Files
gogo2/ANNOTATE/web/templates/components/training_panel.html
2025-10-24 23:13:28 +03:00

540 lines
21 KiB
HTML

<div class="card training-panel">
<div class="card-header">
<h6 class="mb-0">
<i class="fas fa-graduation-cap"></i>
Training
</h6>
</div>
<div class="card-body p-2">
<!-- Model Selection -->
<div class="mb-3">
<label for="model-select" class="form-label small">Model</label>
<select class="form-select form-select-sm" id="model-select">
<option value="">Loading models...</option>
</select>
</div>
<!-- Training Controls -->
<div class="mb-3">
<button class="btn btn-primary btn-sm w-100" id="train-model-btn">
<i class="fas fa-play"></i>
Train Model
</button>
</div>
<!-- Training Status -->
<div id="training-status" style="display: none;">
<div class="alert alert-info py-2 px-2 mb-2">
<div class="d-flex align-items-center mb-1">
<div class="spinner-border spinner-border-sm me-2" role="status">
<span class="visually-hidden">Training...</span>
</div>
<strong class="small">Training in progress</strong>
</div>
<div class="progress mb-1" style="height: 10px;">
<div class="progress-bar progress-bar-striped progress-bar-animated" id="training-progress-bar"
role="progressbar" style="width: 0%"></div>
</div>
<div class="small">
<div>Epoch: <span id="training-epoch">0</span>/<span id="training-total-epochs">0</span></div>
<div>Loss: <span id="training-loss">--</span></div>
</div>
</div>
</div>
<!-- Training Results -->
<div id="training-results" style="display: none;">
<div class="alert alert-success py-2 px-2 mb-2">
<strong class="small">
<i class="fas fa-check-circle"></i>
Training Complete
</strong>
<div class="small mt-1">
<div>Final Loss: <span id="result-loss">--</span></div>
<div>Accuracy: <span id="result-accuracy">--</span></div>
<div>Duration: <span id="result-duration">--</span></div>
</div>
</div>
</div>
<!-- Real-Time Inference -->
<div class="mb-3">
<label class="form-label small">Real-Time Inference</label>
<button class="btn btn-success btn-sm w-100" id="start-inference-btn">
<i class="fas fa-play"></i>
Start Live Inference
</button>
<button class="btn btn-danger btn-sm w-100 mt-1" id="stop-inference-btn" style="display: none;">
<i class="fas fa-stop"></i>
Stop Inference
</button>
</div>
<!-- Inference Status -->
<div id="inference-status" style="display: none;">
<div class="alert alert-success py-2 px-2 mb-2">
<div class="d-flex align-items-center mb-1">
<div class="spinner-border spinner-border-sm me-2" role="status">
<span class="visually-hidden">Running...</span>
</div>
<strong class="small">🔴 LIVE</strong>
</div>
<div class="small">
<div>Signal: <span id="latest-signal" class="fw-bold">--</span></div>
<div>Confidence: <span id="latest-confidence">--</span></div>
<div class="text-muted" style="font-size: 0.7rem;">Charts updating every 1s</div>
</div>
</div>
</div>
<!-- Test Case Stats -->
<div class="small text-muted">
<div class="d-flex justify-content-between">
<span>Test Cases:</span>
<span id="testcase-count">0</span>
</div>
<div class="d-flex justify-content-between">
<span>Last Training:</span>
<span id="last-training-time">Never</span>
</div>
</div>
</div>
</div>
<script>
// Load available models on page load with polling for async loading
let modelLoadingPollInterval = null;
function loadAvailableModels() {
fetch('/api/available-models')
.then(response => response.json())
.then(data => {
const modelSelect = document.getElementById('model-select');
if (data.loading) {
// Models still loading - show loading message and poll
modelSelect.innerHTML = '<option value="">🔄 Loading models...</option>';
// Start polling if not already polling
if (!modelLoadingPollInterval) {
console.log('Models loading in background, will poll for completion...');
modelLoadingPollInterval = setInterval(loadAvailableModels, 2000); // Poll every 2 seconds
}
} else {
// Models loaded - stop polling
if (modelLoadingPollInterval) {
clearInterval(modelLoadingPollInterval);
modelLoadingPollInterval = null;
}
modelSelect.innerHTML = '';
if (data.success && data.models.length > 0) {
// Show success notification
if (window.showSuccess) {
window.showSuccess(`${data.models.length} models loaded and ready for training`);
}
data.models.forEach(model => {
const option = document.createElement('option');
option.value = model;
option.textContent = model;
modelSelect.appendChild(option);
});
console.log(`✅ Models loaded: ${data.models.join(', ')}`);
} else {
const option = document.createElement('option');
option.value = '';
option.textContent = 'No models available';
modelSelect.appendChild(option);
}
}
})
.catch(error => {
console.error('Error loading models:', error);
const modelSelect = document.getElementById('model-select');
modelSelect.innerHTML = '<option value="">Error loading models</option>';
// Stop polling on error
if (modelLoadingPollInterval) {
clearInterval(modelLoadingPollInterval);
modelLoadingPollInterval = null;
}
});
}
// Load models when page loads
