BlakeHash, (const uint8_t *)input, input_len);
store32(&value, salt_len);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
blake2b_update(&BlakeHash, (const uint8_t *)salt, salt_len);
store32(&value, 0);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
store32(&value, 0);
blake2b_update(&BlakeHash, (uint8_t*)&value, sizeof(value));
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
// 3. Initialize first blocks in each lane
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
uint8_t initial_hash[ARGON2_PREHASH_SEED_LENGTH];
c_memcpy(initial_hash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
c_memset(initial_hash + ARGON2_PREHASH_DIGEST_LENGTH, 0, ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH);
for (uint32_t l = 0; l < lanes; ++l) {
store32(initial_hash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(initial_hash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, initial_hash, ARGON2_PREHASH_SEED_LENGTH);
load_block(&memory[l * lane_length], blockhash_bytes);
store32(initial_hash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, initial_hash, ARGON2_PREHASH_SEED_LENGTH);
load_block(&memory[l * lane_length + 1], blockhash_bytes);
}
// 4. Fill memory
fill_memory(memory, t_cost, lanes, lane_length, segment_length);
// 5. Final block mixing
block final_block;
copy_block(&final_block, &memory[0 * lane_length + (lane_length - 1)]);
for (uint32_t l = 1; l < lanes; ++l) {
uint32_t last_block_in_lane = l * lane_length + (lane_length - 1);
xor_block(&final_block, &memory[last_block_in_lane]);
}
// 6. Final hash
uint8_t final_block_bytes[ARGON2_BLOCK_SIZE];
store_block(final_block_bytes, &final_block);
blake2b_long(output, 32, final_block_bytes, ARGON2_BLOCK_SIZE);
}
//=== __global__ カーネル例salt 指定版)===//
// ホスト側でブロック用メモリをあらかじめ確保し、そのポインタmemory_ptrを渡すことを前提としています。
__global__ void argon2d_hash_device_kernel(
uint8_t* output,
const uint8_t* input, size_t input_len,
uint32_t t_cost, uint32_t m_cost, uint32_t lanes,
block* memory_ptr, // ホスト側で確保したメモリ領域へのポインタ
const uint8_t* salt, size_t salt_len
) {
if (threadIdx.x == 0 && blockIdx.x == 0) {
device_argon2d_hash(output, input, input_len, t_cost, m_cost, lanes, memory_ptr, salt, salt_len);
}
}

View File

@@ -0,0 +1,272 @@
#include "blaze3_cpu.cuh"
// Number of threads per thread block
__constant__ const int NUM_THREADS = 16;
// redefine functions, but for the GPU
// all of them are the same but with g_ prefixed
__constant__ const u32 g_IV[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
};
__constant__ const int g_MSG_PERMUTATION[] = {
2, 6, 3, 10, 7, 0, 4, 13,
1, 11, 12, 5, 9, 14, 15, 8
};
__device__ u32 g_rotr(u32 value, int shift) {
return (value >> shift)|(value << (usize - shift));
}
__device__ void g_g(u32 state[16], u32 a, u32 b, u32 c, u32 d, u32 mx, u32 my) {
state[a] = state[a] + state[b] + mx;
state[d] = g_rotr((state[d] ^ state[a]), 16);
state[c] = state[c] + state[d];
state[b] = g_rotr((state[b] ^ state[c]), 12);
state[a] = state[a] + state[b] + my;
state[d] = g_rotr((state[d] ^ state[a]), 8);
state[c] = state[c] + state[d];
state[b] = g_rotr((state[b] ^ state[c]), 7);
}
__device__ void g_round(u32 state[16], u32 m[16]) {
// Mix the columns.
g_g(state, 0, 4, 8, 12, m[0], m[1]);
g_g(state, 1, 5, 9, 13, m[2], m[3]);
g_g(state, 2, 6, 10, 14, m[4], m[5]);
g_g(state, 3, 7, 11, 15, m[6], m[7]);
// Mix the diagonals.
