576 lines
23 KiB
Python
576 lines
23 KiB
Python
#!/usr/bin/env python3
|
|
import sys
|
|
import asyncio
|
|
if sys.platform == 'win32':
|
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
|
|
import os
|
|
import time
|
|
import json
|
|
import argparse
|
|
import threading
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from datetime import datetime
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
|
import matplotlib.dates as mdates
|
|
from dotenv import load_dotenv
|
|
load_dotenv()
|
|
|
|
# --- Helper Function for Timestamp Conversion ---
|
|
def convert_timestamp(ts):
|
|
"""
|
|
Safely converts a timestamp to a datetime object.
|
|
If the timestamp is abnormally high (i.e. in milliseconds),
|
|
it is divided by 1000.
|
|
"""
|
|
ts = float(ts)
|
|
if ts > 1e10: # Likely in milliseconds
|
|
ts = ts / 1000.0
|
|
return datetime.fromtimestamp(ts)
|
|
|
|
# --- Directories ---
|
|
LAST_DIR = os.path.join("models", "last")
|
|
BEST_DIR = os.path.join("models", "best")
|
|
os.makedirs(LAST_DIR, exist_ok=True)
|
|
os.makedirs(BEST_DIR, exist_ok=True)
|
|
CACHE_FILE = "candles_cache.json"
|
|
|
|
# --- Constants ---
|
|
NUM_TIMEFRAMES = 5 # e.g., ["1m", "5m", "15m", "1h", "1d"]
|
|
NUM_INDICATORS = 20 # e.g., 20 technical indicators
|
|
# Each channel input will have 7 features.
|
|
FEATURES_PER_CHANNEL = 7
|
|
# We add one extra channel for order information.
|
|
ORDER_CHANNELS = 1
|
|
|
|
# --- Positional Encoding Module ---
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
position = torch.arange(max_len).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
|
pe = torch.zeros(max_len, 1, d_model)
|
|
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer('pe', pe)
|
|
def forward(self, x):
|
|
x = x + self.pe[:x.size(0)]
|
|
return self.dropout(x)
|
|
|
|
# --- Enhanced Transformer Model ---
|
|
class TradingModel(nn.Module):
|
|
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
|
super().__init__()
|
|
# Create one branch per channel.
|
|
self.channel_branches = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
|
nn.LayerNorm(hidden_dim),
|
|
nn.GELU(),
|
|
nn.Dropout(0.1)
|
|
) for _ in range(num_channels)
|
|
])
|
|
# Embedding for channels 0..num_channels-1.
|
|
self.timeframe_embed = nn.Embedding(num_channels, hidden_dim)
|
|
self.pos_encoder = PositionalEncoding(hidden_dim)
|
|
# Set batch_first=True to avoid the nested tensor warning.
|
|
encoder_layers = TransformerEncoderLayer(
|
|
d_model=hidden_dim, nhead=4, dim_feedforward=512,
|
|
dropout=0.1, activation='gelu', batch_first=True
|
|
)
|
|
self.transformer = TransformerEncoder(encoder_layers, num_layers=2)
|
|
self.attn_pool = nn.Linear(hidden_dim, 1)
|
|
self.high_pred = nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim // 2, 1)
|
|
)
|
|
self.low_pred = nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim // 2, 1)
|
|
)
|
|
def forward(self, x, timeframe_ids):
|
|
# x: [batch_size, num_channels, FEATURES_PER_CHANNEL]
|
|
batch_size, num_channels, _ = x.shape
|
|
channel_outs = []
|
|
for i in range(num_channels):
|
|
channel_out = self.channel_branches[i](x[:, i, :])
|
|
channel_outs.append(channel_out)
|
|
stacked = torch.stack(channel_outs, dim=1) # shape: [batch, channels, hidden]
|
|
# With batch_first=True, the expected input is [batch, seq_len, hidden]
|
|
tf_embeds = self.timeframe_embed(timeframe_ids) # shape: [num_channels, hidden]
