gogo2/run_enhanced_rl_training.py
2025-05-28 23:42:06 +03:00

477 lines
20 KiB
Python

#!/usr/bin/env python3
"""
Enhanced RL Training Launcher with Real Data Integration
This script launches the comprehensive RL training system that uses:
- Real-time tick data (300s window for momentum detection)
- Multi-timeframe OHLCV data (1s, 1m, 1h, 1d)
- BTC reference data for correlation
- CNN hidden features and predictions
- Williams Market Structure pivot points
- Market microstructure analysis
The RL model will receive ~13,400 features instead of the previous ~100 basic features.
"""
import asyncio
import logging
import time
import signal
import sys
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, List, Optional
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('enhanced_rl_training.log'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Import our enhanced components
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import EnhancedTradingOrchestrator
from training.enhanced_rl_trainer import EnhancedRLTrainer
from training.enhanced_rl_state_builder import EnhancedRLStateBuilder
from training.williams_market_structure import WilliamsMarketStructure
from training.cnn_rl_bridge import CNNRLBridge
class EnhancedRLTrainingSystem:
"""Comprehensive RL training system with real data integration"""
def __init__(self):
"""Initialize the enhanced RL training system"""
self.config = get_config()
self.running = False
self.data_provider = None
self.orchestrator = None
self.rl_trainer = None
# Performance tracking
self.training_stats = {
'training_sessions': 0,
'total_experiences': 0,
'avg_state_size': 0,
'data_quality_score': 0.0,
'last_training_time': None
}
logger.info("Enhanced RL Training System initialized")
logger.info("Features:")
logger.info("- Real-time tick data processing (300s window)")
logger.info("- Multi-timeframe OHLCV analysis (1s, 1m, 1h, 1d)")
logger.info("- BTC correlation analysis")
logger.info("- CNN feature integration")
logger.info("- Williams Market Structure pivot points")
logger.info("- ~13,400 feature state vector (vs previous ~100)")
async def initialize(self):
"""Initialize all components"""
try:
logger.info("Initializing enhanced RL training components...")
# Initialize data provider with real-time streaming
logger.info("Setting up data provider with real-time streaming...")
self.data_provider = DataProvider(
symbols=self.config.symbols,
timeframes=self.config.timeframes
)
# Start real-time data streaming
await self.data_provider.start_real_time_streaming()
logger.info("Real-time data streaming started")
# Wait for initial data collection
logger.info("Collecting initial market data...")
await asyncio.sleep(30) # Allow 30 seconds for data collection
# Initialize enhanced orchestrator
logger.info("Initializing enhanced orchestrator...")
self.orchestrator = EnhancedTradingOrchestrator(self.data_provider)
# Initialize enhanced RL trainer with comprehensive state building
logger.info("Initializing enhanced RL trainer...")
self.rl_trainer = EnhancedRLTrainer(
config=self.config,
orchestrator=self.orchestrator
)
# Verify data availability
data_status = await self._verify_data_availability()
if not data_status['has_sufficient_data']:
logger.warning("Insufficient data detected. Continuing with limited training.")
logger.warning(f"Data status: {data_status}")
else:
logger.info("Sufficient data available for comprehensive RL training")
logger.info(f"Tick data: {data_status['tick_count']} ticks")
logger.info(f"OHLCV data: {data_status['ohlcv_bars']} bars")
self.running = True
logger.info("Enhanced RL training system initialized successfully")
except Exception as e:
logger.error(f"Error during initialization: {e}")
raise
async def _verify_data_availability(self) -> Dict[str, any]:
"""Verify that we have sufficient data for training"""
try:
data_status = {
'has_sufficient_data': False,
'tick_count': 0,
'ohlcv_bars': 0,
'symbols_with_data': [],
'missing_data': []
}
for symbol in self.config.symbols:
# Check tick data
recent_ticks = self.data_provider.get_recent_ticks(symbol, count=100)
tick_count = len(recent_ticks)
# Check OHLCV data
ohlcv_bars = 0
for timeframe in ['1s', '1m', '1h', '1d']:
try:
df = self.data_provider.get_historical_data(
symbol=symbol,
timeframe=timeframe,
limit=50,
refresh=True
)
if df is not None and not df.empty:
ohlcv_bars += len(df)
except Exception as e:
logger.warning(f"Error checking {timeframe} data for {symbol}: {e}")
data_status['tick_count'] += tick_count
data_status['ohlcv_bars'] += ohlcv_bars
if tick_count >= 50 and ohlcv_bars >= 100:
data_status['symbols_with_data'].append(symbol)
else:
data_status['missing_data'].append(f"{symbol}: {tick_count} ticks, {ohlcv_bars} bars")
# Consider data sufficient if we have at least one symbol with good data
data_status['has_sufficient_data'] = len(data_status['symbols_with_data']) > 0
return data_status
except Exception as e:
logger.error(f"Error verifying data availability: {e}")
return {'has_sufficient_data': False, 'error': str(e)}
async def run_training_loop(self):
"""Run the main training loop with real data"""
logger.info("Starting enhanced RL training loop...")
training_cycle = 0
last_state_size_log = time.time()
try:
while self.running:
training_cycle += 1
cycle_start_time = time.time()
logger.info(f"Training cycle {training_cycle} started")
# Get comprehensive market states with real data
market_states = await self._get_comprehensive_market_states()
if not market_states:
logger.warning("No market states available. Waiting for data...")
await asyncio.sleep(60)
continue
# Train RL agents with comprehensive states
training_results = await self._train_rl_agents(market_states)
# Update performance tracking
self._update_training_stats(training_results, market_states)
# Log training progress
cycle_duration = time.time() - cycle_start_time
logger.info(f"Training cycle {training_cycle} completed in {cycle_duration:.2f}s")
# Log state size periodically
if time.time() - last_state_size_log > 300: # Every 5 minutes
self._log_state_size_info(market_states)
last_state_size_log = time.time()
# Save models periodically
if training_cycle % 10 == 0:
await self._save_training_progress()
# Wait before next training cycle
await asyncio.sleep(300) # Train every 5 minutes
except Exception as e:
logger.error(f"Error in training loop: {e}")
raise
async def _get_comprehensive_market_states(self) -> Dict[str, any]:
"""Get comprehensive market states with all required data"""
try:
# Get market states from orchestrator
universal_stream = self.orchestrator.universal_adapter.get_universal_stream()
market_states = await self.orchestrator._get_all_market_states_universal(universal_stream)
# Verify data quality
quality_score = self._calculate_data_quality(market_states)
self.training_stats['data_quality_score'] = quality_score
if quality_score < 0.5:
logger.warning(f"Low data quality detected: {quality_score:.2f}")
return market_states
except Exception as e:
logger.error(f"Error getting comprehensive market states: {e}")
return {}
def _calculate_data_quality(self, market_states: Dict[str, any]) -> float:
"""Calculate data quality score based on available data"""
try:
if not market_states:
return 0.0
total_score = 0.0
total_symbols = len(market_states)
for symbol, state in market_states.items():
symbol_score = 0.0
# Score based on tick data availability
if hasattr(state, 'raw_ticks') and state.raw_ticks:
tick_score = min(len(state.raw_ticks) / 100, 1.0) # Max score for 100+ ticks
symbol_score += tick_score * 0.3
# Score based on OHLCV data availability
if hasattr(state, 'ohlcv_data') and state.ohlcv_data:
ohlcv_score = len(state.ohlcv_data) / 4.0 # Max score for all 4 timeframes
symbol_score += min(ohlcv_score, 1.0) * 0.4
# Score based on CNN features
if hasattr(state, 'cnn_hidden_features') and state.cnn_hidden_features:
symbol_score += 0.15
# Score based on pivot points
if hasattr(state, 'pivot_points') and state.pivot_points:
symbol_score += 0.15
total_score += symbol_score
return total_score / total_symbols if total_symbols > 0 else 0.0
except Exception as e:
logger.warning(f"Error calculating data quality: {e}")
return 0.5 # Default to medium quality
async def _train_rl_agents(self, market_states: Dict[str, any]) -> Dict[str, any]:
"""Train RL agents with comprehensive market states"""
try:
training_results = {
'symbols_trained': [],
'total_experiences': 0,
'avg_state_size': 0,
'training_errors': []
}
for symbol, market_state in market_states.items():
try:
# Convert market state to comprehensive RL state
rl_state = self.rl_trainer._market_state_to_rl_state(market_state)
if rl_state is not None and len(rl_state) > 0:
# Record state size
training_results['avg_state_size'] += len(rl_state)
# Simulate trading action for experience generation
# In real implementation, this would be actual trading decisions
action = self._simulate_trading_action(symbol, rl_state)
# Generate reward based on market outcome
reward = self._calculate_training_reward(symbol, market_state, action)
# Add experience to RL agent
agent = self.rl_trainer.agents.get(symbol)
if agent:
# Create next state (would be actual next market state in real scenario)
next_state = rl_state # Simplified for now
agent.remember(
state=rl_state,
action=action,
reward=reward,
next_state=next_state,
done=False
)
# Train agent if enough experiences
if len(agent.replay_buffer) >= agent.batch_size:
loss = agent.replay()
if loss is not None:
logger.debug(f"Agent {symbol} training loss: {loss:.4f}")
training_results['symbols_trained'].append(symbol)
training_results['total_experiences'] += 1
except Exception as e:
error_msg = f"Error training {symbol}: {e}"
logger.warning(error_msg)
training_results['training_errors'].append(error_msg)
# Calculate average state size
if len(training_results['symbols_trained']) > 0:
training_results['avg_state_size'] /= len(training_results['symbols_trained'])
return training_results
except Exception as e:
logger.error(f"Error training RL agents: {e}")
return {'error': str(e)}
def _simulate_trading_action(self, symbol: str, rl_state) -> int:
"""Simulate trading action for training (would be real decision in production)"""
# Simple simulation based on state features
if len(rl_state) > 100:
# Use momentum features to decide action
momentum_features = rl_state[:100] # First 100 features assumed to be momentum
avg_momentum = sum(momentum_features) / len(momentum_features)
if avg_momentum > 0.6:
return 1 # BUY
elif avg_momentum < 0.4:
return 2 # SELL
else:
return 0 # HOLD
else:
return 0 # HOLD as default
def _calculate_training_reward(self, symbol: str, market_state, action: int) -> float:
"""Calculate training reward based on market state and action"""
try:
# Simple reward calculation based on market conditions
base_reward = 0.0
# Reward based on volatility alignment
if hasattr(market_state, 'volatility'):
if action == 0 and market_state.volatility > 0.02: # HOLD in high volatility
base_reward += 0.1
elif action != 0 and market_state.volatility < 0.01: # Trade in low volatility
base_reward += 0.1
# Reward based on trend alignment
if hasattr(market_state, 'trend_strength'):
if action == 1 and market_state.trend_strength > 0.6: # BUY in uptrend
base_reward += 0.2
elif action == 2 and market_state.trend_strength < 0.4: # SELL in downtrend
base_reward += 0.2
return base_reward
except Exception as e:
logger.warning(f"Error calculating reward for {symbol}: {e}")
return 0.0
def _update_training_stats(self, training_results: Dict[str, any], market_states: Dict[str, any]):
"""Update training statistics"""
self.training_stats['training_sessions'] += 1
self.training_stats['total_experiences'] += training_results.get('total_experiences', 0)
self.training_stats['avg_state_size'] = training_results.get('avg_state_size', 0)
self.training_stats['last_training_time'] = datetime.now()
# Log statistics periodically
if self.training_stats['training_sessions'] % 10 == 0:
logger.info("Training Statistics:")
logger.info(f" Sessions: {self.training_stats['training_sessions']}")
logger.info(f" Total Experiences: {self.training_stats['total_experiences']}")
logger.info(f" Avg State Size: {self.training_stats['avg_state_size']:.0f}")
logger.info(f" Data Quality: {self.training_stats['data_quality_score']:.2f}")
def _log_state_size_info(self, market_states: Dict[str, any]):
"""Log information about state sizes for debugging"""
for symbol, state in market_states.items():
info = []
if hasattr(state, 'raw_ticks'):
info.append(f"ticks: {len(state.raw_ticks)}")
if hasattr(state, 'ohlcv_data'):
total_bars = sum(len(bars) for bars in state.ohlcv_data.values())
info.append(f"OHLCV bars: {total_bars}")
if hasattr(state, 'cnn_hidden_features') and state.cnn_hidden_features:
info.append("CNN features: available")
if hasattr(state, 'pivot_points') and state.pivot_points:
info.append("pivot points: available")
logger.info(f"{symbol} state data: {', '.join(info)}")
async def _save_training_progress(self):
"""Save training progress and models"""
try:
if self.rl_trainer:
self.rl_trainer._save_all_models()
logger.info("Training progress saved")
except Exception as e:
logger.error(f"Error saving training progress: {e}")
async def shutdown(self):
"""Graceful shutdown"""
logger.info("Shutting down enhanced RL training system...")
self.running = False
# Save final state
await self._save_training_progress()
# Stop data provider
if self.data_provider:
await self.data_provider.stop_real_time_streaming()
logger.info("Enhanced RL training system shutdown complete")
async def main():
"""Main function to run enhanced RL training"""
system = None
def signal_handler(signum, frame):
logger.info("Received shutdown signal")
if system:
asyncio.create_task(system.shutdown())
# Set up signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
# Create and initialize the training system
system = EnhancedRLTrainingSystem()
await system.initialize()
logger.info("Enhanced RL Training System is now running...")
logger.info("The RL model now receives ~13,400 features instead of ~100!")
logger.info("Press Ctrl+C to stop")
# Run the training loop
await system.run_training_loop()
except KeyboardInterrupt:
logger.info("Training interrupted by user")
except Exception as e:
logger.error(f"Error in main training loop: {e}")
raise
finally:
if system:
await system.shutdown()
if __name__ == "__main__":
asyncio.run(main())