gogo2/run_enhanced_rl_training.py
2025-05-30 22:33:41 +03:00

477 lines
21 KiB
Python

# #!/usr/bin/env python3
# """
# Enhanced RL Training Launcher with Real Data Integration
# This script launches the comprehensive RL training system that uses:
# - Real-time tick data (300s window for momentum detection)
# - Multi-timeframe OHLCV data (1s, 1m, 1h, 1d)
# - BTC reference data for correlation
# - CNN hidden features and predictions
# - Williams Market Structure pivot points
# - Market microstructure analysis
# The RL model will receive ~13,400 features instead of the previous ~100 basic features.
# """
# import asyncio
# import logging
# import time
# import signal
# import sys
# from datetime import datetime, timedelta
# from pathlib import Path
# from typing import Dict, List, Optional
# # Configure logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
# handlers=[
# logging.FileHandler('enhanced_rl_training.log'),
# logging.StreamHandler(sys.stdout)
# ]
# )
# logger = logging.getLogger(__name__)
# # Import our enhanced components
# from core.config import get_config
# from core.data_provider import DataProvider
# from core.enhanced_orchestrator import EnhancedTradingOrchestrator
# from training.enhanced_rl_trainer import EnhancedRLTrainer
# from training.enhanced_rl_state_builder import EnhancedRLStateBuilder
# from training.williams_market_structure import WilliamsMarketStructure
# from training.cnn_rl_bridge import CNNRLBridge
# class EnhancedRLTrainingSystem:
# """Comprehensive RL training system with real data integration"""
# def __init__(self):
# """Initialize the enhanced RL training system"""
# self.config = get_config()
# self.running = False
# self.data_provider = None
# self.orchestrator = None
# self.rl_trainer = None
# # Performance tracking
# self.training_stats = {
# 'training_sessions': 0,
# 'total_experiences': 0,
# 'avg_state_size': 0,
# 'data_quality_score': 0.0,
# 'last_training_time': None
# }
# logger.info("Enhanced RL Training System initialized")
# logger.info("Features:")
# logger.info("- Real-time tick data processing (300s window)")
# logger.info("- Multi-timeframe OHLCV analysis (1s, 1m, 1h, 1d)")
# logger.info("- BTC correlation analysis")
# logger.info("- CNN feature integration")
# logger.info("- Williams Market Structure pivot points")
# logger.info("- ~13,400 feature state vector (vs previous ~100)")
# async def initialize(self):
# """Initialize all components"""
# try:
# logger.info("Initializing enhanced RL training components...")
# # Initialize data provider with real-time streaming
# logger.info("Setting up data provider with real-time streaming...")
# self.data_provider = DataProvider(
# symbols=self.config.symbols,
# timeframes=self.config.timeframes
# )
# # Start real-time data streaming
# await self.data_provider.start_real_time_streaming()
# logger.info("Real-time data streaming started")
# # Wait for initial data collection
# logger.info("Collecting initial market data...")
# await asyncio.sleep(30) # Allow 30 seconds for data collection
# # Initialize enhanced orchestrator
# logger.info("Initializing enhanced orchestrator...")
# self.orchestrator = EnhancedTradingOrchestrator(self.data_provider)
# # Initialize enhanced RL trainer with comprehensive state building
# logger.info("Initializing enhanced RL trainer...")
# self.rl_trainer = EnhancedRLTrainer(
# config=self.config,
# orchestrator=self.orchestrator
# )
# # Verify data availability
# data_status = await self._verify_data_availability()
# if not data_status['has_sufficient_data']:
# logger.warning("Insufficient data detected. Continuing with limited training.")
