2491 lines
104 KiB
Python
2491 lines
104 KiB
Python
import asyncio
|
|
import json
|
|
import logging
|
|
|
|
# Fix PIL import issue that causes plotly JSON serialization errors
|
|
import os
|
|
os.environ['MPLBACKEND'] = 'Agg' # Use non-interactive backend
|
|
try:
|
|
# Try to fix PIL import issue
|
|
import PIL.Image
|
|
# Disable PIL in plotly to prevent circular import issues
|
|
import plotly.io as pio
|
|
pio.kaleido.scope.default_format = "png"
|
|
except ImportError:
|
|
pass
|
|
except Exception:
|
|
# Suppress any PIL-related errors during import
|
|
pass
|
|
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
import websockets
|
|
import plotly.graph_objects as go
|
|
from plotly.subplots import make_subplots
|
|
import dash
|
|
from dash import html, dcc
|
|
from dash.dependencies import Input, Output
|
|
import pandas as pd
|
|
import numpy as np
|
|
from collections import deque
|
|
import time
|
|
from threading import Thread
|
|
import requests
|
|
import os
|
|
from datetime import datetime, timedelta
|
|
import pytz
|
|
import tzlocal
|
|
import threading
|
|
import random
|
|
import dash_bootstrap_components as dbc
|
|
import uuid
|
|
import ta
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
import re
|
|
import psutil
|
|
import gc
|
|
import websocket
|
|
|
|
# Import psycopg2 with error handling
|
|
try:
|
|
import psycopg2
|
|
PSYCOPG2_AVAILABLE = True
|
|
except ImportError:
|
|
PSYCOPG2_AVAILABLE = False
|
|
psycopg2 = None
|
|
|
|
# TimescaleDB configuration from environment variables
|
|
TIMESCALEDB_ENABLED = os.environ.get('TIMESCALEDB_ENABLED', '1') == '1' and PSYCOPG2_AVAILABLE
|
|
TIMESCALEDB_HOST = os.environ.get('TIMESCALEDB_HOST', '192.168.0.10')
|
|
TIMESCALEDB_PORT = int(os.environ.get('TIMESCALEDB_PORT', '5432'))
|
|
TIMESCALEDB_USER = os.environ.get('TIMESCALEDB_USER', 'postgres')
|
|
TIMESCALEDB_PASSWORD = os.environ.get('TIMESCALEDB_PASSWORD', 'timescaledbpass')
|
|
TIMESCALEDB_DB = os.environ.get('TIMESCALEDB_DB', 'candles')
|
|
|
|
class TimescaleDBHandler:
|
|
"""Handler for TimescaleDB operations for candle storage and retrieval"""
|
|
|
|
def __init__(self):
|
|
"""Initialize TimescaleDB connection if enabled"""
|
|
self.enabled = TIMESCALEDB_ENABLED
|
|
self.conn = None
|
|
|
|
if not self.enabled:
|
|
if not PSYCOPG2_AVAILABLE:
|
|
print("psycopg2 module not available. TimescaleDB integration disabled.")
|
|
return
|
|
|
|
try:
|
|
# Connect to TimescaleDB
|
|
self.conn = psycopg2.connect(
|
|
host=TIMESCALEDB_HOST,
|
|
port=TIMESCALEDB_PORT,
|
|
user=TIMESCALEDB_USER,
|
|
password=TIMESCALEDB_PASSWORD,
|
|
dbname=TIMESCALEDB_DB
|
|
)
|
|
print(f"Connected to TimescaleDB at {TIMESCALEDB_HOST}:{TIMESCALEDB_PORT}")
|
|
|
|
# Ensure the candles table exists
|
|
self._ensure_table()
|
|
|
|
print("TimescaleDB integration initialized successfully")
|
|
except Exception as e:
|
|
print(f"Error connecting to TimescaleDB: {str(e)}")
|
|
self.enabled = False
|
|
self.conn = None
|
|
|
|
def _ensure_table(self):
|
|
"""Ensure the candles table exists with TimescaleDB hypertable"""
|
|
if not self.conn:
|
|
return
|
|
|
|
try:
|
|
with self.conn.cursor() as cur:
|
|
# Create the candles table if it doesn't exist
|
|
cur.execute('''
|
|
CREATE TABLE IF NOT EXISTS candles (
|
|
symbol TEXT,
|
|
interval TEXT,
|
|
timestamp TIMESTAMPTZ,
|
|
open DOUBLE PRECISION,
|
|
high DOUBLE PRECISION,
|
|
low DOUBLE PRECISION,
|
|
close DOUBLE PRECISION,
|
|
volume DOUBLE PRECISION,
|
|
PRIMARY KEY (symbol, interval, timestamp)
|
|
);
|
|
''')
|
|
|
|
# Check if the table is already a hypertable
|
|
cur.execute('''
|
|
SELECT EXISTS (
|
|
SELECT 1 FROM timescaledb_information.hypertables
|
|
WHERE hypertable_name = 'candles'
|
|
);
|
|
''')
|
|
is_hypertable = cur.fetchone()[0]
|
|
|
|
# Convert to hypertable if not already done
|
|
if not is_hypertable:
|
|
cur.execute('''
|
|
SELECT create_hypertable('candles', 'timestamp',
|
|
if_not_exists => TRUE,
|
|
migrate_data => TRUE
|
|
);
|
|
''')
|
|
|
|
self.conn.commit()
|
|
print("TimescaleDB table structure verified")
|
|
except Exception as e:
|
|
print(f"Error setting up TimescaleDB tables: {str(e)}")
|
|
self.enabled = False
|
|
|
|
def upsert_candle(self, symbol, interval, candle):
|
|
"""Insert or update a candle in TimescaleDB"""
|
|
if not self.enabled or not self.conn:
|
|
return False
|
|
|
|
try:
|
|
with self.conn.cursor() as cur:
|
|
cur.execute('''
|
|
INSERT INTO candles (
|
|
symbol, interval, timestamp,
|
|
open, high, low, close, volume
|
|
)
|
|
VALUES (%s, %s, %s, %s, %s, %s, %s, %s)
|
|
ON CONFLICT (symbol, interval, timestamp)
|
|
DO UPDATE SET
|
|
open = EXCLUDED.open,
|
|
high = EXCLUDED.high,
|
|
low = EXCLUDED.low,
|
|
close = EXCLUDED.close,
|
|
volume = EXCLUDED.volume
|
|
''', (
|
|
symbol, interval, candle['timestamp'],
|
|
candle['open'], candle['high'], candle['low'],
|
|
candle['close'], candle['volume']
|
|
))
|
|
self.conn.commit()
|
|
return True
|
|
except Exception as e:
|
|
print(f"Error upserting candle to TimescaleDB: {str(e)}")
|
|
# Try to reconnect on error
|
|
try:
|
|
self.conn = psycopg2.connect(
|
|
host=TIMESCALEDB_HOST,
|
|
port=TIMESCALEDB_PORT,
|
|
user=TIMESCALEDB_USER,
|
|
password=TIMESCALEDB_PASSWORD,
|
|
dbname=TIMESCALEDB_DB
|
|
)
|
|
except:
|
|
pass
|
|
return False
|
|
|
|
def fetch_candles(self, symbol, interval, limit=1000):
|
|
"""Fetch candles from TimescaleDB"""
|
|
if not self.enabled or not self.conn:
|
|
return []
|
|
|
|
try:
|
|
with self.conn.cursor() as cur:
|
|
cur.execute('''
|
|
SELECT timestamp, open, high, low, close, volume
|
|
FROM candles
|
|
WHERE symbol = %s AND interval = %s
|
|
ORDER BY timestamp DESC
|
|
LIMIT %s
|
|
''', (symbol, interval, limit))
|
|
|
|
rows = cur.fetchall()
|
|
|
|
# Convert to list of dictionaries (ordered from oldest to newest)
|
|
candles = []
|
|
for row in reversed(rows): # Reverse to get oldest first
|
|
candle = {
|
|
'timestamp': row[0],
|
|
'open': row[1],
|
|
'high': row[2],
|
|
'low': row[3],
|
|
'close': row[4],
|
|
'volume': row[5]
|
|
}
|
|
candles.append(candle)
|
|
|
|
return candles
|
|
except Exception as e:
|
|
print(f"Error fetching candles from TimescaleDB: {str(e)}")
|
|
# Try to reconnect on error
|
|
try:
|
|
self.conn = psycopg2.connect(
|
|
host=TIMESCALEDB_HOST,
|
|
port=TIMESCALEDB_PORT,
|
|
user=TIMESCALEDB_USER,
|
|
password=TIMESCALEDB_PASSWORD,
|
|
dbname=TIMESCALEDB_DB
|
|
)
|
|
except:
|
|
pass
|
|
return []
|
|
|
|
class BinanceHistoricalData:
|
|
"""
|
|
Class for fetching historical price data from Binance.
