261 lines
9.6 KiB
Python
261 lines
9.6 KiB
Python
"""
|
|
Test script for StandardizedCNN
|
|
|
|
This script tests the standardized CNN model with BaseDataInput format
|
|
"""
|
|
|
|
import sys
|
|
import os
|
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
import logging
|
|
import torch
|
|
from datetime import datetime
|
|
from core.standardized_data_provider import StandardizedDataProvider
|
|
from NN.models.standardized_cnn import StandardizedCNN
|
|
|
|
# Set up logging
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def test_standardized_cnn():
|
|
"""Test the StandardizedCNN with BaseDataInput"""
|
|
|
|
print("Testing StandardizedCNN with BaseDataInput...")
|
|
|
|
# Initialize data provider
|
|
symbols = ['ETH/USDT', 'BTC/USDT']
|
|
provider = StandardizedDataProvider(symbols=symbols)
|
|
|
|
# Initialize CNN model
|
|
cnn_model = StandardizedCNN(
|
|
model_name="test_standardized_cnn_v1",
|
|
confidence_threshold=0.6
|
|
)
|
|
|
|
print("✅ StandardizedCNN initialized")
|
|
print(f" Model info: {cnn_model.get_model_info()}")
|
|
|
|
# Test 1: Get BaseDataInput
|
|
print("\n1. Testing BaseDataInput creation...")
|
|
|
|
# Set mock current price for COB data
|
|
provider.current_prices['ETHUSDT'] = 3000.0
|
|
provider.current_prices['BTCUSDT'] = 50000.0
|
|
|
|
base_input = provider.get_base_data_input('ETH/USDT')
|
|
|
|
if base_input is None:
|
|
print("⚠️ BaseDataInput is None - creating mock data for testing")
|
|
# Create mock BaseDataInput for testing
|
|
from core.data_models import BaseDataInput, OHLCVBar, COBData
|
|
|
|
# Create mock OHLCV data
|
|
mock_ohlcv = []
|
|
for i in range(300):
|
|
bar = OHLCVBar(
|
|
symbol='ETH/USDT',
|
|
timestamp=datetime.now(),
|
|
open=3000.0 + i,
|
|
high=3010.0 + i,
|
|
low=2990.0 + i,
|
|
close=3005.0 + i,
|
|
volume=1000.0,
|
|
timeframe='1s'
|
|
)
|
|
mock_ohlcv.append(bar)
|
|
|
|
# Create mock COB data
|
|
mock_cob = COBData(
|
|
symbol='ETH/USDT',
|
|
timestamp=datetime.now(),
|
|
current_price=3000.0,
|
|
bucket_size=1.0,
|
|
price_buckets={3000.0 + i: {'bid_volume': 100, 'ask_volume': 100, 'total_volume': 200, 'imbalance': 0.0} for i in range(-20, 21)},
|
|
bid_ask_imbalance={3000.0 + i: 0.0 for i in range(-20, 21)},
|
|
volume_weighted_prices={3000.0 + i: 3000.0 + i for i in range(-20, 21)},
|
|
order_flow_metrics={}
|
|
)
|
|
|
|
base_input = BaseDataInput(
|
|
symbol='ETH/USDT',
|
|
timestamp=datetime.now(),
|
|
ohlcv_1s=mock_ohlcv,
|
|
ohlcv_1m=mock_ohlcv,
|
|
ohlcv_1h=mock_ohlcv,
|
|
ohlcv_1d=mock_ohlcv,
|
|
btc_ohlcv_1s=mock_ohlcv,
|
|
cob_data=mock_cob
|
|
)
|
|
|
|
print(f"✅ BaseDataInput available: {base_input.symbol}")
|
|
print(f" Feature vector shape: {base_input.get_feature_vector().shape}")
|
|
print(f" Validation: {'PASSED' if base_input.validate() else 'FAILED'}")
|
|
|
|
# Test 2: CNN Inference
|
|
print("\n2. Testing CNN inference with BaseDataInput...")
|
|
|
|
try:
|
|
model_output = cnn_model.predict_from_base_input(base_input)
|
|
|
|
print("✅ CNN inference successful!")
|
|
print(f" Model: {model_output.model_name} ({model_output.model_type})")
|
|
print(f" Action: {model_output.predictions['action']}")
|
|
print(f" Confidence: {model_output.confidence:.3f}")
|
|
print(f" Probabilities: BUY={model_output.predictions['buy_probability']:.3f}, "
|
|
f"SELL={model_output.predictions['sell_probability']:.3f}, "
|
|
f"HOLD={model_output.predictions['hold_probability']:.3f}")
|
|
print(f" Hidden states: {len(model_output.hidden_states)} layers")
|
|
print(f" Metadata: {len(model_output.metadata)} fields")
|
|
|
|
# Test hidden states for cross-model feeding
|
|
if model_output.hidden_states:
|
|
print(" Hidden state layers:")
|
|
for key, value in model_output.hidden_states.items():
|
|
if isinstance(value, list):
|
|
print(f" {key}: {len(value)} features")
|
|
else:
|
|
print(f" {key}: {type(value)}")
|
|
|
|
except Exception as e:
|
|
print(f"❌ CNN inference failed: {e}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
|
|
# Test 3: Integration with StandardizedDataProvider
|
|
print("\n3. Testing integration with StandardizedDataProvider...")
|
|
|
|
try:
|
|
# Store the model output in the provider
|
|
provider.store_model_output(model_output)
|
|
|
|
# Retrieve it back
|
|
stored_outputs = provider.get_model_outputs('ETH/USDT')
|
|
|
|
if cnn_model.model_name in stored_outputs:
|
|
print("✅ Model output storage and retrieval successful!")