g_g(state, 0, 5, 10, 15, m[8], m[9]);
g_g(state, 1, 6, 11, 12, m[10], m[11]);
g_g(state, 2, 7, 8, 13, m[12], m[13]);
g_g(state, 3, 4, 9, 14, m[14], m[15]);
}
__device__ void g_permute(u32 m[16]) {
u32 permuted[16];
for(int i=0; i<16; i++)
permuted[i] = m[g_MSG_PERMUTATION[i]];
for(int i=0; i<16; i++)
m[i] = permuted[i];
}
// custom memcpy, apparently cuda's memcpy is slow
// when called within a kernel
__device__ void g_memcpy(u32 *lhs, const u32 *rhs, int size) {
// assuming u32 is 4 bytes
int len = size / 4;
for(int i=0; i<len; i++)
lhs[i] = rhs[i];
}
// custom memset
template<typename T, typename ptr_t>
__device__ void g_memset(ptr_t dest, T val, int count) {
for(int i=0; i<count; i++)
dest[i] = val;
}
__device__ void g_compress(
u32 *chaining_value,
u32 *block_words,
u64 counter,
u32 block_len,
u32 flags,
u32 *state
) {
// Search for better alternative
g_memcpy(state, chaining_value, 32);
g_memcpy(state+8, g_IV, 16);
state[12] = (u32)counter;
state[13] = (u32)(counter >> 32);
state[14] = block_len;
state[15] = flags;
u32 block[16];
g_memcpy(block, block_words, 64);
g_round(state, block); // round 1
g_permute(block);
g_round(state, block); // round 2
g_permute(block);
g_round(state, block); // round 3
g_permute(block);
g_round(state, block); // round 4
g_permute(block);
g_round(state, block); // round 5
g_permute(block);
g_round(state, block); // round 6
g_permute(block);
g_round(state, block); // round 7
for(int i=0; i<8; i++){
state[i] ^= state[i + 8];
state[i + 8] ^= chaining_value[i];
}
}
__device__ void g_words_from_little_endian_bytes(
u8 *bytes, u32 *words, u32 bytes_len
) {
u32 tmp;
for(u32 i=0; i<bytes_len; i+=4) {
tmp = (bytes[i+3]<<24) | (bytes[i+2]<<16) | (bytes[i+1]<<8) | bytes[i];
words[i/4] = tmp;
}
}
__device__ void Chunk::g_compress_chunk(u32 out_flags) {
if(flags&PARENT) {
g_compress(
key,
data,
0, // counter is always zero for parent nodes
BLOCK_LEN,
flags | out_flags,
raw_hash
);
return;
}
u32 chaining_value[8];
u32 block_len = BLOCK_LEN, flagger;
g_memcpy(chaining_value, key, 32);
bool empty_input = (leaf_len==0);
if(empty_input) {
for(u32 i=0; i<BLOCK_LEN; i++)
leaf_data[i] = 0U;
leaf_len = BLOCK_LEN;
}
// move all mem allocs outside loop
u32 block_words[16];
u8 block_cast[BLOCK_LEN];
for(u32 i=0; i<leaf_len; i+=BLOCK_LEN) {
flagger = flags;
// for the last message block
if(i+BLOCK_LEN > leaf_len)
block_len = leaf_len%BLOCK_LEN;
else
block_len = BLOCK_LEN;
// special case
if(empty_input)
block_len = 0;
// clear up block_words
g_memset(block_words, 0, 16);
u32 new_block_len(block_len);
if(block_len%4)
new_block_len += 4 - (block_len%4);
// This memcpy is fine since data is a byte array
memcpy(block_cast, leaf_data+i, new_block_len*sizeof(*block_cast));
g_words_from_little_endian_bytes(leaf_data+i, block_words, new_block_len);
if(i==0)
flagger |= CHUNK_START;
if(i+BLOCK_LEN >= leaf_len)
flagger |= CHUNK_END | out_flags;
// raw hash for root node
g_compress(
chaining_value,
block_words,
counter,
block_len,
flagger,
raw_hash
);
g_memcpy(chaining_value, raw_hash, 32);
}
}
__global__ void compute(Chunk *data, int l, int r) {
// n is always a power of 2
int n = r-l;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if(tid >= n)
return;
if(n==1) {
data[l].g_compress_chunk();
// printf("Compressing : %d\n", l);
}
else {
compute<<<n/2,16>>>(data, l, l+n/2);
cudaDeviceSynchronize();
compute<<<n/2,16>>>(data, l+n/2, r);
cudaDeviceSynchronize();
data[l].flags |= PARENT;
memcpy(data[l].data, data[l].raw_hash, 32);
memcpy(data[l].data+8, data[l+n/2].raw_hash, 32);