|
|
"""
|
|
def __init__(self):
|
|
self.base_url = "https://api.binance.com/api/v3"
|
|
self.cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cache')
|
|
if not os.path.exists(self.cache_dir):
|
|
os.makedirs(self.cache_dir)
|
|
# Timestamp of last data update
|
|
self.last_update = None
|
|
|
|
def get_historical_candles(self, symbol, interval_seconds=3600, limit=1000):
|
|
"""
|
|
Fetch historical candles from Binance API.
|
|
|
|
Args:
|
|
symbol (str): Trading pair symbol (e.g., "BTC/USDT")
|
|
interval_seconds (int): Timeframe in seconds (e.g., 3600 for 1h)
|
|
limit (int): Number of candles to fetch
|
|
|
|
Returns:
|
|
pd.DataFrame: DataFrame with OHLCV data
|
|
"""
|
|
# Convert interval_seconds to Binance interval format
|
|
interval_map = {
|
|
1: "1s",
|
|
60: "1m",
|
|
300: "5m",
|
|
900: "15m",
|
|
1800: "30m",
|
|
3600: "1h",
|
|
14400: "4h",
|
|
86400: "1d"
|
|
}
|
|
|
|
interval = interval_map.get(interval_seconds, "1h")
|
|
|
|
# Format symbol for Binance API (remove slash and make uppercase)
|
|
formatted_symbol = symbol.replace("/", "").upper()
|
|
|
|
# Check if we have cached data first
|
|
cache_file = self._get_cache_filename(formatted_symbol, interval)
|
|
cached_data = self._load_from_cache(formatted_symbol, interval)
|
|
|
|
# If we have cached data that's recent enough, use it
|
|
if cached_data is not None and len(cached_data) >= limit:
|
|
cache_age_minutes = (datetime.now() - self.last_update).total_seconds() / 60 if self.last_update else 60
|
|
if cache_age_minutes < 15: # Only use cache if it's less than 15 minutes old
|
|
logger.info(f"Using cached historical data for {symbol} ({interval})")
|
|
return cached_data
|
|
|
|
try:
|
|
# Build URL for klines endpoint
|
|
url = f"{self.base_url}/klines"
|
|
params = {
|
|
"symbol": formatted_symbol,
|
|
"interval": interval,
|
|
"limit": limit
|
|
}
|
|
|
|
# Make the request
|
|
response = requests.get(url, params=params)
|
|
response.raise_for_status()
|
|
|
|
# Parse the response
|
|
data = response.json()
|
|
|
|
# Create dataframe
|
|
df = pd.DataFrame(data, columns=[
|
|
"timestamp", "open", "high", "low", "close", "volume",
|
|
"close_time", "quote_asset_volume", "number_of_trades",
|
|
"taker_buy_base_asset_volume", "taker_buy_quote_asset_volume", "ignore"
|
|
])
|
|
|
|
# Convert timestamp to datetime
|
|
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
|
|
|
# Convert price columns to float
|
|
for col in ["open", "high", "low", "close", "volume"]:
|
|
df[col] = df[col].astype(float)
|
|
|
|
# Sort by timestamp
|
|
df = df.sort_values("timestamp")
|
|
|
|
# Save to cache for future use
|
|
self._save_to_cache(df, formatted_symbol, interval)
|
|
self.last_update = datetime.now()
|
|
|
|
logger.info(f"Fetched {len(df)} candles for {symbol} ({interval})")
|
|
return df
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching historical data from Binance: {str(e)}")
|
|
# Return cached data if we have it, even if it's not enough
|
|
if cached_data is not None:
|
|
logger.warning(f"Using cached data instead (may be incomplete)")
|
|
return cached_data
|
|
# Return empty dataframe on error
|
|
return pd.DataFrame()
|
|
|
|
def _get_cache_filename(self, symbol, interval):
|
|
"""Get filename for cache file"""
|
|
return os.path.join(self.cache_dir, f"{symbol}_{interval}_candles.csv")
|
|
|
|
def _load_from_cache(self, symbol, interval):
|
|
"""Load candles from cache file"""
|
|
try:
|
|
cache_file = self._get_cache_filename(symbol, interval)
|
|
if os.path.exists(cache_file):
|
|
# For 1s interval, check if the cache is recent (less than 10 minutes old)
|
|
if interval == "1s" or interval == 1:
|
|
file_mod_time = datetime.fromtimestamp(os.path.getmtime(cache_file))
|
|
time_diff = (datetime.now() - file_mod_time).total_seconds() / 60
|
|
if time_diff > 10:
|
|
logger.info("1s cache is older than 10 minutes, skipping load")
|
|
return None
|
|
logger.info(f"Using recent 1s cache (age: {time_diff:.1f} minutes)")
|
|
|
|
df = pd.read_csv(cache_file)
|
|
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
|
logger.info(f"Loaded {len(df)} candles from cache: {cache_file}")
|
|
return df
|
|
except Exception as e:
|
|
logger.error(f"Error loading cached data: {str(e)}")
|
|
return None
|
|
|
|
def _save_to_cache(self, df, symbol, interval):
|
|
"""Save candles to cache file"""
|
|
try:
|
|
cache_file = self._get_cache_filename(symbol, interval)
|
|
df.to_csv(cache_file, index=False)
|
|
logger.info(f"Saved {len(df)} candles to cache: {cache_file}")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error saving to cache: {str(e)}")
|
|
return False
|
|
|
|
def get_recent_trades(self, symbol, limit=1000):
|
|
"""Get recent trades for a symbol"""
|
|
formatted_symbol = symbol.replace("/", "")
|
|
|
|
try:
|
|
url = f"{self.base_url}/trades"
|
|
params = {
|
|
"symbol": formatted_symbol,
|
|
"limit": limit
|
|
}
|
|
|
|
response = requests.get(url, params=params)
|
|
response.raise_for_status()
|
|
|
|
data = response.json()
|
|
|
|
# Create dataframe
|
|
df = pd.DataFrame(data)
|
|
df["time"] = pd.to_datetime(df["time"], unit="ms")
|
|
df["price"] = df["price"].astype(float)
|
|
df["qty"] = df["qty"].astype(float)
|
|
|
|
return df
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error fetching recent trades: {str(e)}")
|
|
return pd.DataFrame()
|
|
|
|
class MultiTimeframeDataInterface:
|
|
"""
|
|
Enhanced Data Interface supporting:
|
|
- Multiple trading pairs
|
|
- Multiple timeframes per pair (1s, 1m, 1h, 1d + custom)
|
|
- Technical indicators
|
|
- Cross-timeframe normalization
|
|
- Real-time data updates
|
|
"""
|
|
|
|
def __init__(self, symbol=None, timeframes=None, data_dir="data"):
|
|
"""
|
|
Initialize the data interface.
