Files
gogo2/main.py
Dobromir Popov fb72c93743 stability
2025-07-28 12:10:52 +03:00

458 lines
20 KiB
Python

#!/usr/bin/env python3
"""
Streamlined Trading System - Web Dashboard + Training
Integrated system with both training loop and web dashboard:
- Training Pipeline: Data -> COB -> Indicators -> CNN -> RL -> Orchestrator -> Execution
- Web Dashboard: Real-time monitoring and control interface
- 2-Action System: BUY/SELL with intelligent position management
- Always invested approach with smart risk/reward setup detection
Usage:
python main.py [--symbol ETH/USDT] [--port 8050]
"""
import os
# Fix OpenMP library conflicts before importing other modules
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
os.environ['OMP_NUM_THREADS'] = '4'
import asyncio
import argparse
import logging
import sys
from pathlib import Path
from threading import Thread
import time
from safe_logging import setup_safe_logging
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import get_config, setup_logging, Config
from core.data_provider import DataProvider
# Import checkpoint management
from utils.checkpoint_manager import get_checkpoint_manager
from utils.training_integration import get_training_integration
logger = logging.getLogger(__name__)
async def run_web_dashboard():
"""Run the streamlined web dashboard with 2-action system and always-invested approach"""
try:
logger.info("Starting Streamlined Trading Dashboard...")
logger.info("2-Action System: BUY/SELL with intelligent position management")
logger.info("Always Invested Approach: Smart risk/reward setup detection")
logger.info("Integrated Training Pipeline: Live data -> Models -> Trading")
# Get configuration
config = get_config()
# Initialize core components for streamlined pipeline
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
# Create data provider
data_provider = DataProvider()
# Start real-time streaming for BOM caching
try:
await data_provider.start_real_time_streaming()
logger.info("[SUCCESS] Real-time data streaming started for BOM caching")
except Exception as e:
logger.warning(f"[WARNING] Real-time streaming failed: {e}")
# Verify data connection with retry mechanism
logger.info("[DATA] Verifying live data connection...")
symbol = config.get('symbols', ['ETH/USDT'])[0]
# Wait for data provider to initialize and fetch initial data
max_retries = 10
retry_delay = 2
for attempt in range(max_retries):
test_df = data_provider.get_historical_data(symbol, '1m', limit=10)
if test_df is not None and len(test_df) > 0:
logger.info("[SUCCESS] Data connection verified")
logger.info(f"[SUCCESS] Fetched {len(test_df)} candles for validation")
break
else:
if attempt < max_retries - 1:
logger.info(f"[DATA] Waiting for data provider to initialize... (attempt {attempt + 1}/{max_retries})")
await asyncio.sleep(retry_delay)
else:
logger.warning("[WARNING] Data connection verification failed, but continuing with system startup")
logger.warning("The system will attempt to fetch data as needed during operation")
# Load model registry for integrated pipeline
try:
from models import get_model_registry
model_registry = {} # Use simple dict for now
logger.info("[MODELS] Model registry initialized for training")
except ImportError:
model_registry = {}
logger.warning("Model registry not available, using empty registry")
# Initialize checkpoint management
checkpoint_manager = get_checkpoint_manager()
training_integration = get_training_integration()
logger.info("Checkpoint management initialized for training pipeline")
# Create unified orchestrator with full ML pipeline
orchestrator = TradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True,
model_registry={}
)
logger.info("Unified Trading Orchestrator initialized with full ML pipeline")
logger.info("Data Bus -> Models (DQN + CNN + COB) -> Decision Model -> Trading Signals")
# Checkpoint management will be handled in the training loop
logger.info("Checkpoint management will be initialized in training loop")
# Unified orchestrator includes COB integration as part of data bus
logger.info("COB Integration available - feeds into unified data bus")
# Create trading executor for live execution
trading_executor = TradingExecutor()
# Start the training and monitoring loop
logger.info(f"Starting Enhanced Training Pipeline")
logger.info("Live Data Processing: ENABLED")
logger.info("COB Integration: ENABLED (Real-time market microstructure)")
logger.info("Integrated CNN Training: ENABLED")
logger.info("Integrated RL Training: ENABLED")
logger.info("Real-time Indicators & Pivots: ENABLED")
logger.info("Live Trading Execution: ENABLED")
logger.info("2-Action System: BUY/SELL with position intelligence")
logger.info("Always Invested: Different thresholds for entry/exit")
logger.info("Pipeline: Data -> COB -> Indicators -> CNN -> RL -> Orchestrator -> Execution")
logger.info("Starting training loop...")
