546 lines
24 KiB
Python
546 lines
24 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Trade Data Manager - Centralized trade data capture and training case management
|
|
|
|
Handles:
|
|
- Comprehensive model input capture during trade execution
|
|
- Storage in testcases structure (positive/negative)
|
|
- Case indexing and management
|
|
- Integration with existing negative case trainer
|
|
- Cold start training data preparation
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
import pickle
|
|
import logging
|
|
from datetime import datetime
|
|
from typing import Dict, List, Any, Optional, Tuple
|
|
import numpy as np
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class TradeDataManager:
|
|
"""Centralized manager for trade data capture and training case storage"""
|
|
|
|
def __init__(self, base_dir: str = "testcases"):
|
|
self.base_dir = base_dir
|
|
self.cases_cache = {} # In-memory cache of recent cases
|
|
self.max_cache_size = 100
|
|
|
|
# Initialize directory structure
|
|
self._setup_directory_structure()
|
|
|
|
logger.info(f"TradeDataManager initialized with base directory: {base_dir}")
|
|
|
|
def _setup_directory_structure(self):
|
|
"""Setup the testcases directory structure"""
|
|
try:
|
|
for case_type in ['positive', 'negative']:
|
|
for subdir in ['cases', 'sessions', 'models']:
|
|
dir_path = os.path.join(self.base_dir, case_type, subdir)
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
|
|
logger.debug("Directory structure setup complete")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error setting up directory structure: {e}")
|
|
|
|
def capture_comprehensive_model_inputs(self, symbol: str, action: str, current_price: float,
|
|
orchestrator=None, data_provider=None) -> Dict[str, Any]:
|
|
"""Capture comprehensive model inputs for cold start training"""
|
|
try:
|
|
logger.info(f"Capturing model inputs for {action} trade on {symbol} at ${current_price:.2f}")
|
|
|
|
model_inputs = {
|
|
'timestamp': datetime.now().isoformat(),
|
|
'symbol': symbol,
|
|
'action': action,
|
|
'price': current_price,
|
|
'capture_type': 'trade_execution'
|
|
}
|
|
|
|
# 1. Market State Features
|
|
try:
|
|
market_state = self._get_comprehensive_market_state(symbol, current_price, data_provider)
|
|
model_inputs['market_state'] = market_state
|
|
logger.debug(f"Captured market state: {len(market_state)} features")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing market state: {e}")
|
|
model_inputs['market_state'] = {}
|
|
|
|
# 2. CNN Features and Predictions
|
|
try:
|
|
cnn_data = self._get_cnn_features_and_predictions(symbol, orchestrator)
|
|
model_inputs['cnn_features'] = cnn_data.get('features', {})
|
|
model_inputs['cnn_predictions'] = cnn_data.get('predictions', {})
|
|
logger.debug(f"Captured CNN data: {len(cnn_data)} items")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing CNN data: {e}")
|
|
model_inputs['cnn_features'] = {}
|
|
model_inputs['cnn_predictions'] = {}
|
|
|
|
# 3. DQN/RL State Features
|
|
try:
|
|
dqn_state = self._get_dqn_state_features(symbol, current_price, orchestrator)
|
|
model_inputs['dqn_state'] = dqn_state
|
|
logger.debug(f"Captured DQN state: {len(dqn_state) if dqn_state else 0} features")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing DQN state: {e}")
|
|
model_inputs['dqn_state'] = {}
|
|
|
|
# 4. COB (Order Book) Features
|
|
try:
|
|
cob_data = self._get_cob_features_for_training(symbol, orchestrator)
|
|
model_inputs['cob_features'] = cob_data
|
|
logger.debug(f"Captured COB features: {len(cob_data) if cob_data else 0} features")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing COB features: {e}")
|
|
model_inputs['cob_features'] = {}
|
|
|
|
# 5. Technical Indicators
|
|
try:
|
|
technical_indicators = self._get_technical_indicators(symbol, data_provider)
|
|
model_inputs['technical_indicators'] = technical_indicators
|
|