|
|
|
|
Args:
|
|
symbol (str): Trading pair symbol (e.g., "BTC/USDT")
|
|
timeframes (list): List of timeframes to use (e.g., ['1m', '5m', '1h', '4h', '1d'])
|
|
data_dir (str): Directory to store/load datasets
|
|
"""
|
|
self.symbol = symbol
|
|
self.timeframes = timeframes or ['1h', '4h', '1d']
|
|
self.data_dir = data_dir
|
|
self.scalers = {} # Store scalers for each timeframe
|
|
|
|
# Initialize the historical data fetcher
|
|
self.historical_data = BinanceHistoricalData()
|
|
|
|
# Create data directory if it doesn't exist
|
|
os.makedirs(self.data_dir, exist_ok=True)
|
|
|
|
# Initialize empty dataframes for each timeframe
|
|
self.dataframes = {tf: None for tf in self.timeframes}
|
|
|
|
# Store timestamps of last updates per timeframe
|
|
self.last_updates = {tf: None for tf in self.timeframes}
|
|
|
|
# Timeframe mapping (string to seconds)
|
|
self.timeframe_to_seconds = {
|
|
'1s': 1,
|
|
'1m': 60,
|
|
'5m': 300,
|
|
'15m': 900,
|
|
'30m': 1800,
|
|
'1h': 3600,
|
|
'4h': 14400,
|
|
'1d': 86400
|
|
}
|
|
|
|
logger.info(f"MultiTimeframeDataInterface initialized for {symbol} with timeframes {timeframes}")
|
|
|
|
def get_data(self, timeframe='1h', n_candles=1000, refresh=False, add_indicators=True):
|
|
"""
|
|
Fetch historical price data for a given timeframe with optional indicators.
|
|
|
|
Args:
|
|
timeframe (str): Timeframe to fetch data for
|
|
n_candles (int): Number of candles to fetch
|
|
refresh (bool): Force refresh of the data
|
|
add_indicators (bool): Whether to add technical indicators
|
|
|
|
Returns:
|
|
pd.DataFrame: DataFrame with OHLCV data and indicators
|
|
"""
|
|
# Check if we need to refresh
|
|
current_time = datetime.now()
|
|
|
|
if (not refresh and
|
|
self.dataframes[timeframe] is not None and
|
|
self.last_updates[timeframe] is not None and
|
|
(current_time - self.last_updates[timeframe]).total_seconds() < 60):
|
|
logger.info(f"Using cached data for {self.symbol} {timeframe}")
|
|
return self.dataframes[timeframe]
|
|
|
|
interval_seconds = self.timeframe_to_seconds.get(timeframe, 3600)
|
|
|
|
# Fetch data
|
|
df = self.historical_data.get_historical_candles(
|
|
symbol=self.symbol,
|
|
interval_seconds=interval_seconds,
|
|
limit=n_candles
|
|
)
|
|
|
|
if df is None or df.empty:
|
|
logger.error(f"No data available for {self.symbol} {timeframe}")
|
|
return None
|
|
|
|
# Add indicators if requested
|
|
if add_indicators:
|
|
df = self.add_indicators(df)
|
|
|
|
# Store in cache
|
|
self.dataframes[timeframe] = df
|
|
self.last_updates[timeframe] = current_time
|
|
|
|
logger.info(f"Fetched and processed {len(df)} candles for {self.symbol} {timeframe}")
|
|
return df
|
|
|
|
def add_indicators(self, df):
|
|
"""
|
|
Add comprehensive technical indicators to the dataframe.
|
|
|
|
Args:
|
|
df (pd.DataFrame): DataFrame with OHLCV data
|
|
|
|
Returns:
|
|
pd.DataFrame: DataFrame with added technical indicators
|
|
"""
|
|
# Make a copy to avoid modifying the original
|
|
df_copy = df.copy()
|
|
|
|
# Basic price indicators
|
|
df_copy['returns'] = df_copy['close'].pct_change()
|
|
df_copy['log_returns'] = np.log(df_copy['close'] / df_copy['close'].shift(1))
|
|
|
|
# Moving Averages
|
|
df_copy['sma_7'] = ta.trend.sma_indicator(df_copy['close'], window=7)
|
|
df_copy['sma_25'] = ta.trend.sma_indicator(df_copy['close'], window=25)
|
|
df_copy['sma_99'] = ta.trend.sma_indicator(df_copy['close'], window=99)
|
|
df_copy['ema_9'] = ta.trend.ema_indicator(df_copy['close'], window=9)
|
|
df_copy['ema_21'] = ta.trend.ema_indicator(df_copy['close'], window=21)
|
|
|
|
# MACD
|
|
macd = ta.trend.MACD(df_copy['close'])
|
|
df_copy['macd'] = macd.macd()
|
|
df_copy['macd_signal'] = macd.macd_signal()
|
|
df_copy['macd_diff'] = macd.macd_diff()
|
|
|
|
# RSI
|
|
df_copy['rsi'] = ta.momentum.rsi(df_copy['close'], window=14)
|
|
|
|
# Bollinger Bands
|
|
bollinger = ta.volatility.BollingerBands(df_copy['close'])
|
|
df_copy['bb_high'] = bollinger.bollinger_hband()
|
|
df_copy['bb_low'] = bollinger.bollinger_lband()
|
|
df_copy['bb_pct'] = bollinger.bollinger_pband()
|
|
|
|
# Stochastic Oscillator
|
|
stoch = ta.momentum.StochasticOscillator(df_copy['high'], df_copy['low'], df_copy['close'])
|
|
df_copy['stoch_k'] = stoch.stoch()
|
|
df_copy['stoch_d'] = stoch.stoch_signal()
|
|
|
|
# ATR - Average True Range
|
|
df_copy['atr'] = ta.volatility.average_true_range(df_copy['high'], df_copy['low'], df_copy['close'], window=14)
|
|
|
|
# Money Flow Index
|
|
df_copy['mfi'] = ta.volume.money_flow_index(df_copy['high'], df_copy['low'], df_copy['close'], df_copy['volume'], window=14)
|
|
|
|
# OBV - On-Balance Volume
|
|
df_copy['obv'] = ta.volume.on_balance_volume(df_copy['close'], df_copy['volume'])
|
|
|
|
# Ichimoku Cloud
|
|
ichimoku = ta.trend.IchimokuIndicator(df_copy['high'], df_copy['low'])
|
|
df_copy['ichimoku_a'] = ichimoku.ichimoku_a()
|
|
df_copy['ichimoku_b'] = ichimoku.ichimoku_b()
|
|
df_copy['ichimoku_base'] = ichimoku.ichimoku_base_line()
|
|
df_copy['ichimoku_conv'] = ichimoku.ichimoku_conversion_line()
|
|
|
|
# ADX - Average Directional Index
|
|
adx = ta.trend.ADXIndicator(df_copy['high'], df_copy['low'], df_copy['close'])
|
|
df_copy['adx'] = adx.adx()
|
|
df_copy['adx_pos'] = adx.adx_pos()
|
|
df_copy['adx_neg'] = adx.adx_neg()
|
|
|
|
# VWAP - Volume Weighted Average Price (intraday)
|
|
# Custom calculation since TA library doesn't include VWAP
|
|
df_copy['vwap'] = (df_copy['volume'] * (df_copy['high'] + df_copy['low'] + df_copy['close']) / 3).cumsum() / df_copy['volume'].cumsum()
|
|
|
|
# Fill NaN values
|
|
df_copy = df_copy.fillna(method='bfill').fillna(0)
|
|
|
|
return df_copy
|
|
|
|
def get_multi_timeframe_data(self, timeframes=None, n_candles=1000, refresh=False, add_indicators=True):
|
|
"""
|
|
Fetch data for multiple timeframes.
