191 lines
6.6 KiB
Python
191 lines
6.6 KiB
Python
"""
|
|
Ultra-Fast Scalping Dashboard (500x Leverage) - Fixed Version
|
|
|
|
Simplified dashboard for PnL tracking demonstration
|
|
"""
|
|
|
|
import asyncio
|
|
import json
|
|
import logging
|
|
import time
|
|
from datetime import datetime, timedelta
|
|
from threading import Thread
|
|
from typing import Dict, List, Optional, Any
|
|
|
|
import dash
|
|
from dash import dcc, html, Input, Output
|
|
import plotly.graph_objects as go
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
from core.config import get_config
|
|
from core.data_provider import DataProvider
|
|
from core.enhanced_orchestrator import EnhancedTradingOrchestrator, TradingAction
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class ScalpingDashboard:
|
|
"""Ultra-fast scalping dashboard optimized for 500x leverage trading"""
|
|
|
|
def __init__(self, data_provider: DataProvider = None, orchestrator: EnhancedTradingOrchestrator = None):
|
|
"""Initialize the scalping dashboard"""
|
|
self.config = get_config()
|
|
self.data_provider = data_provider or DataProvider()
|
|
self.orchestrator = orchestrator or EnhancedTradingOrchestrator(self.data_provider)
|
|
|
|
# Dashboard state
|
|
self.recent_decisions = []
|
|
self.scalping_metrics = {
|
|
'total_trades': 0,
|
|
'win_rate': 0.78,
|
|
'total_pnl': 0.0, # Will be updated by runner
|
|
'avg_trade_time': 3.2, # seconds
|
|
'leverage': '500x',
|
|
'last_action': None
|
|
}
|
|
|
|
# Create Dash app
|
|
self.app = dash.Dash(__name__)
|
|
|
|
# Setup layout and callbacks
|
|
self._setup_layout()
|
|
self._setup_callbacks()
|
|
|
|
logger.info("Ultra-Fast Scalping Dashboard initialized")
|
|
|
|
def _setup_layout(self):
|
|
"""Setup the dashboard layout"""
|
|
self.app.layout = html.Div([
|
|
# Header
|
|
html.H1("ULTRA-FAST SCALPING DASHBOARD - 500x LEVERAGE",
|
|
className="text-center mb-4"),
|
|
|
|
# Metrics row
|
|
html.Div([
|
|
html.Div([
|
|
html.H3(id="live-pnl", className="text-success"),
|
|
html.P("Total P&L")
|
|
], className="col-md-3 text-center"),
|
|
|
|
html.Div([
|
|
html.H3(id="win-rate", className="text-info"),
|
|
html.P("Win Rate")
|
|
], className="col-md-3 text-center"),
|
|
|
|
html.Div([
|
|
html.H3(id="total-trades", className="text-primary"),
|
|
html.P("Total Trades")
|
|
], className="col-md-3 text-center"),
|
|
|
|
html.Div([
|
|
html.H3(id="last-action", className="text-warning"),
|
|
html.P("Last Action")
|
|
], className="col-md-3 text-center")
|
|
], className="row mb-4"),
|
|
|
|
# Chart
|
|
dcc.Graph(id="main-chart", style={"height": "400px"}),
|
|
|
|
# Actions log
|
|
html.Div([
|
|
html.H4("Recent Trading Actions"),
|
|
html.Div(id="actions-log")
|
|
]),
|
|
|
|
# Auto-refresh
|
|
dcc.Interval(
|
|
id='interval-component',
|
|
interval=100, # 100ms
|
|
n_intervals=0
|
|
)
|
|
])
|
|
|
|
def _setup_callbacks(self):
|
|
"""Setup dashboard callbacks"""
|
|
|
|
@self.app.callback(
|
|
[
|
|
Output('live-pnl', 'children'),
|
|
Output('win-rate', 'children'),
|
|
Output('total-trades', 'children'),
|
|
Output('last-action', 'children'),
|
|
Output('main-chart', 'figure'),
|
|
Output('actions-log', 'children')
|
|
],
|
|
[Input('interval-component', 'n_intervals')]
|
|
)
|
|
def update_dashboard(n_intervals):
|
|
"""Update all dashboard components"""
|
|
try:
|
|
# Update metrics
|
|
pnl = f"${self.scalping_metrics['total_pnl']:+.2f}"
|
|
win_rate = f"{self.scalping_metrics['win_rate']*100:.1f}%"
|
|
total_trades = str(self.scalping_metrics['total_trades'])
|
|
last_action = self.scalping_metrics['last_action'] or "WAITING"
|
|
|
|
# Create simple chart
|
|
chart = self._create_simple_chart()
|
|
|
|
# Create actions log
|
|
actions_log = self._create_actions_log()
|
|
|
|
return pnl, win_rate, total_trades, last_action, chart, actions_log
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error updating dashboard: {e}")
|
|
return "$0.00", "0%", "0", "ERROR", {}, "System starting..."
|
|
|
|
def _create_simple_chart(self):
|
|
"""Create a simple price chart"""
|
|
# Generate mock price data
|
|
times = [datetime.now() - timedelta(seconds=i) for i in range(100, 0, -1)]
|
|
prices = [3050 + np.random.normal(0, 2) for _ in times]
|
|
|
|
fig = go.Figure()
|
|
fig.add_trace(go.Scatter(
|
|
x=times,
|
|
y=prices,
|
|
mode='lines',
|
|
name='ETH/USDT 1s',
|
|
line=dict(color='green', width=2)
|
|
))
|
|
|
|
fig.update_layout(
|
|
title="ETH/USDT Ultra-Fast Chart",
|
|
xaxis_title="Time",
|
|
yaxis_title="Price (USDT)",
|
|
template="plotly_dark"
|
|
)
|
|
|
|
return fig
|
|
|
|
def _create_actions_log(self):
|
|
"""Create actions log"""
|
|
if not self.recent_decisions:
|
|
return html.P("No recent actions", className="text-muted")
|
|
|
|
log_items = []
|
|
for action in self.recent_decisions[-5:]:
|
|
log_items.append(
|
|
html.P(f"{action.action} {action.symbol} @ ${action.price:.2f}")
|
|
)
|
|
|
|
return html.Div(log_items)
|
|
|
|
def add_trading_decision(self, decision: TradingAction):
|
|
"""Add a new trading decision"""
|
|
self.recent_decisions.append(decision)
|
|
if len(self.recent_decisions) > 50:
|
|
self.recent_decisions.pop(0)
|
|
|
|
self.scalping_metrics['total_trades'] += 1
|
|
self.scalping_metrics['last_action'] = f"{decision.action} {decision.symbol}"
|
|
|
|
def run(self, host: str = '127.0.0.1', port: int = 8050, debug: bool = False):
|
|
"""Run the dashboard"""
|
|
logger.info(f"Starting Dashboard at http://{host}:{port}")
|
|
self.app.run_server(host=host, port=port, debug=debug)
|
|
|
|
def create_scalping_dashboard(data_provider=None, orchestrator=None):
|
|
"""Create dashboard instance"""
|
|
return ScalpingDashboard(data_provider, orchestrator) |