Files
gogo2/web/dashboard_model.py
Dobromir Popov 6acc1c9296 Add template-based MVC dashboard architecture
- Add HTML templates for clean separation of concerns
- Add structured data models for type safety
- Add template renderer for Jinja2 integration
- Add templated dashboard implementation
- Demonstrates 95% file size reduction potential
2025-07-02 01:56:50 +03:00

331 lines
11 KiB
Python

"""
Dashboard Data Model
Provides structured data for template rendering
"""
from dataclasses import dataclass, field
from typing import List, Dict, Any, Optional
from datetime import datetime
@dataclass
class MetricData:
"""Individual metric for the dashboard"""
id: str
label: str
value: str
format_type: str = "text" # text, currency, percentage
@dataclass
class TradingControlsData:
"""Trading controls configuration"""
buy_text: str = "BUY"
sell_text: str = "SELL"
clear_text: str = "Clear Session"
leverage: int = 10
leverage_min: int = 1
leverage_max: int = 50
@dataclass
class RecentDecisionData:
"""Recent AI decision data"""
timestamp: str
action: str
symbol: str
confidence: float
price: float
@dataclass
class COBLevelData:
"""Order book level data"""
side: str # 'bid' or 'ask'
size: str
price: str
total: str
@dataclass
class COBData:
"""Complete order book data for a symbol"""
symbol: str
content_id: str
total_usd: str
total_crypto: str
levels: List[COBLevelData] = field(default_factory=list)
@dataclass
class ModelData:
"""Model status data"""
name: str
status: str # 'training', 'idle', 'loading'
status_text: str
@dataclass
class TrainingMetricData:
"""Training metric data"""
name: str
value: str
@dataclass
class PerformanceStatData:
"""Performance statistic data"""
name: str
value: str
@dataclass
class ClosedTradeData:
"""Closed trade data"""
time: str
symbol: str
side: str
size: str
entry_price: str
exit_price: str
pnl: float
duration: str
@dataclass
class ChartData:
"""Chart configuration data"""
title: str = "Price Chart & Signals"
@dataclass
class DashboardModel:
"""Complete dashboard data model"""
title: str = "Live Scalping Dashboard"
subtitle: str = "Real-time Trading with AI Models"
refresh_interval: int = 1000
# Main sections
metrics: List[MetricData] = field(default_factory=list)
chart: ChartData = field(default_factory=ChartData)
trading_controls: TradingControlsData = field(default_factory=TradingControlsData)
recent_decisions: List[RecentDecisionData] = field(default_factory=list)
cob_data: List[COBData] = field(default_factory=list)
models: List[ModelData] = field(default_factory=list)
training_metrics: List[TrainingMetricData] = field(default_factory=list)
performance_stats: List[PerformanceStatData] = field(default_factory=list)
closed_trades: List[ClosedTradeData] = field(default_factory=list)
class DashboardDataBuilder:
"""Builder class to construct dashboard data from various sources"""
def __init__(self):
self.model = DashboardModel()
def set_basic_info(self, title: str = None, subtitle: str = None, refresh_interval: int = None):
"""Set basic dashboard information"""
if title:
self.model.title = title
if subtitle:
self.model.subtitle = subtitle
if refresh_interval:
self.model.refresh_interval = refresh_interval
return self
def add_metric(self, id: str, label: str, value: Any, format_type: str = "text"):
"""Add a metric to the dashboard"""
formatted_value = self._format_value(value, format_type)
metric = MetricData(id=id, label=label, value=formatted_value, format_type=format_type)
self.model.metrics.append(metric)
return self
def set_trading_controls(self, leverage: int = None, leverage_range: tuple = None):
"""Configure trading controls"""
if leverage:
self.model.trading_controls.leverage = leverage
if leverage_range:
self.model.trading_controls.leverage_min = leverage_range[0]
self.model.trading_controls.leverage_max = leverage_range[1]
return self
def add_recent_decision(self, timestamp: datetime, action: str, symbol: str,
confidence: float, price: float):
"""Add a recent AI decision"""
decision = RecentDecisionData(
timestamp=timestamp.strftime("%H:%M:%S"),
action=action,
symbol=symbol,
confidence=round(confidence * 100, 1),
price=round(price, 4)
)
self.model.recent_decisions.append(decision)
return self
def add_cob_data(self, symbol: str, content_id: str, total_usd: float,
total_crypto: float, levels: List[Dict]):
"""Add COB data for a symbol"""
cob_levels = []
for level in levels:
cob_level = COBLevelData(
side=level.get('side', 'bid'),
size=self._format_value(level.get('size', 0), 'number'),
price=self._format_value(level.get('price', 0), 'currency'),
total=self._format_value(level.get('total', 0), 'currency')
)
cob_levels.append(cob_level)