data[l].g_compress_chunk();
// printf("Compressing : %d to %d\n", l, r);
}
}
// CPU version of light_hash (unchanged)
void light_hash(Chunk *data, int N, Chunk *result, Chunk *memory_bar) {
const int data_size = N*sizeof(Chunk);
// Device settings
// Allows DeviceSync to be called upto 16 levels of recursion
cudaDeviceSetLimit(cudaLimitDevRuntimeSyncDepth, 16);
// Device vector
Chunk *g_data = memory_bar;
cudaMemcpy(g_data, data, data_size, cudaMemcpyHostToDevice);
// Actual computation of hash
compute<<<N,32>>>(g_data, 0, N);
cudaMemcpy(result, g_data, sizeof(Chunk), cudaMemcpyDeviceToHost);
}
// Device-callable version of light_hash
__device__ void light_hash_device(const uint8_t* input, size_t input_len, uint8_t* output) {
// Create a single chunk for processing the input
Chunk chunk;
// Initialize the chunk with the input data
for (int i = 0; i < 8; i++) {
chunk.key[i] = g_IV[i]; // Use device constant IV
}
// Copy the input data to leaf_data (with bounds checking)
size_t copy_len = min(input_len, (size_t)BLOCK_LEN * 16); // Ensure we don't overflow
for (size_t i = 0; i < copy_len; i++) {
chunk.leaf_data[i] = input[i];
}
chunk.leaf_len = copy_len;
chunk.counter = 0;
chunk.flags = 0; // Default flags
// Process the chunk directly
chunk.g_compress_chunk(ROOT); // Set ROOT flag for final output
// Copy the raw hash to the output
for (int i = 0; i < 8; i++) {
// Convert 32-bit words to bytes in little-endian format
output[i*4] = (uint8_t)(chunk.raw_hash[i]);
output[i*4+1] = (uint8_t)(chunk.raw_hash[i] >> 8);
output[i*4+2] = (uint8_t)(chunk.raw_hash[i] >> 16);
output[i*4+3] = (uint8_t)(chunk.raw_hash[i] >> 24);
}
}
// Alias for compatibility with other device code
__device__ void blake3_hash_device(const uint8_t* input, size_t input_len, uint8_t* output) {
light_hash_device(input, input_len, output);
}

View File

@@ -0,0 +1,420 @@
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
// Let's use a pinned memory vector!
#include <thrust/host_vector.h>
#include <thrust/system/cuda/experimental/pinned_allocator.h>
using u32 = uint32_t;
using u64 = uint64_t;
using u8 = uint8_t;
const u32 OUT_LEN = 32;
const u32 KEY_LEN = 32;
const u32 BLOCK_LEN = 64;
const u32 CHUNK_LEN = 1024;
// Multiple chunks make a snicker bar :)
const u32 SNICKER = 1U << 10;
// Factory height and snicker size have an inversly propotional relationship
// FACTORY_HT * (log2 SNICKER) + 10 >= 64
const u32 FACTORY_HT = 5;
const u32 CHUNK_START = 1 << 0;
const u32 CHUNK_END = 1 << 1;
const u32 PARENT = 1 << 2;
const u32 ROOT = 1 << 3;
const u32 KEYED_HASH = 1 << 4;
const u32 DERIVE_KEY_CONTEXT = 1 << 5;
const u32 DERIVE_KEY_MATERIAL = 1 << 6;
const int usize = sizeof(u32) * 8;
u32 IV[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
};
const int MSG_PERMUTATION[] = {
2, 6, 3, 10, 7, 0, 4, 13,
1, 11, 12, 5, 9, 14, 15, 8
};
u32 rotr(u32 value, int shift) {
return (value >> shift)|(value << (usize - shift));
}
void g(u32 state[16], u32 a, u32 b, u32 c, u32 d, u32 mx, u32 my) {
state[a] = state[a] + state[b] + mx;
state[d] = rotr((state[d] ^ state[a]), 16);
state[c] = state[c] + state[d];
state[b] = rotr((state[b] ^ state[c]), 12);
state[a] = state[a] + state[b] + my;
state[d] = rotr((state[d] ^ state[a]), 8);
state[c] = state[c] + state[d];
state[b] = rotr((state[b] ^ state[c]), 7);
}
void round(u32 state[16], u32 m[16]) {
// Mix the columns.
g(state, 0, 4, 8, 12, m[0], m[1]);
g(state, 1, 5, 9, 13, m[2], m[3]);
g(state, 2, 6, 10, 14, m[4], m[5]);
g(state, 3, 7, 11, 15, m[6], m[7]);
// Mix the diagonals.
