gogo2/crypto/brian/index.py
2025-02-02 00:40:17 +02:00

307 lines
11 KiB
Python

#!/usr/bin/env python3
import sys
import asyncio
if sys.platform == 'win32':
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
import os
import time
import ccxt.async_support as ccxt
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque
# -------------------------------------
# Neural Network Architecture Definition
# -------------------------------------
class TradingModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(TradingModel, self).__init__()
# This is a minimal feed-forward network.
self.net = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
return self.net(x)
# -------------------------------------
# Replay Buffer for Experience Storage
# -------------------------------------
class ReplayBuffer:
def __init__(self, capacity=10000):
self.buffer = deque(maxlen=capacity)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), size=batch_size, replace=False)
return [self.buffer[i] for i in indices]
def __len__(self):
return len(self.buffer)
# -------------------------------------
# A Simple Indicator and Feature Preparation Function
# -------------------------------------
def compute_indicators(candle, additional_data):
"""
Combine OHLCV candle data with extra indicator information.
Base features: open, high, low, close, volume.
Additional channels (e.g. sentiment score, news volume, etc.) are appended.
"""
features = []
features.extend([
candle.get('open', 0.0),
candle.get('high', 0.0),
candle.get('low', 0.0),
candle.get('close', 0.0),
candle.get('volume', 0.0)
])
# Append additional indicators (e.g., simulated sentiment here)
for key, value in additional_data.items():
features.append(value)
return np.array(features, dtype=np.float32)
# -------------------------------------
# RL Agent that Uses the Neural Network
# -------------------------------------
class ContinuousRLAgent:
def __init__(self, model, optimizer, replay_buffer, batch_size=32):
self.model = model
self.optimizer = optimizer
self.replay_buffer = replay_buffer
self.batch_size = batch_size
self.loss_fn = nn.MSELoss() # Using a simple MSE loss for demonstration.
def act(self, state):
"""
Given state features, output an action.
Mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
"""
state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
output = self.model(state_tensor)
action = torch.argmax(output, dim=1).item()
return action
def train_step(self):
"""
Sample a batch from the replay buffer and update the network.
(Note: A real RL algorithm will have a more-complex target calculation.)
"""
if len(self.replay_buffer) < self.batch_size:
return # Not enough samples yet
batch = self.replay_buffer.sample(self.batch_size)
states, rewards, next_states, dones = [], [], [], []
for experience in batch:
state, reward, next_state, done = experience
states.append(state)
rewards.append(reward)
next_states.append(next_state)
dones.append(done)
states_tensor = torch.tensor(states, dtype=torch.float32)
targets_tensor = torch.tensor(rewards, dtype=torch.float32).unsqueeze(1)
outputs = self.model(states_tensor)
# For this simple demonstration we use the first output as the value estimate.
predictions = outputs[:, 0].unsqueeze(1)
loss = self.loss_fn(predictions, targets_tensor)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# -------------------------------------
# Historical Data Fetching Function
# -------------------------------------
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
"""
Fetch historical OHLCV data for the given symbol and timeframe.
The "since" and "end_time" parameters are in milliseconds.
"""
candles = []
since_ms = since
while True:
try:
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
except Exception as e:
print("Error fetching historical data:", e)
break
if not batch:
break
# Convert each candle from a list to a dict.
for c in batch:
candle_dict = {
'timestamp': c[0],
'open': c[1],
'high': c[2],
'low': c[3],
'close': c[4],
'volume': c[5]
}
candles.append(candle_dict)
last_timestamp = batch[-1][0]
if last_timestamp >= end_time:
break
since_ms = last_timestamp + 1
print(f"Fetched {len(candles)} candles.")
return candles
# -------------------------------------
# Backtest Environment Class Definition
# -------------------------------------
class BacktestEnvironment:
def __init__(self, candles):
self.candles = candles
self.current_index = 0
self.position = None # Will hold a dict once a BUY is simulated.
def reset(self):
self.current_index = 0
self.position = None
return self.get_state(self.current_index)
def get_state(self, index):
candle = self.candles[index]
# Simulate additional sentiment features.
sentiment = {
'sentiment_score': np.random.rand(),
'news_volume': np.random.rand(),
'social_engagement': np.random.rand()
}
return compute_indicators(candle, sentiment)
def step(self, action):
"""
Simulate a trading step.
