355 lines
14 KiB
Python
355 lines
14 KiB
Python
import asyncio
|
|
import logging
|
|
import time
|
|
from collections import deque
|
|
from datetime import datetime, timedelta
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
from matplotlib.colors import LogNorm
|
|
|
|
from core.data_provider import DataProvider, MarketTick
|
|
from core.config import get_config
|
|
|
|
# Configure logging
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class COBStabilityTester:
|
|
def __init__(self, symbol='ETHUSDT', duration_seconds=15):
|
|
self.symbol = symbol
|
|
self.duration = timedelta(seconds=duration_seconds)
|
|
self.ticks = deque()
|
|
|
|
# Set granularity (buckets) based on symbol
|
|
if 'ETH' in symbol.upper():
|
|
self.price_granularity = 1.0 # 1 USD for ETH
|
|
elif 'BTC' in symbol.upper():
|
|
self.price_granularity = 10.0 # 10 USD for BTC
|
|
else:
|
|
self.price_granularity = 1.0 # Default 1 USD
|
|
|
|
logger.info(f"Using price granularity: ${self.price_granularity} for {symbol}")
|
|
|
|
# Initialize DataProvider the same way as clean_dashboard
|
|
logger.info("Initializing DataProvider like in clean_dashboard...")
|
|
self.data_provider = DataProvider() # Use default constructor like clean_dashboard
|
|
|
|
# Initialize COB data collection like clean_dashboard does
|
|
self.cob_data_received = 0
|
|
self.latest_cob_data = {}
|
|
|
|
# Store all COB snapshots for heatmap generation
|
|
self.cob_snapshots = deque()
|
|
self.price_data = [] # For price line chart
|
|
|
|
self.start_time = None
|
|
self.subscriber_id = None
|
|
|
|
def _tick_callback(self, tick: MarketTick):
|
|
"""Callback function to receive ticks from the DataProvider."""
|
|
if self.start_time is None:
|
|
self.start_time = datetime.now()
|
|
logger.info(f"Started collecting ticks at {self.start_time}")
|
|
|
|
# Store all ticks
|
|
self.ticks.append(tick)
|
|
|
|
def _cob_data_callback(self, symbol: str, cob_data: dict):
|
|
"""Callback function to receive COB data from the DataProvider."""
|
|
self.cob_data_received += 1
|
|
self.latest_cob_data[symbol] = cob_data
|
|
|
|
# Store the complete COB snapshot for heatmap generation
|
|
if 'bids' in cob_data and 'asks' in cob_data:
|
|
snapshot = {
|
|
'timestamp': cob_data.get('timestamp', datetime.now()),
|
|
'bids': cob_data['bids'],
|
|
'asks': cob_data['asks'],
|
|
'stats': cob_data.get('stats', {})
|
|
}
|
|
self.cob_snapshots.append(snapshot)
|
|
|
|
# Convert COB data to tick-like format for analysis
|
|
if 'stats' in cob_data and 'mid_price' in cob_data['stats']:
|
|
mid_price = cob_data['stats']['mid_price']
|
|
if mid_price > 0:
|
|
# Store price data for line chart
|
|
self.price_data.append({
|
|
'timestamp': cob_data.get('timestamp', datetime.now()),
|
|
'price': mid_price
|
|
})
|
|
|
|
# Create a synthetic tick from COB data
|
|
synthetic_tick = MarketTick(
|
|
symbol=symbol,
|
|
timestamp=cob_data.get('timestamp', datetime.now()),
|
|
price=mid_price,
|
|
volume=cob_data.get('stats', {}).get('total_volume', 0),
|
|
quantity=0, # Not available in COB data
|
|
side='unknown', # COB data doesn't have side info
|
|
trade_id=f"cob_{self.cob_data_received}",
|
|
is_buyer_maker=False,
|
|
raw_data=cob_data
|
|
)
|
|
self.ticks.append(synthetic_tick)
|
|
|
|
if self.cob_data_received % 10 == 0: # Log every 10th update
|
|
logger.info(f"COB update #{self.cob_data_received}: {symbol} @ ${mid_price:.2f}")
|
|
|
|
async def run_test(self):
|
|
"""Run the data collection and plotting test."""
|
|
logger.info(f"Starting COB stability test for {self.symbol} for {self.duration.total_seconds()} seconds...")
|
|
|
|
# Initialize COB collection like clean_dashboard does
|
|
try:
|
|
logger.info("Starting COB collection in data provider...")
|
|
self.data_provider.start_cob_collection()
|
|
logger.info("Started COB collection in data provider")
|
|
|
|
# Subscribe to COB updates
|
|
logger.info("Subscribing to COB data updates...")
