1774 lines
73 KiB
Python
1774 lines
73 KiB
Python
import asyncio
|
|
import json
|
|
import logging
|
|
|
|
from typing import Dict, List, Optional
|
|
import websockets
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
import dash
|
|
from dash import html, dcc
|
|
from dash.dependencies import Input, Output
|
|
import pandas as pd
|
|
import numpy as np
|
|
from collections import deque
|
|
import time
|
|
from threading import Thread
|
|
import requests
|
|
import os
|
|
from datetime import datetime, timedelta
|
|
import pytz
|
|
import tzlocal
|
|
import threading
|
|
import random
|
|
import dash_bootstrap_components as dbc
|
|
import uuid
|
|
|
|
class BinanceHistoricalData:
|
|
"""
|
|
Class for fetching historical price data from Binance.
|
|
"""
|
|
def __init__(self):
|
|
self.base_url = "https://api.binance.com/api/v3"
|
|
self.cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cache')
|
|
if not os.path.exists(self.cache_dir):
|
|
os.makedirs(self.cache_dir)
|
|
# Timestamp of last data update
|
|
self.last_update = None
|
|
|
|
def get_historical_candles(self, symbol, interval_seconds=3600, limit=1000):
|
|
"""
|
|
Fetch historical candles from Binance API.
|
|
|
|
Args:
|
|
symbol (str): Trading pair symbol (e.g., "BTC/USDT")
|
|
interval_seconds (int): Timeframe in seconds (e.g., 3600 for 1h)
|
|
limit (int): Number of candles to fetch
|
|
|
|
Returns:
|
|
pd.DataFrame: DataFrame with OHLCV data
|
|
"""
|
|
# Convert interval_seconds to Binance interval format
|
|
interval_map = {
|
|
1: "1s",
|
|
60: "1m",
|
|
300: "5m",
|
|
900: "15m",
|
|
1800: "30m",
|
|
3600: "1h",
|
|
14400: "4h",
|
|
86400: "1d"
|
|
}
|
|
|
|
interval = interval_map.get(interval_seconds, "1h")
|
|
|
|
# Format symbol for Binance API (remove slash)
|
|
formatted_symbol = symbol.replace("/", "").lower()
|
|
|
|
# Check if we have cached data first
|
|
cache_file = self._get_cache_filename(formatted_symbol, interval)
|
|
cached_data = self._load_from_cache(formatted_symbol, interval)
|
|
|
|
# If we have cached data that's recent enough, use it
|
|
if cached_data is not None and len(cached_data) >= limit:
|
|
cache_age_minutes = (datetime.now() - self.last_update).total_seconds() / 60 if self.last_update else 60
|
|
if cache_age_minutes < 15: # Only use cache if it's less than 15 minutes old
|
|
logger.info(f"Using cached historical data for {symbol} ({interval})")
|
|
return cached_data
|
|
|
|
try:
|
|
# Build URL for klines endpoint
|
|
url = f"{self.base_url}/klines"
|
|
params = {
|
|
"symbol": formatted_symbol,
|
|
"interval": interval,
|
|
"limit": limit
|
|
}
|
|
|
|
# Make the request
|
|
response = requests.get(url, params=params)
|
|
response.raise_for_status()
|
|
|
|
# Parse the response
|
|
data = response.json()
|
|
|
|
# Create dataframe
|
|
df = pd.DataFrame(data, columns=[
|
|
"timestamp", "open", "high", "low", "close", "volume",
|
|
"close_time", "quote_asset_volume", "number_of_trades",
|
|
"taker_buy_base_asset_volume", "taker_buy_quote_asset_volume", "ignore"
|
|
])
|
|
|
|
# Convert timestamp to datetime
|
|
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
|
|
|
# Convert price columns to float
|
|
for col in ["open", "high", "low", "close", "volume"]:
|
|
df[col] = df[col].astype(float)
|
|
|
|
# Sort by timestamp
|
|
df = df.sort_values("timestamp")
|
|
|
|
# Save to cache for future use
|
|
self._save_to_cache(df, formatted_symbol, interval)
|
|
self.last_update = datetime.now()
|
|
|
|
logger.info(f"Fetched {len(df)} candles for {symbol} ({interval})")
|
|
return df
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching historical data from Binance: {str(e)}")
|
|
# Return cached data if we have it, even if it's not enough
|
|
if cached_data is not None:
|
|
logger.warning(f"Using cached data instead (may be incomplete)")
|
|
return cached_data
|
|
# Return empty dataframe on error
|
|
return pd.DataFrame()
|
|
|
|
def _get_cache_filename(self, symbol, interval):
|
|
"""Get filename for cache file"""
|
|
return os.path.join(self.cache_dir, f"{symbol}_{interval}_candles.csv")
|
|
|
|
def _load_from_cache(self, symbol, interval):
|
|
"""Load candles from cache file"""
|
|
try:
|
|
cache_file = self._get_cache_filename(symbol, interval)
|
|
if os.path.exists(cache_file):
|
|
# For 1s interval, check if the cache is recent (less than 10 minutes old)
|
|
if interval == "1s" or interval == 1:
|
|
file_mod_time = datetime.fromtimestamp(os.path.getmtime(cache_file))
|
|
time_diff = (datetime.now() - file_mod_time).total_seconds() / 60
|
|
if time_diff > 10:
|
|
logger.info("1s cache is older than 10 minutes, skipping load")
|
|
return None
|
|
logger.info(f"Using recent 1s cache (age: {time_diff:.1f} minutes)")
|
|
|
|
df = pd.read_csv(cache_file)
|
|
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
|
logger.info(f"Loaded {len(df)} candles from cache: {cache_file}")
|
|
return df
|
|
except Exception as e:
|
|
logger.error(f"Error loading cached data: {str(e)}")
|
|
return None
|
|
|
|
def _save_to_cache(self, df, symbol, interval):
|
|
"""Save candles to cache file"""
|
|
try:
|
|
cache_file = self._get_cache_filename(symbol, interval)
|
|
df.to_csv(cache_file, index=False)
|
|
logger.info(f"Saved {len(df)} candles to cache: {cache_file}")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error saving to cache: {str(e)}")
|
|
return False
|
|
|
|
def get_recent_trades(self, symbol, limit=1000):
|
|
"""Get recent trades for a symbol"""
|
|
formatted_symbol = symbol.replace("/", "")
|
|
|
|
try:
|
|
url = f"{self.base_url}/trades"
|
|
params = {
|
|
"symbol": formatted_symbol,
|
|
"limit": limit
|
|
}
|
|
|
|
response = requests.get(url, params=params)
|
|
response.raise_for_status()
|
|
|
|
data = response.json()
|
|
|
|
# Create dataframe
|
|
df = pd.DataFrame(data)
|
|
df["time"] = pd.to_datetime(df["time"], unit="ms")
|
|
df["price"] = df["price"].astype(float)
|
|
df["qty"] = df["qty"].astype(float)
|
|
|
|
return df
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching recent trades: {str(e)}")
|
|
return pd.DataFrame()
|
|
|
|
# Configure logging with more detailed format
|
|
logging.basicConfig(
|
|
level=logging.INFO, # Changed to DEBUG for more detailed logs
|
|
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
|
|
handlers=[
|
|
logging.StreamHandler(),
|
|
logging.FileHandler('realtime_chart.log')
|
|
]
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Neural Network integration (conditional import)
|
|
NN_ENABLED = os.environ.get('ENABLE_NN_MODELS', '0') == '1'
|
|
nn_orchestrator = None
|
|
nn_inference_thread = None
|
|
|
|
if NN_ENABLED:
|
|
try:
|
|
import sys
|
|
# Add project root to sys.path if needed
|
|
project_root = os.path.dirname(os.path.abspath(__file__))
|
|
if project_root not in sys.path:
|
|
sys.path.append(project_root)
|
|
|
|
from NN.main import NeuralNetworkOrchestrator
|
|
logger.info("Neural Network module enabled")
|
|
except ImportError as e:
|
|
logger.warning(f"Failed to import Neural Network module, disabling NN features: {str(e)}")
|
|
NN_ENABLED = False
|
|
|
|
# NN utility functions
|
|
def setup_neural_network():
|
|
"""Initialize the neural network components if enabled"""
|
|
global nn_orchestrator, NN_ENABLED
|
|
|
|
if not NN_ENABLED:
|
|
return False
|
|
|
|
try:
|
|
# Get configuration from environment variables or use defaults
|
|
symbol = os.environ.get('NN_SYMBOL', 'ETH/USDT')
|
|
timeframes = os.environ.get('NN_TIMEFRAMES', '1m,5m,1h,4h,1d').split(',')
|
|
output_size = int(os.environ.get('NN_OUTPUT_SIZE', '3')) # 3 for BUY/HOLD/SELL
|
|
|
|
# Configure the orchestrator
|
|
config = {
|
|
'symbol': symbol,
|
|
'timeframes': timeframes,
|
|
'window_size': int(os.environ.get('NN_WINDOW_SIZE', '20')),
|
|
'n_features': 5, # OHLCV
|
|
'output_size': output_size,
|
|
'model_dir': 'NN/models/saved',
|
|
'data_dir': 'NN/data'
|
|
}
|
|
|
|
# Initialize the orchestrator
|
|
logger.info(f"Initializing Neural Network Orchestrator with config: {config}")
|
|
nn_orchestrator = NeuralNetworkOrchestrator(config)
|
|
|
|
# Start inference thread if enabled
|
|
inference_interval = int(os.environ.get('NN_INFERENCE_INTERVAL', '60'))
|
|
if inference_interval > 0:
|
|
start_nn_inference_thread(inference_interval)
|
|
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error setting up neural network: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
NN_ENABLED = False
|
|
return False
|
|
|
|
def start_nn_inference_thread(interval_seconds):
|
|
"""Start a background thread to periodically run inference with the neural network"""
|
|
global nn_inference_thread
|
|
|
|
if not NN_ENABLED or nn_orchestrator is None:
|
|
logger.warning("Cannot start inference thread - Neural Network not enabled or initialized")
|
|
return False
|
|
|
|
def inference_worker():
|
|
"""Worker function for the inference thread"""
|
|
model_type = os.environ.get('NN_MODEL_TYPE', 'cnn')
|
|
timeframe = os.environ.get('NN_TIMEFRAME', '1h')
|
|
|
|
logger.info(f"Starting neural network inference thread with {interval_seconds}s interval")
|
|
logger.info(f"Using model type: {model_type}, timeframe: {timeframe}")
|
|
|
|
# Wait a bit for charts to initialize
|
|
time.sleep(5)
|
|
|
|
# Track active charts
|
|
active_charts = []
|
|
|
|
while True:
|
|
try:
|
|
# Find active charts if we don't have them yet
|
|
if not active_charts and 'charts' in globals():
|
|
active_charts = globals()['charts']
|
|
logger.info(f"Found {len(active_charts)} active charts for NN signals")
|
|
|
|
# Run inference
|
|
result = nn_orchestrator.run_inference_pipeline(
|
|
model_type=model_type,
|
|
timeframe=timeframe
|
|
)
|
|
|
|
if result:
|
|
# Log the result
|
|
logger.info(f"Neural network inference result: {result}")
|
|
|
|
# Add signal to charts
|
|
if active_charts:
|
|
try:
|
|
if 'action' in result:
|
|
action = result['action']
|
|
timestamp = datetime.fromisoformat(result['timestamp'].replace('Z', '+00:00'))
|
|
|
|
# Get probability if available
|
|
probability = None
|
|
if 'probability' in result:
|
|
probability = result['probability']
|
|
elif 'probabilities' in result:
|
|
probability = result['probabilities'].get(action, None)
|
|
|
|
# Add signal to each chart
|
|
for chart in active_charts:
|
|
if hasattr(chart, 'add_nn_signal'):
|
|
chart.add_nn_signal(action, timestamp, probability)
|
|
except Exception as e:
|
|
logger.error(f"Error adding NN signal to chart: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
# Sleep for the interval
|
|
time.sleep(interval_seconds)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in inference thread: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
time.sleep(5) # Wait a bit before retrying
|
|
|
|
# Create and start the thread
|
|
nn_inference_thread = threading.Thread(target=inference_worker, daemon=True)
|
|
nn_inference_thread.start()
|
|
|
|
return True
|
|
|
|
# Try to get local timezone, default to Sofia/EET if not available
|
|
try:
|
|
local_timezone = tzlocal.get_localzone()
|
|
# Get timezone name safely
|
|
try:
|
|
tz_name = str(local_timezone)
|
|
# Handle case where it might be zoneinfo.ZoneInfo object instead of pytz timezone
|
|
if hasattr(local_timezone, 'zone'):
|
|
tz_name = local_timezone.zone
|
|
elif hasattr(local_timezone, 'key'):
|
|
tz_name = local_timezone.key
|
|
else:
|
|
tz_name = str(local_timezone)
|
|
except:
|
|
tz_name = "Local"
|
|
logger.info(f"Detected local timezone: {local_timezone} ({tz_name})")
|
|
except Exception as e:
|
|
logger.warning(f"Could not detect local timezone: {str(e)}. Defaulting to Sofia/EET")
|
|
local_timezone = pytz.timezone('Europe/Sofia')
|
|
tz_name = "Europe/Sofia"
|
|
|
|
def convert_to_local_time(timestamp):
|
|
"""Convert timestamp to local timezone"""
|
|
try:
|
|
if isinstance(timestamp, pd.Timestamp):
|
|
dt = timestamp.to_pydatetime()
|
|
elif isinstance(timestamp, np.datetime64):
|
|
dt = pd.Timestamp(timestamp).to_pydatetime()
|
|
elif isinstance(timestamp, str):
|
|
dt = pd.to_datetime(timestamp).to_pydatetime()
|
|
else:
|
|
dt = timestamp
|
|
|
|
# If datetime is naive (no timezone), assume it's UTC
|
|
if dt.tzinfo is None:
|
|
dt = dt.replace(tzinfo=pytz.UTC)
|
|
|
|
# Convert to local timezone
|
|
local_dt = dt.astimezone(local_timezone)
|
|
return local_dt
|
|
except Exception as e:
|
|
logger.error(f"Error converting timestamp to local time: {str(e)}")
|
|
return timestamp
|
|
|
|
class TickStorage:
|
|
"""Simple storage for ticks and candles"""
|
|
def __init__(self):
|
|
self.ticks = []
|
|
self.candles = {} # Organized by timeframe key (e.g., '1s', '1m', '1h')
|
|
self.latest_price = None
|
|
self.last_update = datetime.now()
|
|
|
|
# Initialize empty candle arrays for different timeframes
|
|
for timeframe in ['1s', '5s', '15s', '30s', '1m', '5m', '15m', '30m', '1h', '4h', '1d']:
|
|
self.candles[timeframe] = []
|
|
|
|
def add_tick(self, price, volume=0, timestamp=None):
|
|
"""Add a tick to the storage"""
|
|
if timestamp is None:
|
|
timestamp = datetime.now()
|
|
|
|
# Ensure timestamp is datetime
|
|
if isinstance(timestamp, (int, float)):
|
|
timestamp = datetime.fromtimestamp(timestamp)
|
|
|
|
tick = {
|
|
'price': price,
|
|
'volume': volume,
|
|
'timestamp': timestamp
|
|
}
|
|
|
|
self.ticks.append(tick)
|
|
self.latest_price = price
|
|
self.last_update = datetime.now()
|
|
|
|
# Keep only last 10000 ticks
|
|
if len(self.ticks) > 10000:
|
|
self.ticks = self.ticks[-10000:]
|
|
|
|
# Update all timeframe candles
|
|
self._update_all_candles(tick)
|
|
|
|
# Verify 1s candles are being updated - periodically log for monitoring
|
|
if len(self.ticks) % 100 == 0:
|
|
logger.debug(f"Tick count: {len(self.ticks)}, 1s candles count: {len(self.candles['1s'])}")
|
|
|
|
return tick
|
|
|
|
def get_latest_price(self):
|
|
"""Get the latest price"""
|
|
return self.latest_price
|
|
|
|
def _update_all_candles(self, tick):
|
|
"""Update all candle timeframes with the new tick"""
|
|
# Define intervals in seconds
|
|
intervals = {
|
|
'1s': 1,
|
|
'5s': 5,
|
|
'15s': 15,
|
|
'30s': 30,
|
|
'1m': 60,
|
|
'5m': 300,
|
|
'15m': 900,
|
|
'30m': 1800,
|
|
'1h': 3600,
|
|
'4h': 14400,
|
|
'1d': 86400
|
|
}
|
|
|
|
# Update each timeframe
|
|
for interval_key, seconds in intervals.items():
|
|
self._update_candles_for_timeframe(interval_key, seconds, tick)
|
|
|
|
def _update_candles_for_timeframe(self, interval_key, interval_seconds, tick):
|
|
"""Update candles for a specific timeframe"""
|
|
# Get or create the current candle
|
|