logger.debug(f"Captured technical indicators: {len(technical_indicators)} indicators")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing technical indicators: {e}")
|
|
model_inputs['technical_indicators'] = {}
|
|
|
|
# 6. Recent Price History (for context)
|
|
try:
|
|
price_history = self._get_recent_price_history(symbol, data_provider, periods=50)
|
|
model_inputs['price_history'] = price_history
|
|
logger.debug(f"Captured price history: {len(price_history)} periods")
|
|
except Exception as e:
|
|
logger.warning(f"Error capturing price history: {e}")
|
|
model_inputs['price_history'] = []
|
|
|
|
total_features = sum(len(v) if isinstance(v, (dict, list)) else 1 for v in model_inputs.values())
|
|
logger.info(f"✅ Captured {total_features} total features for cold start training")
|
|
|
|
return model_inputs
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error capturing model inputs: {e}")
|
|
return {
|
|
'timestamp': datetime.now().isoformat(),
|
|
'symbol': symbol,
|
|
'action': action,
|
|
'price': current_price,
|
|
'error': str(e)
|
|
}
|
|
|
|
def store_trade_for_training(self, trade_record: Dict[str, Any]) -> Optional[str]:
|
|
"""Store trade for future cold start training in testcases structure"""
|
|
try:
|
|
# Determine if this will be a positive or negative case based on eventual P&L
|
|
pnl = trade_record.get('pnl', 0)
|
|
case_type = "positive" if pnl >= 0 else "negative"
|
|
|
|
# Create testcases directory structure
|
|
case_dir = os.path.join(self.base_dir, case_type)
|
|
cases_dir = os.path.join(case_dir, "cases")
|
|
|
|
# Create unique case ID
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
symbol_clean = trade_record['symbol'].replace('/', '')
|
|
case_id = f"{case_type}_{timestamp}_{symbol_clean}_pnl_{pnl:.4f}".replace('.', 'p').replace('-', 'neg')
|
|
|
|
# Store comprehensive case data as pickle (for complex model inputs)
|
|
case_filepath = os.path.join(cases_dir, f"{case_id}.pkl")
|
|
with open(case_filepath, 'wb') as f:
|
|
pickle.dump(trade_record, f)
|
|
|
|
# Store JSON summary for easy viewing
|
|
json_filepath = os.path.join(cases_dir, f"{case_id}.json")
|
|
json_summary = {
|
|
'case_id': case_id,
|
|
'timestamp': trade_record.get('entry_time', datetime.now()).isoformat() if hasattr(trade_record.get('entry_time'), 'isoformat') else str(trade_record.get('entry_time')),
|
|
'symbol': trade_record['symbol'],
|
|
'side': trade_record['side'],
|
|
'entry_price': trade_record['entry_price'],
|
|
'pnl': pnl,
|
|
'confidence': trade_record.get('confidence', 0),
|
|
'trade_type': trade_record.get('trade_type', 'unknown'),
|
|
'model_inputs_captured': bool(trade_record.get('model_inputs_at_entry')),
|
|
'training_ready': trade_record.get('training_ready', False),
|
|
'feature_counts': {
|
|
'market_state': len(trade_record.get('entry_market_state', {})),
|
|
'cnn_features': len(trade_record.get('model_inputs_at_entry', {}).get('cnn_features', {})),
|
|
'dqn_state': len(trade_record.get('model_inputs_at_entry', {}).get('dqn_state', {})),
|
|
'cob_features': len(trade_record.get('model_inputs_at_entry', {}).get('cob_features', {})),
|
|
'technical_indicators': len(trade_record.get('model_inputs_at_entry', {}).get('technical_indicators', {})),
|
|
'price_history': len(trade_record.get('model_inputs_at_entry', {}).get('price_history', []))
|
|
}
|
|
}
|
|
|
|
with open(json_filepath, 'w') as f:
|
|
json.dump(json_summary, f, indent=2, default=str)
|
|
|
|
# Update case index
|
|
self._update_case_index(case_dir, case_id, json_summary, case_type)
|
|
|
|
# Add to cache
|
|
self.cases_cache[case_id] = json_summary
|
|
if len(self.cases_cache) > self.max_cache_size:
|
|
# Remove oldest entry
|
|
oldest_key = next(iter(self.cases_cache))
|
|
del self.cases_cache[oldest_key]
|
|
|
|
logger.info(f" Stored {case_type} case for training: {case_id}")
|
|
logger.info(f" PKL: {case_filepath}")
|
|
logger.info(f" JSON: {json_filepath}")
