Files
gogo2/COBY/aggregation/price_bucketer.py
Dobromir Popov 8ee9b7a90c wip
2025-08-04 17:40:30 +03:00

341 lines
12 KiB
Python

"""
Price bucketing system for order book aggregation.
"""
import math
from typing import Dict, List, Tuple, Optional
from collections import defaultdict
from ..models.core import OrderBookSnapshot, PriceBuckets, PriceLevel
from ..config import config
from ..utils.logging import get_logger
from ..utils.validation import validate_price, validate_volume
logger = get_logger(__name__)
class PriceBucketer:
"""
Converts order book data into price buckets for heatmap visualization.
Uses universal $1 USD buckets for all symbols to simplify logic.
"""
def __init__(self, bucket_size: float = None):
"""
Initialize price bucketer.
Args:
bucket_size: Size of price buckets in USD (defaults to config value)
"""
self.bucket_size = bucket_size or config.get_bucket_size()
# Statistics
self.buckets_created = 0
self.total_volume_processed = 0.0
logger.info(f"Price bucketer initialized with ${self.bucket_size} buckets")
def create_price_buckets(self, orderbook: OrderBookSnapshot) -> PriceBuckets:
"""
Convert order book data to price buckets.
Args:
orderbook: Order book snapshot
Returns:
PriceBuckets: Aggregated price bucket data
"""
try:
# Create price buckets object
buckets = PriceBuckets(
symbol=orderbook.symbol,
timestamp=orderbook.timestamp,
bucket_size=self.bucket_size
)
# Process bids (aggregate into buckets)
for bid in orderbook.bids:
if validate_price(bid.price) and validate_volume(bid.size):
buckets.add_bid(bid.price, bid.size)
self.total_volume_processed += bid.size
# Process asks (aggregate into buckets)
for ask in orderbook.asks:
if validate_price(ask.price) and validate_volume(ask.size):
buckets.add_ask(ask.price, ask.size)
self.total_volume_processed += ask.size
self.buckets_created += 1
logger.debug(
f"Created price buckets for {orderbook.symbol}: "
f"{len(buckets.bid_buckets)} bid buckets, {len(buckets.ask_buckets)} ask buckets"
)
return buckets
except Exception as e:
logger.error(f"Error creating price buckets: {e}")
raise
def aggregate_buckets(self, bucket_list: List[PriceBuckets]) -> PriceBuckets:
"""
Aggregate multiple price buckets into a single bucket set.
Args:
bucket_list: List of price buckets to aggregate
Returns:
PriceBuckets: Aggregated buckets
"""
if not bucket_list:
raise ValueError("Cannot aggregate empty bucket list")
# Use first bucket as template
first_bucket = bucket_list[0]
aggregated = PriceBuckets(
symbol=first_bucket.symbol,
timestamp=first_bucket.timestamp,
bucket_size=self.bucket_size
)
# Aggregate all bid buckets
for buckets in bucket_list:
for price, volume in buckets.bid_buckets.items():
bucket_price = aggregated.get_bucket_price(price)
aggregated.bid_buckets[bucket_price] = (
aggregated.bid_buckets.get(bucket_price, 0) + volume
)
# Aggregate all ask buckets
for buckets in bucket_list:
for price, volume in buckets.ask_buckets.items():
bucket_price = aggregated.get_bucket_price(price)
aggregated.ask_buckets[bucket_price] = (
aggregated.ask_buckets.get(bucket_price, 0) + volume
)
logger.debug(f"Aggregated {len(bucket_list)} bucket sets")
return aggregated
def get_bucket_range(self, center_price: float, depth: int) -> Tuple[float, float]:
"""
Get price range for buckets around a center price.
Args:
center_price: Center price for the range
depth: Number of buckets on each side
Returns:
Tuple[float, float]: (min_price, max_price)
"""
half_range = depth * self.bucket_size
min_price = center_price - half_range
max_price = center_price + half_range
return (max(0, min_price), max_price)
def filter_buckets_by_range(self, buckets: PriceBuckets,
min_price: float, max_price: float) -> PriceBuckets:
"""
Filter buckets to only include those within a price range.
Args:
buckets: Original price buckets
min_price: Minimum price to include
max_price: Maximum price to include
Returns:
PriceBuckets: Filtered buckets
"""
filtered = PriceBuckets(
symbol=buckets.symbol,
timestamp=buckets.timestamp,
bucket_size=buckets.bucket_size
)
# Filter bid buckets
for price, volume in buckets.bid_buckets.items():
if min_price <= price <= max_price:
filtered.bid_buckets[price] = volume
# Filter ask buckets
for price, volume in buckets.ask_buckets.items():
if min_price <= price <= max_price:
filtered.ask_buckets[price] = volume
return filtered
def get_top_buckets(self, buckets: PriceBuckets, count: int) -> PriceBuckets:
"""
Get top N buckets by volume.