|
|
|
|
Args:
|
|
timeframes (list): List of timeframes to fetch
|
|
n_candles (int): Number of candles to fetch for each timeframe
|
|
refresh (bool): Force refresh of the data
|
|
add_indicators (bool): Whether to add technical indicators
|
|
|
|
Returns:
|
|
dict: Dictionary of dataframes indexed by timeframe
|
|
"""
|
|
if timeframes is None:
|
|
timeframes = self.timeframes
|
|
|
|
result = {}
|
|
|
|
for tf in timeframes:
|
|
# For higher timeframes, we need fewer candles
|
|
tf_candles = n_candles
|
|
if tf == '4h':
|
|
tf_candles = max(250, n_candles // 4)
|
|
elif tf == '1d':
|
|
tf_candles = max(100, n_candles // 24)
|
|
|
|
df = self.get_data(timeframe=tf, n_candles=tf_candles, refresh=refresh, add_indicators=add_indicators)
|
|
if df is not None and not df.empty:
|
|
result[tf] = df
|
|
|
|
return result
|
|
|
|
def prepare_training_data(self, window_size=20, train_ratio=0.8, refresh=False):
|
|
"""
|
|
Prepare training data from multiple timeframes.
|
|
|
|
Args:
|
|
window_size (int): Size of the sliding window
|
|
train_ratio (float): Ratio of data to use for training
|
|
refresh (bool): Whether to refresh the data
|
|
|
|
Returns:
|
|
tuple: (X_train, y_train, X_val, y_val, train_prices, val_prices)
|
|
"""
|
|
# Get data for all timeframes
|
|
data_dict = self.get_multi_timeframe_data(refresh=refresh)
|
|
|
|
if not data_dict:
|
|
logger.error("Failed to fetch data for any timeframe")
|
|
return None, None, None, None, None, None
|
|
|
|
# Align all dataframes by timestamp
|
|
all_dfs = list(data_dict.values())
|
|
min_date = max([df['timestamp'].min() for df in all_dfs])
|
|
max_date = min([df['timestamp'].max() for df in all_dfs])
|
|
|
|
aligned_dfs = {}
|
|
for tf, df in data_dict.items():
|
|
aligned_df = df[(df['timestamp'] >= min_date) & (df['timestamp'] <= max_date)]
|
|
aligned_dfs[tf] = aligned_df
|
|
|
|
# Choose the lowest timeframe as the reference for time alignment
|
|
reference_tf = min(self.timeframes, key=lambda x: self.timeframe_to_seconds.get(x, 3600))
|
|
reference_df = aligned_dfs[reference_tf]
|
|
|
|
# Create sliding windows for each timeframe
|
|
X_dict = {}
|
|
for tf, df in aligned_dfs.items():
|
|
# Drop timestamp and create numeric features
|
|
features = df.drop('timestamp', axis=1).values
|
|
|
|
# Ensure the feature array is 3D: [samples, window, features]
|
|
X = np.array([features[i:i+window_size] for i in range(len(features)-window_size)])
|
|
X_dict[tf] = X
|
|
|
|
# Create target labels based on future price movements
|
|
reference_prices = reference_df['close'].values
|
|
future_prices = reference_prices[window_size:]
|
|
current_prices = reference_prices[window_size-1:-1]
|
|
|
|
# Calculate returns
|
|
returns = (future_prices - current_prices) / current_prices
|
|
|
|
# Create labels: 0=SELL, 1=HOLD, 2=BUY
|
|
threshold = 0.0005 # 0.05% threshold
|
|
y = np.zeros(len(returns), dtype=int)
|
|
y[returns > threshold] = 2 # BUY
|
|
y[returns < -threshold] = 0 # SELL
|
|
y[(returns >= -threshold) & (returns <= threshold)] = 1 # HOLD
|
|
|
|
# Split into training and validation sets
|
|
split_idx = int(len(y) * train_ratio)
|
|
|
|
X_train_dict = {tf: X[:split_idx] for tf, X in X_dict.items()}
|
|
X_val_dict = {tf: X[split_idx:] for tf, X in X_dict.items()}
|
|
|
|
y_train = y[:split_idx]
|
|
y_val = y[split_idx:]
|
|
|
|
train_prices = reference_prices[window_size-1:window_size-1+split_idx]
|
|
val_prices = reference_prices[window_size-1+split_idx:window_size-1+len(y)]
|
|
|
|
logger.info(f"Prepared training data - Train: {len(y_train)}, Val: {len(y_val)}")
|
|
|
|
return X_train_dict, y_train, X_val_dict, y_val, train_prices, val_prices
|
|
|
|
def normalize_data(self, data_dict, fit=True):
|
|
"""
|
|
Normalize data across all timeframes.
|
|
|
|
Args:
|
|
data_dict (dict): Dictionary of data arrays by timeframe
|
|
fit (bool): Whether to fit new scalers or use existing ones
|
|
|
|
Returns:
|
|
dict: Dictionary of normalized data arrays
|
|
"""
|
|
result = {}
|
|
|
|
for tf, data in data_dict.items():
|
|
# For 3D data [samples, window, features]
|
|
if len(data.shape) == 3:
|
|
samples, window, features = data.shape
|
|
reshaped = data.reshape(-1, features)
|
|
|
|
if fit or tf not in self.scalers:
|
|
self.scalers[tf] = MinMaxScaler()
|
|
normalized = self.scalers[tf].fit_transform(reshaped)
|
|
else:
|
|
normalized = self.scalers[tf].transform(reshaped)
|
|
|
|
result[tf] = normalized.reshape(samples, window, features)
|
|
|
|
# For 2D data [samples, features]
|
|
elif len(data.shape) == 2:
|
|
if fit or tf not in self.scalers:
|
|
self.scalers[tf] = MinMaxScaler()
|
|
result[tf] = self.scalers[tf].fit_transform(data)
|
|
else:
|
|
result[tf] = self.scalers[tf].transform(data)
|
|
|
|
return result
|
|
|
|
def get_realtime_features(self, timeframes=None, window_size=20):
|
|
"""
|
|
Get the most recent data for real-time prediction.
|
|
|
|
Args:
|
|
timeframes (list): List of timeframes to use
|
|
window_size (int): Size of the sliding window
|
|
|
|
Returns:
|
|
dict: Dictionary of feature arrays for the latest window
|
|
"""
|
|
if timeframes is None:
|
|
timeframes = self.timeframes
|
|
|
|
# Get fresh data
|
|
data_dict = self.get_multi_timeframe_data(timeframes=timeframes, refresh=True)
|
|
|
|
result = {}
|
|
for tf, df in data_dict.items():
|
|
if len(df) < window_size:
|
|
logger.warning(f"Not enough data for {tf} (need {window_size}, got {len(df)})")
|
|
continue
|
|
|
|
# Get the latest window
|
|
latest_data = df.tail(window_size).drop('timestamp', axis=1).values
|
|
|
|
# Add extra dimension to match model input shape [1, window_size, features]
|
|
result[tf] = latest_data.reshape(1, window_size, -1)
|
|
|
|
# Apply normalization using existing scalers
|
|
if self.scalers:
|
|
result = self.normalize_data(result, fit=False)
|
|
|
|
return result
|
|
|
|
def calculate_pnl(self, predictions, prices, position_size=1.0, fee_rate=0.0002):
|
|
"""
|
|
Calculate PnL and win rate from predictions.