|
|
|
|
return case_id
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error storing trade for training: {e}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
return None
|
|
|
|
def _update_case_index(self, case_dir: str, case_id: str, case_summary: Dict[str, Any], case_type: str):
|
|
"""Update the case index file"""
|
|
try:
|
|
index_file = os.path.join(case_dir, "case_index.json")
|
|
|
|
# Load existing index or create new one
|
|
if os.path.exists(index_file):
|
|
with open(index_file, 'r') as f:
|
|
index_data = json.load(f)
|
|
else:
|
|
index_data = {"cases": [], "last_updated": None}
|
|
|
|
# Add new case
|
|
index_entry = {
|
|
"case_id": case_id,
|
|
"timestamp": case_summary['timestamp'],
|
|
"symbol": case_summary['symbol'],
|
|
"pnl": case_summary['pnl'],
|
|
"training_priority": self._calculate_training_priority(case_summary, case_type),
|
|
"retraining_count": 0,
|
|
"feature_counts": case_summary['feature_counts']
|
|
}
|
|
|
|
index_data["cases"].append(index_entry)
|
|
index_data["last_updated"] = datetime.now().isoformat()
|
|
|
|
# Save updated index
|
|
with open(index_file, 'w') as f:
|
|
json.dump(index_data, f, indent=2)
|
|
|
|
logger.debug(f"Updated case index: {case_id}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error updating case index: {e}")
|
|
|
|
def _calculate_training_priority(self, case_summary: Dict[str, Any], case_type: str) -> int:
|
|
"""Calculate training priority based on case characteristics"""
|
|
try:
|
|
pnl = abs(case_summary.get('pnl', 0))
|
|
confidence = case_summary.get('confidence', 0)
|
|
|
|
# Higher priority for larger losses/gains and high confidence wrong predictions
|
|
if case_type == "negative":
|
|
# Larger losses get higher priority, especially with high confidence
|
|
priority = min(5, int(pnl * 10) + int(confidence * 2))
|
|
else:
|
|
# Profits get medium priority unless very large
|
|
priority = min(3, int(pnl * 5) + 1)
|
|
|
|
return max(1, priority) # Minimum priority of 1
|
|
|
|
except Exception:
|
|
return 1 # Default priority
|
|
|
|
def get_training_cases(self, case_type: str = "negative", limit: int = 50) -> List[Dict[str, Any]]:
|
|
"""Get training cases for model training"""
|
|
try:
|
|
case_dir = os.path.join(self.base_dir, case_type)
|
|
index_file = os.path.join(case_dir, "case_index.json")
|
|
|
|
if not os.path.exists(index_file):
|
|
return []
|
|
|
|
with open(index_file, 'r') as f:
|
|
index_data = json.load(f)
|
|
|
|
# Sort by training priority (highest first) and limit
|
|
cases = sorted(index_data["cases"],
|
|
key=lambda x: x.get("training_priority", 1),
|
|
reverse=True)[:limit]
|
|
|
|
return cases
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error getting training cases: {e}")
|
|
return []
|
|
|
|
def load_case_data(self, case_id: str, case_type: str = None) -> Optional[Dict[str, Any]]:
|
|
"""Load full case data from pickle file"""
|
|
try:
|
|
# Determine case type if not provided
|
|
if case_type is None:
|
|
case_type = "positive" if "positive" in case_id else "negative"
|
|
|
|
case_filepath = os.path.join(self.base_dir, case_type, "cases", f"{case_id}.pkl")
|
|
|
|
if not os.path.exists(case_filepath):
|
|
logger.warning(f"Case file not found: {case_filepath}")
|
|
return None
|
|
|
|
with open(case_filepath, 'rb') as f:
|
|
case_data = pickle.load(f)
|
|
|
|
return case_data
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading case data for {case_id}: {e}")
|
|
return None
|
|
|
|
def cleanup_old_cases(self, days_to_keep: int = 30):
|
|
"""Clean up old test cases to manage storage"""
|
|
try:
|
|
from datetime import timedelta
|
|
cutoff_date = datetime.now() - timedelta(days=days_to_keep)
|
|
|
|
for case_type in ['positive', 'negative']:
|
|
case_dir = os.path.join(self.base_dir, case_type)
|
|
cases_dir = os.path.join(case_dir, "cases")
|
|
|
|
if not os.path.exists(cases_dir):
|
|