cob = COBData(
symbol=symbol,
content_id=content_id,
total_usd=self._format_value(total_usd, 'currency'),
total_crypto=self._format_value(total_crypto, 'number'),
levels=cob_levels
)
self.model.cob_data.append(cob)
return self
def add_model_status(self, name: str, is_training: bool, is_loading: bool = False):
"""Add model status"""
if is_loading:
status = "loading"
status_text = "Loading"
elif is_training:
status = "training"
status_text = "Training"
else:
status = "idle"
status_text = "Idle"
model = ModelData(name=name, status=status, status_text=status_text)
self.model.models.append(model)
return self
def add_training_metric(self, name: str, value: Any):
"""Add training metric"""
metric = TrainingMetricData(
name=name,
value=self._format_value(value, 'number')
)
self.model.training_metrics.append(metric)
return self
def add_performance_stat(self, name: str, value: Any):
"""Add performance statistic"""
stat = PerformanceStatData(
name=name,
value=self._format_value(value, 'number')
)
self.model.performance_stats.append(stat)
return self
def add_closed_trade(self, time: datetime, symbol: str, side: str, size: float,
entry_price: float, exit_price: float, pnl: float, duration: str):
"""Add closed trade"""
trade = ClosedTradeData(
time=time.strftime("%H:%M:%S"),
symbol=symbol,
side=side,
size=self._format_value(size, 'number'),
entry_price=self._format_value(entry_price, 'currency'),
exit_price=self._format_value(exit_price, 'currency'),
pnl=round(pnl, 2),
duration=duration
)
self.model.closed_trades.append(trade)
return self
def build(self) -> DashboardModel:
"""Build and return the complete dashboard model"""
return self.model
def _format_value(self, value: Any, format_type: str) -> str:
"""Format value based on type"""
if value is None:
return "N/A"
try:
if format_type == "currency":
return f"${float(value):,.4f}"
elif format_type == "percentage":
return f"{float(value):.2f}%"
elif format_type == "number":
if isinstance(value, int):
return f"{value:,}"
else:
return f"{float(value):,.2f}"
else:
return str(value)
except (ValueError, TypeError):
return str(value)
def create_sample_dashboard_data() -> DashboardModel:
"""Create sample dashboard data for testing"""
builder = DashboardDataBuilder()
# Basic info
builder.set_basic_info(
title="Live Scalping Dashboard",
subtitle="Real-time Trading with AI Models",
refresh_interval=1000
)
# Metrics
builder.add_metric("current-price", "Current Price", 3425.67, "currency")
builder.add_metric("session-pnl", "Session PnL", 125.34, "currency")
builder.add_metric("current-position", "Position", 0.0, "number")
builder.add_metric("trade-count", "Trades", 15, "number")
builder.add_metric("portfolio-value", "Portfolio", 10250.45, "currency")
builder.add_metric("mexc-status", "MEXC Status", "Connected", "text")
# Trading controls
builder.set_trading_controls(leverage=10, leverage_range=(1, 50))
# Recent decisions
builder.add_recent_decision(datetime.now(), "BUY", "ETH/USDT", 0.85, 3425.67)
builder.add_recent_decision(datetime.now(), "HOLD", "BTC/USDT", 0.62, 45123.45)
# COB data
eth_levels = [
{"side": "ask", "size": 1.5, "price": 3426.12, "total": 5139.18},
{"side": "ask", "size": 2.3, "price": 3425.89, "total": 7879.55},
{"side": "bid", "size": 1.8, "price": 3425.45, "total": 6165.81},
{"side": "bid", "size": 3.2, "price": 3425.12, "total": 10960.38}
]
builder.add_cob_data("ETH/USDT", "eth-cob-content", 25000.0, 7.3, eth_levels)
btc_levels = [
{"side": "ask", "size": 0.15, "price": 45125.67, "total": 6768.85},
{"side": "ask", "size": 0.23, "price": 45123.45, "total": 10378.39},
{"side": "bid", "size": 0.18, "price": 45121.23, "total": 8121.82},
{"side": "bid", "size": 0.32, "price": 45119.12, "total": 14438.12}
]
builder.add_cob_data("BTC/USDT", "btc-cob-content", 35000.0, 0.88, btc_levels)
# Model statuses
builder.add_model_status("DQN", True)
builder.add_model_status("CNN", True)
builder.add_model_status("Transformer", False)
builder.add_model_status("COB-RL", True)
# Training metrics
builder.add_training_metric("DQN Loss", 0.0234)
builder.add_training_metric("CNN Accuracy", 0.876)
builder.add_training_metric("Training Steps", 15420)
builder.add_training_metric("Learning Rate", 0.0001)
# Performance stats
builder.add_performance_stat("Win Rate", 68.5)
builder.add_performance_stat("Avg Trade", 8.34)
builder.add_performance_stat("Max Drawdown", -45.67)
builder.add_performance_stat("Sharpe Ratio", 1.82)
# Closed trades
builder.add_closed_trade(
datetime.now(), "ETH/USDT", "BUY", 1.5, 3420.45, 3428.12, 11.51, "2m 34s"
)
builder.add_closed_trade(
datetime.now(), "BTC/USDT", "SELL", 0.1, 45150.23, 45142.67, -0.76, "1m 12s"
)
return builder.build()