g(state, 0, 5, 10, 15, m[8], m[9]);
g(state, 1, 6, 11, 12, m[10], m[11]);
g(state, 2, 7, 8, 13, m[12], m[13]);
g(state, 3, 4, 9, 14, m[14], m[15]);
}
void permute(u32 m[16]) {
u32 permuted[16];
for(int i=0; i<16; i++)
permuted[i] = m[MSG_PERMUTATION[i]];
for(int i=0; i<16; i++)
m[i] = permuted[i];
}
void compress(
u32 *chaining_value,
u32 *block_words,
u64 counter,
u32 block_len,
u32 flags,
u32 *state
) {
memcpy(state, chaining_value, 8*sizeof(*state));
memcpy(state+8, IV, 4*sizeof(*state));
state[12] = (u32)counter;
state[13] = (u32)(counter >> 32);
state[14] = block_len;
state[15] = flags;
u32 block[16];
memcpy(block, block_words, 16*sizeof(*block));
round(state, block); // round 1
permute(block);
round(state, block); // round 2
permute(block);
round(state, block); // round 3
permute(block);
round(state, block); // round 4
permute(block);
round(state, block); // round 5
permute(block);
round(state, block); // round 6
permute(block);
round(state, block); // round 7
for(int i=0; i<8; i++){
state[i] ^= state[i + 8];
state[i + 8] ^= chaining_value[i];
}
}
void words_from_little_endian_bytes(u8 *bytes, u32 *words, u32 bytes_len) {
u32 tmp;
for(u32 i=0; i<bytes_len; i+=4) {
tmp = (bytes[i+3]<<24) | (bytes[i+2]<<16) | (bytes[i+1]<<8) | bytes[i];
words[i/4] = tmp;
}
}
struct Chunk {
// use only when it is a leaf node
// leaf data may have less than 1024 bytes
u8 leaf_data[1024];
u32 leaf_len;
// use in all other cases
// data will always have 64 bytes
u32 data[16];
u32 flags;
u32 raw_hash[16];
u32 key[8];
// only useful for leaf nodes
u64 counter;
// Constructor for leaf nodes
__device__ __host__ Chunk(char *input, int size, u32 _flags, u32 *_key, u64 ctr){
counter = ctr;
flags = _flags;
memcpy(key, _key, 8*sizeof(*key));
memset(leaf_data, 0, 1024);
memcpy(leaf_data, input, size);
leaf_len = size;
}
__device__ __host__ Chunk(u32 _flags, u32 *_key) {
counter = 0;
flags = _flags;
memcpy(key, _key, 8*sizeof(*key));
leaf_len = 0;
}
__device__ __host__ Chunk() {}
// Chunk() : leaf_len(0) {}
// process data in sizes of message blocks and store cv in hash
void compress_chunk(u32=0);
__device__ void g_compress_chunk(u32=0);
};
void Chunk::compress_chunk(u32 out_flags) {
if(flags&PARENT) {
compress(
key,
data,
0, // counter is always zero for parent nodes
BLOCK_LEN,
flags | out_flags,
raw_hash
);
return;
}
u32 chaining_value[8], block_len = BLOCK_LEN, flagger;
memcpy(chaining_value, key, 8*sizeof(*chaining_value));
bool empty_input = (leaf_len==0);
if(empty_input) {
for(u32 i=0; i<BLOCK_LEN; i++)
leaf_data[i] = 0U;
leaf_len = BLOCK_LEN;
}
for(u32 i=0; i<leaf_len; i+=BLOCK_LEN) {
flagger = flags;
// for the last message block
if(i+BLOCK_LEN > leaf_len)
block_len = leaf_len%BLOCK_LEN;
else
block_len = BLOCK_LEN;
// special case
if(empty_input)
block_len = 0;
u32 block_words[16];
memset(block_words, 0, 16*sizeof(*block_words));
u32 new_block_len(block_len);
if(block_len%4)
new_block_len += 4 - (block_len%4);
// BLOCK_LEN is the max possible length of block_cast
u8 block_cast[BLOCK_LEN];
memset(block_cast, 0, new_block_len*sizeof(*block_cast));
memcpy(block_cast, leaf_data+i, block_len*sizeof(*block_cast));
words_from_little_endian_bytes(block_cast, block_words, new_block_len);
if(i==0)
flagger |= CHUNK_START;
if(i+BLOCK_LEN >= leaf_len)
flagger |= CHUNK_END | out_flags;
// raw hash for root node
compress(
chaining_value,
block_words,
counter,
block_len,
flagger,
raw_hash
);
memcpy(chaining_value, raw_hash, 8*sizeof(*chaining_value));
}
}
using thrust_vector = thrust::host_vector<
Chunk,
thrust::system::cuda::experimental::pinned_allocator<Chunk>
>;
// The GPU hasher
void light_hash(Chunk*, int, Chunk*, Chunk*);
// Sanity checks
Chunk hash_many(Chunk *data, int first, int last, Chunk *memory_bar) {
// n will always be a power of 2
int n = last-first;
// Reduce GPU calling overhead
if(n == 1) {
data[first].compress_chunk();
return data[first];
}
Chunk ret;
light_hash(data+first, n, &ret, memory_bar);
return ret;
// CPU style execution
// Chunk left, right;
// left = hash_many(data, first, first+n/2);