continue
|
|
|
|
# Get case index
|
|
index_file = os.path.join(case_dir, "case_index.json")
|
|
if os.path.exists(index_file):
|
|
with open(index_file, 'r') as f:
|
|
index_data = json.load(f)
|
|
|
|
# Filter cases to keep
|
|
cases_to_keep = []
|
|
cases_removed = 0
|
|
|
|
for case in index_data["cases"]:
|
|
case_date = datetime.fromisoformat(case["timestamp"])
|
|
if case_date > cutoff_date:
|
|
cases_to_keep.append(case)
|
|
else:
|
|
# Remove case files
|
|
case_id = case["case_id"]
|
|
pkl_file = os.path.join(cases_dir, f"{case_id}.pkl")
|
|
json_file = os.path.join(cases_dir, f"{case_id}.json")
|
|
|
|
for file_path in [pkl_file, json_file]:
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
|
|
cases_removed += 1
|
|
|
|
# Update index
|
|
index_data["cases"] = cases_to_keep
|
|
index_data["last_updated"] = datetime.now().isoformat()
|
|
|
|
with open(index_file, 'w') as f:
|
|
json.dump(index_data, f, indent=2)
|
|
|
|
if cases_removed > 0:
|
|
logger.info(f"Cleaned up {cases_removed} old {case_type} cases")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error cleaning up old cases: {e}")
|
|
|
|
# Helper methods for feature extraction
|
|
def _get_comprehensive_market_state(self, symbol: str, current_price: float, data_provider) -> Dict[str, float]:
|
|
"""Get comprehensive market state features"""
|
|
try:
|
|
if not data_provider:
|
|
return {'current_price': current_price}
|
|
|
|
market_state = {'current_price': current_price}
|
|
|
|
# Get historical data for features
|
|
df = data_provider.get_historical_data(symbol, '1m', limit=100)
|
|
if df is not None and not df.empty:
|
|
prices = df['close'].values
|
|
volumes = df['volume'].values
|
|
|
|
# Price features
|
|
market_state['price_sma_5'] = float(prices[-5:].mean())
|
|
market_state['price_sma_20'] = float(prices[-20:].mean())
|
|
market_state['price_std_20'] = float(prices[-20:].std())
|
|
market_state['price_rsi'] = self._calculate_rsi(prices, 14)
|
|
|
|
# Volume features
|
|
market_state['volume_current'] = float(volumes[-1])
|
|
market_state['volume_sma_20'] = float(volumes[-20:].mean())
|
|
market_state['volume_ratio'] = float(volumes[-1] / volumes[-20:].mean())
|
|
|
|
# Trend features
|
|
market_state['price_momentum_5'] = float((prices[-1] - prices[-5]) / prices[-5])
|
|
market_state['price_momentum_20'] = float((prices[-1] - prices[-20]) / prices[-20])
|
|
|
|
# Add timestamp features
|
|
now = datetime.now()
|
|
market_state['hour_of_day'] = now.hour
|
|
market_state['minute_of_hour'] = now.minute
|
|
market_state['day_of_week'] = now.weekday()
|
|
|
|
return market_state
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Error getting market state: {e}")
|
|
return {'current_price': current_price}
|
|
|
|
def _calculate_rsi(self, prices, period=14):
|
|
"""Calculate RSI indicator"""
|
|
try:
|
|
deltas = np.diff(prices)
|
|
gains = np.where(deltas > 0, deltas, 0)
|
|
losses = np.where(deltas < 0, -deltas, 0)
|
|
|
|
avg_gain = np.mean(gains[-period:])
|
|
avg_loss = np.mean(losses[-period:])
|
|
|
|
if avg_loss == 0:
|
|
return 100.0
|
|
|
|
rs = avg_gain / avg_loss
|
|
rsi = 100 - (100 / (1 + rs))
|
|
return float(rsi)
|
|
except:
|
|
return 50.0 # Neutral RSI
|
|
|
|
def _get_cnn_features_and_predictions(self, symbol: str, orchestrator) -> Dict[str, Any]:
|
|
"""Get CNN features and predictions from orchestrator"""
|
|
try:
|
|
if not orchestrator:
|
|
return {}
|
|
|
|
cnn_data = {}
|
|
|
|
# Get CNN features if available
|
|
if hasattr(orchestrator, 'latest_cnn_features'):
|
|
cnn_features = getattr(orchestrator, 'latest_cnn_features', {}).get(symbol)
|
|
if cnn_features is not None:
|
|
cnn_data['features'] = cnn_features.tolist() if hasattr(cnn_features, 'tolist') else cnn_features
|
|
|
|
# Get CNN predictions if available
|
|
if hasattr(orchestrator, 'latest_cnn_predictions'):
|
|
cnn_predictions = getattr(orchestrator, 'latest_cnn_predictions', {}).get(symbol)
