gogo2/web/dashboard.py
Dobromir Popov 6e8ec97539 dash
2025-05-24 02:01:13 +03:00

468 lines
20 KiB
Python

"""
Trading Dashboard - Clean Web Interface
This module provides a modern, responsive web dashboard for the trading system:
- Real-time price charts with multiple timeframes
- Model performance monitoring
- Trading decisions visualization
- System health monitoring
- Memory usage tracking
"""
import asyncio
import json
import logging
import time
from datetime import datetime, timedelta
from threading import Thread
from typing import Dict, List, Optional, Any
import dash
from dash import dcc, html, Input, Output, State, callback_context
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
from core.config import get_config
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator, TradingDecision
from models import get_model_registry
logger = logging.getLogger(__name__)
class TradingDashboard:
"""Modern trading dashboard with real-time updates"""
def __init__(self, data_provider: DataProvider = None, orchestrator: TradingOrchestrator = None):
"""Initialize the dashboard"""
self.config = get_config()
self.data_provider = data_provider or DataProvider()
self.orchestrator = orchestrator or TradingOrchestrator(self.data_provider)
self.model_registry = get_model_registry()
# Dashboard state
self.recent_decisions = []
self.performance_data = {}
self.current_prices = {}
self.last_update = datetime.now()
# Create Dash app
self.app = dash.Dash(__name__, external_stylesheets=[
'https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css',
'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'
])
# Setup layout and callbacks
self._setup_layout()
self._setup_callbacks()
logger.info("Trading Dashboard initialized")
def _setup_layout(self):
"""Setup the dashboard layout"""
self.app.layout = html.Div([
# Header
html.Div([
html.H1([
html.I(className="fas fa-chart-line me-3"),
"Trading System Dashboard"
], className="text-white mb-0"),
html.P(f"Multi-Modal AI Trading • Memory: {self.model_registry.total_memory_limit_mb/1024:.1f}GB Limit",
className="text-light mb-0 opacity-75")
], className="bg-dark p-4 mb-4"),
# Auto-refresh component
dcc.Interval(
id='interval-component',
interval=2000, # Update every 2 seconds
n_intervals=0
),
# Main content
html.Div([
# Top row - Key metrics
html.Div([
html.Div([
html.Div([
html.H4(id="current-price", className="text-success mb-1"),
html.P("Current Price", className="text-muted mb-0 small")
], className="card-body text-center")
], className="card bg-light"),
html.Div([
html.Div([
html.H4(id="total-pnl", className="mb-1"),
html.P("Total P&L", className="text-muted mb-0 small")
], className="card-body text-center")
], className="card bg-light"),
html.Div([
html.Div([
html.H4(id="win-rate", className="text-info mb-1"),
html.P("Win Rate", className="text-muted mb-0 small")
], className="card-body text-center")
], className="card bg-light"),
html.Div([
html.Div([
html.H4(id="memory-usage", className="text-warning mb-1"),
html.P("Memory Usage", className="text-muted mb-0 small")
], className="card-body text-center")
], className="card bg-light"),
], className="row g-3 mb-4"),
# Charts row
html.Div([
# Price chart
html.Div([
html.Div([
html.H5([
html.I(className="fas fa-chart-candlestick me-2"),
"Price Chart"
], className="card-title"),
dcc.Graph(id="price-chart", style={"height": "400px"})
], className="card-body")
], className="card"),
# Model performance chart
html.Div([
html.Div([
html.H5([
html.I(className="fas fa-brain me-2"),
"Model Performance"
], className="card-title"),
dcc.Graph(id="model-performance-chart", style={"height": "400px"})
], className="card-body")
], className="card")
], className="row g-3 mb-4"),
# Bottom row - Recent decisions and system status
html.Div([
# Recent decisions
html.Div([
html.Div([
html.H5([
html.I(className="fas fa-robot me-2"),
"Recent Trading Decisions"
], className="card-title"),
html.Div(id="recent-decisions", style={"maxHeight": "300px", "overflowY": "auto"})
], className="card-body")
], className="card"),
# System status
html.Div([
html.Div([
html.H5([
html.I(className="fas fa-server me-2"),
"System Status"
], className="card-title"),
html.Div(id="system-status")
], className="card-body")
], className="card")
], className="row g-3")
], className="container-fluid")
])
def _setup_callbacks(self):
"""Setup dashboard callbacks for real-time updates"""
@self.app.callback(
[
Output('current-price', 'children'),
Output('total-pnl', 'children'),
Output('total-pnl', 'className'),
Output('win-rate', 'children'),
Output('memory-usage', 'children'),
Output('price-chart', 'figure'),
Output('model-performance-chart', 'figure'),
Output('recent-decisions', 'children'),
Output('system-status', 'children')
],
[Input('interval-component', 'n_intervals')]
)
def update_dashboard(n_intervals):
"""Update all dashboard components"""
try:
# Get current prices
symbol = self.config.symbols[0] if self.config.symbols else "ETH/USDT"
current_price = self.data_provider.get_current_price(symbol)
# Get model performance metrics
performance_metrics = self.orchestrator.get_performance_metrics()
# Get memory stats
memory_stats = self.model_registry.get_memory_stats()
# Calculate P&L from recent decisions
total_pnl = 0.0
wins = 0
total_trades = len(self.recent_decisions)
for decision in self.recent_decisions[-20:]: # Last 20 decisions
if hasattr(decision, 'pnl') and decision.pnl:
total_pnl += decision.pnl
if decision.pnl > 0:
wins += 1
# Format outputs
price_text = f"${current_price:.2f}" if current_price else "Loading..."
