gogo2/crypto/brian/index-deep-new.py
2025-02-05 09:16:16 +02:00

690 lines
28 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import sys
import asyncio
if sys.platform == 'win32':
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
import os
import time
import json
import argparse
import threading
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from datetime import datetime
import matplotlib.pyplot as plt
import math
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import matplotlib.dates as mdates
from dotenv import load_dotenv
load_dotenv()
# --- Helper Function for Timestamp Conversion ---
def convert_timestamp(ts):
"""
Safely converts a timestamp to a datetime object.
If the timestamp is abnormally high (e.g. in milliseconds),
it is divided by 1000.
"""
ts = float(ts)
if ts > 1e10: # Likely in milliseconds
ts /= 1000.0
return datetime.fromtimestamp(ts)
# --- Directories ---
LAST_DIR = os.path.join("models", "last")
BEST_DIR = os.path.join("models", "best")
os.makedirs(LAST_DIR, exist_ok=True)
os.makedirs(BEST_DIR, exist_ok=True)
CACHE_FILE = "candles_cache.json"
# --- Constants ---
NUM_TIMEFRAMES = 6 # e.g., ["1s", "1m", "5m", "15m", "1h", "1d"]
NUM_INDICATORS = 20 # e.g., 20 technical indicators
FEATURES_PER_CHANNEL = 7 # Each channel has 7 features.
ORDER_CHANNELS = 1 # One extra channel for order information.
# --- Positional Encoding Module ---
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0)]
return self.dropout(x)
# --- Enhanced Transformer Model ---
class TradingModel(nn.Module):
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
super().__init__()
# One branch per channel.
self.channel_branches = nn.ModuleList([
nn.Sequential(
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.GELU(),
nn.Dropout(0.1)
) for _ in range(num_channels)
])
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
self.pos_encoder = PositionalEncoding(hidden_dim)
encoder_layers = TransformerEncoderLayer(
d_model=hidden_dim, nhead=4, dim_feedforward=512,
dropout=0.1, activation='gelu', batch_first=True # avoid nested tensor warning
)
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
self.attn_pool = nn.Linear(hidden_dim, 1)
self.high_pred = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.GELU(),
nn.Linear(hidden_dim // 2, 1)
)
self.low_pred = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.GELU(),
nn.Linear(hidden_dim // 2, 1)
)
def forward(self, x, timeframe_ids):
# x: [batch_size, num_channels, FEATURES_PER_CHANNEL]
batch_size, num_channels, _ = x.shape
channel_outs = []
for i in range(num_channels):
channel_out = self.channel_branches[i](x[:, i, :])
channel_outs.append(channel_out)
stacked = torch.stack(channel_outs, dim=1) # [batch, channels, hidden]
tf_embeds = self.timeframe_embed(timeframe_ids) # [num_channels, hidden]
stacked = stacked + tf_embeds.unsqueeze(0) # add embeddings (broadcast along batch)
transformer_out = self.transformer(stacked)
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=1)
aggregated = (transformer_out * attn_weights).sum(dim=1)
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
# --- Technical Indicator Helpers ---
def compute_sma(candles_list, index, period=10):
start = max(0, index - period + 1)
values = [candle["close"] for candle in candles_list[start:index+1]]
return sum(values)/len(values) if values else 0.0
def compute_sma_volume(candles_list, index, period=10):
start = max(0, index - period + 1)
values = [candle["volume"] for candle in candles_list[start:index+1]]
return sum(values)/len(values) if values else 0.0
def get_aligned_candle_with_index(candles_list, target_ts):
best_idx = 0
for i, candle in enumerate(candles_list):
if candle["timestamp"] <= target_ts:
best_idx = i
else:
break
return best_idx, candles_list[best_idx]
def get_features_for_tf(candles_list, index, period=10):
candle = candles_list[index]
f_open = candle["open"]
f_high = candle["high"]
f_low = candle["low"]
f_close = candle["close"]
f_volume = candle["volume"]
sma_close = compute_sma(candles_list, index, period)
sma_volume= compute_sma_volume(candles_list, index, period)
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
# --- Caching & Checkpoint Functions ---
def load_candles_cache(filename):
if os.path.exists(filename):
try:
with open(filename, "r") as f:
data = json.load(f)
print(f"Loaded cached data from {filename}.")
return data
except Exception as e:
print("Error reading cache file:", e)
return {}
def save_candles_cache(filename, candles_dict):
try:
with open(filename, "w") as f:
json.dump(candles_dict, f)
except Exception as e:
print("Error saving cache file:", e)
def maintain_checkpoint_directory(directory, max_files=10):
files = os.listdir(directory)
if len(files) > max_files:
full_paths = [os.path.join(directory, f) for f in files]
full_paths.sort(key=lambda x: os.path.getmtime(x))
for f in full_paths[:len(files) - max_files]:
os.remove(f)
def get_best_models(directory):
best_files = []
for file in os.listdir(directory):
parts = file.split("_")
try:
loss = float(parts[1])
best_files.append((loss, file))
except Exception:
continue
return best_files
def save_checkpoint(model, optimizer, epoch, loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
last_path = os.path.join(last_dir, last_filename)
torch.save({
"epoch": epoch,
"loss": loss,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict()
}, last_path)
maintain_checkpoint_directory(last_dir, max_files=10)
best_models = get_best_models(best_dir)
add_to_best = False
if len(best_models) < 10:
add_to_best = True
else:
worst_loss, worst_file = max(best_models, key=lambda x: x[0])
if loss < worst_loss:
add_to_best = True
os.remove(os.path.join(best_dir, worst_file))
if add_to_best:
best_filename = f"best_{loss:.4f}_epoch_{epoch}_{timestamp}.pt"
best_path = os.path.join(best_dir, best_filename)
torch.save({
"epoch": epoch,
"loss": loss,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict()
}, best_path)
maintain_checkpoint_directory(best_dir, max_files=10)
print(f"Saved checkpoint for epoch {epoch} with loss {loss:.4f}")
def load_best_checkpoint(model, best_dir=BEST_DIR):
best_models = get_best_models(best_dir)
if not best_models:
return None
best_loss, best_file = min(best_models, key=lambda x: x[0])
path = os.path.join(best_dir, best_file)
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
checkpoint = torch.load(path)
old_state = checkpoint["model_state_dict"]
new_state = model.state_dict()
if "timeframe_embed.weight" in old_state:
old_embed = old_state["timeframe_embed.weight"]
new_embed = new_state["timeframe_embed.weight"]
if old_embed.shape[0] < new_embed.shape[0]:
new_embed[:old_embed.shape[0]] = old_embed
old_state["timeframe_embed.weight"] = new_embed
model.load_state_dict(old_state, strict=False)
return checkpoint
# --- Function for Manual Trade Override ---
def manual_trade(env):
"""
When no sufficient action is taken by the model, use a fallback:
Scan the remaining window for the global maximum and minimum.
If the maximum occurs before the minimum, simulate a short trade;
otherwise simulate a long trade. Closes the trade at the candle where the chosen extreme occurs.
"""
current_index = env.current_index
if current_index >= len(env.candle_window) - 1:
env.current_index = len(env.candle_window) - 1
return
max_val = -float('inf')
min_val = float('inf')
i_max = current_index
i_min = current_index
for j in range(current_index + 1, len(env.candle_window)):
high_j = env.candle_window[j]["high"]
low_j = env.candle_window[j]["low"]
if high_j > max_val:
max_val = high_j
i_max = j
if low_j < min_val:
min_val = low_j
i_min = j
if i_max < i_min:
entry_price = env.candle_window[current_index]["open"]
exit_price = env.candle_window[i_min]["open"]
reward = entry_price - exit_price
trade = {
"entry_index": current_index,
"entry_price": entry_price,
"exit_index": i_min,
"exit_price": exit_price,
"pnl": reward
}
else:
entry_price = env.candle_window[current_index]["open"]
exit_price = env.candle_window[i_max]["open"]
reward = exit_price - entry_price
trade = {
"entry_index": current_index,
"entry_price": entry_price,
"exit_index": i_max,
"exit_price": exit_price,
"pnl": reward
}
env.trade_history.append(trade)
env.current_index = trade["exit_index"]
# --- Simulation for 1s Data Using Local Extrema ---
def simulate_trades_1s(env):
"""
When the main timeframe is 1s, scan the entire remaining window to detect local extrema.
If at least two extrema are found, pair consecutive extrema as trades.
If none (or too few) are found, fallback to manual_trade.
"""
n = len(env.candle_window)
extrema = []
for i in range(env.current_index, n):
# Add first and last points.
if i == env.current_index or i == n-1:
extrema.append(i)
else:
prev = env.candle_window[i-1]["close"]
curr = env.candle_window[i]["close"]
nex = env.candle_window[i+1]["close"]
# A valley or a peak.
if curr < prev and curr < nex:
extrema.append(i)
elif curr > prev and curr > nex:
extrema.append(i)
if len(extrema) < 2:
manual_trade(env)
return
# Process consecutive extrema into trades.
for j in range(len(extrema)-1):
entry_idx = extrema[j]
exit_idx = extrema[j+1]
entry_price = env.candle_window[entry_idx]["open"]
exit_price = env.candle_window[exit_idx]["open"]
# If the entry candles close is lower than exit candles close, this is a long trade.
if env.candle_window[entry_idx]["close"] < env.candle_window[exit_idx]["close"]:
reward = exit_price - entry_price
else:
reward = entry_price - exit_price
trade = {
"entry_index": entry_idx,
"entry_price": entry_price,
"exit_index": exit_idx,
"exit_price": exit_price,
"pnl": reward
}
env.trade_history.append(trade)
env.current_index = n - 1
# --- General Simulation of Trades ---
def simulate_trades(model, env, device, args):
"""
Simulate trades over the current sliding window.
If the main timeframe is 1s, use local extrema detection.
Otherwise, check if the model's predicted potentials exceed the threshold.
- If so, execute the model decision.
- Otherwise, call the manual_trade override.
"""
if args.main_tf == "1s":
simulate_trades_1s(env)
return
env.reset()
while True:
i = env.current_index
if i >= len(env.candle_window) - 1:
break
state = env.get_state(i)
current_open = env.candle_window[i]["open"]
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
timeframe_ids = torch.arange(state.shape[0]).to(device)
pred_high, pred_low = model(state_tensor, timeframe_ids)
pred_high = pred_high.item()
pred_low = pred_low.item()
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
if (pred_high - current_open) >= (current_open - pred_low):
action = 2 # BUY
else:
action = 0 # SELL
_, _, _, done, _, _ = env.step(action)
else:
manual_trade(env)
if env.current_index >= len(env.candle_window) - 1:
break
# --- Live HTML Chart Update (with Volume) ---
def update_live_html(candles, trade_history, epoch):
"""
Generate an HTML page with a live chart.
The chart displays price (line) and volume (bar chart on a secondary y-axis),
and includes buy/sell markers with dotted lines connecting entries and exits.
The page auto-refreshes every 10 seconds.
"""
from io import BytesIO
import base64
fig, ax = plt.subplots(figsize=(12, 6))
update_live_chart(ax, candles, trade_history)
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
ax.set_title(f"Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}")
buf = BytesIO()
fig.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="refresh" content="10">
<title>Live Trading Chart - Epoch {epoch}</title>
<style>
body {{
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
background-color: #f4f4f4;
}}
.chart-container {{
text-align: center;
}}
img {{
max-width: 100%;
height: auto;
}}
</style>
</head>
<body>
<div class="chart-container">
<h2>Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}</h2>
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
</div>
</body>
</html>
"""
with open("live_chart.html", "w") as f:
f.write(html_content)
print("Updated live_chart.html.")
# --- Chart Drawing Helpers (with Volume) ---
def update_live_chart(ax, candles, trade_history):
"""
Plot the price chart with actual timestamps and volume on a secondary y-axis.
Mark BUY (green) and SELL (red) points and connect them with dotted lines.
"""
ax.clear()
times = [convert_timestamp(candle["timestamp"]) for candle in candles]
close_prices = [candle["close"] for candle in candles]
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
ax.set_xlabel("Time")
ax.set_ylabel("Price")
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
# Plot volume on secondary y-axis.
ax2 = ax.twinx()
volumes = [candle["volume"] for candle in candles]
if len(times) > 1:
times_num = mdates.date2num(times)
bar_width = (times_num[-1] - times_num[0]) / len(times) * 0.8
else:
bar_width = 0.01
ax2.bar(times, volumes, width=bar_width, alpha=0.3, color="grey", label="Volume")
ax2.set_ylabel("Volume")
# Plot trade markers.
for trade in trade_history:
entry_time = convert_timestamp(candles[trade["entry_index"]]["timestamp"])
exit_time = convert_timestamp(candles[trade["exit_index"]]["timestamp"])
in_price = trade["entry_price"]
out_price = trade["exit_price"]
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY")
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL")
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue")
# Combine legends.
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines + lines2, labels + labels2)
ax.grid(True)
fig = ax.get_figure()
fig.autofmt_xdate()
# --- Backtest Environment with Sliding Window and Order Info ---
class BacktestEnvironment:
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
self.candles_dict = candles_dict # full candles dict across timeframes
self.base_tf = base_tf
self.timeframes = timeframes
self.full_candles = candles_dict[base_tf]
if window_size is None:
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
self.window_size = window_size
self.reset()
def reset(self):
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
self.current_index = 0
self.trade_history = []
self.position = None
return self.get_state(self.current_index)
def __len__(self):
return self.window_size
def get_order_features(self, index):
candle = self.candle_window[index]
if self.position is None:
return [0.0] * FEATURES_PER_CHANNEL
else:
flag = 1.0
diff = (candle["open"] - self.position["entry_price"]) / candle["open"]
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
def get_state(self, index):
state_features = []
base_ts = self.candle_window[index]["timestamp"]
for tf in self.timeframes:
if tf == self.base_tf:
candle = self.candle_window[index]
features = get_features_for_tf([candle], 0)
else:
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
state_features.append(features)
order_features = self.get_order_features(index)
state_features.append(order_features)
for _ in range(NUM_INDICATORS):
state_features.append([0.0] * FEATURES_PER_CHANNEL)
return np.array(state_features, dtype=np.float32)
def step(self, action):
base = self.candle_window
if self.current_index >= len(base) - 1:
current_state = self.get_state(self.current_index)
return current_state, 0.0, None, True, 0.0, 0.0
current_state = self.get_state(self.current_index)
next_index = self.current_index + 1
next_state = self.get_state(next_index)
next_candle = base[next_index]
reward = 0.0
if self.position is None:
if action == 2: # BUY (open long)
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
else:
if action == 0: # SELL (close trade)
exit_price = next_candle["open"]
reward = exit_price - self.position["entry_price"]
trade = {
"entry_index": self.position["entry_index"],
"entry_price": self.position["entry_price"],
"exit_index": next_index,
"exit_price": exit_price,
"pnl": reward
}
self.trade_history.append(trade)
self.position = None
self.current_index = next_index
done = (self.current_index >= len(base) - 1)
actual_high = next_candle["high"]
actual_low = next_candle["low"]
return current_state, reward, next_state, done, actual_high, actual_low
# --- Enhanced Training Loop ---
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
lambda_trade = args.lambda_trade
for epoch in range(start_epoch, args.epochs):
env.reset()
loss_accum = 0.0
steps = len(env) - 1
for i in range(steps):
state = env.get_state(i)
current_open = env.candle_window[i]["open"]
actual_high = env.candle_window[i+1]["high"]
actual_low = env.candle_window[i+1]["low"]
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
timeframe_ids = torch.arange(state.shape[0]).to(device)
pred_high, pred_low = model(state_tensor, timeframe_ids)
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
torch.abs(pred_low - torch.tensor(actual_low, device=device))
profit_buy = pred_high - current_open
profit_sell = current_open - pred_low
L_trade = - torch.max(profit_buy, profit_sell)
current_open_tensor = torch.tensor(current_open, device=device)
signal_strength = torch.max(pred_high - current_open_tensor, current_open_tensor - pred_low)
penalty_term = args.penalty_noaction * torch.clamp(args.threshold - signal_strength, min=0)
loss = L_pred + lambda_trade * L_trade + penalty_term
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
loss_accum += loss.item()
scheduler.step()
epoch_loss = loss_accum / steps
print(f"Epoch {epoch+1} Loss: {epoch_loss:.4f}")
save_checkpoint(model, optimizer, epoch, loss_accum)
simulate_trades(model, env, device, args)
update_live_html(env.candle_window, env.trade_history, epoch+1)
# --- Live Plotting (for Live Mode) ---
def live_preview_loop(candles, env):
plt.ion()
fig, ax = plt.subplots(figsize=(12, 6))
while True:
update_live_chart(ax, candles, env.trade_history)
plt.draw()
plt.pause(1)
# --- Argument Parsing ---
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--threshold', type=float, default=0.005,
help="Minimum predicted move to trigger trade (used in loss; model may override manual trades).")
parser.add_argument('--lambda_trade', type=float, default=1.0,
help="Weight for the trade surrogate loss.")
parser.add_argument('--penalty_noaction', type=float, default=10.0,
help="Penalty if no action is taken (used in loss).")
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
parser.add_argument('--main_tf', type=str, default='1m',
help="Desired main timeframe to focus on (e.g., '1s' or '1m').")
return parser.parse_args()
def random_action():
return random.randint(0, 2)
# --- Main Function ---
async def main():
args = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
# Load cached candles.
candles_dict = load_candles_cache(CACHE_FILE)
if not candles_dict:
print("No historical candle data available for backtesting.")
return
# Define desired timeframes list; if available, include "1s".
default_timeframes = ["1s", "1m", "5m", "15m", "1h", "1d"]
timeframes = [tf for tf in default_timeframes if tf in candles_dict]
if args.main_tf not in timeframes:
print(f"Desired main timeframe {args.main_tf} is not available. Available: {timeframes}")
return
base_tf = args.main_tf # Set the main timeframe as the base for the environment.
hidden_dim = 128
# Total channels: number of timeframes + 1 order channel + NUM_INDICATORS.
total_channels = len(timeframes) + ORDER_CHANNELS + NUM_INDICATORS
model = TradingModel(total_channels, len(timeframes)).to(device)
if args.mode == 'train':
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
start_epoch = 0
checkpoint = None
if not args.start_fresh:
checkpoint = load_best_checkpoint(model)
if checkpoint is not None:
start_epoch = checkpoint.get("epoch", 0) + 1
print(f"Resuming training from epoch {start_epoch}.")
else:
print("No checkpoint found. Starting training from scratch.")
else:
print("Starting training from scratch as requested.")
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs - start_epoch)
if checkpoint is not None:
optim_state = checkpoint.get("optimizer_state_dict", None)
if optim_state is not None and "param_groups" in optim_state:
try:
optimizer.load_state_dict(optim_state)
print("Loaded optimizer state from checkpoint.")
except Exception as e:
print("Failed to load optimizer state due to:", e)
print("Deleting all checkpoints and starting fresh.")
for chk_dir in [LAST_DIR, BEST_DIR]:
for f in os.listdir(chk_dir):
os.remove(os.path.join(chk_dir, f))
else:
print("No valid optimizer state found; using fresh optimizer state.")
train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler)
elif args.mode == 'live':
load_best_checkpoint(model)
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
preview_thread = threading.Thread(target=live_preview_loop, args=(env.candle_window, env), daemon=True)
preview_thread.start()
print("Starting live trading loop. (For main_tf={} using manual override if model signal is weak.)".format(args.main_tf))
while True:
if args.main_tf == "1s":
simulate_trades_1s(env)
else:
state = env.get_state(env.current_index)
current_open = env.candle_window[env.current_index]["open"]
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
timeframe_ids = torch.arange(state.shape[0]).to(device)
pred_high, pred_low = model(state_tensor, timeframe_ids)
pred_high = pred_high.item()
pred_low = pred_low.item()
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
if (pred_high - current_open) >= (current_open - pred_low):
action = 2
else:
action = 0
_, _, _, done, _, _ = env.step(action)
else:
manual_trade(env)
if env.current_index >= len(env.candle_window)-1:
print("Reached end of simulation window; resetting environment.")
env.reset()
await asyncio.sleep(1)
elif args.mode == 'inference':
load_best_checkpoint(model)
print("Running inference...")
# Inference logic goes here.
else:
print("Invalid mode specified.")
if __name__ == "__main__":
asyncio.run(main())