Args:
buckets: Original price buckets
count: Number of top buckets to return
Returns:
PriceBuckets: Top buckets by volume
"""
top_buckets = PriceBuckets(
symbol=buckets.symbol,
timestamp=buckets.timestamp,
bucket_size=buckets.bucket_size
)
# Get top bid buckets
top_bids = sorted(
buckets.bid_buckets.items(),
key=lambda x: x[1], # Sort by volume
reverse=True
)[:count]
for price, volume in top_bids:
top_buckets.bid_buckets[price] = volume
# Get top ask buckets
top_asks = sorted(
buckets.ask_buckets.items(),
key=lambda x: x[1], # Sort by volume
reverse=True
)[:count]
for price, volume in top_asks:
top_buckets.ask_buckets[price] = volume
return top_buckets
def calculate_bucket_statistics(self, buckets: PriceBuckets) -> Dict[str, float]:
"""
Calculate statistics for price buckets.
Args:
buckets: Price buckets to analyze
Returns:
Dict[str, float]: Bucket statistics
"""
stats = {
'total_bid_buckets': len(buckets.bid_buckets),
'total_ask_buckets': len(buckets.ask_buckets),
'total_bid_volume': sum(buckets.bid_buckets.values()),
'total_ask_volume': sum(buckets.ask_buckets.values()),
'bid_price_range': 0.0,
'ask_price_range': 0.0,
'max_bid_volume': 0.0,
'max_ask_volume': 0.0,
'avg_bid_volume': 0.0,
'avg_ask_volume': 0.0
}
# Calculate bid statistics
if buckets.bid_buckets:
bid_prices = list(buckets.bid_buckets.keys())
bid_volumes = list(buckets.bid_buckets.values())
stats['bid_price_range'] = max(bid_prices) - min(bid_prices)
stats['max_bid_volume'] = max(bid_volumes)
stats['avg_bid_volume'] = sum(bid_volumes) / len(bid_volumes)
# Calculate ask statistics
if buckets.ask_buckets:
ask_prices = list(buckets.ask_buckets.keys())
ask_volumes = list(buckets.ask_buckets.values())
stats['ask_price_range'] = max(ask_prices) - min(ask_prices)
stats['max_ask_volume'] = max(ask_volumes)
stats['avg_ask_volume'] = sum(ask_volumes) / len(ask_volumes)
# Calculate combined statistics
stats['total_volume'] = stats['total_bid_volume'] + stats['total_ask_volume']
stats['volume_imbalance'] = (
(stats['total_bid_volume'] - stats['total_ask_volume']) /
max(stats['total_volume'], 1e-10)
)
return stats
def merge_adjacent_buckets(self, buckets: PriceBuckets, merge_factor: int = 2) -> PriceBuckets:
"""
Merge adjacent buckets to create larger bucket sizes.
Args:
buckets: Original price buckets
merge_factor: Number of adjacent buckets to merge
Returns:
PriceBuckets: Merged buckets with larger bucket size
"""
merged = PriceBuckets(
symbol=buckets.symbol,
timestamp=buckets.timestamp,
bucket_size=buckets.bucket_size * merge_factor
)
# Merge bid buckets
bid_groups = defaultdict(float)
for price, volume in buckets.bid_buckets.items():
# Calculate new bucket price
new_bucket_price = merged.get_bucket_price(price)
bid_groups[new_bucket_price] += volume
merged.bid_buckets = dict(bid_groups)
# Merge ask buckets
ask_groups = defaultdict(float)
for price, volume in buckets.ask_buckets.items():
# Calculate new bucket price
new_bucket_price = merged.get_bucket_price(price)
ask_groups[new_bucket_price] += volume
merged.ask_buckets = dict(ask_groups)
logger.debug(f"Merged buckets with factor {merge_factor}")
return merged
def get_bucket_depth_profile(self, buckets: PriceBuckets,
center_price: float) -> Dict[str, List[Tuple[float, float]]]:
"""
Get depth profile showing volume at different distances from center price.
Args:
buckets: Price buckets
center_price: Center price for depth calculation
Returns:
Dict: Depth profile with 'bids' and 'asks' lists of (distance, volume) tuples
"""
profile = {'bids': [], 'asks': []}
# Calculate bid depth profile
for price, volume in buckets.bid_buckets.items():
distance = abs(center_price - price)
profile['bids'].append((distance, volume))
# Calculate ask depth profile
for price, volume in buckets.ask_buckets.items():
distance = abs(price - center_price)
profile['asks'].append((distance, volume))
# Sort by distance
profile['bids'].sort(key=lambda x: x[0])
profile['asks'].sort(key=lambda x: x[0])
return profile
def get_processing_stats(self) -> Dict[str, float]:
"""Get processing statistics"""
return {
'bucket_size': self.bucket_size,
'buckets_created': self.buckets_created,
'total_volume_processed': self.total_volume_processed,
'avg_volume_per_bucket': (
self.total_volume_processed / max(self.buckets_created, 1)
)
}
def reset_stats(self) -> None:
"""Reset processing statistics"""
self.buckets_created = 0
self.total_volume_processed = 0.0
logger.info("Price bucketer statistics reset")