|
|
self.data_provider.subscribe_to_cob(self._cob_data_callback)
|
|
logger.info("Subscribed to COB data updates from data provider")
|
|
except Exception as e:
|
|
logger.error(f"Failed to start COB collection or subscribe: {e}")
|
|
|
|
# Subscribe to ticks as fallback
|
|
try:
|
|
self.subscriber_id = self.data_provider.subscribe_to_ticks(self._tick_callback, symbols=[self.symbol])
|
|
logger.info("Subscribed to tick data as fallback")
|
|
except Exception as e:
|
|
logger.warning(f"Failed to subscribe to ticks: {e}")
|
|
|
|
# Start the data provider's real-time streaming
|
|
try:
|
|
await self.data_provider.start_real_time_streaming()
|
|
logger.info("Started real-time streaming")
|
|
except Exception as e:
|
|
logger.error(f"Failed to start real-time streaming: {e}")
|
|
|
|
# Collect data for the specified duration
|
|
self.start_time = datetime.now()
|
|
while datetime.now() - self.start_time < self.duration:
|
|
await asyncio.sleep(1)
|
|
logger.info(f"Collected {len(self.ticks)} ticks so far...")
|
|
|
|
# Stop streaming and unsubscribe
|
|
await self.data_provider.stop_real_time_streaming()
|
|
self.data_provider.unsubscribe_from_ticks(self.subscriber_id)
|
|
|
|
logger.info(f"Finished collecting data. Total ticks: {len(self.ticks)}")
|
|
|
|
# Plot the results
|
|
if self.price_data and self.cob_snapshots:
|
|
self.create_price_heatmap_chart()
|
|
elif self.ticks:
|
|
self._create_simple_price_chart()
|
|
else:
|
|
logger.warning("No data was collected. Cannot generate plot.")
|
|
|
|
def plot_spectrogram(self):
|
|
"""Create a bookmap-style visualization showing order book depth over time."""
|
|
if not self.ticks:
|
|
logger.warning("No ticks to plot.")
|
|
return
|
|
|
|
logger.info(f"Creating bookmap-style visualization with {len(self.ticks)} data points...")
|
|
|
|
# Extract order book data from ticks
|
|
time_points = []
|
|
bid_data = []
|
|
ask_data = []
|
|
price_levels = set()
|
|
|
|
for tick in self.ticks:
|
|
if hasattr(tick, 'raw_data') and tick.raw_data:
|
|
cob_data = tick.raw_data
|
|
if 'bids' in cob_data and 'asks' in cob_data:
|
|
timestamp = tick.timestamp
|
|
|
|
# Extract bid levels (green - buy orders)
|
|
bids = cob_data['bids'][:20] # Top 20 levels
|
|
for bid in bids:
|
|
if isinstance(bid, dict) and 'price' in bid and 'size' in bid:
|
|
bid_data.append({
|
|
'time': timestamp,
|
|
'price': bid['price'],
|
|
'size': bid['size'],
|
|
'side': 'bid'
|
|
})
|
|
price_levels.add(bid['price'])
|
|
|
|
# Extract ask levels (red - sell orders)
|
|
asks = cob_data['asks'][:20] # Top 20 levels
|
|
for ask in asks:
|
|
if isinstance(ask, dict) and 'price' in ask and 'size' in ask:
|
|
ask_data.append({
|
|
'time': timestamp,
|
|
'price': ask['price'],
|
|
'size': ask['size'],
|
|
'side': 'ask'
|
|
})
|
|
price_levels.add(ask['price'])
|
|
|
|
if not bid_data and not ask_data:
|
|
logger.warning("No order book data found in ticks. Cannot create bookmap visualization.")
|
|
# Fallback to simple price chart
|
|
self._create_simple_price_chart()
|
|
return
|
|
|
|
logger.info(f"Extracted {len(bid_data)} bid levels and {len(ask_data)} ask levels")
|
|
|
|
# Create the bookmap visualization
|
|
fig, ax = plt.subplots(figsize=(16, 10))
|
|
|
|
# Combine all data
|
|
all_data = bid_data + ask_data
|
|
if not all_data:
|
|
logger.warning("No order book data to plot")
|
|
return
|
|
|
|
# Create DataFrames
|
|
df = pd.DataFrame(all_data)
|
|
df['time'] = pd.to_datetime(df['time'])
|
|
|
|
# Create price bins (like in bookmap)
|
|
price_min = df['price'].min()
|
|
price_max = df['price'].max()
|
|
price_range = price_max - price_min
|
|
if price_range == 0:
|
|
logger.warning("No price variation in data")
|
|
return
|
|
|
|
# Create time bins
|
|
time_min = df['time'].min()
|
|
time_max = df['time'].max()
|
|
|
|
# Create 2D heatmaps for bids and asks separately
|
|
time_bins = pd.date_range(time_min, time_max, periods=100)
|
|
