gogo2/improved_reward_function.py
Dobromir Popov c0872248ab misc
2025-05-13 17:19:52 +03:00

224 lines
8.6 KiB
Python

"""
Improved Reward Function for RL Trading Agent
This module provides a more sophisticated reward function for the RL trading agent
that incorporates realistic trading fees, penalties for excessive trading, and
rewards for successful holding of positions.
"""
import numpy as np
from datetime import datetime, timedelta
from collections import deque
class ImprovedRewardCalculator:
def __init__(self,
max_drawdown_pct=0.1, # Maximum drawdown %
risk_reward_ratio=1.5, # Risk-reward ratio
base_fee_rate=0.0002, # 0.02% per transaction
max_frequency_penalty=0.005, # Maximum 0.5% penalty for frequent trading
holding_reward_rate=0.0001, # Small reward for holding profitable positions
risk_adjusted=True, # Use Sharpe ratio for risk adjustment
base_reward=1.0, # Base reward scale
profit_factor=2.0, # Profit reward multiplier
loss_factor=1.0, # Loss penalty multiplier
trade_frequency_penalty=0.3, # Penalty for frequent trading
position_duration_factor=0.05 # Reward for longer positions
):
self.base_fee_rate = base_fee_rate
self.max_frequency_penalty = max_frequency_penalty
self.holding_reward_rate = holding_reward_rate
self.risk_adjusted = risk_adjusted
# New parameters
self.base_reward = base_reward
self.profit_factor = profit_factor
self.loss_factor = loss_factor
self.trade_frequency_penalty = trade_frequency_penalty
self.position_duration_factor = position_duration_factor
# Keep track of recent trades
self.recent_trades = deque(maxlen=1000)
self.trade_pnls = deque(maxlen=100) # For risk adjustment
# Additional tracking metrics
self.total_trades = 0
self.profitable_trades = 0
self.total_pnl = 0.0
self.daily_pnl = {}
self.hourly_pnl = {}
def record_trade(self, timestamp=None, action=None, price=None):
"""Record a trade for frequency tracking"""
if timestamp is None:
timestamp = datetime.now()
self.recent_trades.append({
'timestamp': timestamp,
'action': action,
'price': price
})
def record_pnl(self, pnl):
"""Record a PnL result for risk adjustment and tracking metrics"""
self.trade_pnls.append(pnl)
# Update overall metrics
self.total_trades += 1
self.total_pnl += pnl
if pnl > 0:
self.profitable_trades += 1
# Track daily and hourly PnL
now = datetime.now()
day_key = now.strftime('%Y-%m-%d')
hour_key = now.strftime('%Y-%m-%d %H:00')
# Update daily PnL
if day_key not in self.daily_pnl:
self.daily_pnl[day_key] = 0.0
self.daily_pnl[day_key] += pnl
# Update hourly PnL
if hour_key not in self.hourly_pnl:
self.hourly_pnl[hour_key] = 0.0
self.hourly_pnl[hour_key] += pnl
def _calculate_frequency_penalty(self):
"""Calculate penalty for trading too frequently"""
if len(self.recent_trades) < 2:
return 0.0
# Count trades in the last minute
now = datetime.now()
one_minute_ago = now - timedelta(minutes=1)
trades_last_minute = sum(1 for trade in self.recent_trades
if trade['timestamp'] > one_minute_ago)
# Apply progressive penalty (more severe as frequency increases)
if trades_last_minute <= 1:
return 0.0 # No penalty for normal trading rate
# Progressive penalty based on trade frequency
penalty = min(self.max_frequency_penalty,
self.base_fee_rate * trades_last_minute)
return penalty
def _calculate_holding_reward(self, position_held_time, price_change_pct):
"""Calculate reward for holding a position for some time"""
if position_held_time <= 0 or price_change_pct <= 0:
return 0.0 # No reward for unprofitable holds
# Cap at 100 time units (seconds, minutes, etc.)
capped_time = min(position_held_time, 100)
# Scale reward by both time and price change
reward = self.holding_reward_rate * capped_time * price_change_pct
return reward
def _calculate_risk_adjustment(self, reward):
"""Adjust rewards based on risk (simple Sharpe ratio implementation)"""
if len(self.trade_pnls) < 5:
return reward # Not enough data for adjustment
# Calculate mean and standard deviation of returns
pnl_array = np.array(self.trade_pnls)
mean_return = np.mean(pnl_array)
std_return = np.std(pnl_array)
if std_return == 0:
return reward # Avoid division by zero
# Simplified Sharpe ratio
sharpe = mean_return / std_return
# Scale reward by Sharpe ratio (normalized to be around 1.0)
adjustment_factor = np.clip(1.0 + 0.5 * sharpe, 0.5, 2.0)
return reward * adjustment_factor
def calculate_reward(self, action, price_change, position_held_time=0,
volatility=None, is_profitable=False):
"""
Calculate the improved reward
Args:
action (int): 0 = Buy, 1 = Sell, 2 = Hold
price_change (float): Percent price change for the trade
position_held_time (int): Time position was held (in time units)
volatility (float, optional): Market volatility measure
is_profitable (bool): Whether current position is profitable
Returns:
float: Calculated reward value
"""
# Calculate trading fee
fee = self.base_fee_rate
# Calculate frequency penalty
frequency_penalty = self._calculate_frequency_penalty()
# Base reward calculation
if action == 0: # Buy
# Small penalty for transaction plus frequency penalty
reward = -fee - frequency_penalty
elif action == 1: # Sell
# Calculate profit percentage minus fees (both entry and exit)
profit_pct = price_change
net_profit = profit_pct - (fee * 2)
# Scale reward and apply frequency penalty
reward = net_profit * 10 # Scale reward
reward -= frequency_penalty
# Record PnL for risk adjustment
self.record_pnl(net_profit)
else: # Hold
# Small reward for holding a profitable position, small cost otherwise
if is_profitable:
reward = self._calculate_holding_reward(position_held_time, price_change)
else:
reward = -0.0001 # Very small negative reward
# Apply risk adjustment if enabled
if self.risk_adjusted:
reward = self._calculate_risk_adjustment(reward)
# Record this action for future frequency calculations
self.record_trade(action=action)
return reward
# Example usage:
if __name__ == "__main__":
# Create calculator instance
reward_calc = ImprovedRewardCalculator()
# Example reward for a buy action
buy_reward = reward_calc.calculate_reward(action=0, price_change=0)
print(f"Buy action reward: {buy_reward:.5f}")
# Record a trade for frequency tracking
reward_calc.record_trade(action=0)
# Wait a bit and make another trade to test frequency penalty
import time
time.sleep(0.1)
# Example reward for a sell action with profit
sell_reward = reward_calc.calculate_reward(action=1, price_change=0.015, position_held_time=60)
print(f"Sell action reward (with profit): {sell_reward:.5f}")
# Example reward for a hold action on profitable position
hold_reward = reward_calc.calculate_reward(action=2, price_change=0.01, position_held_time=30, is_profitable=True)
print(f"Hold action reward (profitable): {hold_reward:.5f}")
# Example reward for a hold action on unprofitable position
hold_reward_neg = reward_calc.calculate_reward(action=2, price_change=-0.01, position_held_time=30, is_profitable=False)
print(f"Hold action reward (unprofitable): {hold_reward_neg:.5f}")