current_candle = self._get_current_candle(interval_key, tick['timestamp'], interval_seconds)
|
|
|
|
# If this is a new candle, initialize it with the tick price
|
|
if current_candle['open'] == 0.0:
|
|
current_candle['open'] = tick['price']
|
|
current_candle['high'] = tick['price']
|
|
current_candle['low'] = tick['price']
|
|
|
|
# Update the candle with the new tick
|
|
if current_candle['high'] < tick['price']:
|
|
current_candle['high'] = tick['price']
|
|
if current_candle['low'] > tick['price'] or current_candle['low'] == 0:
|
|
current_candle['low'] = tick['price']
|
|
current_candle['close'] = tick['price']
|
|
current_candle['volume'] += tick['volume']
|
|
|
|
# For 1s timeframe specifically, log a debug message to confirm updates are occurring
|
|
if interval_key == '1s':
|
|
logger.debug(f"Updated 1s candle at {current_candle['timestamp']} with price {tick['price']}")
|
|
|
|
# Limit the number of candles to keep for each timeframe
|
|
# Keep more candles for shorter timeframes, fewer for longer ones
|
|
max_candles = {
|
|
'1s': 1000, # ~16 minutes of 1s data
|
|
'5s': 1000, # ~83 minutes of 5s data
|
|
'15s': 800, # ~3.3 hours of 15s data
|
|
'30s': 600, # ~5 hours of 30s data
|
|
'1m': 500, # ~8 hours of 1m data
|
|
'5m': 300, # ~25 hours of 5m data
|
|
'15m': 200, # ~50 hours of 15m data
|
|
'30m': 150, # ~3 days of 30m data
|
|
'1h': 168, # 7 days of 1h data
|
|
'4h': 90, # ~15 days of 4h data
|
|
'1d': 365 # 1 year of daily data
|
|
}
|
|
|
|
# Trim candles list if needed
|
|
if len(self.candles[interval_key]) > max_candles.get(interval_key, 500):
|
|
self.candles[interval_key] = self.candles[interval_key][-max_candles.get(interval_key, 500):]
|
|
|
|
def _get_current_candle(self, interval_key, timestamp, interval_seconds):
|
|
"""Get the current candle for the given interval, or create a new one"""
|
|
# Calculate the candle start time based on the timeframe
|
|
candle_start = self._calculate_candle_start(timestamp, interval_seconds)
|
|
|
|
# Check if we already have a candle for this time
|
|
for candle in self.candles[interval_key]:
|
|
if candle['timestamp'] == candle_start:
|
|
return candle
|
|
|
|
# Create a new candle
|
|
candle = {
|
|
'timestamp': candle_start,
|
|
'open': 0.0,
|
|
'high': 0.0,
|
|
'low': float('inf'),
|
|
'close': 0.0,
|
|
'volume': 0
|
|
}
|
|
|
|
# Log when we're creating a new 1s candle for debugging
|
|
if interval_key == '1s':
|
|
logger.debug(f"Creating new 1s candle at {candle_start}")
|
|
|
|
self.candles[interval_key].append(candle)
|
|
return candle
|
|
|
|
def _calculate_candle_start(self, timestamp, interval_seconds):
|
|
"""Calculate the start time of a candle based on interval"""
|
|
# Seconds timeframes (1s, 5s, 15s, 30s)
|
|
if interval_seconds < 60:
|
|
# Round down to the nearest multiple of interval_seconds
|
|
seconds_since_hour = timestamp.second + timestamp.minute * 60
|
|
candle_seconds = (seconds_since_hour // interval_seconds) * interval_seconds
|
|
candle_minute = candle_seconds // 60
|
|
candle_second = candle_seconds % 60
|
|
|
|
return timestamp.replace(
|
|
microsecond=0,
|
|
second=candle_second,
|
|
minute=candle_minute
|
|
)
|
|
|
|
# Minute timeframes (1m, 5m, 15m, 30m)
|
|
elif interval_seconds < 3600:
|
|
minutes_in_interval = interval_seconds // 60
|
|
return timestamp.replace(
|
|
microsecond=0,
|
|
second=0,
|
|
minute=(timestamp.minute // minutes_in_interval) * minutes_in_interval
|
|
)
|
|
|
|
# Hour timeframes (1h, 4h)
|
|
elif interval_seconds < 86400:
|
|
hours_in_interval = interval_seconds // 3600
|
|
return timestamp.replace(
|
|
microsecond=0,
|
|
second=0,
|
|
minute=0,
|
|
hour=(timestamp.hour // hours_in_interval) * hours_in_interval
|
|
)
|
|
|
|
# Day timeframe (1d)
|
|
else:
|
|
return timestamp.replace(
|
|
microsecond=0,
|
|
second=0,
|
|
minute=0,
|
|
hour=0
|
|
)
|
|
|
|
def get_candles(self, interval='1m'):
|
|
"""Get candles for the specified interval"""
|
|
# Convert legacy interval format to new format
|
|
if isinstance(interval, int):
|
|
# Convert seconds to the appropriate key
|
|
if interval < 60:
|
|
interval_key = f"{interval}s"
|
|
elif interval < 3600:
|
|
interval_key = f"{interval // 60}m"
|
|
elif interval < 86400:
|
|
interval_key = f"{interval // 3600}h"
|
|
else:
|
|
interval_key = f"{interval // 86400}d"
|
|
else:
|
|
interval_key = interval
|
|
|
|
# Ensure the interval key exists in our candles dict
|
|
if interval_key not in self.candles:
|
|
logger.warning(f"Invalid interval key: {interval_key}")
|
|
return None
|
|
|
|
if not self.candles[interval_key]:
|
|
logger.warning(f"No candles available for {interval_key}")
|
|
return None
|
|
|
|
# Convert to DataFrame
|
|
df = pd.DataFrame(self.candles[interval_key])
|
|
if df.empty:
|
|
return None
|
|
|
|
# Set timestamp as index
|
|
df.set_index('timestamp', inplace=True)
|
|
|
|
# Sort by timestamp
|
|
df = df.sort_index()
|
|
|
|
return df
|
|
|
|
def load_from_file(self, file_path):
|
|
"""Load ticks from a file"""
|
|
try:
|
|
df = pd.read_csv(file_path)
|
|
for _, row in df.iterrows():
|
|
if 'timestamp' in row:
|
|
timestamp = pd.to_datetime(row['timestamp'])
|
|
else:
|
|
timestamp = None
|
|
|
|
self.add_tick(
|
|
price=row.get('price', row.get('close', 0)),
|
|
volume=row.get('volume', 0),
|
|
timestamp=timestamp
|
|
)
|
|
logger.info(f"Loaded {len(df)} ticks from {file_path}")
|
|
except Exception as e:
|
|
logger.error(f"Error loading ticks from file: {str(e)}")
|
|
|
|
def load_historical_data(self, historical_data, symbol):
|
|
"""Load historical data for all timeframes"""
|
|
try:
|
|
# Clear any existing 1s candles to prevent using old cached data
|
|
self.candles['1s'] = []
|
|
|
|
# Clear tick data to ensure we start with an empty collection
|
|
self.ticks = []
|
|
|
|
# Load data for different timeframes (without 1s - we'll handle it separately)
|
|
timeframes = [
|
|
(60, '1m'), # 1 minute
|
|
(5, '5s'), # 5 seconds
|
|
(15, '15s'), # 15 seconds
|
|
(300, '5m'), # 5 minutes
|
|
(900, '15m'), # 15 minutes
|
|
(3600, '1h'), # 1 hour
|
|
(14400, '4h'), # 4 hours
|
|
(86400, '1d') # 1 day
|
|
]
|
|
|
|
# For 1s, we only load from cache if available (handled in _load_from_cache method)
|
|
# The _load_from_cache method will check if cache is no more than 10 minutes old
|
|
df_1s = historical_data.get_historical_candles(symbol, 1, 300) # Try to get 1s data from cache
|
|
if df_1s is not None and not df_1s.empty:
|
|
logger.info(f"Loaded {len(df_1s)} recent 1s candles from cache")
|
|
|
|
# Convert to our candle format and store
|
|
candles_1s = []
|
|
for _, row in df_1s.iterrows():
|
|
candle = {
|
|
'timestamp': row['timestamp'],
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
candles_1s.append(candle)
|
|
|
|
# Add the 1s candles to our candles storage
|
|
self.candles['1s'] = candles_1s
|
|
else:
|
|
logger.info("No recent 1s cache available, starting with empty 1s data")
|
|
|
|
# Load the remaining timeframes normally
|
|
for interval_seconds, interval_key in timeframes:
|
|
# Set appropriate limits based on timeframe
|
|
limit = 1000 # Default
|
|
if interval_seconds < 60:
|
|
limit = 500 # For seconds-level data
|
|
elif interval_seconds < 300:
|
|
limit = 1000 # 1m
|
|
elif interval_seconds < 900:
|
|
limit = 500 # 5m
|
|
elif interval_seconds < 3600:
|
|
limit = 300 # 15m
|
|
else:
|
|
limit = 200 # hourly/daily data
|
|
|
|
try:
|
|
# Load normal historical data
|
|
df = historical_data.get_historical_candles(symbol, interval_seconds, limit)
|
|
if df is not None and not df.empty:
|
|
logger.info(f"Loaded {len(df)} historical candles for {symbol} ({interval_key})")
|
|
|
|
# Convert to our candle format and store
|
|
candles = []
|
|
for _, row in df.iterrows():
|
|
candle = {
|
|
'timestamp': row['timestamp'],
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
candles.append(candle)
|
|
|
|
# Set the candles for this timeframe
|
|
self.candles[interval_key] = candles
|
|
|
|
# No longer load 1m data into ticks collection, as this persists the problem
|
|
# Just store the latest price from the most recent candle for reference
|
|
if interval_key == '1m' and candles:
|
|
self.latest_price = candles[-1]['close']
|
|
logger.info(f"Set latest price to ${self.latest_price:.2f} from historical data without adding to ticks")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading {interval_key} data: {e}")
|
|
continue
|
|
|
|
logger.info(f"Completed loading historical data for {symbol}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading historical data: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
class Position:
|
|
"""Represents a trading position"""
|
|
|
|
def __init__(self, action, entry_price, amount, timestamp=None, trade_id=None, fee_rate=0.001):
|
|
self.action = action
|
|
self.entry_price = entry_price
|
|
self.amount = amount
|
|
self.entry_timestamp = timestamp or datetime.now()
|
|
self.exit_timestamp = None
|
|
self.exit_price = None
|
|
self.pnl = None
|
|
self.is_open = True
|
|
self.trade_id = trade_id or str(uuid.uuid4())[:8]
|
|
self.fee_rate = fee_rate
|
|
self.paid_fee = entry_price * amount * fee_rate # Calculate entry fee
|
|
|
|
def close(self, exit_price, exit_timestamp=None):
|
|
"""Close an open position"""
|
|
self.exit_price = exit_price
|
|
self.exit_timestamp = exit_timestamp or datetime.now()
|
|
self.is_open = False
|
|
|
|
# Calculate P&L
|
|
if self.action == "BUY":
|
|
price_diff = self.exit_price - self.entry_price
|
|
# Calculate fee for exit trade
|
|
exit_fee = exit_price * self.amount * self.fee_rate
|
|
self.paid_fee += exit_fee # Add exit fee to total paid fee
|
|
self.pnl = (price_diff * self.amount) - self.paid_fee
|
|
else: # SELL
|
|
price_diff = self.entry_price - self.exit_price
|
|
# Calculate fee for exit trade
|
|
exit_fee = exit_price * self.amount * self.fee_rate
|
|
self.paid_fee += exit_fee # Add exit fee to total paid fee
|
|
self.pnl = (price_diff * self.amount) - self.paid_fee
|
|
|
|
return self.pnl
|
|
|
|
class RealTimeChart:
|
|
"""Real-time chart using Dash and Plotly"""
|
|
|
|
def __init__(self, symbol: str):
|
|
"""Initialize the chart with a symbol"""
|
|
self.symbol = symbol
|
|
self.tick_storage = TickStorage()
|
|
self.latest_price = None
|
|
self.latest_volume = None
|
|
self.latest_timestamp = None
|
|
|
|
# Initialize with empty positions list to prevent old trade actions from affecting chart resizing
|
|
# We MUST start with a clean state for each new chart instance
|
|
self.positions = [] # Empty positions list - CRITICAL for proper chart resizing
|
|
self.accumulative_pnl = 0.0 # Reset PnL
|
|
self.current_balance = 100.0 # Start with $100 balance
|
|
|
|
# Add trade rate tracking variables
|
|
self.trade_times = [] # List to store timestamps of trades
|
|
self.last_trade_rate_calculation = datetime.now()
|
|
self.trade_rate = {"per_second": 0, "per_minute": 0, "per_hour": 0}
|
|
|
|
# Store historical data for different timeframes
|
|
self.timeframe_data = {
|
|
'1s': [],
|
|
'5s': [],
|
|
'15s': [],
|
|
'1m': [],
|
|
'5m': [],
|
|
'15m': [],
|
|
'1h': [],
|
|
'4h': [],
|
|
'1d': []
|
|
}
|
|
|
|
# Initialize Dash app
|
|
self.app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY])
|
|
|
|
# Define button styles
|
|
self.button_style = {
|
|
'padding': '5px 10px',
|
|
'margin': '0 5px',
|
|
'backgroundColor': '#444',
|
|
'color': 'white',
|
|
'border': 'none',
|
|
'borderRadius': '5px',
|
|
'cursor': 'pointer'
|
|
}
|
|
|
|
self.active_button_style = {
|
|
'padding': '5px 10px',
|
|
'margin': '0 5px',
|
|
'backgroundColor': '#007bff',
|
|
'color': 'white',
|
|
'border': 'none',
|
|
'borderRadius': '5px',
|
|
'cursor': 'pointer',
|
|
'boxShadow': '0 0 5px rgba(0, 123, 255, 0.5)'
|
|
}
|
|
|
|
# Create the layout
|
|
self.app.layout = html.Div([
|
|
# Header section with title and current price
|
|
html.Div([
|
|
html.H1(f"{symbol} Real-Time Chart", className="display-4"),
|
|
|
|
# Current price ticker
|
|
html.Div([
|
|
html.H4("Current Price:", style={"display": "inline-block", "marginRight": "10px"}),
|
|
html.H3(id="current-price", style={"display": "inline-block", "color": "#17a2b8"}),
|
|
html.Div([
|
|
html.H5("Balance:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.H5(id="current-balance", style={"display": "inline-block", "color": "#28a745"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
html.Div([
|
|
html.H5("Accumulated PnL:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.H5(id="accumulated-pnl", style={"display": "inline-block", "color": "#ffc107"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
|
|
# Add trade rate display
|
|
html.Div([
|
|
html.H5("Trade Rate:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.Span([
|
|
html.Span(id="trade-rate-second", style={"color": "#ff7f0e"}),
|
|
html.Span("/s, "),
|
|
html.Span(id="trade-rate-minute", style={"color": "#ff7f0e"}),
|
|
html.Span("/m, "),
|
|
html.Span(id="trade-rate-hour", style={"color": "#ff7f0e"}),
|
|
html.Span("/h")
|
|
], style={"display": "inline-block"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
], style={"textAlign": "center", "margin": "20px 0"}),
|
|
], style={"textAlign": "center", "marginBottom": "20px"}),
|
|
|
|
# Add interval component for periodic updates
|
|
dcc.Interval(
|
|
id='interval-component',
|
|
interval=500, # in milliseconds
|
|
n_intervals=0
|
|
),
|
|
|
|
# Add timeframe selection buttons
|
|
html.Div([
|
|
html.Button('1s', id='btn-1s', n_clicks=0, style=self.active_button_style),
|
|
html.Button('5s', id='btn-5s', n_clicks=0, style=self.button_style),
|
|
html.Button('15s', id='btn-15s', n_clicks=0, style=self.button_style),
|
|
html.Button('1m', id='btn-1m', n_clicks=0, style=self.button_style),
|
|
html.Button('5m', id='btn-5m', n_clicks=0, style=self.button_style),
|
|
html.Button('15m', id='btn-15m', n_clicks=0, style=self.button_style),
|
|
html.Button('1h', id='btn-1h', n_clicks=0, style=self.button_style),
|
|
], style={"textAlign": "center", "marginBottom": "20px"}),
|
|
|
|
# Store for the selected timeframe
|
|
dcc.Store(id='interval-store', data={'interval': 1}),
|
|
|
|
# Chart containers
|
|
dcc.Graph(id='live-chart', style={"height": "600px"}),
|
|
dcc.Graph(id='secondary-charts', style={"height": "500px"}),
|
|
|
|
# Positions list container
|
|
html.Div(id='positions-list')
|
|
])
|
|
|
|
# Setup callbacks
|
|
self._setup_callbacks()
|
|
|
|
def _setup_callbacks(self):
|
|
"""Set up all the callbacks for the dashboard"""
|
|
|
|
# Callback for timeframe selection
|
|
@self.app.callback(
|
|
[Output('interval-store', 'data'),
|
|
Output('btn-1s', 'style'),
|
|
Output('btn-5s', 'style'),
|
|
Output('btn-15s', 'style'),
|
|
Output('btn-1m', 'style'),
|
|
Output('btn-5m', 'style'),
|
|
Output('btn-15m', 'style'),
|
|
Output('btn-1h', 'style')],
|
|
[Input('btn-1s', 'n_clicks'),
|
|
Input('btn-5s', 'n_clicks'),
|
|
Input('btn-15s', 'n_clicks'),
|
|
Input('btn-1m', 'n_clicks'),
|
|
Input('btn-5m', 'n_clicks'),
|
|
Input('btn-15m', 'n_clicks'),
|
|
Input('btn-1h', 'n_clicks')],
|
|
[dash.dependencies.State('interval-store', 'data')]
|
|
)
|
|
def update_interval(n1, n5, n15, n60, n300, n900, n3600, data):
|
|
ctx = dash.callback_context
|
|
if not ctx.triggered:
|
|
# Default state (1s selected)
|
|
return ({'interval': 1},
|
|
self.active_button_style,
|
|
self.button_style,
|
|
self.button_style,
|
|
self.button_style,
|
|
self.button_style,
|
|
self.button_style,
|
|
self.button_style)
|
|
|
|
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
|
|
|
# Initialize all buttons to inactive
|
|
button_styles = [self.button_style] * 7
|
|
|
|
# Set the active button and interval
|
|
if button_id == 'btn-1s':
|
|
button_styles[0] = self.active_button_style
|
|
return ({'interval': 1}, *button_styles)
|
|
elif button_id == 'btn-5s':
|
|
button_styles[1] = self.active_button_style
|
|
return ({'interval': 5}, *button_styles)
|
|
elif button_id == 'btn-15s':
|
|
button_styles[2] = self.active_button_style
|
|
return ({'interval': 15}, *button_styles)
|
|
elif button_id == 'btn-1m':
|
|
button_styles[3] = self.active_button_style
|
|
return ({'interval': 60}, *button_styles)
|
|
elif button_id == 'btn-5m':
|
|
button_styles[4] = self.active_button_style
|
|
return ({'interval': 300}, *button_styles)
|
|
elif button_id == 'btn-15m':
|
|
button_styles[5] = self.active_button_style
|
|
return ({'interval': 900}, *button_styles)
|
|
elif button_id == 'btn-1h':
|
|
button_styles[6] = self.active_button_style
|
|
return ({'interval': 3600}, *button_styles)
|
|
|
|
# Default - keep current interval
|
|
current_interval = data.get('interval', 1)
|
|
# Set the appropriate button as active
|
|
if current_interval == 1:
|
|
button_styles[0] = self.active_button_style
|
|
elif current_interval == 5:
|
|
button_styles[1] = self.active_button_style
|
|
elif current_interval == 15:
|
|
button_styles[2] = self.active_button_style
|
|
elif current_interval == 60:
|
|
button_styles[3] = self.active_button_style
|
|
elif current_interval == 300:
|
|
button_styles[4] = self.active_button_style
|
|
elif current_interval == 900:
|
|
button_styles[5] = self.active_button_style
|
|
elif current_interval == 3600:
|
|
button_styles[6] = self.active_button_style
|
|
|
|
return (data, *button_styles)
|
|
|
|
# Main update callback
|
|
@self.app.callback(
|
|
[Output('live-chart', 'figure'),
|
|
Output('secondary-charts', 'figure'),
|
|
Output('positions-list', 'children'),
|
|
Output('current-price', 'children'),
|
|
Output('current-balance', 'children'),
|
|
Output('accumulated-pnl', 'children'),
|
|
Output('trade-rate-second', 'children'),
|
|
Output('trade-rate-minute', 'children'),
|
|
Output('trade-rate-hour', 'children')],
|
|
[Input('interval-component', 'n_intervals'),
|
|
Input('interval-store', 'data')]
|
|
)
|
|
def update_all(n, interval_data):
|
|
try:
|
|
# Get selected interval
|
|
interval = interval_data.get('interval', 1)
|
|
|
|
# Get updated chart figures
|
|
main_fig = self._update_main_chart(interval)
|
|
secondary_fig = self._update_secondary_charts()
|
|
|
|
# Get updated positions list
|
|
positions = self._get_position_list_rows()
|
|
|
|
# Format the current price
|
|
current_price = "$ ---.--"
|
|
if self.latest_price is not None:
|
|
current_price = f"${self.latest_price:.2f}"
|
|
|
|
# Format balance and PnL
|
|
balance_text = f"${self.current_balance:.2f}"
|
|
pnl_text = f"${self.accumulative_pnl:.2f}"
|
|
|
|
# Get trade rate statistics
|
|
trade_rate = self.calculate_trade_rate()
|
|
per_second = f"{trade_rate['per_second']:.1f}"
|
|
per_minute = f"{trade_rate['per_minute']:.1f}"
|
|
per_hour = f"{trade_rate['per_hour']:.1f}"
|
|
|
|
return main_fig, secondary_fig, positions, current_price, balance_text, pnl_text, per_second, per_minute, per_hour
|
|
except Exception as e:
|
|
logger.error(f"Error in update callback: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
# Return empty updates on error
|
|
return {}, {}, [], "Error", "$0.00", "$0.00", "0.0", "0.0", "0.0"
|
|
|
|
def _update_main_chart(self, interval=1):
|
|
"""Update the main chart with OHLC data"""
|
|
try:
|
|
# Get candles for the interval
|
|
interval_key = self._get_interval_key(interval)
|
|
|
|
# Make sure we have data for this interval
|
|
if interval_key not in self.tick_storage.candles:
|
|
logger.warning(f"No candle data structure available for {interval_key}")
|
|
# Return empty figure with a message
|
|
fig = go.Figure()
|
|
fig.add_annotation(
|
|
text=f"No data available for {interval_key}",
|
|
xref="paper", yref="paper",
|
|
x=0.5, y=0.5, showarrow=False
|
|
)
|
|
fig.update_layout(title=f"{self.symbol} - {interval_key}")
|
|
return fig
|
|
|
|
# For 1s specifically, log more debug info
|
|
if interval_key == '1s':
|
|
logger.info(f"1s candles count: {len(self.tick_storage.candles[interval_key])}")
|
|
logger.info(f"Ticks count: {len(self.tick_storage.ticks)}")
|
|
if not self.tick_storage.candles[interval_key]:
|
|
logger.warning("No 1s candles available - this may indicate the WebSocket isn't sending data, or candles aren't being created")
|
|
|
|
# Check if we have any candles for this interval
|
|
if not self.tick_storage.candles[interval_key]:
|
|
logger.warning(f"No candle data available for {interval_key}")
|
|
# Return empty figure with a message
|
|
fig = go.Figure()
|
|
fig.add_annotation(
|
|
text=f"No data available for {interval_key}. Waiting for real-time data...",
|
|
xref="paper", yref="paper",
|
|
x=0.5, y=0.5, showarrow=False
|
|
)
|
|
fig.update_layout(title=f"{self.symbol} - {interval_key} (waiting for data)")
|
|
return fig
|
|
|
|
# For rendering, limit to the last 500 candles for performance
|
|
candles = self.tick_storage.candles[interval_key][-500:]
|
|
|
|
# Ensure we have at least 1 candle
|
|
if not candles:
|
|
logger.warning(f"No historical candles available for {interval_key}")
|
|
return go.Figure()
|
|
|
|
# Extract OHLC values
|
|
timestamps = [candle['timestamp'] for candle in candles]
|
|
opens = [candle['open'] for candle in candles]
|
|
highs = [candle['high'] for candle in candles]
|
|
lows = [candle['low'] for candle in candles]
|
|
closes = [candle['close'] for candle in candles]
|
|
volumes = [candle['volume'] for candle in candles]
|
|
|
|
# Create figure with 3 rows for OHLC, volume, and trade rate
|
|
fig = make_subplots(rows=3, cols=1, shared_xaxes=True,
|
|
vertical_spacing=0.02,
|
|
row_heights=[0.6, 0.2, 0.2],
|
|
specs=[[{"type": "candlestick"}],
|
|
[{"type": "bar"}],
|
|
[{"type": "scatter"}]])
|
|
|
|
# Add candlestick trace
|
|
fig.add_trace(go.Candlestick(
|
|
x=timestamps,
|
|
open=opens,
|
|
high=highs,
|
|
low=lows,
|
|
close=closes,
|
|
name='OHLC',
|
|
increasing_line_color='rgba(0, 180, 0, 0.7)',
|
|
decreasing_line_color='rgba(255, 0, 0, 0.7)',
|
|
), row=1, col=1)
|
|
|
|
# Add volume bars
|
|
fig.add_trace(go.Bar(
|
|
x=timestamps,
|
|
y=volumes,
|
|
name='Volume',
|
|
marker=dict(color='rgba(0,0,100,0.2)')
|
|
), row=2, col=1)
|
|
|
|
# Add trading markers if available
|
|
if hasattr(self, 'positions') and self.positions:
|
|
# Get last 500 positions for display (to avoid too many markers)
|
|
positions = self.positions[-500:]
|
|
|
|
buy_timestamps = []
|
|
buy_prices = []
|
|
sell_timestamps = []
|
|
sell_prices = []
|
|
|
|
for pos in positions:
|
|
if pos.action == 'BUY':
|
|
buy_timestamps.append(pos.entry_timestamp)
|
|
buy_prices.append(pos.entry_price)
|
|
elif pos.action == 'SELL':
|
|
sell_timestamps.append(pos.entry_timestamp) # Using entry_time for consistency
|
|
sell_prices.append(pos.entry_price) # Using entry_price for consistency
|
|
|
|
# Add buy markers
|
|
if buy_timestamps:
|
|
fig.add_trace(go.Scatter(
|
|
x=buy_timestamps,
|
|
y=buy_prices,
|
|
mode='markers',
|
|
name='Buy',
|
|
marker=dict(
|
|
symbol='triangle-up',
|
|
size=15,
|
|
color='rgba(0, 180, 0, 0.8)',
|
|
line=dict(width=1, color='rgba(0, 180, 0, 1)')
|
|
)
|
|
), row=1, col=1)
|
|
|
|
# Add sell markers
|
|
if sell_timestamps:
|
|
fig.add_trace(go.Scatter(
|
|
x=sell_timestamps,
|
|
y=sell_prices,
|
|
mode='markers',
|
|
name='Sell',
|
|
marker=dict(
|
|
symbol='triangle-down',
|
|
size=15,
|
|
color='rgba(255, 0, 0, 0.8)',
|
|
line=dict(width=1, color='rgba(255, 0, 0, 1)')
|
|
)
|
|
), row=1, col=1)
|
|
|
|
# Add trade rate visualization in the third panel
|
|
if hasattr(self, 'trade_times') and self.trade_times:
|
|
# Create time buckets for grouping trade times
|
|
time_buckets = {}
|
|
bucket_size_seconds = 15 # Default bucket size
|
|
|
|
# Adjust bucket size based on interval
|
|
if interval >= 60: # 1m or more
|
|
bucket_size_seconds = 60
|
|
elif interval >= 300: # 5m or more
|
|
bucket_size_seconds = 300
|
|
|
|
# Process trade times into buckets
|
|
for trade_time in self.trade_times:
|
|
# Skip trades older than the displayed range
|
|
if trade_time < timestamps[0]:
|
|
continue
|
|
|
|
# Create bucket key
|
|
bucket_timestamp = trade_time.replace(
|
|
microsecond=0,
|
|
second=(trade_time.second // bucket_size_seconds) * bucket_size_seconds
|
|
)
|
|
if bucket_timestamp.timestamp() not in time_buckets:
|
|
time_buckets[bucket_timestamp.timestamp()] = 0
|
|
time_buckets[bucket_timestamp.timestamp()] += 1
|
|
|
|
# Convert buckets to series for plotting
|
|
if time_buckets:
|
|
bucket_timestamps = []
|
|
bucket_counts = []
|
|
for timestamp, count in sorted(time_buckets.items()):
|
|
bucket_timestamps.append(datetime.fromtimestamp(timestamp))
|
|
bucket_counts.append(count)
|
|
|
|
# Add trade frequency chart
|
|
fig.add_trace(go.Scatter(
|
|
x=bucket_timestamps,
|
|
y=bucket_counts,
|
|
mode='lines',
|
|
name='Trades per Bucket',
|
|
line=dict(width=2, color='rgba(255, 165, 0, 0.8)'),
|
|
fill='tozeroy',
|
|
fillcolor='rgba(255, 165, 0, 0.2)'
|
|
), row=3, col=1)
|
|
|
|
# Add current trade rate
|
|
trade_rate = self.calculate_trade_rate()
|
|
fig.add_annotation(
|
|
text=f"Trade Rate: {trade_rate['per_minute']:.1f}/min",
|
|
xref="paper", yref="y3",
|
|
x=0.99, y=max(bucket_counts) * 0.9 if bucket_counts else 1,
|
|
showarrow=False,
|
|
font=dict(size=10, color="orange"),
|
|
align="right"
|
|
)
|
|
|
|
# Update layout
|
|
fig.update_layout(
|
|
title=f"{self.symbol} - {interval_key}",
|
|
xaxis_title="Time",
|
|
yaxis_title="Price",
|
|
height=700, # Increase height to accommodate additional panel
|
|
template="plotly_dark",
|
|
showlegend=True,
|
|
margin=dict(l=0, r=0, t=50, b=20),
|
|
legend=dict(orientation="h", y=1.02, x=0.5, xanchor="center"),
|
|
uirevision='true' # To maintain zoom level on updates
|
|
)
|
|
|
|
# Format Y-axis with enough decimal places for cryptocurrency
|
|
fig.update_yaxes(tickformat=".2f", row=1, col=1)
|
|
|
|
# Add titles to each panel
|
|
fig.update_yaxes(title_text="Volume", row=2, col=1)
|
|
fig.update_yaxes(title_text="Trade Rate", row=3, col=1)
|
|
|
|
# Format X-axis with date/time
|
|
fig.update_xaxes(
|
|
rangeslider_visible=False,
|
|
rangebreaks=[
|
|
dict(bounds=["sat", "mon"]) # hide weekends
|
|
]
|
|
)
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error updating main chart: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
# Return empty figure on error
|
|
return go.Figure()
|
|
|
|
def _update_secondary_charts(self):
|
|
"""Update the secondary charts for other timeframes"""
|
|
try:
|
|
# For each timeframe, create a small chart
|
|
secondary_timeframes = ['1m', '5m', '15m', '1h']
|
|
|
|
if not all(tf in self.tick_storage.candles for tf in secondary_timeframes):
|
|
logger.warning("Not all secondary timeframes available")
|
|
# Return empty figure with a message
|
|
fig = make_subplots(rows=1, cols=4)
|
|
for i, tf in enumerate(secondary_timeframes, 1):
|
|
fig.add_annotation(
|
|
text=f"No data for {tf}",
|
|
xref=f"x{i}", yref=f"y{i}",
|
|
x=0.5, y=0.5, showarrow=False
|
|
)
|
|
return fig
|
|
|
|
# Create subplots for each timeframe
|
|
fig = make_subplots(
|
|
rows=1, cols=4,
|
|
subplot_titles=secondary_timeframes,
|
|
shared_yaxes=True
|
|
)
|
|
|
|
# Loop through each timeframe
|
|
for i, timeframe in enumerate(secondary_timeframes, 1):
|
|
interval_key = timeframe
|
|
|
|
# Get candles for this timeframe
|
|
if interval_key in self.tick_storage.candles and self.tick_storage.candles[interval_key]:
|
|
# For rendering, limit to the last 100 candles for performance
|
|
candles = self.tick_storage.candles[interval_key][-100:]
|
|
|
|
if candles:
|
|
# Extract OHLC values
|
|
timestamps = [candle['timestamp'] for candle in candles]
|
|
opens = [candle['open'] for candle in candles]
|
|
highs = [candle['high'] for candle in candles]
|
|
lows = [candle['low'] for candle in candles]
|
|
closes = [candle['close'] for candle in candles]
|
|
|
|
# Add candlestick trace
|
|
fig.add_trace(go.Candlestick(
|
|
x=timestamps,
|
|
open=opens,
|
|
high=highs,
|
|
low=lows,
|
|
close=closes,
|
|
name=interval_key,
|
|
increasing_line_color='rgba(0, 180, 0, 0.7)',
|
|
decreasing_line_color='rgba(255, 0, 0, 0.7)',
|
|
showlegend=False
|
|
), row=1, col=i)
|
|
else:
|
|
# Add empty annotation if no data
|
|
fig.add_annotation(
|
|
text=f"No data for {interval_key}",
|
|
xref=f"x{i}", yref=f"y{i}",
|
|
x=0.5, y=0.5, showarrow=False
|
|
)
|
|
|
|
# Update layout
|
|
fig.update_layout(
|
|
height=250,
|
|
template="plotly_dark",
|
|
showlegend=False,
|
|
margin=dict(l=0, r=0, t=30, b=0),
|
|
)
|
|
|
|
# Format Y-axis with 2 decimal places
|
|
fig.update_yaxes(tickformat=".2f")
|
|
|
|
# Format X-axis to show only the date (no time)
|
|
for i in range(1, 5):
|
|
fig.update_xaxes(
|
|
row=1, col=i,
|
|
rangeslider_visible=False,
|
|
rangebreaks=[dict(bounds=["sat", "mon"])], # hide weekends
|
|
tickformat="%m-%d" # Show month-day only
|
|
)
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error updating secondary charts: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
# Return empty figure on error
|
|
return make_subplots(rows=1, cols=4)
|
|
|
|
def _get_position_list_rows(self):
|
|
"""Generate HTML for the positions list (last 10 positions only)"""
|
|
try:
|
|
if not hasattr(self, 'positions') or not self.positions:
|
|
# Return placeholder if no positions
|
|
return html.Div("No positions to display", style={"textAlign": "center", "padding": "20px"})
|
|
|
|
# Create table headers
|
|
table_header = [
|
|
html.Thead(html.Tr([
|
|
html.Th("ID"),
|
|
html.Th("Action"),
|
|
html.Th("Entry Price"),
|
|
html.Th("Exit Price"),
|
|
html.Th("Amount"),
|
|
html.Th("PnL"),
|
|
html.Th("Time")
|
|
]))
|
|
]
|
|
|
|
# Create table rows for only the last 10 positions to avoid overcrowding
|
|
rows = []
|
|
last_positions = self.positions[-10:] if len(self.positions) > 10 else self.positions
|
|
|
|
for position in last_positions:
|
|
# Format times
|
|
entry_time = position.entry_timestamp.strftime("%H:%M:%S")
|
|
exit_time = position.exit_timestamp.strftime("%H:%M:%S") if position.exit_timestamp else "-"
|
|
|
|
# Format PnL
|
|
pnl_value = position.pnl if position.pnl is not None else 0
|
|
pnl_text = f"${pnl_value:.2f}" if position.pnl is not None else "-"
|
|
pnl_style = {"color": "green" if position.pnl and position.pnl > 0 else "red"}
|
|
|
|
# Create row
|
|
row = html.Tr([
|
|
html.Td(position.trade_id),
|
|
html.Td(position.action),
|
|
html.Td(f"${position.entry_price:.2f}"),
|
|
html.Td(f"${position.exit_price:.2f}" if position.exit_price else "-"),
|
|
html.Td(f"{position.amount:.4f}"),
|
|
html.Td(pnl_text, style=pnl_style),
|
|
html.Td(f"{entry_time} → {exit_time}")
|
|
])
|
|
rows.append(row)
|
|
|
|
table_body = [html.Tbody(rows)]
|
|
|
|
# Add summary row for total PnL and other statistics
|
|
total_trades = len(self.positions)
|
|
winning_trades = sum(1 for p in self.positions if p.pnl and p.pnl > 0)
|
|
win_rate = winning_trades / total_trades * 100 if total_trades > 0 else 0
|
|
|
|
# Format display colors for PnL
|
|
pnl_color = "green" if self.accumulative_pnl >= 0 else "red"
|
|
|
|
summary_row = html.Tr([
|
|
html.Td("SUMMARY", colSpan=2, style={"fontWeight": "bold"}),
|
|
html.Td(f"Trades: {total_trades}"),
|
|
html.Td(f"Win Rate: {win_rate:.1f}%"),
|
|
html.Td("Total PnL:", style={"fontWeight": "bold"}),
|
|
html.Td(f"${self.accumulative_pnl:.2f}",
|
|
style={"color": pnl_color, "fontWeight": "bold"}),
|
|
html.Td(f"Balance: ${self.current_balance:.2f}")
|
|
], style={"backgroundColor": "rgba(80, 80, 80, 0.3)"})
|
|
|
|
# Create the table with improved styling
|
|
table = html.Table(
|
|
table_header + table_body + [html.Tfoot([summary_row])],
|
|
style={
|
|
"width": "100%",
|
|
"textAlign": "center",
|
|
"borderCollapse": "collapse",
|
|
"marginTop": "20px"
|
|
},
|
|
className="table table-striped table-dark"
|
|
)
|
|
|
|
return table
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error generating position list: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
return html.Div("Error displaying positions")
|
|
|
|
def get_candles(self, interval_seconds=60):
|
|
"""Get candles for the specified interval"""
|
|
try:
|
|
# Get candles from tick storage
|
|
interval_key = self._get_interval_key(interval_seconds)
|
|
df = self.tick_storage.get_candles(interval_key)
|
|
|
|
if df is None or df.empty:
|
|
logger.warning(f"No candle data available for {interval_key}")
|
|
return [] # Return empty list if no data
|
|
|
|
# Convert dataframe to list of dictionaries
|
|
candles = []
|
|
for idx, row in df.iterrows():
|
|
candle = {
|
|
'timestamp': idx,
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
candles.append(candle)
|
|
|
|
return candles
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error getting candles: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
return [] # Return empty list on error
|
|
|
|
def _get_interval_key(self, interval_seconds):
|
|
"""Convert interval seconds to a key used in the tick storage"""
|
|
if interval_seconds < 60:
|
|
return f"{interval_seconds}s"
|
|
elif interval_seconds < 3600:
|
|
return f"{interval_seconds // 60}m"
|
|
elif interval_seconds < 86400:
|
|
return f"{interval_seconds // 3600}h"
|
|
else:
|
|
return f"{interval_seconds // 86400}d"
|
|
|
|
def calculate_trade_rate(self):
|
|
"""Calculate and return trading rate statistics"""
|
|
now = datetime.now()
|
|
|
|
# Only calculate once per second to avoid unnecessary processing
|
|
if (now - self.last_trade_rate_calculation).total_seconds() < 1.0:
|
|
return self.trade_rate
|
|
|
|
self.last_trade_rate_calculation = now
|
|
|
|
# Clean up old trade times (older than 1 hour)
|
|
one_hour_ago = now - timedelta(hours=1)
|
|
self.trade_times = [t for t in self.trade_times if t > one_hour_ago]
|
|
|
|
if not self.trade_times:
|
|
self.trade_rate = {"per_second": 0, "per_minute": 0, "per_hour": 0}
|
|
return self.trade_rate
|
|
|
|
# Calculate rates based on time windows
|
|
last_second = now - timedelta(seconds=1)
|
|
last_minute = now - timedelta(minutes=1)
|
|
|
|
# Count trades in each time window
|
|
trades_last_second = sum(1 for t in self.trade_times if t > last_second)
|
|
trades_last_minute = sum(1 for t in self.trade_times if t > last_minute)
|
|
trades_last_hour = len(self.trade_times) # All remaining trades are from last hour
|
|
|
|
# Calculate rates
|
|
self.trade_rate = {
|
|
"per_second": trades_last_second,
|
|
"per_minute": trades_last_minute,
|
|
"per_hour": trades_last_hour
|
|
}
|
|
|
|
return self.trade_rate
|
|
|
|
def _update_chart_and_positions(self):
|
|
"""Update the chart with current data and positions"""
|
|
try:
|
|
# Force an update of the charts
|
|
self._update_main_chart(1) # Update 1s chart by default
|
|
self._update_secondary_charts()
|
|
logger.debug("Updated charts and positions")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error updating chart and positions: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
return False
|
|
|
|
async def start_websocket(self):
|
|
"""Start the websocket connection for real-time data"""
|
|
try:
|
|
# Step 1: Clear everything related to positions FIRST, before any other operations
|
|
logger.info(f"Initializing fresh chart for {self.symbol} - clearing all previous positions")
|
|
self.positions = [] # Clear positions list
|
|
self.accumulative_pnl = 0.0 # Reset accumulated PnL
|
|
self.current_balance = 100.0 # Reset balance
|
|
|
|
# Step 2: Clear any previous tick data to avoid using stale data from previous training sessions
|
|
self.tick_storage.ticks = []
|
|
|
|
# Step 3: Clear any previous 1s candles before loading historical data
|
|
self.tick_storage.candles['1s'] = []
|
|
|
|
logger.info("Initialized empty 1s candles, tick collection, and positions for fresh data")
|
|
|
|
# Load historical data first to ensure we have candles for all timeframes
|
|
logger.info(f"Loading historical data for {self.symbol}")
|
|
|
|
# Initialize a BinanceHistoricalData instance
|
|
historical_data = BinanceHistoricalData()
|
|
|
|
# Load historical data for all timeframes (1s will load from cache if recent, otherwise empty)
|
|
self.tick_storage.load_historical_data(historical_data, self.symbol)
|
|
|
|
# Double check that we have the 1s timeframe initialized
|
|
if '1s' not in self.tick_storage.candles:
|
|
self.tick_storage.candles['1s'] = []
|
|
logger.info(f"After loading historical data, 1s candles count: {len(self.tick_storage.candles['1s'])}")
|
|
|
|
# Make sure we update the charts once with historical data before websocket starts
|
|
# Update all the charts with the initial historical data
|
|
self._update_chart_and_positions()
|
|
|
|
# Initialize websocket
|
|
self.websocket = ExchangeWebSocket(self.symbol)
|
|
await self.websocket.connect()
|
|
|
|
logger.info(f"WebSocket connected for {self.symbol}")
|
|
|
|
# Counter for received ticks
|
|
tick_count = 0
|
|
last_update_time = time.time()
|
|
|
|
# Start receiving data
|
|
while self.websocket.running:
|
|
try:
|
|
data = await self.websocket.receive()
|
|
if data:
|
|
# Process the received data
|
|
if 'price' in data:
|
|
tick_count += 1
|
|
|
|
# Update tick storage
|
|
self.tick_storage.add_tick(
|
|
price=data['price'],
|
|
volume=data.get('volume', 0),
|
|
timestamp=datetime.fromtimestamp(data['timestamp'] / 1000) # Convert ms to datetime
|
|
)
|
|
|
|
# Store latest values
|
|
self.latest_price = data['price']
|
|
self.latest_volume = data.get('volume', 0)
|
|
self.latest_timestamp = datetime.fromtimestamp(data['timestamp'] / 1000)
|
|
|
|
# Force chart update every 5 seconds
|
|
current_time = time.time()
|
|
if current_time - last_update_time >= 5.0:
|
|
self._update_chart_and_positions()
|
|
last_update_time = current_time
|
|
logger.debug("Forced chart update after new ticks")
|
|
|
|
# Log tick processing for debugging (every 100 ticks)
|
|
if tick_count % 100 == 0:
|
|
logger.info(f"Processed {tick_count} ticks, current price: ${self.latest_price:.2f}")
|
|
logger.info(f"Current 1s candles count: {len(self.tick_storage.candles['1s'])}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error processing websocket data: {str(e)}")
|
|
await asyncio.sleep(1) # Wait before retrying
|
|
|
|
except Exception as e:
|
|
logger.error(f"WebSocket error for {self.symbol}: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
finally:
|
|
if hasattr(self, 'websocket'):
|
|
await self.websocket.close()
|
|
|
|
def run(self, host='localhost', port=8050):
|
|
"""Run the Dash app on the specified host and port"""
|
|
try:
|
|
logger.info(f"Starting Dash app for {self.symbol} on {host}:{port}")
|
|
self.app.run(debug=False, use_reloader=False, host=host, port=port)
|
|
except Exception as e:
|
|
logger.error(f"Error running Dash app: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
class BinanceWebSocket:
|
|
"""Binance WebSocket implementation for real-time tick data"""
|
|
def __init__(self, symbol: str):
|
|
self.symbol = symbol.replace('/', '').lower()
|
|
self.ws = None
|
|
self.running = False
|
|
self.reconnect_delay = 1
|
|
self.max_reconnect_delay = 60
|
|
self.message_count = 0
|
|
|
|
# Binance WebSocket configuration
|
|
self.ws_url = f"wss://stream.binance.com:9443/ws/{self.symbol}@trade"
|
|
logger.info(f"Initialized Binance WebSocket for symbol: {self.symbol}")
|
|
|
|
async def connect(self):
|
|
while True:
|
|
try:
|
|
logger.info(f"Attempting to connect to {self.ws_url}")
|
|
self.ws = await websockets.connect(self.ws_url)
|
|
logger.info("WebSocket connection established")
|
|
|
|
self.running = True
|
|
self.reconnect_delay = 1
|
|
logger.info(f"Successfully connected to Binance WebSocket for {self.symbol}")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"WebSocket connection error: {str(e)}")
|
|
await asyncio.sleep(self.reconnect_delay)
|
|
self.reconnect_delay = min(self.reconnect_delay * 2, self.max_reconnect_delay)
|
|
continue
|
|
|
|
async def receive(self) -> Optional[Dict]:
|
|
if not self.ws:
|
|
return None
|
|
|
|
try:
|
|
message = await self.ws.recv()
|
|
self.message_count += 1
|
|
|
|
if self.message_count % 100 == 0: # Log every 100th message to avoid spam
|
|
logger.info(f"Received message #{self.message_count}")
|
|
logger.debug(f"Raw message: {message[:200]}...")
|
|
|
|
data = json.loads(message)
|
|
|
|
# Process trade data
|
|
if 'e' in data and data['e'] == 'trade':
|
|
trade_data = {
|
|
'timestamp': data['T'], # Trade time
|
|
'price': float(data['p']), # Price
|
|
'volume': float(data['q']), # Quantity
|
|
'type': 'trade'
|
|
}
|
|
logger.debug(f"Processed trade data: {trade_data}")
|
|
return trade_data
|
|
|
|
return None
|
|
except websockets.exceptions.ConnectionClosed:
|
|
logger.warning("WebSocket connection closed")
|
|
self.running = False
|
|
return None
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"JSON decode error: {str(e)}, message: {message[:200]}...")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Error receiving message: {str(e)}")
|
|
return None
|
|
|
|
async def close(self):
|
|
"""Close the WebSocket connection"""
|
|
if self.ws:
|
|
await self.ws.close()
|
|
|
|
class ExchangeWebSocket:
|
|
"""Generic WebSocket interface for cryptocurrency exchanges"""
|
|
def __init__(self, symbol: str, exchange: str = "binance"):
|
|
self.symbol = symbol
|
|
self.exchange = exchange.lower()
|
|
self.ws = None
|
|
|
|
# Initialize the appropriate WebSocket implementation
|
|
if self.exchange == "binance":
|
|
self.ws = BinanceWebSocket(symbol)
|
|
else:
|
|
raise ValueError(f"Unsupported exchange: {exchange}")
|
|
|
|
async def connect(self):
|
|
"""Connect to the exchange WebSocket"""
|
|
return await self.ws.connect()
|
|
|
|
async def receive(self) -> Optional[Dict]:
|
|
"""Receive data from the WebSocket"""
|
|
return await self.ws.receive()
|
|
|
|
async def close(self):
|
|
"""Close the WebSocket connection"""
|
|
await self.ws.close()
|
|
|
|
@property
|
|
def running(self):
|
|
"""Check if the WebSocket is running"""
|
|
return self.ws.running if self.ws else False
|
|
|
|
async def main():
|
|
global charts # Make charts globally accessible for NN integration
|
|
symbols = ["ETH/USDT", "ETH/USDT"]
|
|
logger.info(f"Starting application for symbols: {symbols}")
|
|
|
|
# Initialize neural network if enabled
|
|
if NN_ENABLED:
|
|
logger.info("Initializing Neural Network integration...")
|
|
if setup_neural_network():
|
|
logger.info("Neural Network integration initialized successfully")
|
|
else:
|
|
logger.warning("Neural Network integration failed to initialize")
|
|
|
|
charts = []
|
|
websocket_tasks = []
|
|
|
|
# Create a chart and websocket task for each symbol
|
|
for symbol in symbols:
|
|
chart = RealTimeChart(symbol)
|
|
charts.append(chart)
|
|
websocket_tasks.append(asyncio.create_task(chart.start_websocket()))
|
|
|
|
# Run Dash in a separate thread to not block the event loop
|
|
server_threads = []
|
|
for i, chart in enumerate(charts):
|
|
port = 8050 + i # Use different ports for each chart
|
|
logger.info(f"Starting chart for {chart.symbol} on port {port}")
|
|
thread = Thread(target=lambda c=chart, p=port: c.run(port=p)) # Ensure correct port is passed
|
|
thread.daemon = True
|
|
thread.start()
|
|
server_threads.append(thread)
|
|
logger.info(f"Thread started for {chart.symbol} on port {port}")
|
|
|
|
try:
|
|
# Keep the main task running
|
|
while True:
|
|
await asyncio.sleep(1)
|
|
except KeyboardInterrupt:
|
|
logger.info("Shutting down...")
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error: {str(e)}")
|
|
finally:
|
|
for task in websocket_tasks:
|
|
task.cancel()
|
|
try:
|
|
await task
|
|
except asyncio.CancelledError:
|
|
pass
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
asyncio.run(main())
|
|
except KeyboardInterrupt:
|
|
logger.info("Application terminated by user")
|
|
|