price_bins = np.linspace(price_min, price_max, 200) # Higher resolution for price
|
|
|
|
# Separate bid and ask data
|
|
bid_df = df[df['side'] == 'bid']
|
|
ask_df = df[df['side'] == 'ask']
|
|
|
|
# Create bid heatmap (green)
|
|
if not bid_df.empty:
|
|
bid_hist, _, _ = np.histogram2d(
|
|
bid_df['time'].astype(np.int64) // 10**9,
|
|
bid_df['price'],
|
|
bins=[time_bins.astype(np.int64) // 10**9, price_bins],
|
|
weights=bid_df['size']
|
|
)
|
|
# Plot bids in green (buying pressure)
|
|
bid_mask = bid_hist > 0
|
|
pcm_bid = ax.pcolormesh(
|
|
time_bins, price_bins, bid_hist.T,
|
|
cmap='Greens', alpha=0.7, vmin=0, vmax=bid_hist.max()
|
|
)
|
|
|
|
# Create ask heatmap (red)
|
|
if not ask_df.empty:
|
|
ask_hist, _, _ = np.histogram2d(
|
|
ask_df['time'].astype(np.int64) // 10**9,
|
|
ask_df['price'],
|
|
bins=[time_bins.astype(np.int64) // 10**9, price_bins],
|
|
weights=ask_df['size']
|
|
)
|
|
# Plot asks in red (selling pressure)
|
|
ask_mask = ask_hist > 0
|
|
pcm_ask = ax.pcolormesh(
|
|
time_bins, price_bins, ask_hist.T,
|
|
cmap='Reds', alpha=0.7, vmin=0, vmax=ask_hist.max()
|
|
)
|
|
|
|
# Add mid price line
|
|
mid_prices = []
|
|
mid_times = []
|
|
for tick in self.ticks:
|
|
if hasattr(tick, 'raw_data') and tick.raw_data and 'stats' in tick.raw_data:
|
|
stats = tick.raw_data['stats']
|
|
if 'mid_price' in stats and stats['mid_price'] > 0:
|
|
mid_prices.append(stats['mid_price'])
|
|
mid_times.append(tick.timestamp)
|
|
|
|
if mid_prices:
|
|
ax.plot(pd.to_datetime(mid_times), mid_prices, 'yellow', linewidth=2, alpha=0.8, label='Mid Price')
|
|
|
|
# Styling like bookmap
|
|
ax.set_facecolor('black')
|
|
fig.patch.set_facecolor('black')
|
|
|
|
ax.set_title(f'Order Book Depth Map - {self.symbol}\n(Green=Bids/Buy Orders, Red=Asks/Sell Orders)',
|
|
color='white', fontsize=14)
|
|
ax.set_xlabel('Time', color='white')
|
|
ax.set_ylabel('Price (USDT)', color='white')
|
|
|
|
# White ticks and labels
|
|
ax.tick_params(colors='white')
|
|
ax.spines['bottom'].set_color('white')
|
|
ax.spines['top'].set_color('white')
|
|
ax.spines['right'].set_color('white')
|
|
ax.spines['left'].set_color('white')
|
|
|
|
# Add colorbar for bid data
|
|
if not bid_df.empty:
|
|
cbar_bid = fig.colorbar(pcm_bid, ax=ax, location='right', pad=0.02, shrink=0.5)
|
|
cbar_bid.set_label('Bid Size (Order Volume)', color='white', labelpad=15)
|
|
cbar_bid.ax.yaxis.set_tick_params(color='white')
|
|
cbar_bid.ax.yaxis.set_tick_params(labelcolor='white')
|
|
|
|
# Format the x-axis to show time properly
|
|
fig.autofmt_xdate()
|
|
|
|
if mid_prices:
|
|
ax.legend(loc='upper left')
|
|
|
|
plt.tight_layout()
|
|
|
|
plot_filename = f"cob_bookmap_{self.symbol.replace('/', '_')}_{datetime.now():%Y%m%d_%H%M%S}.png"
|
|
plt.savefig(plot_filename, facecolor='black', dpi=150)
|
|
logger.info(f"Bookmap-style plot saved to {plot_filename}")
|
|
plt.show()
|
|
|
|
def _create_simple_price_chart(self):
|
|
"""Create a simple price chart as fallback"""
|
|
logger.info("Creating simple price chart as fallback...")
|
|
|
|
prices = []
|
|
times = []
|
|
|
|
for tick in self.ticks:
|
|
if tick.price > 0:
|
|
prices.append(tick.price)
|
|
times.append(tick.timestamp)
|
|
|
|
if not prices:
|
|
logger.warning("No price data to plot")
|
|
return
|
|
|
|
fig, ax = plt.subplots(figsize=(15, 8))
|
|
ax.plot(pd.to_datetime(times), prices, 'cyan', linewidth=1)
|
|
ax.set_title(f'Price Chart - {self.symbol}')
|
|
ax.set_xlabel('Time')
|
|
ax.set_ylabel('Price (USDT)')
|
|
fig.autofmt_xdate()
|
|
|
|
plot_filename = f"cob_price_chart_{self.symbol.replace('/', '_')}_{datetime.now():%Y%m%d_%H%M%S}.png"
|
|
plt.savefig(plot_filename)
|
|
logger.info(f"Price chart saved to {plot_filename}")
|
|
plt.show()
|
|
|
|
|
|
async def main():
|
|
tester = COBStabilityTester()
|
|
await tester.run_test()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
asyncio.run(main())
|
|
except KeyboardInterrupt:
|
|
logger.info("Test interrupted by user.") |