// right = hash_many(data, first+n/2, last);
// Chunk parent(left.flags, left.key);
// parent.flags |= PARENT;
// memcpy(parent.data, left.raw_hash, 32);
// memcpy(parent.data+8, right.raw_hash, 32);
// parent.compress_chunk();
// return parent;
}
Chunk merge(Chunk &left, Chunk &right);
void hash_root(Chunk &node, vector<u8> &out_slice);
struct Hasher {
u32 key[8];
u32 flags;
u64 ctr;
u64 file_size;
// A memory bar for CUDA to use during it's computation
Chunk* memory_bar;
// Factory is an array of FACTORY_HT possible SNICKER bars
thrust_vector factory[FACTORY_HT];
// methods
static Hasher new_internal(u32 key[8], u32 flags, u64 fsize);
static Hasher _new(u64);
// initializes cuda memory (if needed)
void init();
// frees cuda memory (if it is there)
// free nullptr is a no-op
~Hasher() {
if(memory_bar)
cudaFree(memory_bar);
else
free(memory_bar);
}
void update(char *input, int size);
void finalize(vector<u8> &out_slice);
void propagate();
};
Hasher Hasher::new_internal(u32 key[8], u32 flags, u64 fsize) {
return Hasher{
{
key[0], key[1], key[2], key[3],
key[4], key[5], key[6], key[7]
},
flags,
0, // counter
fsize
};
}
Hasher Hasher::_new(u64 fsize) { return new_internal(IV, 0, fsize); }
void Hasher::init() {
if(file_size<1) {
memory_bar = nullptr;
return;
}
u64 num_chunks = ceil(file_size / CHUNK_LEN);
u32 bar_size = min(num_chunks, (u64)SNICKER);
// Just for safety :)
++bar_size;
cudaMalloc(&memory_bar, bar_size*sizeof(Chunk));
// Let the most commonly used places always have memory
// +1 so that it does not resize when it hits CHUNK_LEN
u32 RESERVE = SNICKER + 1;
factory[0].reserve(RESERVE);
factory[1].reserve(RESERVE);
}
void Hasher::propagate() {
int level=0;
// nodes move to upper levels if lower one is one SNICKER long
while(factory[level].size() == SNICKER) {
Chunk subtree = hash_many(factory[level].data(), 0, SNICKER, memory_bar);
factory[level].clear();
++level;
factory[level].push_back(subtree);
}
}
void Hasher::update(char *input, int size) {
factory[0].push_back(Chunk(input, size, flags, key, ctr));
++ctr;
if(factory[0].size() == SNICKER)
propagate();
}
void Hasher::finalize(vector<u8> &out_slice) {
Chunk root(flags, key);
for(int i=0; i<FACTORY_HT; i++) {
vector<Chunk> subtrees;
u32 n = factory[i].size(), divider=SNICKER;
if(!n)
continue;
int start = 0;
while(divider) {
if(n&divider) {
Chunk subtree = hash_many(factory[i].data(), start, start+divider, memory_bar);
subtrees.push_back(subtree);
start += divider;
}
divider >>= 1;
}
while(subtrees.size()>1) {
Chunk tmp1 = subtrees.back();
subtrees.pop_back();
Chunk tmp2 = subtrees.back();
subtrees.pop_back();
// tmp2 is the left child
// tmp1 is the right child
// that's the order they appear within the array
Chunk tmp = merge(tmp2, tmp1);
subtrees.push_back(tmp);
}
if(i<FACTORY_HT-1)
factory[i+1].push_back(subtrees[0]);
else
root = subtrees[0];
}
hash_root(root, out_slice);
}
Chunk merge(Chunk &left, Chunk &right) {
// cout << "Called merge once\n";
left.compress_chunk();
right.compress_chunk();
Chunk parent(left.flags, left.key);
parent.flags |= PARENT;
// 32 bytes need to be copied for all of these
memcpy(parent.data, left.raw_hash, 32);
memcpy(parent.data+8, right.raw_hash, 32);
return parent;
}
void hash_root(Chunk &node, vector<u8> &out_slice) {
// the last message block must not be hashed like the others
// it needs to be hashed with the root flag
u64 output_block_counter = 0;
u64 i=0, k=2*OUT_LEN;
u32 words[16] = {};
for(; int(out_slice.size()-i)>0; i+=k) {
node.counter = output_block_counter;
node.compress_chunk(ROOT);
// words is u32[16]
memcpy(words, node.raw_hash, 16*sizeof(*words));
vector<u8> out_block(min(k, (u64)out_slice.size()-i));
for(u32 l=0; l<out_block.size(); l+=4) {
for(u32 j=0; j<min(4U, (u32)out_block.size()-l); j++)
out_block[l+j] = (words[l/4]>>(8*j)) & 0x000000FF;
}
for(u32 j=0; j<out_block.size(); j++)
out_slice[i+j] = out_block[j];
++output_block_counter;
}
}

View File

@@ -0,0 +1,18 @@
@echo off
setlocal
where hipcc >nul 2>nul
if errorlevel 1 (
echo ERROR: hipcc not found. Please install ROCm/HIP toolchain.