• Uses the current candle as state.
• Decides on an action:
- If not in a position and action is BUY (2), we buy at the next candle's open.
- If in position and action is SELL (0), we sell at the next candle's open.
- Otherwise, no trade is executed.
• Returns: (state, reward, next_state, done)
"""
if self.current_index >= len(self.candles) - 1:
# End of the historical data.
return self.get_state(self.current_index), 0, None, True
state = self.get_state(self.current_index)
next_index = self.current_index + 1
next_state = self.get_state(next_index)
current_candle = self.candles[self.current_index]
next_candle = self.candles[next_index]
reward = 0.0
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
if self.position is None:
if action == 2: # BUY signal: enter a long position.
# Buy at the next candle's open price.
entry_price = next_candle['open']
self.position = {'entry_price': entry_price, 'entry_index': self.current_index}
# No immediate reward on entry.
else:
if action == 0: # SELL signal: exit the long position.
sell_price = next_candle['open']
reward = sell_price - self.position['entry_price']
self.position = None
self.current_index = next_index
done = (self.current_index >= len(self.candles) - 1)
return state, reward, next_state, done
# -------------------------------------
# Training Loop Over Historical Data (Backtest)
# -------------------------------------
def train_on_historical_data(env, rl_agent, num_epochs=10):
"""
For each epoch, run through the historical data episode.
At every step, let the agent decide an action and simulate a trade.
The experience (state, reward, next_state, done) is stored and used to update the network.
"""
for epoch in range(num_epochs):
state = env.reset()
done = False
total_reward = 0.0
steps = 0
while not done:
action = rl_agent.act(state)
state_next, reward, next_state, done = env.step(action)
if next_state is None:
next_state = np.zeros_like(state)
rl_agent.replay_buffer.add((state, reward, next_state, done))
rl_agent.train_step()
state = next_state
total_reward += reward
steps += 1
print(f"Epoch {epoch+1}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
# -------------------------------------
# Main Asynchronous Function for Backtest Training
# -------------------------------------
async def main_backtest():
# Define symbol, timeframe, and historical period.
symbol = 'BTC/USDT'
timeframe = '1m'
now = int(time.time() * 1000)
one_day_ms = 24 * 60 * 60 * 1000
# For example, fetch a 1-day period from 2 days ago until 1 day ago.
since = now - one_day_ms * 2
end_time = now - one_day_ms
# Initialize the exchange (using MEXC in this example).
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
exchange = ccxt.mexc({
'apiKey': mexc_api_key,
'secret': mexc_api_secret,
'enableRateLimit': True,
})
print("Fetching historical data...")
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time)
if not candles:
print("No historical data fetched.")
await exchange.close()
return
# Initialize the backtest environment with the historical candles.
env = BacktestEnvironment(candles)
# Model dimensions:
# 5 base OHLCV features + 3 simulated sentiment features.
input_dim = 5 + 3
hidden_dim = 128
output_dim = 3 # SELL, HOLD, BUY
model = TradingModel(input_dim, hidden_dim, output_dim)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
replay_buffer = ReplayBuffer(capacity=10000)
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32)
# Train the RL agent via backtesting.
num_epochs = 10 # Adjust number of epochs as needed.
train_on_historical_data(env, rl_agent, num_epochs=num_epochs)
# Optionally, perform a final test episode to simulate trading with the trained model.
state = env.reset()
done = False
cumulative_reward = 0.0
while not done:
action = rl_agent.act(state)
state, reward, next_state, done = env.step(action)
cumulative_reward += reward
print("Final backtest simulation cumulative profit:", cumulative_reward)
await exchange.close()
if __name__ == "__main__":
asyncio.run(main_backtest())