|
|
|
|
Args:
|
|
predictions (np.ndarray): Array of predicted actions (0=SELL, 1=HOLD, 2=BUY)
|
|
prices (np.ndarray): Array of prices
|
|
position_size (float): Size of each position
|
|
fee_rate (float): Trading fee rate (default: 0.0002 for 0.02% per trade)
|
|
|
|
Returns:
|
|
tuple: (total_pnl, win_rate, trades)
|
|
"""
|
|
if len(predictions) < 2 or len(prices) < 2:
|
|
return 0.0, 0.0, []
|
|
|
|
# Ensure arrays are the same length
|
|
min_len = min(len(predictions), len(prices)-1)
|
|
actions = predictions[:min_len]
|
|
|
|
pnl = 0.0
|
|
wins = 0
|
|
trades = []
|
|
|
|
for i in range(min_len):
|
|
current_price = prices[i]
|
|
next_price = prices[i+1]
|
|
action = actions[i]
|
|
|
|
# Skip HOLD actions
|
|
if action == 1:
|
|
continue
|
|
|
|
price_change = (next_price - current_price) / current_price
|
|
|
|
if action == 2: # BUY
|
|
# Calculate raw PnL
|
|
raw_pnl = price_change * position_size
|
|
|
|
# Calculate fees (entry and exit)
|
|
entry_fee = position_size * fee_rate
|
|
exit_fee = position_size * (1 + price_change) * fee_rate
|
|
total_fees = entry_fee + exit_fee
|
|
|
|
# Net PnL after fees
|
|
trade_pnl = raw_pnl - total_fees
|
|
|
|
trade_type = 'BUY'
|
|
is_win = trade_pnl > 0
|
|
elif action == 0: # SELL
|
|
# Calculate raw PnL
|
|
raw_pnl = -price_change * position_size
|
|
|
|
# Calculate fees (entry and exit)
|
|
entry_fee = position_size * fee_rate
|
|
exit_fee = position_size * (1 - price_change) * fee_rate
|
|
total_fees = entry_fee + exit_fee
|
|
|
|
# Net PnL after fees
|
|
trade_pnl = raw_pnl - total_fees
|
|
|
|
trade_type = 'SELL'
|
|
is_win = trade_pnl > 0
|
|
else:
|
|
continue
|
|
|
|
pnl += trade_pnl
|
|
wins += int(is_win)
|
|
|
|
trades.append({
|
|
'type': trade_type,
|
|
'entry': float(current_price), # Ensure serializable
|
|
'exit': float(next_price),
|
|
'raw_pnl': float(raw_pnl),
|
|
'fees': float(total_fees),
|
|
'pnl': float(trade_pnl),
|
|
'win': bool(is_win),
|
|
'timestamp': datetime.now().isoformat() # Add timestamp
|
|
})
|
|
|
|
win_rate = wins / len(trades) if trades else 0.0
|
|
|
|
return float(pnl), float(win_rate), trades
|
|
|
|
# Configure logging with more detailed format
|
|
logging.basicConfig(
|
|
level=logging.INFO, # Changed to DEBUG for more detailed logs
|
|
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
|
|
handlers=[
|
|
logging.StreamHandler(),
|
|
logging.FileHandler('realtime_chart.log')
|
|
]
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Neural Network integration (conditional import)
|
|
NN_ENABLED = os.environ.get('ENABLE_NN_MODELS', '0') == '1'
|
|
nn_orchestrator = None
|
|
nn_inference_thread = None
|
|
|
|
if NN_ENABLED:
|
|
try:
|
|
import sys
|
|
# Add project root to sys.path if needed
|
|
project_root = os.path.dirname(os.path.abspath(__file__))
|
|
if project_root not in sys.path:
|
|
sys.path.append(project_root)
|
|
|
|
from NN.main import NeuralNetworkOrchestrator
|
|
logger.info("Neural Network module enabled")
|
|
except ImportError as e:
|
|
logger.warning(f"Failed to import Neural Network module, disabling NN features: {str(e)}")
|
|
NN_ENABLED = False
|
|
|
|
# NN utility functions
|
|
def setup_neural_network():
|
|
"""Initialize the neural network components if enabled"""
|
|
global nn_orchestrator, NN_ENABLED
|
|
|
|
if not NN_ENABLED:
|
|
return False
|
|
|
|
try:
|
|
# Get configuration from environment variables or use defaults
|
|
symbol = os.environ.get('NN_SYMBOL', 'ETH/USDT')
|
|
timeframes = os.environ.get('NN_TIMEFRAMES', '1m,5m,1h,4h,1d').split(',')
|
|
output_size = int(os.environ.get('NN_OUTPUT_SIZE', '3')) # 3 for BUY/HOLD/SELL
|
|
|
|
# Configure the orchestrator
|
|
config = {
|
|
'symbol': symbol,
|
|
'timeframes': timeframes,
|
|
'window_size': int(os.environ.get('NN_WINDOW_SIZE', '20')),
|
|
'n_features': 5, # OHLCV
|
|
'output_size': output_size,
|
|
'model_dir': 'NN/models/saved',
|
|
'data_dir': 'NN/data'
|
|
}
|
|
|
|
# Initialize the orchestrator
|
|
logger.info(f"Initializing Neural Network Orchestrator with config: {config}")
|
|
nn_orchestrator = NeuralNetworkOrchestrator(config)
|
|
|
|
# Load the model
|
|
model_loaded = nn_orchestrator.load_model()
|
|
if not model_loaded:
|
|
logger.warning("Failed to load neural network model. Using untrained model.")
|
|
|
|
return model_loaded
|
|
except Exception as e:
|
|
logger.error(f"Error setting up neural network: {str(e)}")
|
|
NN_ENABLED = False
|
|
return False
|
|
|
|
def start_nn_inference_thread(interval_seconds):
|
|
"""Start a background thread to periodically run inference with the neural network"""
|
|
global nn_inference_thread
|
|
|
|
if not NN_ENABLED or nn_orchestrator is None:
|
|
logger.warning("Cannot start inference thread - Neural Network not enabled or initialized")
|
|
return False
|
|
|
|
def inference_worker():
|
|
"""Worker function for the inference thread"""
|
|
model_type = os.environ.get('NN_MODEL_TYPE', 'cnn')
|
|
timeframe = os.environ.get('NN_TIMEFRAME', '1h')
|
|
|
|
logger.info(f"Starting neural network inference thread with {interval_seconds}s interval")
|
|
logger.info(f"Using model type: {model_type}, timeframe: {timeframe}")
|
|
|
|
# Wait a bit for charts to initialize
|
|
time.sleep(5)
|
|
|
|
# Track active charts
|
|
active_charts = []
|
|
|
|
while True:
|
|
try:
|
|
# Find active charts if we don't have them yet
|
|
if not active_charts and 'charts' in globals():
|
|
active_charts = globals()['charts']
|
|
logger.info(f"Found {len(active_charts)} active charts for NN signals")
|
|
|
|
# Run inference
|
|
result = nn_orchestrator.run_inference_pipeline(
|
|
model_type=model_type,
|
|
timeframe=timeframe
|
|
)
|
|
|
|
if result:
|
|
# Log the result
|
|
logger.info(f"Neural network inference result: {result}")
|
|
|
|
# Add signal to charts
|
|
if active_charts:
|
|
try:
|
|
if 'action' in result:
|
|
action = result['action']
|
|
timestamp = datetime.fromisoformat(result['timestamp'].replace('Z', '+00:00'))
|
|
|
|
# Get probability if available
|
|
probability = None
|
|
if 'probability' in result:
|
|
probability = result['probability']
|
|
elif 'probabilities' in result:
|
|
probability = result['probabilities'].get(action, None)
|
|
|
|
# Add signal to each chart
|
|
for chart in active_charts:
|
|
if hasattr(chart, 'add_nn_signal'):
|
|
chart.add_nn_signal(action, timestamp, probability)
|
|
except Exception as e:
|
|
logger.error(f"Error adding NN signal to chart: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
# Sleep for the interval
|
|
time.sleep(interval_seconds)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in inference thread: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
time.sleep(5) # Wait a bit before retrying
|
|
|
|
# Create and start the thread
|
|
nn_inference_thread = threading.Thread(target=inference_worker, daemon=True)
|
|
nn_inference_thread.start()
|
|
