Files
gogo2/utils/checkpoint_manager.py
2025-07-04 02:14:29 +03:00

467 lines
19 KiB
Python

#!/usr/bin/env python3
"""
Checkpoint Management System for W&B Training
"""
import os
import json
import logging
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from collections import defaultdict
import torch
import random
try:
import wandb
WANDB_AVAILABLE = True
except ImportError:
WANDB_AVAILABLE = False
logger = logging.getLogger(__name__)
@dataclass
class CheckpointMetadata:
checkpoint_id: str
model_name: str
model_type: str
file_path: str
created_at: datetime
file_size_mb: float
performance_score: float
accuracy: Optional[float] = None
loss: Optional[float] = None
val_accuracy: Optional[float] = None
val_loss: Optional[float] = None
reward: Optional[float] = None
pnl: Optional[float] = None
epoch: Optional[int] = None
training_time_hours: Optional[float] = None
total_parameters: Optional[int] = None
wandb_run_id: Optional[str] = None
wandb_artifact_name: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
data = asdict(self)
data['created_at'] = self.created_at.isoformat()
return data
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'CheckpointMetadata':
data['created_at'] = datetime.fromisoformat(data['created_at'])
return cls(**data)
class CheckpointManager:
def __init__(self,
base_checkpoint_dir: str = "NN/models/saved",
max_checkpoints_per_model: int = 5,
metadata_file: str = "checkpoint_metadata.json",
enable_wandb: bool = True):
self.base_dir = Path(base_checkpoint_dir)
self.base_dir.mkdir(parents=True, exist_ok=True)
self.max_checkpoints = max_checkpoints_per_model
self.metadata_file = self.base_dir / metadata_file
self.enable_wandb = enable_wandb and WANDB_AVAILABLE
self.checkpoints: Dict[str, List[CheckpointMetadata]] = defaultdict(list)
self._load_metadata()
logger.info(f"Checkpoint Manager initialized - Max checkpoints per model: {self.max_checkpoints}")
def save_checkpoint(self, model, model_name: str, model_type: str,
performance_metrics: Dict[str, float],
training_metadata: Optional[Dict[str, Any]] = None,
force_save: bool = False) -> Optional[CheckpointMetadata]:
try:
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
checkpoint_id = f"{model_name}_{timestamp}"
model_dir = self.base_dir / model_name
model_dir.mkdir(exist_ok=True)
checkpoint_path = model_dir / f"{checkpoint_id}.pt"
performance_score = self._calculate_performance_score(performance_metrics)
if not force_save and not self._should_save_checkpoint(model_name, performance_score):
logger.debug(f"Skipping checkpoint save for {model_name} - performance not improved")
return None
success = self._save_model_file(model, checkpoint_path, model_type)
if not success:
return None
file_size_mb = checkpoint_path.stat().st_size / (1024 * 1024)
metadata = CheckpointMetadata(
checkpoint_id=checkpoint_id,
model_name=model_name,
model_type=model_type,
file_path=str(checkpoint_path),
created_at=datetime.now(),
file_size_mb=file_size_mb,
performance_score=performance_score,
accuracy=performance_metrics.get('accuracy'),
loss=performance_metrics.get('loss'),
val_accuracy=performance_metrics.get('val_accuracy'),
val_loss=performance_metrics.get('val_loss'),
reward=performance_metrics.get('reward'),
pnl=performance_metrics.get('pnl'),
epoch=training_metadata.get('epoch') if training_metadata else None,
training_time_hours=training_metadata.get('training_time_hours') if training_metadata else None,
total_parameters=training_metadata.get('total_parameters') if training_metadata else None
)
if self.enable_wandb and wandb.run is not None:
artifact_name = self._upload_to_wandb(checkpoint_path, metadata)
metadata.wandb_run_id = wandb.run.id