|
|
# Expand tf_embeds to match the batch dimension.
|
|
stacked = stacked + tf_embeds.unsqueeze(0)
|
|
transformer_out = self.transformer(stacked)
|
|
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=1)
|
|
aggregated = (transformer_out * attn_weights).sum(dim=1)
|
|
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
|
|
|
# --- Technical Indicator Helpers ---
|
|
def compute_sma(candles_list, index, period=10):
|
|
start = max(0, index - period + 1)
|
|
values = [candle["close"] for candle in candles_list[start:index+1]]
|
|
return sum(values)/len(values) if values else 0.0
|
|
|
|
def compute_sma_volume(candles_list, index, period=10):
|
|
start = max(0, index - period + 1)
|
|
values = [candle["volume"] for candle in candles_list[start:index+1]]
|
|
return sum(values)/len(values) if values else 0.0
|
|
|
|
def get_aligned_candle_with_index(candles_list, target_ts):
|
|
best_idx = 0
|
|
for i, candle in enumerate(candles_list):
|
|
if candle["timestamp"] <= target_ts:
|
|
best_idx = i
|
|
else:
|
|
break
|
|
return best_idx, candles_list[best_idx]
|
|
|
|
def get_features_for_tf(candles_list, index, period=10):
|
|
candle = candles_list[index]
|
|
f_open = candle["open"]
|
|
f_high = candle["high"]
|
|
f_low = candle["low"]
|
|
f_close = candle["close"]
|
|
f_volume = candle["volume"]
|
|
sma_close = compute_sma(candles_list, index, period)
|
|
sma_volume = compute_sma_volume(candles_list, index, period)
|
|
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
|
|
|
# --- Caching & Checkpoint Functions ---
|
|
def load_candles_cache(filename):
|
|
if os.path.exists(filename):
|
|
try:
|
|
with open(filename, "r") as f:
|
|
data = json.load(f)
|
|
print(f"Loaded cached data from {filename}.")
|
|
return data
|
|
except Exception as e:
|
|
print("Error reading cache file:", e)
|
|
return {}
|
|
|
|
def save_candles_cache(filename, candles_dict):
|
|
try:
|
|
with open(filename, "w") as f:
|
|
json.dump(candles_dict, f)
|
|
except Exception as e:
|
|
print("Error saving cache file:", e)
|
|
|
|
def maintain_checkpoint_directory(directory, max_files=10):
|
|
files = os.listdir(directory)
|
|
if len(files) > max_files:
|
|
full_paths = [os.path.join(directory, f) for f in files]
|
|
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
|
for f in full_paths[:len(files) - max_files]:
|
|
os.remove(f)
|
|
|
|
def get_best_models(directory):
|
|
best_files = []
|
|
for file in os.listdir(directory):
|
|
parts = file.split("_")
|
|
try:
|
|
loss = float(parts[1])
|
|
best_files.append((loss, file))
|
|
except Exception:
|
|
continue
|
|
return best_files
|
|
|
|
def save_checkpoint(model, optimizer, epoch, loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
|
last_path = os.path.join(last_dir, last_filename)
|
|
torch.save({
|
|
"epoch": epoch,
|
|
"loss": loss,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict()
|
|
}, last_path)
|
|
maintain_checkpoint_directory(last_dir, max_files=10)
|
|
best_models = get_best_models(best_dir)
|
|
add_to_best = False
|
|
if len(best_models) < 10:
|
|
add_to_best = True
|
|
else:
|
|
worst_loss, worst_file = max(best_models, key=lambda x: x[0])
|
|
if loss < worst_loss:
|
|
add_to_best = True
|
|
os.remove(os.path.join(best_dir, worst_file))
|
|
if add_to_best:
|
|
best_filename = f"best_{loss:.4f}_epoch_{epoch}_{timestamp}.pt"
|
|
best_path = os.path.join(best_dir, best_filename)
|
|
torch.save({
|
|
"epoch": epoch,
|
|
"loss": loss,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict()
|
|
}, best_path)
|
|
maintain_checkpoint_directory(best_dir, max_files=10)
|
|
print(f"Saved checkpoint for epoch {epoch} with loss {loss:.4f}")
|
|
|
|
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
|
best_models = get_best_models(best_dir)
|
|
if not best_models:
|
|
return None
|
|
best_loss, best_file = min(best_models, key=lambda x: x[0])
|
|
path = os.path.join(best_dir, best_file)
|
|
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
|
|
checkpoint = torch.load(path)
|
|
old_state = checkpoint["model_state_dict"]
|
|
new_state = model.state_dict()
|
|
|
|
# Fix the size mismatch for timeframe_embed.weight.
|
|
if "timeframe_embed.weight" in old_state:
|
|
old_embed = old_state["timeframe_embed.weight"]
|
|
new_embed = new_state["timeframe_embed.weight"]
|
|
if old_embed.shape[0] < new_embed.shape[0]:
|
|
new_embed[:old_embed.shape[0]] = old_embed
|
|
old_state["timeframe_embed.weight"] = new_embed
|
|
|
|
# For channel_branches, missing keys are handled by strict=False.
|
|
model.load_state_dict(old_state, strict=False)
|
|
return checkpoint
|
|
|
|
# --- Live HTML Chart Update ---
|
|
def update_live_html(candles, trade_history, epoch):
|
|
"""
|
|
Generate a chart image that uses actual timestamps on the x-axis
|
|
and shows a cumulative epoch PnL. The chart (with buy/sell markers and dotted lines)
|
|
is embedded in an HTML page that auto-refreshes every 1 seconds.
|
|
"""
|
|
from io import BytesIO
|
|
import base64
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 6))
|
|
update_live_chart(ax, candles, trade_history)
|
|
# Compute cumulative epoch PnL.
|
|
epoch_pnl = sum(trade["pnl"] for trade in trade_history)
|
|
ax.set_title(f"Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}")
|
|
buf = BytesIO()
|
|
fig.savefig(buf, format='png')
|
|
plt.close(fig)
|
|
buf.seek(0)
|
|
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
|
html_content = f"""
|
|
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta http-equiv="refresh" content="1">
|
|
<title>Live Trading Chart - Epoch {epoch}</title>
|
|
<style>
|
|
body {{
|
|
margin: 0;
|
|
padding: 0;
|
|
display: flex;
|
|
justify-content: center;
|
|
align-items: center;
|
|
background-color: #f4f4f4;
|
|
}}
|
|
.chart-container {{
|
|
text-align: center;
|
|
}}
|
|
img {{
|
|
max-width: 100%;
|
|
height: auto;
|
|
}}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<div class="chart-container">
|
|
<h2>Live Trading Chart - Epoch {epoch} | PnL: {epoch_pnl:.2f}</h2>
|
|
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
|
</div>
|
|
</body>
|
|
</html>
|
|
"""
|
|
with open("live_chart.html", "w") as f:
|
|
f.write(html_content)
|
|
print("Updated live_chart.html.")
|
|
|
|
# --- Chart Drawing Helpers ---
|
|
def update_live_chart(ax, candles, trade_history):
|
|
"""
|
|
Plot the price chart with actual timestamps on the x-axis.
|
|
Mark BUY (green) and SELL (red) actions, and draw dotted lines between entry and exit.
|
|
"""
|
|
ax.clear()
|
|
# Use the helper to convert timestamps safely.
|
|
times = [convert_timestamp(candle["timestamp"]) for candle in candles]
|
|
close_prices = [candle["close"] for candle in candles]
|
|
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
|
# Format x-axis date labels.
|
|
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
|
|
for trade in trade_history:
|
|
entry_time = convert_timestamp(candles[trade["entry_index"]]["timestamp"])
|
|
exit_time = convert_timestamp(candles[trade["exit_index"]]["timestamp"])
|
|
in_price = trade["entry_price"]
|
|
out_price = trade["exit_price"]
|
|
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY")
|
|
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL")
|
|
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue")
|
|
ax.set_xlabel("Time")
|
|
ax.set_ylabel("Price")
|
|
ax.legend()
|
|
ax.grid(True)
|
|
fig = ax.get_figure()
|
|
fig.autofmt_xdate()
|
|
|
|
# --- Simulation of Trades for Visualization ---
|
|
def simulate_trades(model, env, device, args):
|
|
"""
|
|
Run a simulation on the current sliding window using the model's outputs and a decision rule.
|
|
Here we force the simulation to always take an action by comparing the predicted potentials,
|
|
ensuring that the model is forced to trade (either BUY or SELL) rather than HOLD.
|
|
This simulation updates env.trade_history and is used for visualization only.
