gogo2/test_enhanced_pivot_rl_system.py
2025-05-30 20:36:42 +03:00

320 lines
11 KiB
Python

"""
Test Enhanced Pivot-Based RL System
Tests the new system with:
- Different thresholds for entry vs exit
- Pivot-based rewards
- CNN predictions for early pivot detection
- Uninvested rewards
"""
import logging
import sys
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, Any
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
stream=sys.stdout
)
logger = logging.getLogger(__name__)
# Add project root to Python path
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from training.enhanced_pivot_rl_trainer import EnhancedPivotRLTrainer, create_enhanced_pivot_trainer
def test_enhanced_pivot_thresholds():
"""Test the enhanced pivot-based threshold system"""
logger.info("=== Testing Enhanced Pivot-Based Thresholds ===")
try:
# Create components
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True
)
# Test threshold initialization
thresholds = orchestrator.pivot_rl_trainer.get_current_thresholds()
logger.info(f"Initial thresholds:")
logger.info(f" Entry: {thresholds['entry_threshold']:.3f}")
logger.info(f" Exit: {thresholds['exit_threshold']:.3f}")
logger.info(f" Uninvested: {thresholds['uninvested_threshold']:.3f}")
# Verify entry threshold is higher than exit threshold
assert thresholds['entry_threshold'] > thresholds['exit_threshold'], "Entry threshold should be higher than exit"
logger.info("✅ Entry threshold correctly higher than exit threshold")
return True
except Exception as e:
logger.error(f"Error testing thresholds: {e}")
return False
def test_pivot_reward_calculation():
"""Test the pivot-based reward calculation"""
logger.info("=== Testing Pivot-Based Reward Calculation ===")
try:
# Create enhanced pivot trainer
data_provider = DataProvider()
pivot_trainer = create_enhanced_pivot_trainer(data_provider)
# Create mock trade decision and outcome
trade_decision = {
'action': 'BUY',
'confidence': 0.75,
'price': 2500.0,
'timestamp': datetime.now()
}
trade_outcome = {
'net_pnl': 15.50, # Profitable trade
'exit_price': 2515.0,
'duration': timedelta(minutes=45)
}
# Create mock market data
market_data = pd.DataFrame({
'open': np.random.normal(2500, 10, 100),
'high': np.random.normal(2510, 10, 100),
'low': np.random.normal(2490, 10, 100),
'close': np.random.normal(2500, 10, 100),
'volume': np.random.normal(1000, 100, 100)
})
market_data.index = pd.date_range(start=datetime.now() - timedelta(hours=2), periods=100, freq='1min')
# Calculate reward
reward = pivot_trainer.calculate_pivot_based_reward(
trade_decision, market_data, trade_outcome
)
logger.info(f"Calculated pivot-based reward: {reward:.3f}")
# Test should return a reasonable reward for profitable trade
assert -15.0 <= reward <= 10.0, f"Reward {reward} outside expected range"
logger.info("✅ Pivot-based reward calculation working")
# Test uninvested reward
low_conf_decision = {
'action': 'HOLD',
'confidence': 0.35, # Below uninvested threshold
'price': 2500.0,
'timestamp': datetime.now()
}
uninvested_reward = pivot_trainer._calculate_uninvested_rewards(low_conf_decision, 0.35)
logger.info(f"Uninvested reward for low confidence: {uninvested_reward:.3f}")
assert uninvested_reward > 0, "Should get positive reward for staying uninvested with low confidence"
logger.info("✅ Uninvested rewards working correctly")
return True
except Exception as e:
logger.error(f"Error testing pivot rewards: {e}")
return False
def test_confidence_adjustment():
"""Test confidence-based reward adjustments"""
logger.info("=== Testing Confidence-Based Adjustments ===")
try:
pivot_trainer = create_enhanced_pivot_trainer()
# Test overconfidence penalty on loss
high_conf_loss = {
'action': 'BUY',
'confidence': 0.85, # High confidence
'price': 2500.0,
'timestamp': datetime.now()
}
loss_outcome = {
'net_pnl': -25.0, # Loss
'exit_price': 2475.0,
'duration': timedelta(hours=3)
}
confidence_adjustment = pivot_trainer._calculate_confidence_adjustment(
high_conf_loss, loss_outcome
)
logger.info(f"Confidence adjustment for overconfident loss: {confidence_adjustment:.3f}")
assert confidence_adjustment < 0, "Should penalize overconfidence on losses"
# Test underconfidence penalty on win
low_conf_win = {
'action': 'BUY',
'confidence': 0.35, # Low confidence
'price': 2500.0,
'timestamp': datetime.now()
}
win_outcome = {
'net_pnl': 20.0, # Profit