metadata.wandb_artifact_name = artifact_name
self.checkpoints[model_name].append(metadata)
self._rotate_checkpoints(model_name)
self._save_metadata()
logger.info(f"Saved checkpoint: {checkpoint_id} (score: {performance_score:.4f})")
return metadata
except Exception as e:
logger.error(f"Error saving checkpoint for {model_name}: {e}")
return None
def load_best_checkpoint(self, model_name: str) -> Optional[Tuple[str, CheckpointMetadata]]:
try:
# First, try the standard checkpoint system
if model_name in self.checkpoints and self.checkpoints[model_name]:
# Filter out checkpoints with non-existent files
valid_checkpoints = [
cp for cp in self.checkpoints[model_name]
if Path(cp.file_path).exists()
]
if valid_checkpoints:
best_checkpoint = max(valid_checkpoints, key=lambda x: x.performance_score)
logger.debug(f"Loading best checkpoint for {model_name}: {best_checkpoint.checkpoint_id}")
return best_checkpoint.file_path, best_checkpoint
else:
# Clean up invalid metadata entries
invalid_count = len(self.checkpoints[model_name])
logger.warning(f"Found {invalid_count} invalid checkpoint entries for {model_name}, cleaning up metadata")
self.checkpoints[model_name] = []
self._save_metadata()
# Fallback: Look for existing saved models in the legacy format
logger.debug(f"No valid checkpoints found for model: {model_name}, attempting to find legacy saved models")
legacy_model_path = self._find_legacy_model(model_name)
if legacy_model_path:
# Create checkpoint metadata for the legacy model using actual file data
legacy_metadata = self._create_legacy_metadata(model_name, legacy_model_path)
logger.debug(f"Found legacy model for {model_name}: {legacy_model_path}")
return str(legacy_model_path), legacy_metadata
logger.warning(f"No checkpoints or legacy models found for: {model_name}")
return None
except Exception as e:
logger.error(f"Error loading best checkpoint for {model_name}: {e}")
return None
def _calculate_performance_score(self, metrics: Dict[str, float]) -> float:
"""Calculate performance score with improved sensitivity for training models"""
score = 0.0
# Prioritize loss reduction for active training models
if 'loss' in metrics:
# Invert loss so lower loss = higher score, with better scaling
loss_value = metrics['loss']
if loss_value > 0:
score += max(0, 100 / (1 + loss_value)) # More sensitive to loss changes
else:
score += 100 # Perfect loss
# Add other metrics with appropriate weights
if 'accuracy' in metrics:
score += metrics['accuracy'] * 50 # Reduced weight to balance with loss
if 'val_accuracy' in metrics:
score += metrics['val_accuracy'] * 50
if 'val_loss' in metrics:
val_loss = metrics['val_loss']
if val_loss > 0:
score += max(0, 50 / (1 + val_loss))
if 'reward' in metrics:
score += metrics['reward'] * 10
if 'pnl' in metrics:
score += metrics['pnl'] * 5
if 'training_samples' in metrics:
# Bonus for processing more training samples
score += min(10, metrics['training_samples'] / 10)
# Return actual calculated score - NO SYNTHETIC MINIMUM
return score
def _should_save_checkpoint(self, model_name: str, performance_score: float) -> bool:
"""Improved checkpoint saving logic with more frequent saves during training"""
if model_name not in self.checkpoints or not self.checkpoints[model_name]:
return True # Always save first checkpoint
# Allow more checkpoints during active training
if len(self.checkpoints[model_name]) < self.max_checkpoints:
return True
# Get current best and worst scores
scores = [cp.performance_score for cp in self.checkpoints[model_name]]
best_score = max(scores)
worst_score = min(scores)
# Save if better than worst (more frequent saves)
if performance_score > worst_score:
return True
# For high-performing models (score > 100), be more sensitive to small improvements
if best_score > 100:
# Save if within 0.1% of best score (very sensitive for converged models)
if performance_score >= best_score * 0.999:
return True
else:
# Also save if we're within 10% of best score (capture near-optimal models)
if performance_score >= best_score * 0.9:
return True
# Save more frequently during active training (every 5th attempt instead of 10th)
if random.random() < 0.2: # 20% chance to save anyway
logger.info(f"Saving checkpoint for {model_name} - periodic save during active training")
return True
return False
def _save_model_file(self, model, file_path: Path, model_type: str) -> bool:
try:
if hasattr(model, 'state_dict'):
torch.save({
'model_state_dict': model.state_dict(),
'model_type': model_type,
'saved_at': datetime.now().isoformat()
}, file_path)
else:
torch.save(model, file_path)
return True
except Exception as e:
logger.error(f"Error saving model file {file_path}: {e}")
return False
def _rotate_checkpoints(self, model_name: str):
checkpoint_list = self.checkpoints[model_name]
if len(checkpoint_list) <= self.max_checkpoints:
return
checkpoint_list.sort(key=lambda x: x.performance_score, reverse=True)
to_remove = checkpoint_list[self.max_checkpoints:]
self.checkpoints[model_name] = checkpoint_list[:self.max_checkpoints]
for checkpoint in to_remove:
try:
file_path = Path(checkpoint.file_path)
if file_path.exists():
file_path.unlink()
logger.info(f"Rotated out checkpoint: {checkpoint.checkpoint_id}")
except Exception as e:
logger.error(f"Error removing rotated checkpoint {checkpoint.checkpoint_id}: {e}")
def _upload_to_wandb(self, file_path: Path, metadata: CheckpointMetadata) -> Optional[str]:
try:
if not self.enable_wandb or wandb.run is None:
return None
artifact_name = f"{metadata.model_name}_checkpoint"
artifact = wandb.Artifact(artifact_name, type="model")
artifact.add_file(str(file_path))
wandb.log_artifact(artifact)
return artifact_name
except Exception as e:
logger.error(f"Error uploading to W&B: {e}")
return None
def _load_metadata(self):
try:
if self.metadata_file.exists():
with open(self.metadata_file, 'r') as f:
data = json.load(f)
for model_name, checkpoint_list in data.items():
self.checkpoints[model_name] = [
CheckpointMetadata.from_dict(cp_data)
for cp_data in checkpoint_list
]
logger.info(f"Loaded metadata for {len(self.checkpoints)} models")
except Exception as e:
logger.error(f"Error loading checkpoint metadata: {e}")
def _save_metadata(self):
try:
data = {}
for model_name, checkpoint_list in self.checkpoints.items():
data[model_name] = [cp.to_dict() for cp in checkpoint_list]
with open(self.metadata_file, 'w') as f:
json.dump(data, f, indent=2)
except Exception as e:
logger.error(f"Error saving checkpoint metadata: {e}")
def get_checkpoint_stats(self):
"""Get statistics about managed checkpoints"""
stats = {
'total_models': len(self.checkpoints),
'total_checkpoints': sum(len(checkpoints) for checkpoints in self.checkpoints.values()),
'total_size_mb': 0.0,
'models': {}
}
for model_name, checkpoint_list in self.checkpoints.items():
if not checkpoint_list:
continue
model_size = sum(cp.file_size_mb for cp in checkpoint_list)
best_checkpoint = max(checkpoint_list, key=lambda x: x.performance_score)
stats['models'][model_name] = {
'checkpoint_count': len(checkpoint_list),
'total_size_mb': model_size,
'best_performance': best_checkpoint.performance_score,
'best_checkpoint_id': best_checkpoint.checkpoint_id,
'latest_checkpoint': max(checkpoint_list, key=lambda x: x.created_at).checkpoint_id
}
stats['total_size_mb'] += model_size
return stats