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', loadAvailableModels);
} else {
loadAvailableModels();
}
// Train model button
document.getElementById('train-model-btn').addEventListener('click', function () {
const modelName = document.getElementById('model-select').value;
if (appState.annotations.length === 0) {
showError('No annotations available for training');
return;
}
// Get annotation IDs
const annotationIds = appState.annotations.map(a => a.annotation_id);
// Start training
startTraining(modelName, annotationIds);
});
function startTraining(modelName, annotationIds) {
// Show training status
document.getElementById('training-status').style.display = 'block';
document.getElementById('training-results').style.display = 'none';
document.getElementById('train-model-btn').disabled = true;
// Reset progress
document.getElementById('training-progress-bar').style.width = '0%';
document.getElementById('training-epoch').textContent = '0';
document.getElementById('training-loss').textContent = '--';
// Start training request
fetch('/api/train-model', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model_name: modelName,
annotation_ids: annotationIds
})
})
.then(response => response.json())
.then(data => {
if (data.success) {
// Start polling for training progress
pollTrainingProgress(data.training_id);
} else {
showError('Failed to start training: ' + data.error.message);
document.getElementById('training-status').style.display = 'none';
document.getElementById('train-model-btn').disabled = false;
}
})
.catch(error => {
showError('Network error: ' + error.message);
document.getElementById('training-status').style.display = 'none';
document.getElementById('train-model-btn').disabled = false;
});
}
function pollTrainingProgress(trainingId) {
const pollInterval = setInterval(function () {
fetch('/api/training-progress', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ training_id: trainingId })
})
.then(response => response.json())
.then(data => {
if (data.success) {
const progress = data.progress;
// Update progress bar
const percentage = (progress.current_epoch / progress.total_epochs) * 100;
document.getElementById('training-progress-bar').style.width = percentage + '%';
document.getElementById('training-epoch').textContent = progress.current_epoch;
document.getElementById('training-total-epochs').textContent = progress.total_epochs;
document.getElementById('training-loss').textContent = progress.current_loss.toFixed(4);
// Check if complete
if (progress.status === 'completed') {
clearInterval(pollInterval);
showTrainingResults(progress);
} else if (progress.status === 'failed') {
clearInterval(pollInterval);
showError('Training failed: ' + progress.error);
document.getElementById('training-status').style.display = 'none';
document.getElementById('train-model-btn').disabled = false;
}
}
})
.catch(error => {
clearInterval(pollInterval);
showError('Failed to get training progress: ' + error.message);
document.getElementById('training-status').style.display = 'none';
document.getElementById('train-model-btn').disabled = false;
});
}, 1000); // Poll every second
}
function showTrainingResults(results) {
// Hide training status
document.getElementById('training-status').style.display = 'none';
// Show results
document.getElementById('training-results').style.display = 'block';
document.getElementById('result-loss').textContent = results.final_loss.toFixed(4);
document.getElementById('result-accuracy').textContent = (results.accuracy * 100).toFixed(2) + '%';
document.getElementById('result-duration').textContent = results.duration_seconds.toFixed(1) + 's';
// Update last training time
document.getElementById('last-training-time').textContent = new Date().toLocaleTimeString();
// Re-enable train button
document.getElementById('train-model-btn').disabled = false;
showSuccess('Training completed successfully');
}
// Real-time inference controls
let currentInferenceId = null;
let signalPollInterval = null;
document.getElementById('start-inference-btn').addEventListener('click', function () {
const modelName = document.getElementById('model-select').value;
if (!modelName) {
showError('Please select a model first');
return;
}
// Start real-time inference
fetch('/api/realtime-inference/start', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model_name: modelName,
symbol: appState.currentSymbol
})
})
.then(response => response.json())
.then(data => {
if (data.success) {
currentInferenceId = data.inference_id;
// Update UI
document.getElementById('start-inference-btn').style.display = 'none';
document.getElementById('stop-inference-btn').style.display = 'block';
document.getElementById('inference-status').style.display = 'block';
// Show live mode banner
const banner = document.getElementById('live-mode-banner');
if (banner) {
banner.style.display = 'block';
}
// Start polling for signals
startSignalPolling();
showSuccess('Real-time inference started - Charts now updating live');
} else {