exit /b 1
)
if not exist build mkdir build
cd build
cmake -G "Ninja" -DHIP_PLATFORM=amd -DCMAKE_BUILD_TYPE=Release ..
if errorlevel 1 exit /b 1
cmake --build . -j
if errorlevel 1 exit /b 1
cd ..
echo Build done. Executable should be at build\rinhash-hip-miner.exe

View File

@@ -0,0 +1,29 @@
#pragma once
#ifdef __HIP_PLATFORM_AMD__
#include <hip/hip_runtime.h>
#include <hip/hip_runtime_api.h>
#define cudaError_t hipError_t
#define cudaSuccess hipSuccess
#define cudaMalloc hipMalloc
#define cudaFree hipFree
#define cudaMemcpy hipMemcpy
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaMemGetInfo hipMemGetInfo
#define cudaDeviceReset hipDeviceReset
#define __global__ __global__
#define __device__ __device__
#define __host__ __host__
#define __shared__ __shared__
#define __syncthreads __syncthreads
#define blockIdx hipBlockIdx_x
#define threadIdx hipThreadIdx_x
#define blockDim hipBlockDim_x
#define gridDim hipGridDim_x
#define hipLaunchKernelGGL(F,GRID,BLOCK,SHMEM,STREAM,...) \
hipLaunchKernelGGL(F, dim3(GRID), dim3(BLOCK), SHMEM, STREAM, __VA_ARGS__)
#endif

View File

@@ -0,0 +1,344 @@
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <stdexcept>
// Include shared device functions
#include "rinhash_device.cuh"
#include "argon2d_device.cuh"
#include "sha3-256.cu"
#include "blake3_device.cuh"
// External references to our CUDA implementations
extern "C" void blake3_hash(const uint8_t* input, size_t input_len, uint8_t* output);
extern "C" void argon2d_hash_rinhash(uint8_t* output, const uint8_t* input, size_t input_len);
extern "C" void sha3_256_hash(const uint8_t* input, size_t input_len, uint8_t* output);
// Modified kernel to use device functions
extern "C" __global__ void rinhash_cuda_kernel(
const uint8_t* input,
size_t input_len,
uint8_t* output
) {
// Intermediate results in shared memory
__shared__ uint8_t blake3_out[32];
__shared__ uint8_t argon2_out[32];
// Only one thread should do this work
if (threadIdx.x == 0) {
// Step 1: BLAKE3 hash - now using light_hash_device
light_hash_device(input, input_len, blake3_out);
// Step 2: Argon2d hash
uint32_t m_cost = 64; // Example
size_t memory_size = m_cost * sizeof(block);
block* d_memory = (block*)malloc(memory_size);
uint8_t salt[11] = { 'R','i','n','C','o','i','n','S','a','l','t' };
device_argon2d_hash(argon2_out, blake3_out, 32, 2, 64, 1, d_memory, salt, 11);
// Step 3: SHA3-256 hash
uint8_t sha3_out[32];
sha3_256_device(argon2_out, 32, sha3_out);
}
// Use syncthreads to ensure all threads wait for the computation to complete
__syncthreads();
}
// RinHash CUDA implementation
extern "C" void rinhash_cuda(const uint8_t* input, size_t input_len, uint8_t* output) {
// Allocate device memory
uint8_t *d_input = nullptr;
uint8_t *d_output = nullptr;
cudaError_t err;
// Allocate memory on device
err = cudaMalloc(&d_input, input_len);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate input memory: %s\n", cudaGetErrorString(err));
return;
}
err = cudaMalloc(&d_output, 32);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate output memory: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
return;
}
// Copy input data to device
err = cudaMemcpy(d_input, input, input_len, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy input to device: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Launch the kernel
rinhash_cuda_kernel<<<1, 1>>>(d_input, input_len, d_output);
// Wait for kernel to finish
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during kernel execution: %s\n", cudaGetErrorString(err));
cudaFree(d_input);
cudaFree(d_output);
return;
}
// Copy result back to host
err = cudaMemcpy(output, d_output, 32, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy output from device: %s\n", cudaGetErrorString(err));
}
// Free device memory
cudaFree(d_input);
cudaFree(d_output);
}
// Helper function to convert a block header to bytes
extern "C" void blockheader_to_bytes(
const uint32_t* version,
const uint32_t* prev_block,
const uint32_t* merkle_root,
const uint32_t* timestamp,
const uint32_t* bits,
const uint32_t* nonce,