|
|
"""
|
|
env.reset() # resets the window and index
|
|
while True:
|
|
i = env.current_index
|
|
state = env.get_state(i)
|
|
current_open = env.candle_window[i]["open"]
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
pred_high = pred_high.item()
|
|
pred_low = pred_low.item()
|
|
# Force a trade: choose BUY if predicted up-move is higher (or equal), else SELL.
|
|
if (pred_high - current_open) >= (current_open - pred_low):
|
|
action = 2 # BUY
|
|
else:
|
|
action = 0 # SELL
|
|
_, _, _, done, _, _ = env.step(action)
|
|
if done:
|
|
break
|
|
|
|
# --- Backtest Environment with Sliding Window and Order Info ---
|
|
class BacktestEnvironment:
|
|
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
|
self.candles_dict = candles_dict # full candles dict across timeframes
|
|
self.base_tf = base_tf
|
|
self.timeframes = timeframes
|
|
self.full_candles = candles_dict[base_tf]
|
|
if window_size is None:
|
|
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles)
|
|
self.window_size = window_size
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
|
self.candle_window = self.full_candles[self.start_index: self.start_index + self.window_size]
|
|
self.current_index = 0
|
|
self.trade_history = []
|
|
self.position = None
|
|
return self.get_state(self.current_index)
|
|
|
|
def __len__(self):
|
|
return self.window_size
|
|
|
|
def get_order_features(self, index):
|
|
candle = self.candle_window[index]
|
|
if self.position is None:
|
|
return [0.0] * FEATURES_PER_CHANNEL
|
|
else:
|
|
flag = 1.0
|
|
diff = (candle["open"] - self.position["entry_price"]) / candle["open"]
|
|
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
|
|
|
def get_state(self, index):
|
|
state_features = []
|
|
base_ts = self.candle_window[index]["timestamp"]
|
|
for tf in self.timeframes:
|
|
if tf == self.base_tf:
|
|
candle = self.candle_window[index]
|
|
features = get_features_for_tf([candle], 0)
|
|
else:
|
|
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
|
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
|
state_features.append(features)
|
|
order_features = self.get_order_features(index)
|
|
state_features.append(order_features)
|
|
for _ in range(NUM_INDICATORS):
|
|
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
|
return np.array(state_features, dtype=np.float32)
|
|
|
|
def step(self, action):
|
|
base = self.candle_window
|
|
if self.current_index >= len(base) - 1:
|
|
current_state = self.get_state(self.current_index)
|
|
return current_state, 0.0, None, True, 0.0, 0.0
|
|
current_state = self.get_state(self.current_index)
|
|
next_index = self.current_index + 1
|
|
next_state = self.get_state(next_index)
|
|
next_candle = base[next_index]
|
|
reward = 0.0
|
|
if self.position is None:
|
|
if action == 2:
|
|
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
|
else:
|
|
if action == 0:
|
|
exit_price = next_candle["open"]
|
|
reward = exit_price - self.position["entry_price"]
|
|
trade = {
|
|
"entry_index": self.position["entry_index"],
|
|
"entry_price": self.position["entry_price"],
|
|
"exit_index": next_index,
|
|
"exit_price": exit_price,
|
|
"pnl": reward
|
|
}
|
|
self.trade_history.append(trade)
|
|
self.position = None
|
|
self.current_index = next_index
|
|
done = (self.current_index >= len(base) - 1)
|
|
actual_high = next_candle["high"]
|
|
actual_low = next_candle["low"]
|
|
return current_state, reward, next_state, done, actual_high, actual_low
|
|
|
|
# --- Enhanced Training Loop ---
|
|
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
|
lambda_trade = args.lambda_trade
|
|
for epoch in range(start_epoch, args.epochs):
|
|
env.reset()
|
|
loss_accum = 0.0
|
|
steps = len(env) - 1
|
|
for i in range(steps):
|
|
state = env.get_state(i)
|
|
current_open = env.candle_window[i]["open"]
|
|
actual_high = env.candle_window[i+1]["high"]
|
|
actual_low = env.candle_window[i+1]["low"]
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
|
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
|
profit_buy = pred_high - current_open
|
|
profit_sell = current_open - pred_low
|
|
L_trade = - torch.max(profit_buy, profit_sell)
|
|
current_open_tensor = torch.tensor(current_open, device=device)
|
|
signal_strength = torch.max(pred_high - current_open_tensor, current_open_tensor - pred_low)
|
|
penalty_term = args.penalty_noaction * torch.clamp(args.threshold - signal_strength, min=0)
|
|
loss = L_pred + lambda_trade * L_trade + penalty_term
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
optimizer.step()
|
|
loss_accum += loss.item()
|
|
scheduler.step()
|
|
epoch_loss = loss_accum / steps
|
|
print(f"Epoch {epoch+1} Loss: {epoch_loss:.4f}")
|
|
save_checkpoint(model, optimizer, epoch, loss_accum)
|
|
simulate_trades(model, env, device, args)
|
|
update_live_html(env.candle_window, env.trade_history, epoch+1)
|
|
|
|
# --- Live Plotting Functions (For Live Mode) ---
|
|
def live_preview_loop(candles, env):
|
|
plt.ion()
|
|
fig, ax = plt.subplots(figsize=(12, 6))
|
|
while True:
|
|
update_live_chart(ax, candles, env.trade_history)
|
|
plt.draw()
|
|
plt.pause(1)
|
|
|
|
# --- Argument Parsing ---
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train')
|
|
parser.add_argument('--epochs', type=int, default=100)
|
|
parser.add_argument('--lr', type=float, default=3e-4)
|
|
parser.add_argument('--threshold', type=float, default=0.005, help="Minimum predicted move to trigger trade (used in loss).")