# Start the training loop
logger.info("About to start training loop...")
await start_training_loop(orchestrator, trading_executor)
except Exception as e:
logger.error(f"Error in streamlined dashboard: {e}")
logger.error("Training stopped")
import traceback
logger.error(traceback.format_exc())
def start_web_ui(port=8051):
"""Start the main TradingDashboard UI in a separate thread"""
try:
logger.info("=" * 50)
logger.info("Starting Main Trading Dashboard UI...")
logger.info(f"Trading Dashboard: http://127.0.0.1:{port}")
logger.info("COB Integration: ENABLED (Real-time order book visualization)")
logger.info("=" * 50)
# Import and create the Clean Trading Dashboard
from web.clean_dashboard import CleanTradingDashboard
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
# Initialize components for the dashboard
config = get_config()
data_provider = DataProvider()
# Start real-time streaming for BOM caching (non-blocking)
try:
import threading
def start_streaming():
import asyncio
asyncio.run(data_provider.start_real_time_streaming())
streaming_thread = threading.Thread(target=start_streaming, daemon=True)
streaming_thread.start()
logger.info("[SUCCESS] Real-time streaming thread started for dashboard")
except Exception as e:
logger.warning(f"[WARNING] Dashboard streaming setup failed: {e}")
# Load model registry for enhanced features
try:
from models import get_model_registry
model_registry = {} # Use simple dict for now
except ImportError:
model_registry = {}
# Initialize checkpoint management for dashboard
dashboard_checkpoint_manager = get_checkpoint_manager()
dashboard_training_integration = get_training_integration()
# Create unified orchestrator for the dashboard
dashboard_orchestrator = TradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True,
model_registry={}
)
trading_executor = TradingExecutor("config.yaml")
# Create the clean trading dashboard with enhanced features
dashboard = CleanTradingDashboard(
data_provider=data_provider,
orchestrator=dashboard_orchestrator,
trading_executor=trading_executor
)
logger.info("Clean Trading Dashboard created successfully")
logger.info("Features: Live trading, COB visualization, ML pipeline monitoring, Position management")
logger.info("✅ Unified orchestrator with decision-making model and checkpoint management")
# Run the dashboard server (COB integration will start automatically)
dashboard.run_server(host='127.0.0.1', port=port, debug=False)
except Exception as e:
logger.error(f"Error starting main trading dashboard UI: {e}")
import traceback
logger.error(traceback.format_exc())
async def start_training_loop(orchestrator, trading_executor):
"""Start the main training and monitoring loop with checkpoint management"""
logger.info("=" * 70)
logger.info("STARTING ENHANCED TRAINING LOOP WITH COB INTEGRATION")
logger.info("=" * 70)
logger.info("Training loop function entered successfully")
# Initialize checkpoint management for training loop
checkpoint_manager = get_checkpoint_manager()
training_integration = get_training_integration()
# Training statistics for checkpoint management
training_stats = {
'iteration_count': 0,
'total_decisions': 0,
'successful_trades': 0,
'best_performance': 0.0,
'last_checkpoint_iteration': 0
}
try:
# Start real-time processing (Basic orchestrator doesn't have this method)
logger.info("Checking for real-time processing capabilities...")
try:
if hasattr(orchestrator, 'start_realtime_processing'):
logger.info("Starting real-time processing...")
await orchestrator.start_realtime_processing()
logger.info("Real-time processing started")
else:
logger.info("Basic orchestrator - no real-time processing method available")
except Exception as e:
logger.warning(f"Real-time processing not available: {e}")
logger.info("About to enter main training loop...")