# logger.warning(f"Data status: {data_status}")
# else:
# logger.info("Sufficient data available for comprehensive RL training")
# logger.info(f"Tick data: {data_status['tick_count']} ticks")
# logger.info(f"OHLCV data: {data_status['ohlcv_bars']} bars")
# self.running = True
# logger.info("Enhanced RL training system initialized successfully")
# except Exception as e:
# logger.error(f"Error during initialization: {e}")
# raise
# async def _verify_data_availability(self) -> Dict[str, any]:
# """Verify that we have sufficient data for training"""
# try:
# data_status = {
# 'has_sufficient_data': False,
# 'tick_count': 0,
# 'ohlcv_bars': 0,
# 'symbols_with_data': [],
# 'missing_data': []
# }
# for symbol in self.config.symbols:
# # Check tick data
# recent_ticks = self.data_provider.get_recent_ticks(symbol, count=100)
# tick_count = len(recent_ticks)
# # Check OHLCV data
# ohlcv_bars = 0
# for timeframe in ['1s', '1m', '1h', '1d']:
# try:
# df = self.data_provider.get_historical_data(
# symbol=symbol,
# timeframe=timeframe,
# limit=50,
# refresh=True
# )
# if df is not None and not df.empty:
# ohlcv_bars += len(df)
# except Exception as e:
# logger.warning(f"Error checking {timeframe} data for {symbol}: {e}")
# data_status['tick_count'] += tick_count
# data_status['ohlcv_bars'] += ohlcv_bars
# if tick_count >= 50 and ohlcv_bars >= 100:
# data_status['symbols_with_data'].append(symbol)
# else:
# data_status['missing_data'].append(f"{symbol}: {tick_count} ticks, {ohlcv_bars} bars")
# # Consider data sufficient if we have at least one symbol with good data
# data_status['has_sufficient_data'] = len(data_status['symbols_with_data']) > 0
# return data_status
# except Exception as e:
# logger.error(f"Error verifying data availability: {e}")
# return {'has_sufficient_data': False, 'error': str(e)}
# async def run_training_loop(self):
# """Run the main training loop with real data"""
# logger.info("Starting enhanced RL training loop...")
# training_cycle = 0
# last_state_size_log = time.time()
# try:
# while self.running:
# training_cycle += 1
# cycle_start_time = time.time()
# logger.info(f"Training cycle {training_cycle} started")
# # Get comprehensive market states with real data
# market_states = await self._get_comprehensive_market_states()
# if not market_states:
# logger.warning("No market states available. Waiting for data...")
# await asyncio.sleep(60)
# continue
# # Train RL agents with comprehensive states
# training_results = await self._train_rl_agents(market_states)
# # Update performance tracking
# self._update_training_stats(training_results, market_states)
# # Log training progress
# cycle_duration = time.time() - cycle_start_time
# logger.info(f"Training cycle {training_cycle} completed in {cycle_duration:.2f}s")
# # Log state size periodically
# if time.time() - last_state_size_log > 300: # Every 5 minutes
# self._log_state_size_info(market_states)
# last_state_size_log = time.time()
# # Save models periodically
# if training_cycle % 10 == 0:
# await self._save_training_progress()
# # Wait before next training cycle
# await asyncio.sleep(300) # Train every 5 minutes
# except Exception as e:
# logger.error(f"Error in training loop: {e}")
# raise
# async def _get_comprehensive_market_states(self) -> Dict[str, any]:
# """Get comprehensive market states with all required data"""
# try:
# # Get market states from orchestrator
# universal_stream = self.orchestrator.universal_adapter.get_universal_stream()
# market_states = await self.orchestrator._get_all_market_states_universal(universal_stream)
# # Verify data quality
# quality_score = self._calculate_data_quality(market_states)
# self.training_stats['data_quality_score'] = quality_score
# if quality_score < 0.5:
# logger.warning(f"Low data quality detected: {quality_score:.2f}")
# return market_states
# except Exception as e:
# logger.error(f"Error getting comprehensive market states: {e}")
# return {}
# def _calculate_data_quality(self, market_states: Dict[str, any]) -> float:
# """Calculate data