|
|
return True
|
|
|
|
# Try to get local timezone, default to Sofia/EET if not available
|
|
try:
|
|
local_timezone = tzlocal.get_localzone()
|
|
# Get timezone name safely
|
|
try:
|
|
tz_name = str(local_timezone)
|
|
# Handle case where it might be zoneinfo.ZoneInfo object instead of pytz timezone
|
|
if hasattr(local_timezone, 'zone'):
|
|
tz_name = local_timezone.zone
|
|
elif hasattr(local_timezone, 'key'):
|
|
tz_name = local_timezone.key
|
|
else:
|
|
tz_name = str(local_timezone)
|
|
except:
|
|
tz_name = "Local"
|
|
logger.info(f"Detected local timezone: {local_timezone} ({tz_name})")
|
|
except Exception as e:
|
|
logger.warning(f"Could not detect local timezone: {str(e)}. Defaulting to Sofia/EET")
|
|
local_timezone = pytz.timezone('Europe/Sofia')
|
|
tz_name = "Europe/Sofia"
|
|
|
|
def convert_to_local_time(timestamp):
|
|
"""Convert timestamp to local timezone"""
|
|
try:
|
|
if isinstance(timestamp, pd.Timestamp):
|
|
dt = timestamp.to_pydatetime()
|
|
elif isinstance(timestamp, np.datetime64):
|
|
dt = pd.Timestamp(timestamp).to_pydatetime()
|
|
elif isinstance(timestamp, str):
|
|
dt = pd.to_datetime(timestamp).to_pydatetime()
|
|
else:
|
|
dt = timestamp
|
|
|
|
# If datetime is naive (no timezone), assume it's UTC
|
|
if dt.tzinfo is None:
|
|
dt = dt.replace(tzinfo=pytz.UTC)
|
|
|
|
# Convert to local timezone
|
|
local_dt = dt.astimezone(local_timezone)
|
|
return local_dt
|
|
except Exception as e:
|
|
logger.error(f"Error converting timestamp to local time: {str(e)}")
|
|
return timestamp
|
|
|
|
# Initialize TimescaleDB handler - only once, at module level
|
|
timescaledb_handler = TimescaleDBHandler() if TIMESCALEDB_ENABLED else None
|
|
|
|
class TickStorage:
|
|
def __init__(self, symbol, timeframes=None, use_timescaledb=False):
|
|
"""Initialize the tick storage for a specific symbol"""
|
|
self.symbol = symbol
|
|
self.timeframes = timeframes or ["1s", "5m", "15m", "1h", "4h", "1d"]
|
|
self.ticks = []
|
|
self.candles = {tf: [] for tf in self.timeframes}
|
|
self.current_candle = {tf: None for tf in self.timeframes}
|
|
self.last_candle_timestamp = {tf: None for tf in self.timeframes}
|
|
self.cache_dir = os.path.join(os.getcwd(), "cache", symbol.replace("/", ""))
|
|
self.cache_path = os.path.join(self.cache_dir, f"{symbol.replace('/', '')}_ticks.json") # Add missing cache_path
|
|
self.use_timescaledb = use_timescaledb
|
|
self.max_ticks = 10000 # Maximum number of ticks to store in memory
|
|
|
|
# Create cache directory if it doesn't exist
|
|
os.makedirs(self.cache_dir, exist_ok=True)
|
|
|
|
logger.info(f"Creating new tick storage for {symbol} with timeframes {self.timeframes}")
|
|
logger.info(f"Cache directory: {self.cache_dir}")
|
|
logger.info(f"Cache file: {self.cache_path}")
|
|
|
|
if use_timescaledb:
|
|
print(f"TickStorage: TimescaleDB integration is ENABLED for {symbol}")
|
|
else:
|
|
logger.info(f"TickStorage: TimescaleDB integration is DISABLED for {symbol}")
|
|
|
|
def _save_to_cache(self):
|
|
"""Save ticks to a cache file"""
|
|
try:
|
|
# Only save the latest 5000 ticks to avoid giant files
|
|
ticks_to_save = self.ticks[-5000:] if len(self.ticks) > 5000 else self.ticks
|
|
|
|
# Convert pandas Timestamps to ISO strings for JSON serialization
|
|
serializable_ticks = []
|
|
for tick in ticks_to_save:
|
|
serializable_tick = tick.copy()
|
|
if isinstance(tick['timestamp'], pd.Timestamp):
|
|
serializable_tick['timestamp'] = tick['timestamp'].isoformat()
|
|
elif hasattr(tick['timestamp'], 'isoformat'):
|
|
serializable_tick['timestamp'] = tick['timestamp'].isoformat()
|
|
else:
|
|
# Keep as is if it's already a string or number
|
|
serializable_tick['timestamp'] = tick['timestamp']
|
|
serializable_ticks.append(serializable_tick)
|
|
|
|
with open(self.cache_path, 'w') as f:
|
|
json.dump(serializable_ticks, f)
|
|
logger.debug(f"Saved {len(serializable_ticks)} ticks to cache")
|
|
except Exception as e:
|
|
logger.error(f"Error saving ticks to cache: {e}")
|
|
|
|
def _load_from_cache(self):
|
|
"""Load ticks from cache if available"""
|
|
if os.path.exists(self.cache_path):
|
|
try:
|
|
# Check if the cache file is recent (< 10 minutes old)
|
|
cache_age = time.time() - os.path.getmtime(self.cache_path)
|
|
if cache_age > 600: # 10 minutes in seconds
|
|
logger.warning(f"Cache file is {cache_age:.1f} seconds old (>10 min). Not using it.")
|
|
return False
|
|
|
|
with open(self.cache_path, 'r') as f:
|
|
cached_ticks = json.load(f)
|
|
|
|
if cached_ticks:
|
|
# Convert ISO strings back to pandas Timestamps
|
|
processed_ticks = []
|
|
for tick in cached_ticks:
|
|
processed_tick = tick.copy()
|
|
if isinstance(tick['timestamp'], str):
|
|
try:
|
|
processed_tick['timestamp'] = pd.Timestamp(tick['timestamp'])
|
|
except:
|
|
# If parsing fails, use current time
|
|
processed_tick['timestamp'] = pd.Timestamp.now()
|
|
else:
|
|
# Convert to pandas Timestamp if it's a number (milliseconds)
|
|
processed_tick['timestamp'] = pd.Timestamp(tick['timestamp'], unit='ms')
|
|
processed_ticks.append(processed_tick)
|
|
|
|
self.ticks = processed_ticks
|
|
logger.info(f"Loaded {len(cached_ticks)} ticks from cache")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Error loading ticks from cache: {e}")
|
|
return False
|
|
|
|
def add_tick(self, tick=None, price=None, volume=None, timestamp=None):
|
|
"""
|
|
Add a tick to the storage and update candles for all timeframes
|
|
|
|
Args:
|
|
tick (dict, optional): A tick object containing price, quantity and timestamp
|
|
price (float, optional): Price of the tick (used in older interface)
|
|
volume (float, optional): Volume of the tick (used in older interface)
|
|
timestamp (datetime, optional): Timestamp of the tick (used in older interface)
|
|
"""
|
|
# Handle tick as a dict or separate parameters for backward compatibility
|
|
if tick is not None and isinstance(tick, dict):
|
|
# Using the new interface with a tick object
|
|
price = tick['price']
|
|
volume = tick.get('quantity', 0)
|
|
timestamp = tick['timestamp']
|
|
elif price is not None:
|
|
# Using the old interface with separate parameters
|
|
# Convert datetime to pd.Timestamp if needed
|
|
if timestamp is not None and not isinstance(timestamp, pd.Timestamp):
|
|
timestamp = pd.Timestamp(timestamp)
|
|
else:
|
|
logger.error("Invalid tick: must provide either a tick dict or price")
|
|
return
|
|
|
|
# Ensure timestamp is a pandas Timestamp
|
|
if not isinstance(timestamp, pd.Timestamp):
|
|
if isinstance(timestamp, (int, float)):
|
|
# Assume it's milliseconds
|
|
timestamp = pd.Timestamp(timestamp, unit='ms')
|
|
else:
|
|
# Try to parse as string or datetime
|
|
timestamp = pd.Timestamp(timestamp)
|
|
|
|
# Create tick object with consistent pandas Timestamp
|
|
tick_obj = {
|
|
'price': float(price),
|
|
'quantity': float(volume) if volume is not None else 0.0,