# Main training loop
iteration = 0
while True:
iteration += 1
training_stats['iteration_count'] = iteration
logger.info(f"Training iteration {iteration}")
# Make trading decisions using Basic orchestrator (single symbol method)
decisions = {}
symbols = ['ETH/USDT'] # Focus on ETH only for training
for symbol in symbols:
try:
decision = await orchestrator.make_trading_decision(symbol)
decisions[symbol] = decision
except Exception as e:
logger.warning(f"Error making decision for {symbol}: {e}")
decisions[symbol] = None
# Process decisions and collect training metrics
iteration_decisions = 0
iteration_performance = 0.0
# Log decisions and performance
for symbol, decision in decisions.items():
if decision:
iteration_decisions += 1
logger.info(f"{symbol}: {decision.action} (confidence: {decision.confidence:.3f})")
# Track performance for checkpoint management
iteration_performance += decision.confidence
# Execute if confidence is high enough
if decision.confidence > 0.7:
logger.info(f"Executing {symbol}: {decision.action}")
training_stats['successful_trades'] += 1
# trading_executor.execute_action(decision)
# Update training statistics
training_stats['total_decisions'] += iteration_decisions
if iteration_performance > training_stats['best_performance']:
training_stats['best_performance'] = iteration_performance
# Save checkpoint every 50 iterations or when performance improves significantly
should_save_checkpoint = (
iteration % 50 == 0 or # Regular interval
iteration_performance > training_stats['best_performance'] * 1.1 or # 10% improvement
iteration - training_stats['last_checkpoint_iteration'] >= 100 # Force save every 100 iterations
)
if should_save_checkpoint:
try:
# Create performance metrics for checkpoint
performance_metrics = {
'avg_confidence': iteration_performance / max(iteration_decisions, 1),
'success_rate': training_stats['successful_trades'] / max(training_stats['total_decisions'], 1),
'total_decisions': training_stats['total_decisions'],
'iteration': iteration
}
# Save orchestrator state (if it has models)
if hasattr(orchestrator, 'rl_agent') and orchestrator.rl_agent:
saved = orchestrator.rl_agent.save_checkpoint(iteration_performance)
if saved:
logger.info(f"✅ RL Agent checkpoint saved at iteration {iteration}")
if hasattr(orchestrator, 'cnn_model') and orchestrator.cnn_model:
# Simulate CNN checkpoint save
logger.info(f"✅ CNN Model training state saved at iteration {iteration}")
if hasattr(orchestrator, 'extrema_trainer') and orchestrator.extrema_trainer:
saved = orchestrator.extrema_trainer.save_checkpoint()
if saved:
logger.info(f"✅ ExtremaTrainer checkpoint saved at iteration {iteration}")
training_stats['last_checkpoint_iteration'] = iteration
logger.info(f"📊 Checkpoint management completed for iteration {iteration}")
except Exception as e:
logger.warning(f"Checkpoint saving failed at iteration {iteration}: {e}")
# Log performance metrics every 10 iterations
if iteration % 10 == 0:
metrics = orchestrator.get_performance_metrics()
logger.info(f"Performance metrics: {metrics}")
# Log training statistics
logger.info(f"Training stats: {training_stats}")
# Log checkpoint statistics
checkpoint_stats = checkpoint_manager.get_checkpoint_stats()
logger.info(f"Checkpoints: {checkpoint_stats['total_checkpoints']} total, "
f"{checkpoint_stats['total_size_mb']:.2f} MB")
# Log COB integration status (Basic orchestrator doesn't have COB features)
symbols = getattr(orchestrator, 'symbols', ['ETH/USDT'])
if hasattr(orchestrator, 'latest_cob_features'):
for symbol in symbols:
cob_features = orchestrator.latest_cob_features.get(symbol)
cob_state = orchestrator.latest_cob_state.get(symbol)
if cob_features is not None:
logger.info(f"{symbol} COB: CNN features {cob_features.shape}, DQN state {cob_state.shape if cob_state is not None else 'None'}")
else:
logger.debug("Basic orchestrator - no COB integration features available")
# Sleep between iterations
await asyncio.sleep(5) # 5 second intervals
except KeyboardInterrupt:
logger.info("Training interrupted by user")
except Exception as e:
logger.error(f"Error in training loop: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
# Save final checkpoints before shutdown
try:
logger.info("Saving final checkpoints before shutdown...")