pnl_text = f"${total_pnl:.2f}"
pnl_class = "text-success mb-1" if total_pnl >= 0 else "text-danger mb-1"
win_rate_text = f"{(wins/total_trades*100):.1f}%" if total_trades > 0 else "0.0%"
memory_text = f"{memory_stats['utilization_percent']:.1f}%"
# Create charts
price_chart = self._create_price_chart(symbol)
performance_chart = self._create_performance_chart(performance_metrics)
# Create recent decisions list
decisions_list = self._create_decisions_list()
# Create system status
system_status = self._create_system_status(memory_stats)
return (
price_text, pnl_text, pnl_class, win_rate_text, memory_text,
price_chart, performance_chart, decisions_list, system_status
)
except Exception as e:
logger.error(f"Error updating dashboard: {e}")
# Return safe defaults
empty_fig = go.Figure()
empty_fig.add_annotation(text="Loading...", xref="paper", yref="paper", x=0.5, y=0.5)
return (
"Loading...", "$0.00", "text-muted mb-1", "0.0%", "0.0%",
empty_fig, empty_fig, [], html.P("Loading system status...")
)
def _create_price_chart(self, symbol: str) -> go.Figure:
"""Create price chart with multiple timeframes"""
try:
# Get recent data
df = self.data_provider.get_latest_candles(symbol, '1h', limit=24)
if df.empty:
fig = go.Figure()
fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
return fig
# Create candlestick chart
fig = go.Figure(data=[go.Candlestick(
x=df['timestamp'],
open=df['open'],
high=df['high'],
low=df['low'],
close=df['close'],
name=symbol
)])
# Add moving averages if available
if 'sma_20' in df.columns:
fig.add_trace(go.Scatter(
x=df['timestamp'],
y=df['sma_20'],
name='SMA 20',
line=dict(color='orange', width=1)
))
# Mark recent trading decisions
for decision in self.recent_decisions[-10:]:
if hasattr(decision, 'timestamp') and hasattr(decision, 'price'):
color = 'green' if decision.action == 'BUY' else 'red' if decision.action == 'SELL' else 'gray'
fig.add_trace(go.Scatter(
x=[decision.timestamp],
y=[decision.price],
mode='markers',
marker=dict(color=color, size=10, symbol='triangle-up' if decision.action == 'BUY' else 'triangle-down'),
name=f"{decision.action}",
showlegend=False
))
fig.update_layout(
title=f"{symbol} Price Chart (1H)",
template="plotly_dark",
height=400,
xaxis_rangeslider_visible=False,
margin=dict(l=0, r=0, t=30, b=0)
)
return fig
except Exception as e:
logger.error(f"Error creating price chart: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
return fig
def _create_performance_chart(self, performance_metrics: Dict) -> go.Figure:
"""Create model performance comparison chart"""
try:
if not performance_metrics.get('model_performance'):
fig = go.Figure()
fig.add_annotation(text="No model performance data", xref="paper", yref="paper", x=0.5, y=0.5)
return fig
models = list(performance_metrics['model_performance'].keys())
accuracies = [performance_metrics['model_performance'][model]['accuracy'] * 100
for model in models]
fig = go.Figure(data=[
go.Bar(x=models, y=accuracies, marker_color=['#1f77b4', '#ff7f0e', '#2ca02c'])
])
fig.update_layout(
title="Model Accuracy Comparison",
yaxis_title="Accuracy (%)",
template="plotly_dark",
height=400,
margin=dict(l=0, r=0, t=30, b=0)
)
return fig
except Exception as e:
logger.error(f"Error creating performance chart: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
return fig
def _create_decisions_list(self) -> List:
"""Create list of recent trading decisions"""
try:
if not self.recent_decisions:
return [html.P("No recent decisions", className="text-muted")]
decisions_html = []
for decision in self.recent_decisions[-10:][::-1]: # Last 10, newest first
# Determine action color and icon
if decision.action == 'BUY':
action_class = "text-success"
icon_class = "fas fa-arrow-up"
elif decision.action == 'SELL':
action_class = "text-danger"
icon_class = "fas fa-arrow-down"
else:
action_class = "text-secondary"
icon_class = "fas fa-minus"
time_str = decision.timestamp.strftime("%H:%M:%S") if hasattr(decision, 'timestamp') else "N/A"
confidence_pct = f"{decision.confidence*100:.1f}%" if hasattr(decision, 'confidence') else "N/A"
decisions_html.append(
html.Div([
html.Div([
html.I(className=f"{icon_class} me-2"),
html.Strong(decision.action, className=action_class),
html.Span(f" {decision.symbol} ", className="text-muted"),
html.Small(f"@${decision.price:.2f}", className="text-muted")
], className="d-flex align-items-center"),
html.Small([
html.Span(f"Confidence: {confidence_pct}", className="text-info"),
html.Span(time_str, className="text-muted")
])
], className="border-bottom pb-2 mb-2")
)
return decisions_html
except Exception as e:
logger.error(f"Error creating decisions list: {e}")
return [html.P(f"Error: {str(e)}", className="text-danger")]
def _create_system_status(self, memory_stats: Dict) -> List:
"""Create system status display"""
try:
status_items = []
# Memory usage
memory_pct = memory_stats.get('utilization_percent', 0)
memory_class = "text-success" if memory_pct < 70 else "text-warning" if memory_pct < 90 else "text-danger"
status_items.append(
html.Div([
html.I(className="fas fa-memory me-2"),
html.Span("Memory: "),
html.Strong(f"{memory_pct:.1f}%", className=memory_class),
html.Small(f" ({memory_stats.get('total_used_mb', 0):.0f}MB / {memory_stats.get('total_limit_mb', 0):.0f}MB)", className="text-muted")
], className="mb-2")
)
# Model status
models_count = len(memory_stats.get('models', {}))
status_items.append(
html.Div([
html.I(className="fas fa-brain me-2"),
html.Span("Models: "),
html.Strong(f"{models_count} active", className="text-info")
], className="mb-2")
)
# Data provider status
data_health = self.data_provider.health_check()
streaming_status = "✓ Streaming" if data_health.get('streaming') else "✗ Offline"
streaming_class = "text-success" if data_health.get('streaming') else "text-danger"
status_items.append(
html.Div([
html.I(className="fas fa-wifi me-2"),
html.Span("Data: "),
html.Strong(streaming_status, className=streaming_class)
], className="mb-2")
)
# System uptime
uptime = datetime.now() - self.last_update
status_items.append(
html.Div([
html.I(className="fas fa-clock me-2"),
html.Span("Uptime: "),
html.Strong(f"{uptime.seconds//3600:02d}:{(uptime.seconds//60)%60:02d}:{uptime.seconds%60:02d}", className="text-info")
], className="mb-2")
)
return status_items
except Exception as e:
logger.error(f"Error creating system status: {e}")
return [html.P(f"Error: {str(e)}", className="text-danger")]
def add_trading_decision(self, decision: TradingDecision):
"""Add a trading decision to the dashboard"""
self.recent_decisions.append(decision)
# Keep only last 100 decisions
if len(self.recent_decisions) > 100:
self.recent_decisions = self.recent_decisions[-100:]
def run(self, host: str = '127.0.0.1', port: int = 8050, debug: bool = False):
"""Run the dashboard server"""
try:
logger.info("="*60)
logger.info("STARTING TRADING DASHBOARD")
logger.info(f"ACCESS WEB UI AT: http://{host}:{port}/")
logger.info("Real-time trading data and charts")
logger.info("AI model performance monitoring")
logger.info("Memory usage tracking")
logger.info("="*60)
# Run the app (updated API for newer Dash versions)
self.app.run(
host=host,
port=port,
debug=debug,
use_reloader=False, # Disable reloader to avoid conflicts
threaded=True # Enable threading for better performance
)
except Exception as e:
logger.error(f"Error running dashboard: {e}")
raise
# Convenience function for integration
def create_dashboard(data_provider: DataProvider = None, orchestrator: TradingOrchestrator = None) -> TradingDashboard:
"""Create and return a trading dashboard instance"""
return TradingDashboard(data_provider, orchestrator)