'exit_price': 2520.0,
'duration': timedelta(minutes=30)
}
confidence_adjustment_2 = pivot_trainer._calculate_confidence_adjustment(
low_conf_win, win_outcome
)
logger.info(f"Confidence adjustment for underconfident win: {confidence_adjustment_2:.3f}")
# Should be small penalty or zero
logger.info("✅ Confidence adjustments working correctly")
return True
except Exception as e:
logger.error(f"Error testing confidence adjustments: {e}")
return False
def test_dynamic_threshold_updates():
"""Test dynamic threshold updating based on performance"""
logger.info("=== Testing Dynamic Threshold Updates ===")
try:
pivot_trainer = create_enhanced_pivot_trainer()
# Get initial thresholds
initial_thresholds = pivot_trainer.get_current_thresholds()
logger.info(f"Initial thresholds: {initial_thresholds}")
# Simulate some poor performance (low win rate)
for i in range(25):
outcome = {
'timestamp': datetime.now(),
'action': 'BUY',
'confidence': 0.6,
'net_pnl': -5.0 if i < 20 else 10.0, # 20% win rate
'reward': -1.0 if i < 20 else 2.0,
'duration': timedelta(hours=2)
}
pivot_trainer.trade_outcomes.append(outcome)
# Update thresholds
pivot_trainer.update_thresholds_based_on_performance()
# Get updated thresholds
updated_thresholds = pivot_trainer.get_current_thresholds()
logger.info(f"Updated thresholds after poor performance: {updated_thresholds}")
# Entry threshold should increase (more selective) after poor performance
assert updated_thresholds['entry_threshold'] >= initial_thresholds['entry_threshold'], \
"Entry threshold should increase after poor performance"
logger.info("✅ Dynamic threshold updates working correctly")
return True
except Exception as e:
logger.error(f"Error testing dynamic thresholds: {e}")
return False
def test_cnn_integration():
"""Test CNN integration for pivot predictions"""
logger.info("=== Testing CNN Integration ===")
try:
data_provider = DataProvider()
orchestrator = EnhancedTradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True
)
# Check if Williams structure is initialized with CNN
williams = orchestrator.pivot_rl_trainer.williams
logger.info(f"Williams CNN enabled: {williams.enable_cnn_feature}")
logger.info(f"Williams CNN model available: {williams.cnn_model is not None}")
# Test CNN threshold adjustment
from core.enhanced_orchestrator import MarketState
from datetime import datetime
mock_market_state = MarketState(
symbol='ETH/USDT',
timestamp=datetime.now(),
prices={'1s': 2500.0},
features={'1s': np.array([])},
volatility=0.02,
volume=1000.0,
trend_strength=0.5,
market_regime='normal',
universal_data=None
)
cnn_adjustment = orchestrator._get_cnn_threshold_adjustment(
'ETH/USDT', 'BUY', mock_market_state
)
logger.info(f"CNN threshold adjustment: {cnn_adjustment:.3f}")
assert 0.0 <= cnn_adjustment <= 0.1, "CNN adjustment should be reasonable"
logger.info("✅ CNN integration working correctly")
return True
except Exception as e:
logger.error(f"Error testing CNN integration: {e}")
return False
def run_all_tests():
"""Run all enhanced pivot RL system tests"""
logger.info("🚀 Starting Enhanced Pivot RL System Tests")
tests = [
test_enhanced_pivot_thresholds,
test_pivot_reward_calculation,
test_confidence_adjustment,
test_dynamic_threshold_updates,
test_cnn_integration
]
passed = 0
total = len(tests)
for test_func in tests:
try:
if test_func():
passed += 1
logger.info(f"{test_func.__name__} PASSED")
else:
logger.error(f"{test_func.__name__} FAILED")
except Exception as e:
logger.error(f"{test_func.__name__} ERROR: {e}")
logger.info(f"\n📊 Test Results: {passed}/{total} tests passed")
if passed == total:
logger.info("🎉 All Enhanced Pivot RL System tests PASSED!")
return True
else:
logger.error(f"⚠️ {total - passed} tests FAILED")
return False
if __name__ == "__main__":
success = run_all_tests()
if success:
logger.info("\n🔥 Enhanced Pivot RL System is ready for deployment!")
logger.info("Key improvements:")
logger.info(" ✅ Higher entry threshold than exit threshold")
logger.info(" ✅ Pivot-based reward calculation")
logger.info(" ✅ CNN predictions for early pivot detection")
logger.info(" ✅ Rewards for staying uninvested when uncertain")
logger.info(" ✅ Confidence-based reward adjustments")
logger.info(" ✅ Dynamic threshold learning from performance")
else:
logger.error("\n❌ Enhanced Pivot RL System has issues that need fixing")
sys.exit(0 if success else 1)