quality score based on available data"""
# try:
# if not market_states:
# return 0.0
# total_score = 0.0
# total_symbols = len(market_states)
# for symbol, state in market_states.items():
# symbol_score = 0.0
# # Score based on tick data availability
# if hasattr(state, 'raw_ticks') and state.raw_ticks:
# tick_score = min(len(state.raw_ticks) / 100, 1.0) # Max score for 100+ ticks
# symbol_score += tick_score * 0.3
# # Score based on OHLCV data availability
# if hasattr(state, 'ohlcv_data') and state.ohlcv_data:
# ohlcv_score = len(state.ohlcv_data) / 4.0 # Max score for all 4 timeframes
# symbol_score += min(ohlcv_score, 1.0) * 0.4
# # Score based on CNN features
# if hasattr(state, 'cnn_hidden_features') and state.cnn_hidden_features:
# symbol_score += 0.15
# # Score based on pivot points
# if hasattr(state, 'pivot_points') and state.pivot_points:
# symbol_score += 0.15
# total_score += symbol_score
# return total_score / total_symbols if total_symbols > 0 else 0.0
# except Exception as e:
# logger.warning(f"Error calculating data quality: {e}")
# return 0.5 # Default to medium quality
# async def _train_rl_agents(self, market_states: Dict[str, any]) -> Dict[str, any]:
# """Train RL agents with comprehensive market states"""
# try:
# training_results = {
# 'symbols_trained': [],
# 'total_experiences': 0,
# 'avg_state_size': 0,
# 'training_errors': []
# }
# for symbol, market_state in market_states.items():
# try:
# # Convert market state to comprehensive RL state
# rl_state = self.rl_trainer._market_state_to_rl_state(market_state)
# if rl_state is not None and len(rl_state) > 0:
# # Record state size
# training_results['avg_state_size'] += len(rl_state)
# # Simulate trading action for experience generation
# # In real implementation, this would be actual trading decisions
# action = self._simulate_trading_action(symbol, rl_state)
# # Generate reward based on market outcome
# reward = self._calculate_training_reward(symbol, market_state, action)
# # Add experience to RL agent
# agent = self.rl_trainer.agents.get(symbol)
# if agent:
# # Create next state (would be actual next market state in real scenario)
# next_state = rl_state # Simplified for now
# agent.remember(
# state=rl_state,
# action=action,
# reward=reward,
# next_state=next_state,
# done=False
# )
# # Train agent if enough experiences
# if len(agent.replay_buffer) >= agent.batch_size:
# loss = agent.replay()
# if loss is not None:
# logger.debug(f"Agent {symbol} training loss: {loss:.4f}")
# training_results['symbols_trained'].append(symbol)
# training_results['total_experiences'] += 1
# except Exception as e:
# error_msg = f"Error training {symbol}: {e}"
# logger.warning(error_msg)
# training_results['training_errors'].append(error_msg)
# # Calculate average state size
# if len(training_results['symbols_trained']) > 0:
# training_results['avg_state_size'] /= len(training_results['symbols_trained'])
# return training_results
# except Exception as e:
# logger.error(f"Error training RL agents: {e}")
# return {'error': str(e)}
# def _simulate_trading_action(self, symbol: str, rl_state) -> int:
# """Simulate trading action for training (would be real decision in production)"""
# # Simple simulation based on state features
# if len(rl_state) > 100:
# # Use momentum features to decide action
# momentum_features = rl_state[:100] # First 100 features assumed to be momentum
# avg_momentum = sum(momentum_features) / len(momentum_features)
# if avg_momentum > 0.6:
# return 1 # BUY
# elif avg_momentum < 0.4:
# return 2 # SELL
# else:
# return 0 # HOLD
# else:
# return 0 # HOLD as default
# def _calculate_training_reward(self, symbol: str, market_state, action: int) -> float:
# """Calculate training reward based on market state and action"""
# try:
# # Simple reward calculation based on market conditions