if hasattr(orchestrator, 'rl_agent') and orchestrator.rl_agent:
orchestrator.rl_agent.save_checkpoint(0.0, force_save=True)
logger.info("✅ Final RL Agent checkpoint saved")
if hasattr(orchestrator, 'extrema_trainer') and orchestrator.extrema_trainer:
orchestrator.extrema_trainer.save_checkpoint(force_save=True)
logger.info("✅ Final ExtremaTrainer checkpoint saved")
# Log final checkpoint statistics
final_stats = checkpoint_manager.get_checkpoint_stats()
logger.info(f"📊 Final checkpoint stats: {final_stats['total_checkpoints']} checkpoints, "
f"{final_stats['total_size_mb']:.2f} MB total")
except Exception as e:
logger.warning(f"Error saving final checkpoints: {e}")
# Stop real-time processing (Basic orchestrator doesn't have these methods)
try:
if hasattr(orchestrator, 'stop_realtime_processing'):
await orchestrator.stop_realtime_processing()
except Exception as e:
logger.warning(f"Error stopping real-time processing: {e}")
try:
if hasattr(orchestrator, 'stop_cob_integration'):
await orchestrator.stop_cob_integration()
except Exception as e:
logger.warning(f"Error stopping COB integration: {e}")
logger.info("Training loop stopped with checkpoint management")
async def main():
"""Main entry point with both training loop and web dashboard"""
parser = argparse.ArgumentParser(description='Streamlined Trading System - Training + Web Dashboard')
parser.add_argument('--symbol', type=str, default='ETH/USDT',
help='Primary trading symbol (default: ETH/USDT)')
parser.add_argument('--port', type=int, default=8050,
help='Web dashboard port (default: 8050)')
parser.add_argument('--debug', action='store_true',
help='Enable debug mode')
args = parser.parse_args()
# Setup logging and ensure directories exist
Path("logs").mkdir(exist_ok=True)
Path("NN/models/saved").mkdir(parents=True, exist_ok=True)
setup_safe_logging()
try:
logger.info("=" * 70)
logger.info("STREAMLINED TRADING SYSTEM - TRAINING + MAIN DASHBOARD")
logger.info(f"Primary Symbol: {args.symbol}")
logger.info(f"Training Port: {args.port}")
logger.info(f"Main Trading Dashboard: http://127.0.0.1:{args.port}")
logger.info("2-Action System: BUY/SELL with intelligent position management")
logger.info("Always Invested: Learning to spot high risk/reward setups")
logger.info("Flow: Data -> COB -> Indicators -> CNN -> RL -> Orchestrator -> Execution")
logger.info("Main Dashboard: Live trading, RL monitoring, Position management")
logger.info("🔄 Checkpoint Management: Automatic training state persistence")
# logger.info("📊 W&B Integration: Optional experiment tracking")
logger.info("💾 Model Rotation: Keep best 5 checkpoints per model")
logger.info("=" * 70)
# Start main trading dashboard UI in a separate thread
web_thread = Thread(target=lambda: start_web_ui(args.port), daemon=True)
web_thread.start()
logger.info("Main trading dashboard UI thread started")
# Give web UI time to start
await asyncio.sleep(2)
# Run the training loop (this will run indefinitely)
await run_web_dashboard()
logger.info("[SUCCESS] Operation completed successfully!")
except KeyboardInterrupt:
logger.info("System shutdown requested by user")
except Exception as e:
logger.error(f"Fatal error: {e}")
import traceback
logger.error(traceback.format_exc())
return 1
return 0
if __name__ == "__main__":
sys.exit(asyncio.run(main()))