uint8_t* output,
size_t* output_len
) {
size_t offset = 0;
// Version (4 bytes)
memcpy(output + offset, version, 4);
offset += 4;
// Previous block hash (32 bytes)
memcpy(output + offset, prev_block, 32);
offset += 32;
// Merkle root (32 bytes)
memcpy(output + offset, merkle_root, 32);
offset += 32;
// Timestamp (4 bytes)
memcpy(output + offset, timestamp, 4);
offset += 4;
// Bits (4 bytes)
memcpy(output + offset, bits, 4);
offset += 4;
// Nonce (4 bytes)
memcpy(output + offset, nonce, 4);
offset += 4;
*output_len = offset;
}
// Batch processing version for mining
extern "C" void rinhash_cuda_batch(
const uint8_t* block_headers,
size_t block_header_len,
uint8_t* outputs,
uint32_t num_blocks
) {
// Reset device to clear any previous errors
cudaError_t err = cudaDeviceReset();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to reset device: %s\n",
cudaGetErrorString(err));
return;
}
// Check available memory
size_t free_mem, total_mem;
err = cudaMemGetInfo(&free_mem, &total_mem);
if (err != cudaSuccess) {
//fprintf(stderr, "CUDA error: Failed to get memory info: %s\n",
// cudaGetErrorString(err));
return;
}
size_t headers_size = num_blocks * block_header_len;
size_t outputs_size = num_blocks * 32;
size_t required_mem = headers_size + outputs_size;
if (required_mem > free_mem) {
fprintf(stderr, "CUDA error: Not enough memory (required: %zu, free: %zu)\n",
required_mem, free_mem);
return;
}
// Allocate device memory
uint8_t *d_headers = NULL;
uint8_t *d_outputs = NULL;
// Allocate memory for input block headers with error check
err = cudaMalloc((void**)&d_headers, headers_size);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for headers (%zu bytes): %s\n",
headers_size, cudaGetErrorString(err));
return;
}
// Allocate memory for output hashes with error check
err = cudaMalloc((void**)&d_outputs, outputs_size);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to allocate device memory for outputs (%zu bytes): %s\n",
outputs_size, cudaGetErrorString(err));
cudaFree(d_headers);
return;
}
// Copy block headers from host to device
err = cudaMemcpy(d_headers, block_headers, headers_size, cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy headers to device: %s\n",
cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Process one header at a time to isolate any issues
for (uint32_t i = 0; i < num_blocks; i++) {
const uint8_t* input = d_headers + i * block_header_len;
uint8_t* output = d_outputs + i * 32;
// Call rinhash_cuda_kernel with device pointers and proper launch configuration
rinhash_cuda_kernel<<<1, 32>>>(input, block_header_len, output);
// Check for errors after each processing
err = cudaGetLastError();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error in block %u: %s\n", i, cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
}
// Synchronize device to ensure all operations are complete
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error during synchronization: %s\n", cudaGetErrorString(err));
cudaFree(d_headers);
cudaFree(d_outputs);
return;
}
// Copy results back from device to host
err = cudaMemcpy(outputs, d_outputs, outputs_size, cudaMemcpyDeviceToHost);
if (err != cudaSuccess) {
fprintf(stderr, "CUDA error: Failed to copy results from device: %s\n",
cudaGetErrorString(err));
}
// Free device memory
cudaFree(d_headers);
cudaFree(d_outputs);
}
// Main RinHash function that would be called from outside
extern "C" void RinHash(
const uint32_t* version,
const uint32_t* prev_block,
const uint32_t* merkle_root,
const uint32_t* timestamp,
const uint32_t* bits,
const uint32_t* nonce,
uint8_t* output
) {
uint8_t block_header[80]; // Standard block header size
size_t block_header_len;
// Convert block header to bytes
blockheader_to_bytes(
version,
prev_block,
merkle_root,
timestamp,
bits,
nonce,
block_header,
&block_header_len
);
// Calculate RinHash
rinhash_cuda(block_header, block_header_len, output);
}
// Mining function that tries different nonces
extern "C" void RinHash_mine(
const uint32_t* version,
const uint32_t* prev_block,