|
|
parser.add_argument('--lambda_trade', type=float, default=1.0, help="Weight for trade surrogate loss.")
|
|
parser.add_argument('--penalty_noaction', type=float, default=10.0, help="Penalty if no action is taken (used in loss).")
|
|
parser.add_argument('--start_fresh', action='store_true', help="Start training from scratch.")
|
|
return parser.parse_args()
|
|
|
|
def random_action():
|
|
return random.randint(0, 2)
|
|
|
|
# --- Main Function ---
|
|
async def main():
|
|
args = parse_args()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
print("Using device:", device)
|
|
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
|
hidden_dim = 128
|
|
total_channels = NUM_TIMEFRAMES + 1 + NUM_INDICATORS
|
|
model = TradingModel(total_channels, NUM_TIMEFRAMES).to(device)
|
|
|
|
if args.mode == 'train':
|
|
candles_dict = load_candles_cache(CACHE_FILE)
|
|
if not candles_dict:
|
|
print("No historical candle data available for backtesting.")
|
|
return
|
|
base_tf = "1m"
|
|
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
|
start_epoch = 0
|
|
checkpoint = None
|
|
if not args.start_fresh:
|
|
checkpoint = load_best_checkpoint(model)
|
|
if checkpoint is not None:
|
|
start_epoch = checkpoint.get("epoch", 0) + 1
|
|
print(f"Resuming training from epoch {start_epoch}.")
|
|
else:
|
|
print("No checkpoint found. Starting training from scratch.")
|
|
else:
|
|
print("Starting training from scratch as requested.")
|
|
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs - start_epoch)
|
|
if checkpoint is not None:
|
|
optim_state = checkpoint.get("optimizer_state_dict", None)
|
|
if optim_state is not None and "param_groups" in optim_state:
|
|
try:
|
|
optimizer.load_state_dict(optim_state)
|
|
print("Loaded optimizer state from checkpoint.")
|
|
except Exception as e:
|
|
print("Failed to load optimizer state due to:", e)
|
|
print("Deleting all checkpoints and starting fresh.")
|
|
for chk_dir in [LAST_DIR, BEST_DIR]:
|
|
for f in os.listdir(chk_dir):
|
|
os.remove(os.path.join(chk_dir, f))
|
|
else:
|
|
print("No valid optimizer state found in checkpoint; using fresh optimizer state.")
|
|
train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler)
|
|
|
|
elif args.mode == 'live':
|
|
load_best_checkpoint(model)
|
|
candles_dict = load_candles_cache(CACHE_FILE)
|
|
if not candles_dict:
|
|
print("No cached candles available for live preview.")
|
|
return
|
|
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes, window_size=100)
|
|
preview_thread = threading.Thread(target=live_preview_loop, args=(env.candle_window, env), daemon=True)
|
|
preview_thread.start()
|
|
print("Starting live trading loop. (Forcing trade actions based on highest potential.)")
|
|
while True:
|
|
state = env.get_state(env.current_index)
|
|
current_open = env.candle_window[env.current_index]["open"]
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device)
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
pred_high = pred_high.item()
|
|
pred_low = pred_low.item()
|
|
# Force a trade (choose BUY if upward potential >= downward, else SELL)
|
|
if (pred_high - current_open) >= (current_open - pred_low):
|
|
action = 2
|
|
else:
|
|
action = 0
|
|
_, _, _, done, _, _ = env.step(action)
|
|
if done:
|
|
print("Reached end of simulation window; resetting environment.")
|
|
env.reset()
|
|
await asyncio.sleep(1)
|
|
elif args.mode == 'inference':
|
|
load_best_checkpoint(model)
|
|
print("Running inference...")
|
|
# Inference logic goes here.
|
|
else:
|
|
print("Invalid mode specified.")
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |