Files
gogo2/COBY/tests/test_data_processor.py
2025-08-04 17:28:55 +03:00

304 lines
11 KiB
Python

"""
Tests for data processing components.
"""
import pytest
from datetime import datetime, timezone
from ..processing.data_processor import StandardDataProcessor
from ..processing.quality_checker import DataQualityChecker
from ..processing.anomaly_detector import AnomalyDetector
from ..processing.metrics_calculator import MetricsCalculator
from ..models.core import OrderBookSnapshot, TradeEvent, PriceLevel
@pytest.fixture
def data_processor():
"""Create data processor for testing"""
return StandardDataProcessor()
@pytest.fixture
def quality_checker():
"""Create quality checker for testing"""
return DataQualityChecker()
@pytest.fixture
def anomaly_detector():
"""Create anomaly detector for testing"""
return AnomalyDetector()
@pytest.fixture
def metrics_calculator():
"""Create metrics calculator for testing"""
return MetricsCalculator()
@pytest.fixture
def sample_orderbook():
"""Create sample order book for testing"""
return OrderBookSnapshot(
symbol="BTCUSDT",
exchange="binance",
timestamp=datetime.now(timezone.utc),
bids=[
PriceLevel(price=50000.0, size=1.5),
PriceLevel(price=49999.0, size=2.0),
PriceLevel(price=49998.0, size=1.0)
],
asks=[
PriceLevel(price=50001.0, size=1.0),
PriceLevel(price=50002.0, size=1.5),
PriceLevel(price=50003.0, size=2.0)
]
)
@pytest.fixture
def sample_trade():
"""Create sample trade for testing"""
return TradeEvent(
symbol="BTCUSDT",
exchange="binance",
timestamp=datetime.now(timezone.utc),
price=50000.5,
size=0.1,
side="buy",
trade_id="test_trade_123"
)
class TestDataQualityChecker:
"""Test cases for DataQualityChecker"""
def test_orderbook_quality_check(self, quality_checker, sample_orderbook):
"""Test order book quality checking"""
quality_score, issues = quality_checker.check_orderbook_quality(sample_orderbook)
assert 0.0 <= quality_score <= 1.0
assert isinstance(issues, list)
# Good order book should have high quality score
assert quality_score > 0.8
def test_trade_quality_check(self, quality_checker, sample_trade):
"""Test trade quality checking"""
quality_score, issues = quality_checker.check_trade_quality(sample_trade)
assert 0.0 <= quality_score <= 1.0
assert isinstance(issues, list)
# Good trade should have high quality score
assert quality_score > 0.8
def test_invalid_orderbook_detection(self, quality_checker):
"""Test detection of invalid order book"""
# Create invalid order book with crossed spread
invalid_orderbook = OrderBookSnapshot(
symbol="BTCUSDT",
exchange="binance",
timestamp=datetime.now(timezone.utc),
bids=[PriceLevel(price=50002.0, size=1.0)], # Bid higher than ask
asks=[PriceLevel(price=50001.0, size=1.0)] # Ask lower than bid
)
quality_score, issues = quality_checker.check_orderbook_quality(invalid_orderbook)
assert quality_score < 0.8
assert any("crossed book" in issue.lower() for issue in issues)
class TestAnomalyDetector:
"""Test cases for AnomalyDetector"""
def test_orderbook_anomaly_detection(self, anomaly_detector, sample_orderbook):
"""Test order book anomaly detection"""
# First few order books should not trigger anomalies
for _ in range(5):
anomalies = anomaly_detector.detect_orderbook_anomalies(sample_orderbook)
assert isinstance(anomalies, list)
def test_trade_anomaly_detection(self, anomaly_detector, sample_trade):
"""Test trade anomaly detection"""
# First few trades should not trigger anomalies
for _ in range(5):
anomalies = anomaly_detector.detect_trade_anomalies(sample_trade)
assert isinstance(anomalies, list)
def test_price_spike_detection(self, anomaly_detector):
"""Test price spike detection"""
# Create normal order books
for i in range(20):
normal_orderbook = OrderBookSnapshot(
symbol="BTCUSDT",
exchange="binance",
timestamp=datetime.now(timezone.utc),
bids=[PriceLevel(price=50000.0 + i, size=1.0)],
asks=[PriceLevel(price=50001.0 + i, size=1.0)]
)
anomaly_detector.detect_orderbook_anomalies(normal_orderbook)
# Create order book with price spike
spike_orderbook = OrderBookSnapshot(
symbol="BTCUSDT",
exchange="binance",
timestamp=datetime.now(timezone.utc),
bids=[PriceLevel(price=60000.0, size=1.0)], # 20% spike
asks=[PriceLevel(price=60001.0, size=1.0)]
)
anomalies = anomaly_detector.detect_orderbook_anomalies(spike_orderbook)
assert len(anomalies) > 0
assert any("spike" in anomaly.lower() for anomaly in anomalies)
class TestMetricsCalculator:
"""Test cases for MetricsCalculator"""
def test_orderbook_metrics_calculation(self, metrics_calculator, sample_orderbook):
"""Test order book metrics calculation"""
metrics = metrics_calculator.calculate_orderbook_metrics(sample_orderbook)
assert metrics.symbol == "BTCUSDT"
assert metrics.exchange == "binance"
assert metrics.mid_price == 50000.5 # (50000 + 50001) / 2
assert metrics.spread == 1.0 # 50001 - 50000
assert metrics.spread_percentage > 0
assert metrics.bid_volume == 4.5 # 1.5 + 2.0 + 1.0
assert metrics.ask_volume == 4.5 # 1.0 + 1.5 + 2.0
assert metrics.volume_imbalance == 0.0 # Equal volumes
def test_imbalance_metrics_calculation(self, metrics_calculator, sample_orderbook):
"""Test imbalance metrics calculation"""
imbalance = metrics_calculator.calculate_imbalance_metrics(sample_orderbook)
assert imbalance.symbol == "BTCUSDT"
assert -1.0 <= imbalance.volume_imbalance <= 1.0
assert -1.0 <= imbalance.price_imbalance <= 1.0
assert -1.0 <= imbalance.depth_imbalance <= 1.0
assert -1.0 <= imbalance.momentum_score <= 1.0
def test_liquidity_score_calculation(self, metrics_calculator, sample_orderbook):
"""Test liquidity score calculation"""
liquidity_score = metrics_calculator.calculate_liquidity_score(sample_orderbook)
assert 0.0 <= liquidity_score <= 1.0
assert liquidity_score > 0.5 # Good order book should have decent liquidity
class TestStandardDataProcessor:
"""Test cases for StandardDataProcessor"""
def test_data_validation(self, data_processor, sample_orderbook, sample_trade):
"""Test data validation"""
# Valid data should pass validation
assert data_processor.validate_data(sample_orderbook) is True
assert data_processor.validate_data(sample_trade) is True
def test_metrics_calculation(self, data_processor, sample_orderbook):
"""Test metrics calculation through processor"""
metrics = data_processor.calculate_metrics(sample_orderbook)
assert metrics.symbol == "BTCUSDT"
assert metrics.mid_price > 0
assert metrics.spread > 0
def test_anomaly_detection(self, data_processor, sample_orderbook, sample_trade):
"""Test anomaly detection through processor"""
orderbook_anomalies = data_processor.detect_anomalies(sample_orderbook)
trade_anomalies = data_processor.detect_anomalies(sample_trade)
assert isinstance(orderbook_anomalies, list)
assert isinstance(trade_anomalies, list)
def test_data_filtering(self, data_processor, sample_orderbook, sample_trade):
"""Test data filtering"""
# Test symbol filter
criteria = {'symbols': ['BTCUSDT']}
assert data_processor.filter_data(sample_orderbook, criteria) is True
assert data_processor.filter_data(sample_trade, criteria) is True
criteria = {'symbols': ['ETHUSDT']}
assert data_processor.filter_data(sample_orderbook, criteria) is False
assert data_processor.filter_data(sample_trade, criteria) is False
# Test price range filter
criteria = {'price_range': (40000, 60000)}
assert data_processor.filter_data(sample_orderbook, criteria) is True
assert data_processor.filter_data(sample_trade, criteria) is True
criteria = {'price_range': (60000, 70000)}
assert data_processor.filter_data(sample_orderbook, criteria) is False
assert data_processor.filter_data(sample_trade, criteria) is False
def test_data_enrichment(self, data_processor, sample_orderbook, sample_trade):
"""Test data enrichment"""
orderbook_enriched = data_processor.enrich_data(sample_orderbook)
trade_enriched = data_processor.enrich_data(sample_trade)
# Check enriched data structure
assert 'original_data' in orderbook_enriched
assert 'quality_score' in orderbook_enriched
assert 'anomalies' in orderbook_enriched
assert 'processing_timestamp' in orderbook_enriched
assert 'original_data' in trade_enriched
assert 'quality_score' in trade_enriched
assert 'anomalies' in trade_enriched
assert 'trade_value' in trade_enriched
def test_quality_score_calculation(self, data_processor, sample_orderbook, sample_trade):
"""Test quality score calculation"""
orderbook_score = data_processor.get_data_quality_score(sample_orderbook)
trade_score = data_processor.get_data_quality_score(sample_trade)
assert 0.0 <= orderbook_score <= 1.0
assert 0.0 <= trade_score <= 1.0
# Good data should have high quality scores
assert orderbook_score > 0.8
assert trade_score > 0.8
def test_processing_stats(self, data_processor, sample_orderbook, sample_trade):
"""Test processing statistics"""
# Process some data
data_processor.validate_data(sample_orderbook)
data_processor.validate_data(sample_trade)
stats = data_processor.get_processing_stats()
assert 'processed_orderbooks' in stats
assert 'processed_trades' in stats
assert 'quality_failures' in stats
assert 'anomalies_detected' in stats
assert stats['processed_orderbooks'] >= 1
assert stats['processed_trades'] >= 1
if __name__ == "__main__":
# Run simple tests
processor = StandardDataProcessor()
# Test with sample data
orderbook = OrderBookSnapshot(
symbol="BTCUSDT",
exchange="test",
timestamp=datetime.now(timezone.utc),
bids=[PriceLevel(price=50000.0, size=1.0)],
asks=[PriceLevel(price=50001.0, size=1.0)]
)
# Test validation
is_valid = processor.validate_data(orderbook)
print(f"Order book validation: {'PASSED' if is_valid else 'FAILED'}")
# Test metrics
metrics = processor.calculate_metrics(orderbook)
print(f"Metrics calculation: mid_price={metrics.mid_price}, spread={metrics.spread}")
# Test quality score
quality_score = processor.get_data_quality_score(orderbook)
print(f"Quality score: {quality_score:.2f}")
print("Simple data processor test completed")