showError('Failed to start inference: ' + data.error.message);
}
})
.catch(error => {
showError('Network error: ' + error.message);
});
});
document.getElementById('stop-inference-btn').addEventListener('click', function () {
if (!currentInferenceId) return;
// Stop real-time inference
fetch('/api/realtime-inference/stop', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ inference_id: currentInferenceId })
})
.then(response => response.json())
.then(data => {
if (data.success) {
// Update UI
document.getElementById('start-inference-btn').style.display = 'block';
document.getElementById('stop-inference-btn').style.display = 'none';
document.getElementById('inference-status').style.display = 'none';
// Hide live mode banner
const banner = document.getElementById('live-mode-banner');
if (banner) {
banner.style.display = 'none';
}
// Stop polling
stopSignalPolling();
currentInferenceId = null;
showSuccess('Real-time inference stopped');
}
})
.catch(error => {
showError('Network error: ' + error.message);
});
});
function startSignalPolling() {
signalPollInterval = setInterval(function () {
// Poll for signals
fetch('/api/realtime-inference/signals')
.then(response => response.json())
.then(data => {
if (data.success && data.signals.length > 0) {
const latest = data.signals[0];
document.getElementById('latest-signal').textContent = latest.action;
document.getElementById('latest-confidence').textContent =
(latest.confidence * 100).toFixed(1) + '%';
// Update chart with signal markers
if (appState.chartManager) {
displaySignalOnChart(latest);
}
}
})
.catch(error => {
console.error('Error polling signals:', error);
});
// Update charts with latest data
updateChartsWithLiveData();
}, 1000); // Poll every second
}
function updateChartsWithLiveData() {
// Fetch latest chart data
fetch('/api/chart-data', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
symbol: appState.currentSymbol,
timeframes: appState.currentTimeframes,
start_time: null,
end_time: null
})
})
.then(response => response.json())
.then(data => {
if (data.success && appState.chartManager) {
// Update each chart with new data
Object.keys(data.chart_data).forEach(timeframe => {
const chartData = data.chart_data[timeframe];
if (appState.chartManager.charts[timeframe]) {
updateSingleChart(timeframe, chartData);
}
});
}
})
.catch(error => {
console.error('Error updating charts:', error);
});
}
let liveUpdateCount = 0;
function updateSingleChart(timeframe, newData) {
const chart = appState.chartManager.charts[timeframe];
if (!chart) return;
try {
// Update candlestick data
Plotly.update(chart.plotId, {
x: [newData.timestamps],
open: [newData.open],
high: [newData.high],
low: [newData.low],
close: [newData.close]
}, {}, [0]);
// Update volume data
const volumeColors = newData.close.map((close, i) => {
if (i === 0) return '#3b82f6';
return close >= newData.open[i] ? '#10b981' : '#ef4444';
});
Plotly.update(chart.plotId, {
x: [newData.timestamps],
y: [newData.volume],
'marker.color': [volumeColors]
}, {}, [1]);
// Update counter
liveUpdateCount++;
const counterEl = document.getElementById('live-update-count');
if (counterEl) {
counterEl.textContent = liveUpdateCount + ' updates';
}
} catch (error) {
console.error('Error updating chart:', timeframe, error);
}
}
function stopSignalPolling() {
if (signalPollInterval) {
clearInterval(signalPollInterval);
signalPollInterval = null;
}
}
function displaySignalOnChart(signal) {
// Add signal marker to chart
if (!appState.chartManager || !appState.chartManager.charts) return;
// Add marker to all timeframe charts
Object.keys(appState.chartManager.charts).forEach(timeframe => {
const chart = appState.chartManager.charts[timeframe];
if (!chart) return;
// Get current annotations
const currentAnnotations = chart.element.layout.annotations || [];
// Determine marker based on signal
let markerText = '';
let markerColor = '#9ca3af';
if (signal.action === 'BUY') {
markerText = '🔵 BUY';
markerColor = '#10b981';
} else if (signal.action === 'SELL') {
markerText = '🔴 SELL';
markerColor = '#ef4444';
} else {
return; // Don't show HOLD signals
}
// Add new signal marker
const newAnnotation = {
x: signal.timestamp,
y: signal.price,
text: markerText,
showarrow: true,
arrowhead: 2,
ax: 0,
ay: -40,
font: {
size: 12,
color: markerColor
},
bgcolor: '#1f2937',
bordercolor: markerColor,
borderwidth: 2,
borderpad: 4,
opacity: 0.8
};
// Keep only last 10 signal markers
const signalAnnotations = currentAnnotations.filter(ann =>
ann.text && (ann.text.includes('BUY') || ann.text.includes('SELL'))
).slice(-9);
// Combine with existing non-signal annotations
const otherAnnotations = currentAnnotations.filter(ann =>
!ann.text || (!ann.text.includes('BUY') && !ann.text.includes('SELL'))
);
const allAnnotations = [...otherAnnotations, ...signalAnnotations, newAnnotation];
// Update chart
Plotly.relayout(chart.plotId, {
annotations: allAnnotations
});
});
console.log('Signal displayed:', signal.action, '@', signal.price);
}
</script>