def _find_legacy_model(self, model_name: str) -> Optional[Path]:
"""Find legacy saved models based on model name patterns"""
base_dir = Path(self.base_dir)
# Define model name mappings and patterns for legacy files
legacy_patterns = {
'dqn_agent': [
'dqn_agent_best_policy.pt',
'enhanced_dqn_best_policy.pt',
'improved_dqn_agent_best_policy.pt',
'dqn_agent_final_policy.pt'
],
'enhanced_cnn': [
'cnn_model_best.pt',
'optimized_short_term_model_best.pt',
'optimized_short_term_model_realtime_best.pt',
'optimized_short_term_model_ticks_best.pt'
],
'extrema_trainer': [
'supervised_model_best.pt'
],
'cob_rl': [
'best_rl_model.pth_policy.pt',
'rl_agent_best_policy.pt'
],
'decision': [
# Decision models might be in subdirectories, but let's check main dir too
'decision_best.pt',
'decision_model_best.pt',
# Check for transformer models which might be used as decision models
'enhanced_dqn_best_policy.pt',
'improved_dqn_agent_best_policy.pt'
]
}
# Get patterns for this model name
patterns = legacy_patterns.get(model_name, [])
# Also try generic patterns based on model name
patterns.extend([
f'{model_name}_best.pt',
f'{model_name}_best_policy.pt',
f'{model_name}_final.pt',
f'{model_name}_final_policy.pt'
])
# Search for the model files
for pattern in patterns:
candidate_path = base_dir / pattern
if candidate_path.exists():
logger.debug(f"Found legacy model file: {candidate_path}")
return candidate_path
# Also check subdirectories
for subdir in base_dir.iterdir():
if subdir.is_dir() and subdir.name == model_name:
for pattern in patterns:
candidate_path = subdir / pattern
if candidate_path.exists():
logger.debug(f"Found legacy model file in subdirectory: {candidate_path}")
return candidate_path
return None
def _create_legacy_metadata(self, model_name: str, file_path: Path) -> CheckpointMetadata:
"""Create metadata for legacy model files using only actual file information"""
try:
file_size_mb = file_path.stat().st_size / (1024 * 1024)
created_time = datetime.fromtimestamp(file_path.stat().st_mtime)
# NO SYNTHETIC DATA - use only actual file information
return CheckpointMetadata(
checkpoint_id=f"legacy_{model_name}_{int(created_time.timestamp())}",
model_name=model_name,
model_type=model_name,
file_path=str(file_path),
created_at=created_time,
file_size_mb=file_size_mb,
performance_score=0.0, # Unknown performance - use 0, not synthetic values
accuracy=None,
loss=None,
val_accuracy=None,
val_loss=None,
reward=None,
pnl=None,
epoch=None,
training_time_hours=None,
total_parameters=None,
wandb_run_id=None,
wandb_artifact_name=None
)
except Exception as e:
logger.error(f"Error creating legacy metadata for {model_name}: {e}")
# Return a basic metadata with minimal info - NO SYNTHETIC VALUES
return CheckpointMetadata(
checkpoint_id=f"legacy_{model_name}",
model_name=model_name,
model_type=model_name,
file_path=str(file_path),
created_at=datetime.now(),
file_size_mb=0.0,
performance_score=0.0 # Unknown - use 0, not synthetic
)
_checkpoint_manager = None
def get_checkpoint_manager() -> CheckpointManager:
global _checkpoint_manager
if _checkpoint_manager is None:
_checkpoint_manager = CheckpointManager()
return _checkpoint_manager
def save_checkpoint(model, model_name: str, model_type: str,
performance_metrics: Dict[str, float],
training_metadata: Optional[Dict[str, Any]] = None,
force_save: bool = False) -> Optional[CheckpointMetadata]:
return get_checkpoint_manager().save_checkpoint(
model, model_name, model_type, performance_metrics, training_metadata, force_save
)
def load_best_checkpoint(model_name: str) -> Optional[Tuple[str, CheckpointMetadata]]:
return get_checkpoint_manager().load_best_checkpoint(model_name)