|
|
'timestamp': timestamp
|
|
}
|
|
|
|
# Add to the list of ticks
|
|
self.ticks.append(tick_obj)
|
|
|
|
# Limit the number of ticks to avoid memory issues
|
|
if len(self.ticks) > self.max_ticks:
|
|
self.ticks = self.ticks[-self.max_ticks:]
|
|
|
|
# Update candles for all timeframes
|
|
for timeframe in self.timeframes:
|
|
if timeframe == "1s":
|
|
self._update_1s_candle(tick_obj)
|
|
else:
|
|
self._update_candles_for_timeframe(timeframe, tick_obj)
|
|
|
|
# Cache to disk periodically
|
|
self._try_cache_ticks()
|
|
|
|
def _update_1s_candle(self, tick):
|
|
"""Update the 1-second candle with the new tick"""
|
|
# Get timestamp for the start of the current second
|
|
tick_timestamp = tick['timestamp']
|
|
candle_timestamp = pd.Timestamp(int(tick_timestamp.timestamp() // 1 * 1_000_000_000))
|
|
|
|
# Check if we need to create a new candle
|
|
if self.current_candle["1s"] is None or self.current_candle["1s"]["timestamp"] != candle_timestamp:
|
|
# If we have a current candle, finalize it and add to candles list
|
|
if self.current_candle["1s"] is not None:
|
|
# Add the completed candle to the list
|
|
self.candles["1s"].append(self.current_candle["1s"])
|
|
|
|
# Limit the number of stored candles to prevent memory issues
|
|
if len(self.candles["1s"]) > 3600: # Keep last hour of 1s candles
|
|
self.candles["1s"] = self.candles["1s"][-3600:]
|
|
|
|
# Store in TimescaleDB if enabled
|
|
if self.use_timescaledb:
|
|
timescaledb_handler.upsert_candle(
|
|
self.symbol, "1s", self.current_candle["1s"]
|
|
)
|
|
|
|
# Log completed candle for debugging
|
|
logger.debug(f"Completed 1s candle: {self.current_candle['1s']['timestamp']} - Close: {self.current_candle['1s']['close']}")
|
|
|
|
# Create a new candle
|
|
self.current_candle["1s"] = {
|
|
"timestamp": candle_timestamp,
|
|
"open": float(tick["price"]),
|
|
"high": float(tick["price"]),
|
|
"low": float(tick["price"]),
|
|
"close": float(tick["price"]),
|
|
"volume": float(tick["quantity"]) if "quantity" in tick else 0.0
|
|
}
|
|
|
|
# Update last candle timestamp
|
|
self.last_candle_timestamp["1s"] = candle_timestamp
|
|
logger.debug(f"Created new 1s candle at {candle_timestamp}")
|
|
else:
|
|
# Update the current candle
|
|
current = self.current_candle["1s"]
|
|
price = float(tick["price"])
|
|
|
|
# Update high and low
|
|
if price > current["high"]:
|
|
current["high"] = price
|
|
if price < current["low"]:
|
|
current["low"] = price
|
|
|
|
# Update close price and add volume
|
|
current["close"] = price
|
|
current["volume"] += float(tick["quantity"]) if "quantity" in tick else 0.0
|
|
|
|
def _update_candles_for_timeframe(self, timeframe, tick):
|
|
"""Update candles for a specific timeframe"""
|
|
# Skip 1s as it's handled separately
|
|
if timeframe == "1s":
|
|
return
|
|
|
|
# Convert timeframe to seconds
|
|
timeframe_seconds = self._timeframe_to_seconds(timeframe)
|
|
|
|
# Get the timestamp truncated to the timeframe interval
|
|
# e.g., for a 5m candle, the timestamp should be truncated to the nearest 5-minute mark
|
|
# Convert timestamp to datetime if it's not already
|
|
tick_timestamp = tick['timestamp']
|
|
if isinstance(tick_timestamp, pd.Timestamp):
|
|
ts = tick_timestamp
|
|
else:
|
|
ts = pd.Timestamp(tick_timestamp)
|
|
|
|
# Truncate timestamp to nearest timeframe interval
|
|
timestamp = pd.Timestamp(
|
|
int(ts.timestamp() // timeframe_seconds * timeframe_seconds * 1_000_000_000)
|
|
)
|
|
|
|
# Get the current candle for this timeframe
|
|
current_candle = self.current_candle[timeframe]
|
|
|
|
# If we have no current candle or the timestamp is different (new candle)
|
|
if current_candle is None or current_candle['timestamp'] != timestamp:
|
|
# If we have a current candle, add it to the candles list
|
|
if current_candle:
|
|
self.candles[timeframe].append(current_candle)
|
|
|
|
# Save to TimescaleDB if enabled
|
|
if self.use_timescaledb:
|
|
timescaledb_handler.upsert_candle(self.symbol, timeframe, current_candle)
|
|
|
|
# Create a new candle
|
|
current_candle = {
|
|
'timestamp': timestamp,
|
|
'open': tick['price'],
|
|
'high': tick['price'],
|
|
'low': tick['price'],
|
|
'close': tick['price'],
|
|
'volume': tick.get('quantity', 0)
|
|
}
|
|
|
|
# Update current candle
|
|
self.current_candle[timeframe] = current_candle
|
|
self.last_candle_timestamp[timeframe] = timestamp
|
|
|
|
else:
|
|
# Update existing candle
|
|
current_candle['high'] = max(current_candle['high'], tick['price'])
|
|
current_candle['low'] = min(current_candle['low'], tick['price'])
|
|
current_candle['close'] = tick['price']
|
|
current_candle['volume'] += tick.get('quantity', 0)
|
|
|
|
# Limit the number of candles to avoid memory issues
|
|
max_candles = 1000
|
|
if len(self.candles[timeframe]) > max_candles:
|
|
self.candles[timeframe] = self.candles[timeframe][-max_candles:]
|
|
|
|
def _timeframe_to_seconds(self, timeframe):
|
|
"""Convert a timeframe string (e.g., '1m', '1h') to seconds"""
|
|
if timeframe == "1s":
|
|
return 1
|
|
|
|
try:
|
|
# Extract the number and unit
|
|
match = re.match(r'(\d+)([smhdw])', timeframe)
|
|
if not match:
|
|
return None
|
|
|
|
num, unit = match.groups()
|
|
num = int(num)
|
|
|
|
# Convert to seconds
|
|
if unit == 's':
|
|
return num
|
|
elif unit == 'm':
|
|
return num * 60
|
|
elif unit == 'h':
|
|
return num * 3600
|
|
elif unit == 'd':
|
|
return num * 86400
|
|
elif unit == 'w':
|
|
return num * 604800
|
|
|
|
return None
|
|
except:
|
|
return None
|
|
|
|
def get_candles(self, timeframe, limit=None):
|
|
"""Get candles for a given timeframe"""
|
|
if timeframe in self.candles:
|
|
candles = self.candles[timeframe]
|
|
|
|
# Add the current candle if it exists and isn't None
|
|
if timeframe in self.current_candle and self.current_candle[timeframe] is not None:
|
|
# Make a copy of the current candle
|
|
current_candle_copy = self.current_candle[timeframe].copy()
|
|
|
|
# Check if the current candle is newer than the last candle in the list
|
|
if not candles or current_candle_copy["timestamp"] > candles[-1]["timestamp"]:
|
|
candles = candles + [current_candle_copy]
|
|
|
|
# Apply limit if provided
|
|
if limit and len(candles) > limit:
|
|
return candles[-limit:]
|
|
return candles
|
|
return []
|
|
|
|
def get_last_price(self):
|
|
"""Get the last known price"""
|
|
if self.ticks:
|
|
return float(self.ticks[-1]["price"])
|
|
return None
|
|
|
|
def load_historical_data(self, symbol, limit=1000):
|
|
"""Load historical data for all timeframes"""
|
|
logger.info(f"Starting historical data load for {symbol} with limit {limit}")
|
|
|
|
# Clear existing data
|
|
self.ticks = []
|
|
self.candles = {tf: [] for tf in self.timeframes}
|
|
self.current_candle = {tf: None for tf in self.timeframes}
|
|
|
|
# Try to load ticks from cache first
|
|
logger.info("Attempting to load from cache...")