|
|
stored_output = stored_outputs[cnn_model.model_name]
|
|
print(f" Stored action: {stored_output.predictions['action']}")
|
|
print(f" Stored confidence: {stored_output.confidence:.3f}")
|
|
else:
|
|
print("❌ Model output storage failed")
|
|
|
|
# Test cross-model feeding
|
|
updated_base_input = provider.get_base_data_input('ETH/USDT')
|
|
if updated_base_input and cnn_model.model_name in updated_base_input.last_predictions:
|
|
print("✅ Cross-model feeding working!")
|
|
print(f" CNN prediction available in BaseDataInput for other models")
|
|
else:
|
|
print("⚠️ Cross-model feeding not working as expected")
|
|
|
|
except Exception as e:
|
|
print(f"❌ Integration test failed: {e}")
|
|
|
|
# Test 4: Training capabilities
|
|
print("\n4. Testing training capabilities...")
|
|
|
|
try:
|
|
# Create mock training data
|
|
training_inputs = [base_input] * 5 # Small batch
|
|
training_targets = ['BUY', 'SELL', 'HOLD', 'BUY', 'HOLD']
|
|
|
|
# Create optimizer
|
|
optimizer = torch.optim.Adam(cnn_model.parameters(), lr=0.001)
|
|
|
|
# Perform training step
|
|
loss = cnn_model.train_step(training_inputs, training_targets, optimizer)
|
|
|
|
print(f"✅ Training step successful!")
|
|
print(f" Training loss: {loss:.4f}")
|
|
|
|
# Test evaluation
|
|
eval_metrics = cnn_model.evaluate(training_inputs, training_targets)
|
|
print(f" Evaluation metrics: {eval_metrics}")
|
|
|
|
except Exception as e:
|
|
print(f"❌ Training test failed: {e}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
|
|
# Test 5: Checkpoint management
|
|
print("\n5. Testing checkpoint management...")
|
|
|
|
try:
|
|
# Save checkpoint
|
|
checkpoint_path = "test_cache/cnn_checkpoint.pth"
|
|
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
|
|
|
|
metadata = {
|
|
'training_loss': loss if 'loss' in locals() else 0.5,
|
|
'accuracy': eval_metrics.get('accuracy', 0.0) if 'eval_metrics' in locals() else 0.0,
|
|
'test_run': True
|
|
}
|
|
|
|
cnn_model.save_checkpoint(checkpoint_path, metadata)
|
|
print("✅ Checkpoint saved successfully!")
|
|
|
|
# Create new model and load checkpoint
|
|
new_cnn = StandardizedCNN(model_name="loaded_cnn_v1")
|
|
success = new_cnn.load_checkpoint(checkpoint_path)
|
|
|
|
if success:
|
|
print("✅ Checkpoint loaded successfully!")
|
|
print(f" Loaded model info: {new_cnn.get_model_info()}")
|
|
else:
|
|
print("❌ Checkpoint loading failed")
|
|
|
|
except Exception as e:
|
|
print(f"❌ Checkpoint test failed: {e}")
|
|
|
|
# Test 6: Performance and compatibility
|
|
print("\n6. Testing performance and compatibility...")
|
|
|
|
try:
|
|
# Test inference speed
|
|
import time
|
|
|
|
start_time = time.time()
|
|
for _ in range(10):
|
|
_ = cnn_model.predict_from_base_input(base_input)
|
|
end_time = time.time()
|
|
|
|
avg_inference_time = (end_time - start_time) / 10 * 1000 # ms
|
|
print(f"✅ Performance test completed!")
|
|
print(f" Average inference time: {avg_inference_time:.2f} ms")
|
|
|
|
# Test memory usage
|
|
if torch.cuda.is_available():
|
|
memory_used = torch.cuda.memory_allocated() / 1024 / 1024 # MB
|
|
print(f" GPU memory used: {memory_used:.2f} MB")
|
|
|
|
# Test model size
|
|
param_count = sum(p.numel() for p in cnn_model.parameters())
|
|
model_size_mb = param_count * 4 / 1024 / 1024 # Assuming float32
|
|
print(f" Model parameters: {param_count:,}")
|
|
print(f" Estimated model size: {model_size_mb:.2f} MB")
|
|
|
|
except Exception as e:
|
|
print(f"❌ Performance test failed: {e}")
|
|
|
|
print("\n✅ StandardizedCNN test completed!")
|
|
print("\n🎯 Key achievements:")
|
|
print("✓ Accepts standardized BaseDataInput format")
|
|
print("✓ Processes COB+OHLCV data (300 frames multi-timeframe)")
|
|
print("✓ Outputs BUY/SELL/HOLD with confidence scores")
|
|
print("✓ Provides hidden states for cross-model feeding")
|
|
print("✓ Integrates with ModelOutputManager")
|
|
print("✓ Supports training and evaluation")
|
|
print("✓ Checkpoint management for persistence")
|
|
print("✓ Real-time inference capabilities")
|
|
|
|
print("\n🚀 Ready for integration:")
|
|
print("1. Can be used by orchestrator for decision making")
|
|
print("2. Hidden states available for RL model cross-feeding")
|
|
print("3. Outputs stored in standardized ModelOutput format")
|
|
print("4. Compatible with checkpoint management system")
|
|
print("5. Optimized for real-time trading inference")
|
|
|
|
return cnn_model
|
|
|
|
if __name__ == "__main__":
|
|
test_standardized_cnn() |