|
|
if cnn_predictions is not None:
|
|
cnn_data['predictions'] = cnn_predictions.tolist() if hasattr(cnn_predictions, 'tolist') else cnn_predictions
|
|
|
|
return cnn_data
|
|
|
|
except Exception as e:
|
|
logger.debug(f"Error getting CNN data: {e}")
|
|
return {}
|
|
|
|
def _get_dqn_state_features(self, symbol: str, current_price: float, orchestrator) -> Dict[str, Any]:
|
|
"""Get DQN state features from orchestrator"""
|
|
try:
|
|
if not orchestrator:
|
|
return {}
|
|
|
|
# Get DQN state from orchestrator if available
|
|
if hasattr(orchestrator, 'build_comprehensive_rl_state'):
|
|
rl_state = orchestrator.build_comprehensive_rl_state(symbol)
|
|
if rl_state is not None:
|
|
return {
|
|
'state_vector': rl_state.tolist() if hasattr(rl_state, 'tolist') else rl_state,
|
|
'state_size': len(rl_state) if hasattr(rl_state, '__len__') else 0
|
|
}
|
|
|
|
return {}
|
|
|
|
except Exception as e:
|
|
logger.debug(f"Error getting DQN state: {e}")
|
|
return {}
|
|
|
|
def _get_cob_features_for_training(self, symbol: str, orchestrator) -> Dict[str, Any]:
|
|
"""Get COB features for training"""
|
|
try:
|
|
if not orchestrator:
|
|
return {}
|
|
|
|
cob_data = {}
|
|
|
|
# Get COB features from orchestrator
|
|
if hasattr(orchestrator, 'latest_cob_features'):
|
|
cob_features = getattr(orchestrator, 'latest_cob_features', {}).get(symbol)
|
|
if cob_features is not None:
|
|
cob_data['features'] = cob_features.tolist() if hasattr(cob_features, 'tolist') else cob_features
|
|
|
|
# Get COB snapshot
|
|
if hasattr(orchestrator, 'cob_integration') and orchestrator.cob_integration:
|
|
if hasattr(orchestrator.cob_integration, 'get_cob_snapshot'):
|
|
cob_snapshot = orchestrator.cob_integration.get_cob_snapshot(symbol)
|
|
if cob_snapshot:
|
|
cob_data['snapshot_available'] = True
|
|
cob_data['bid_levels'] = len(getattr(cob_snapshot, 'consolidated_bids', []))
|
|
cob_data['ask_levels'] = len(getattr(cob_snapshot, 'consolidated_asks', []))
|
|
else:
|
|
cob_data['snapshot_available'] = False
|
|
|
|
return cob_data
|
|
|
|
except Exception as e:
|
|
logger.debug(f"Error getting COB features: {e}")
|
|
return {}
|
|
|
|
def _get_technical_indicators(self, symbol: str, data_provider) -> Dict[str, float]:
|
|
"""Get technical indicators"""
|
|
try:
|
|
if not data_provider:
|
|
return {}
|
|
|
|
indicators = {}
|
|
|
|
# Get recent price data
|
|
df = data_provider.get_historical_data(symbol, '1m', limit=50)
|
|
if df is not None and not df.empty:
|
|
closes = df['close'].values
|
|
highs = df['high'].values
|
|
lows = df['low'].values
|
|
volumes = df['volume'].values
|
|
|
|
# Moving averages
|
|
indicators['sma_10'] = float(closes[-10:].mean())
|
|
indicators['sma_20'] = float(closes[-20:].mean())
|
|
|
|
# Bollinger Bands
|
|
sma_20 = closes[-20:].mean()
|
|
std_20 = closes[-20:].std()
|
|
indicators['bb_upper'] = float(sma_20 + 2 * std_20)
|
|
indicators['bb_lower'] = float(sma_20 - 2 * std_20)
|
|
indicators['bb_position'] = float((closes[-1] - indicators['bb_lower']) / (indicators['bb_upper'] - indicators['bb_lower']))
|
|
|
|
# MACD
|
|
ema_12 = closes[-12:].mean() # Simplified
|
|
ema_26 = closes[-26:].mean() # Simplified
|
|
indicators['macd'] = float(ema_12 - ema_26)
|
|
|
|
# Volatility
|
|
indicators['volatility'] = float(std_20 / sma_20)
|
|
|
|
return indicators
|
|
|
|
except Exception as e:
|
|
logger.debug(f"Error calculating technical indicators: {e}")
|
|
return {}
|
|
|
|
def _get_recent_price_history(self, symbol: str, data_provider, periods: int = 50) -> List[float]:
|
|
"""Get recent price history"""
|
|
try:
|
|
if not data_provider:
|
|
return []
|
|
|
|
df = data_provider.get_historical_data(symbol, '1m', limit=periods)
|
|
if df is not None and not df.empty:
|
|
return df['close'].tolist()
|
|
return []
|
|
except Exception as e:
|
|
logger.debug(f"Error getting price history: {e}")
|
|
return [] |