gogo2/NN/models/simple_cnn.py
Dobromir Popov 73c5ecb0d2 enhancements
2025-04-01 13:46:53 +03:00

219 lines
8.3 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import os
import logging
import torch.nn.functional as F
from typing import List, Tuple
# Configure logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class PricePatternAttention(nn.Module):
"""
Attention mechanism specifically designed to focus on price patterns
that might indicate local extrema or trend reversals
"""
def __init__(self, input_dim, hidden_dim=64):
super(PricePatternAttention, self).__init__()
self.query = nn.Linear(input_dim, hidden_dim)
self.key = nn.Linear(input_dim, hidden_dim)
self.value = nn.Linear(input_dim, hidden_dim)
self.scale = torch.sqrt(torch.tensor(hidden_dim, dtype=torch.float32))
def forward(self, x):
"""Apply attention to input sequence"""
# x shape: [batch_size, seq_len, features]
batch_size, seq_len, _ = x.size()
# Project input to query, key, value
q = self.query(x) # [batch_size, seq_len, hidden_dim]
k = self.key(x) # [batch_size, seq_len, hidden_dim]
v = self.value(x) # [batch_size, seq_len, hidden_dim]
# Calculate attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / self.scale # [batch_size, seq_len, seq_len]
# Apply softmax to get attention weights
attn_weights = F.softmax(scores, dim=-1) # [batch_size, seq_len, seq_len]
# Apply attention to values
output = torch.matmul(attn_weights, v) # [batch_size, seq_len, hidden_dim]
return output, attn_weights
class CNNModelPyTorch(nn.Module):
"""
CNN model for trading with multiple timeframes
"""
def __init__(self, window_size, num_features, output_size, timeframes):
super(CNNModelPyTorch, self).__init__()
self.window_size = window_size
self.num_features = num_features
self.output_size = output_size
self.timeframes = timeframes
# Calculate total input features across all timeframes
self.total_features = num_features * len(timeframes)
# Device configuration
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {self.device}")
# Create model architecture
self._create_layers()
# Move model to device
self.to(self.device)
def _create_layers(self):
"""Create all model layers with current feature dimensions"""
# Convolutional layers - use total_features as input channels
self.conv1 = nn.Conv1d(self.total_features, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm1d(64)
self.conv2 = nn.Conv1d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm1d(128)
self.conv3 = nn.Conv1d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm1d(256)
# Add price pattern attention layer
self.attention = PricePatternAttention(256)
# Extrema detection specialized convolutional layer
self.extrema_conv = nn.Conv1d(256, 128, kernel_size=5, padding=2)
self.extrema_bn = nn.BatchNorm1d(128)
# Calculate size after convolutions - adjusted for attention output
conv_output_size = self.window_size * 256
# Fully connected layers
self.fc1 = nn.Linear(conv_output_size, 512)
self.fc2 = nn.Linear(512, 256)
# Advantage and Value streams (Dueling DQN architecture)
self.fc3 = nn.Linear(256, self.output_size) # Advantage stream
self.value_fc = nn.Linear(256, 1) # Value stream
# Additional prediction head for extrema detection (tops/bottoms)
self.extrema_fc = nn.Linear(256, 3) # 0=bottom, 1=top, 2=neither
# Initialize optimizer and scheduler
self.optimizer = optim.Adam(self.parameters(), lr=0.001)
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='max', factor=0.5, patience=5, verbose=True
)
def rebuild_conv_layers(self, input_channels):
"""
Rebuild convolutional layers for different input dimensions
Args:
input_channels: Number of input channels (features) in the data
"""
logger.info(f"Rebuilding convolutional layers for {input_channels} input channels")
# Update total features
self.total_features = input_channels
# Recreate all layers with new dimensions
self._create_layers()
# Move layers to device
self.to(self.device)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward pass through the network"""
# Ensure input is on the correct device
x = x.to(self.device)
# Check and handle if input dimensions don't match model expectations
batch_size, window_len, feature_dim = x.size()
if feature_dim != self.total_features:
logger.warning(f"Input features ({feature_dim}) don't match model features ({self.total_features}), rebuilding layers")
self.rebuild_conv_layers(feature_dim)
# Reshape input: [batch, window_size, features] -> [batch, channels, window_size]
x = x.permute(0, 2, 1)
# Convolutional layers
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
# Store conv features for extrema detection
conv_features = x
# Reshape for attention: [batch, channels, window_size] -> [batch, window_size, channels]
x_attention = x.permute(0, 2, 1)
# Apply attention
attention_output, attention_weights = self.attention(x_attention)
# We'll use attention directly without the residual connection
# to avoid dimension mismatch issues
attention_reshaped = attention_output.permute(0, 2, 1) # [batch, channels, window_size]
# Apply extrema detection specialized layer
extrema_features = F.relu(self.extrema_bn(self.extrema_conv(conv_features)))
# Use attention features directly instead of residual connection
# to avoid dimension mismatches
x = conv_features # Just use the convolutional features
# Flatten
x = x.view(batch_size, -1)
# Fully connected layers
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
# Split into advantage and value streams
advantage = self.fc3(x)
value = self.value_fc(x)
# Combine value and advantage
q_values = value + (advantage - advantage.mean(dim=1, keepdim=True))
# Also compute extrema prediction from the same features
extrema_flat = extrema_features.view(batch_size, -1)
extrema_pred = self.extrema_fc(x) # Use the same features for extrema prediction
return q_values, extrema_pred
def predict(self, X):
"""Make predictions"""
self.eval()
# Convert to tensor if not already
if not isinstance(X, torch.Tensor):
X_tensor = torch.tensor(X, dtype=torch.float32).to(self.device)
else:
X_tensor = X.to(self.device)
with torch.no_grad():
q_values, extrema_pred = self(X_tensor)
q_values_np = q_values.cpu().numpy()
actions = np.argmax(q_values_np, axis=1)
# Also return extrema predictions
extrema_np = extrema_pred.cpu().numpy()
extrema_classes = np.argmax(extrema_np, axis=1)
return actions, q_values_np, extrema_classes
def save(self, path: str):
"""Save model weights"""
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(self.state_dict(), f"{path}.pt")
logger.info(f"Model saved to {path}.pt")
def load(self, path: str):
"""Load model weights"""
self.load_state_dict(torch.load(f"{path}.pt", map_location=self.device))
self.eval()
logger.info(f"Model loaded from {path}.pt")