Files
gogo2/ANNOTATE/core/training_simulator.py
Dobromir Popov a520ed7e39 folder rename
2025-10-18 16:39:15 +03:00

167 lines
5.2 KiB
Python

"""
Training Simulator - Handles model loading, training, and inference simulation
Integrates with the main system's orchestrator and models for training and testing.
"""
import logging
import uuid
import time
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, asdict
from datetime import datetime
from pathlib import Path
import json
logger = logging.getLogger(__name__)
@dataclass
class TrainingResults:
"""Results from training session"""
training_id: str
model_name: str
test_cases_used: int
epochs_completed: int
final_loss: float
training_duration_seconds: float
checkpoint_path: str
metrics: Dict[str, float]
status: str = "completed"
@dataclass
class InferenceResults:
"""Results from inference simulation"""
annotation_id: str
model_name: str
predictions: List[Dict]
accuracy: float
precision: float
recall: float
f1_score: float
confusion_matrix: Dict
prediction_timeline: List[Dict]
class TrainingSimulator:
"""Simulates training and inference on annotated data"""
def __init__(self, orchestrator=None):
"""Initialize training simulator"""
self.orchestrator = orchestrator
self.model_cache = {}
self.training_sessions = {}
# Storage for training results
self.results_dir = Path("TESTCASES/data/training_results")
self.results_dir.mkdir(parents=True, exist_ok=True)
logger.info("TrainingSimulator initialized")
def load_model(self, model_name: str):
"""Load model from orchestrator"""
if model_name in self.model_cache:
return self.model_cache[model_name]
if not self.orchestrator:
logger.error("Orchestrator not available")
return None
# Get model from orchestrator
# This will be implemented when we integrate with actual models
logger.info(f"Loading model: {model_name}")
return None
def start_training(self, model_name: str, test_cases: List[Dict]) -> str:
"""Start training session with test cases"""
training_id = str(uuid.uuid4())
# Create training session
self.training_sessions[training_id] = {
'status': 'running',
'model_name': model_name,
'test_cases_count': len(test_cases),
'current_epoch': 0,
'total_epochs': 50,
'current_loss': 0.0,
'start_time': time.time()
}
logger.info(f"Started training session: {training_id}")
# TODO: Implement actual training in background thread
# For now, simulate training completion
self._simulate_training(training_id)
return training_id
def _simulate_training(self, training_id: str):
"""Simulate training progress (placeholder)"""
import threading
def train():
session = self.training_sessions[training_id]
total_epochs = session['total_epochs']
for epoch in range(total_epochs):
time.sleep(0.1) # Simulate training time
session['current_epoch'] = epoch + 1
session['current_loss'] = 1.0 / (epoch + 1) # Decreasing loss
# Mark as completed
session['status'] = 'completed'
session['final_loss'] = session['current_loss']
session['duration_seconds'] = time.time() - session['start_time']
session['accuracy'] = 0.85
logger.info(f"Training completed: {training_id}")
thread = threading.Thread(target=train, daemon=True)
thread.start()
def get_training_progress(self, training_id: str) -> Dict:
"""Get training progress"""
if training_id not in self.training_sessions:
return {
'status': 'not_found',
'error': 'Training session not found'
}
return self.training_sessions[training_id]
def simulate_inference(self, annotation_id: str, model_name: str) -> InferenceResults:
"""Simulate inference on annotated period"""
# Placeholder implementation
logger.info(f"Simulating inference for annotation: {annotation_id}")
# Generate dummy predictions
predictions = []
for i in range(10):
predictions.append({
'timestamp': datetime.now().isoformat(),
'predicted_action': 'BUY' if i % 2 == 0 else 'SELL',
'confidence': 0.7 + (i * 0.02),
'actual_action': 'BUY' if i % 2 == 0 else 'SELL',
'correct': True
})
results = InferenceResults(
annotation_id=annotation_id,
model_name=model_name,
predictions=predictions,
accuracy=0.85,
precision=0.82,
recall=0.88,
f1_score=0.85,
confusion_matrix={
'tp_buy': 4,
'fn_buy': 1,
'fp_sell': 1,
'tn_sell': 4
},
prediction_timeline=predictions
)
return results