# base_reward = 0.0
# # Reward based on volatility alignment
# if hasattr(market_state, 'volatility'):
# if action == 0 and market_state.volatility > 0.02: # HOLD in high volatility
# base_reward += 0.1
# elif action != 0 and market_state.volatility < 0.01: # Trade in low volatility
# base_reward += 0.1
# # Reward based on trend alignment
# if hasattr(market_state, 'trend_strength'):
# if action == 1 and market_state.trend_strength > 0.6: # BUY in uptrend
# base_reward += 0.2
# elif action == 2 and market_state.trend_strength < 0.4: # SELL in downtrend
# base_reward += 0.2
# return base_reward
# except Exception as e:
# logger.warning(f"Error calculating reward for {symbol}: {e}")
# return 0.0
# def _update_training_stats(self, training_results: Dict[str, any], market_states: Dict[str, any]):
# """Update training statistics"""
# self.training_stats['training_sessions'] += 1
# self.training_stats['total_experiences'] += training_results.get('total_experiences', 0)
# self.training_stats['avg_state_size'] = training_results.get('avg_state_size', 0)
# self.training_stats['last_training_time'] = datetime.now()
# # Log statistics periodically
# if self.training_stats['training_sessions'] % 10 == 0:
# logger.info("Training Statistics:")
# logger.info(f" Sessions: {self.training_stats['training_sessions']}")
# logger.info(f" Total Experiences: {self.training_stats['total_experiences']}")
# logger.info(f" Avg State Size: {self.training_stats['avg_state_size']:.0f}")
# logger.info(f" Data Quality: {self.training_stats['data_quality_score']:.2f}")
# def _log_state_size_info(self, market_states: Dict[str, any]):
# """Log information about state sizes for debugging"""
# for symbol, state in market_states.items():
# info = []
# if hasattr(state, 'raw_ticks'):
# info.append(f"ticks: {len(state.raw_ticks)}")
# if hasattr(state, 'ohlcv_data'):
# total_bars = sum(len(bars) for bars in state.ohlcv_data.values())
# info.append(f"OHLCV bars: {total_bars}")
# if hasattr(state, 'cnn_hidden_features') and state.cnn_hidden_features:
# info.append("CNN features: available")
# if hasattr(state, 'pivot_points') and state.pivot_points:
# info.append("pivot points: available")
# logger.info(f"{symbol} state data: {', '.join(info)}")
# async def _save_training_progress(self):
# """Save training progress and models"""
# try:
# if self.rl_trainer:
# self.rl_trainer._save_all_models()
# logger.info("Training progress saved")
# except Exception as e:
# logger.error(f"Error saving training progress: {e}")
# async def shutdown(self):
# """Graceful shutdown"""
# logger.info("Shutting down enhanced RL training system...")
# self.running = False
# # Save final state
# await self._save_training_progress()
# # Stop data provider
# if self.data_provider:
# await self.data_provider.stop_real_time_streaming()
# logger.info("Enhanced RL training system shutdown complete")
# async def main():
# """Main function to run enhanced RL training"""
# system = None
# def signal_handler(signum, frame):
# logger.info("Received shutdown signal")
# if system:
# asyncio.create_task(system.shutdown())
# # Set up signal handlers
# signal.signal(signal.SIGINT, signal_handler)
# signal.signal(signal.SIGTERM, signal_handler)
# try:
# # Create and initialize the training system
# system = EnhancedRLTrainingSystem()
# await system.initialize()
# logger.info("Enhanced RL Training System is now running...")
# logger.info("The RL model now receives ~13,400 features instead of ~100!")
# logger.info("Press Ctrl+C to stop")
# # Run the training loop
# await system.run_training_loop()
# except KeyboardInterrupt:
# logger.info("Training interrupted by user")
# except Exception as e:
# logger.error(f"Error in main training loop: {e}")
# raise
# finally:
# if system:
# await system.shutdown()
# if __name__ == "__main__":
# asyncio.run(main())