const uint32_t* merkle_root,
const uint32_t* timestamp,
const uint32_t* bits,
uint32_t start_nonce,
uint32_t num_nonces,
uint32_t* found_nonce,
uint8_t* target_hash,
uint8_t* best_hash
) {
const size_t block_header_len = 80;
std::vector<uint8_t> block_headers(block_header_len * num_nonces);
std::vector<uint8_t> hashes(32 * num_nonces);
// Prepare block headers with different nonces
for (uint32_t i = 0; i < num_nonces; i++) {
uint32_t current_nonce = start_nonce + i;
// Fill in the common parts of the header
uint8_t* header = block_headers.data() + i * block_header_len;
size_t header_len;
blockheader_to_bytes(
version,
prev_block,
merkle_root,
timestamp,
bits,
&current_nonce,
header,
&header_len
);
}
// Calculate hashes for all nonces
rinhash_cuda_batch(block_headers.data(), block_header_len, hashes.data(), num_nonces);
// Find the best hash (lowest value)
memcpy(best_hash, hashes.data(), 32);
*found_nonce = start_nonce;
for (uint32_t i = 1; i < num_nonces; i++) {
uint8_t* current_hash = hashes.data() + i * 32;
// Compare current hash with best hash (byte by byte, from most significant to least)
bool is_better = false;
for (int j = 0; j < 32; j++) {
if (current_hash[j] < best_hash[j]) {
is_better = true;
break;
}
else if (current_hash[j] > best_hash[j]) {
break;
}
}
if (is_better) {
memcpy(best_hash, current_hash, 32);
*found_nonce = start_nonce + i;
}
}
}

View File

@@ -0,0 +1,8 @@
#ifndef RINHASH_DEVICE_CUH
#define RINHASH_DEVICE_CUH
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <stdint.h>
#endif // RINHASH_DEVICE_CUH

View File

@@ -0,0 +1,140 @@
#include <stdint.h>
#include <stddef.h>
#define KECCAKF_ROUNDS 24
// 64bit 値のビット回転(左回転)
__device__ inline uint64_t rotate(uint64_t x, int n) {
return (x << n) | (x >> (64 - n));
}
// Keccakf[1600] 変換(内部状態 st[25] に対して 24 ラウンドの permutation を実行)
__device__ inline uint64_t ROTL64(uint64_t x, int n) {
return (x << n) | (x >> (64 - n));
}
__device__ void keccakf(uint64_t st[25]) {
const int R[24] = {
1, 3, 6, 10, 15, 21,
28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43,
62, 18, 39, 61, 20, 44
};
const int P[24] = {
10, 7, 11, 17, 18, 3,
5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2,
20, 14, 22, 9, 6, 1
};
const uint64_t RC[24] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
int i, j, round;
uint64_t t, bc[5];
for (round = 0; round < 24; round++) {
// Theta
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + i] ^= t;
}
// Rho and Pi
t = st[1];
for (i = 0; i < 24; i++) {
j = P[i];
bc[0] = st[j];
st[j] = ROTL64(t, R[i]);
t = bc[0];
}
// Chi
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = st[j + i];
for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
// Iota
st[0] ^= RC[round];
}
}
// little-endian で 64bit 値を読み込む8 バイトの配列から)
__device__ inline uint64_t load64_le(const uint8_t *src) {
uint64_t x = 0;
#pragma unroll
for (int i = 0; i < 8; i++) {
x |= ((uint64_t)src[i]) << (8 * i);
}
return x;
}
// little-endian で 64bit 値を書き込む8 バイトの配列へ)
__device__ inline void store64_le(uint8_t *dst, uint64_t x) {
#pragma unroll
for (int i = 0; i < 8; i++) {
dst[i] = (uint8_t)(x >> (8 * i));
}
}
/*
__device__ 関数 sha3_256_device
・引数 input, inlen で与えられる入力データを吸収し、
SHA3-256 仕様によりパディングおよび Keccak-f[1600] 変換を実行します。
・最終的に内部状態の先頭 32 バイト4 ワード)を little-endian 形式で
hash_out に出力します。
・SHA3-256 ではレート(吸収部サイズ)が 136 バイトです。
*/
__device__ void sha3_256_device(const uint8_t *input, size_t inlen, uint8_t *hash_out) {
const size_t rate = 136; // SHA3-256 の吸収部サイズ(バイト単位)
uint64_t st[25] = {0}; // 内部状態25ワード1600ビット
for (int i = 0; i < 25; i++) st[i] = 0;
size_t offset = 0;
// 通常ブロックrateバイト処理今回inlen=32なのでスキップされるはず
while (inlen >= rate) {
// 吸収
for (int i = 0; i < (rate / 8); i++) {
st[i] ^= load64_le(input + i * 8);
}
// 最終 Keccak-f
keccakf(st);
input += rate;
inlen -= rate;
}
for (int i = 0; i < 4; i++) {
st[i] ^= load64_le(input + i * 8); // 4 * 8 = 32バイト
}
((uint8_t*)st)[32] ^= 0x06; // パディング32バイト目
((uint8_t*)st)[rate - 1] ^= 0x80; // パディング(最後のバイト)
keccakf(st); // 最終 Keccak-f
// スクイーズ出力32バイト
for (int i = 0; i < 4; i++) {
store64_le(hash_out + i * 8, st[i]);
}
}