|
|
cache_loaded = self._load_from_cache()
|
|
if cache_loaded:
|
|
logger.info("Successfully loaded data from cache")
|
|
else:
|
|
logger.info("No valid cache data found")
|
|
|
|
# Check if we have TimescaleDB enabled
|
|
if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
|
|
logger.info("Attempting to fetch historical data from TimescaleDB")
|
|
loaded_from_db = False
|
|
|
|
# Load candles for each timeframe from TimescaleDB
|
|
for tf in self.timeframes:
|
|
try:
|
|
candles = timescaledb_handler.fetch_candles(symbol, tf, limit)
|
|
if candles:
|
|
self.candles[tf] = candles
|
|
loaded_from_db = True
|
|
logger.info(f"Loaded {len(candles)} {tf} candles from TimescaleDB")
|
|
else:
|
|
logger.info(f"No {tf} candles found in TimescaleDB")
|
|
except Exception as e:
|
|
logger.error(f"Error loading {tf} candles from TimescaleDB: {str(e)}")
|
|
|
|
if loaded_from_db:
|
|
logger.info("Successfully loaded historical data from TimescaleDB")
|
|
return True
|
|
else:
|
|
logger.info("TimescaleDB not available or disabled")
|
|
|
|
# If no TimescaleDB data and no cache, we need to get from Binance API
|
|
if not cache_loaded:
|
|
logger.info("Loading data from Binance API...")
|
|
# Create a BinanceHistoricalData instance
|
|
historical_data = BinanceHistoricalData()
|
|
|
|
# Load data for each timeframe
|
|
success_count = 0
|
|
for tf in self.timeframes:
|
|
if tf != "1s": # Skip 1s since we'll generate it from ticks
|
|
try:
|
|
logger.info(f"Fetching {tf} candles for {symbol}...")
|
|
df = historical_data.get_historical_candles(symbol, self._timeframe_to_seconds(tf), limit)
|
|
if df is not None and not df.empty:
|
|
logger.info(f"Loaded {len(df)} {tf} candles from Binance API")
|
|
|
|
# Convert to our candle format and store
|
|
candles = []
|
|
for _, row in df.iterrows():
|
|
candle = {
|
|
'timestamp': row['timestamp'],
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
candles.append(candle)
|
|
|
|
# Also save to TimescaleDB if enabled
|
|
if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
|
|
timescaledb_handler.upsert_candle(symbol, tf, candle)
|
|
|
|
self.candles[tf] = candles
|
|
success_count += 1
|
|
else:
|
|
logger.warning(f"No data returned for {tf} candles")
|
|
except Exception as e:
|
|
logger.error(f"Error loading {tf} candles: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
logger.info(f"Successfully loaded {success_count} timeframes from Binance API")
|
|
|
|
# For 1s, load from API if possible or compute from first available timeframe
|
|
if "1s" in self.timeframes:
|
|
logger.info("Loading 1s candles...")
|
|
# Try to get 1s data from Binance
|
|
try:
|
|
df_1s = historical_data.get_historical_candles(symbol, 1, 300) # Only need recent 1s data
|
|
if df_1s is not None and not df_1s.empty:
|
|
logger.info(f"Loaded {len(df_1s)} recent 1s candles from Binance API")
|
|
|
|
# Convert to our candle format and store
|
|
candles_1s = []
|
|
for _, row in df_1s.iterrows():
|
|
candle = {
|
|
'timestamp': row['timestamp'],
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
candles_1s.append(candle)
|
|
|
|
# Also save to TimescaleDB if enabled
|
|
if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
|
|
timescaledb_handler.upsert_candle(symbol, "1s", candle)
|
|
|
|
self.candles["1s"] = candles_1s
|
|
except Exception as e:
|
|
logger.error(f"Error loading 1s candles: {str(e)}")
|
|
|
|
# If 1s data not available or failed to load, approximate from 1m data
|
|
if not self.candles.get("1s"):
|
|
logger.info("1s data not available, trying to approximate from 1m data...")
|
|
# If 1s data not available, we can approximate from 1m data
|
|
if "1m" in self.timeframes and self.candles["1m"]:
|
|
# For demonstration, just use the 1m candles as placeholders for 1s
|
|
# In a real implementation, you might want more sophisticated interpolation
|
|
logger.info("Using 1m candles as placeholders for 1s timeframe")
|
|
self.candles["1s"] = []
|
|
|
|
# Take the most recent 5 minutes of 1m candles
|
|
recent_1m = self.candles["1m"][-5:] if self.candles["1m"] else []
|
|
logger.info(f"Creating 1s approximations from {len(recent_1m)} 1m candles")
|
|
for candle_1m in recent_1m:
|
|
# Create 60 1s candles for each 1m candle
|
|
ts_base = candle_1m["timestamp"].timestamp()
|
|
for i in range(60):
|
|
# Create a 1s candle with interpolated values
|
|
candle_1s = {
|
|
'timestamp': pd.Timestamp(int((ts_base + i) * 1_000_000_000)),
|
|
'open': candle_1m['open'],
|
|
'high': candle_1m['high'],
|
|
'low': candle_1m['low'],
|
|
'close': candle_1m['close'],
|
|
'volume': candle_1m['volume'] / 60.0 # Distribute volume evenly
|
|
}
|
|
self.candles["1s"].append(candle_1s)
|
|
|
|
# Also save to TimescaleDB if enabled
|
|
if self.use_timescaledb and timescaledb_handler and timescaledb_handler.enabled:
|
|
timescaledb_handler.upsert_candle(symbol, "1s", candle_1s)
|
|
|
|
logger.info(f"Created {len(self.candles['1s'])} approximated 1s candles")
|
|
else:
|
|
logger.warning("No 1m data available to approximate 1s candles from")
|
|
|
|
# Set the last candle of each timeframe as the current candle
|
|
for tf in self.timeframes:
|
|
if self.candles[tf]:
|
|
self.current_candle[tf] = self.candles[tf][-1].copy()
|
|
self.last_candle_timestamp[tf] = self.current_candle[tf]["timestamp"]
|
|
logger.debug(f"Set current candle for {tf}: {self.current_candle[tf]['timestamp']}")
|
|
|
|
# If we loaded ticks from cache, rebuild candles
|
|
if cache_loaded:
|
|
logger.info("Rebuilding candles from cached ticks...")
|
|
# Clear candles
|
|
self.candles = {tf: [] for tf in self.timeframes}
|
|
self.current_candle = {tf: None for tf in self.timeframes}
|
|
|
|
# Process each tick to rebuild the candles
|
|
for tick in self.ticks:
|
|
for tf in self.timeframes:
|
|
if tf == "1s":
|
|
self._update_1s_candle(tick)
|
|
else:
|
|
self._update_candles_for_timeframe(tf, tick)
|
|
|
|
logger.info("Finished rebuilding candles from ticks")
|
|
|
|
# Log final results
|
|
for tf in self.timeframes:
|
|
count = len(self.candles[tf])
|
|
logger.info(f"Final {tf} candle count: {count}")
|
|
|
|
has_data = cache_loaded or any(self.candles[tf] for tf in self.timeframes)
|
|
logger.info(f"Historical data loading completed. Has data: {has_data}")
|
|
return has_data
|
|
|
|
def _try_cache_ticks(self):
|
|
"""Try to save ticks to cache periodically"""
|
|
# Only save to cache every 100 ticks to avoid excessive disk I/O
|
|
if len(self.ticks) % 100 == 0:
|
|
try:
|
|
self._save_to_cache()
|
|
except Exception as e:
|
|
# Don't spam logs with cache errors, just log once every 1000 ticks
|
|
if len(self.ticks) % 1000 == 0:
|
|
logger.warning(f"Cache save failed at {len(self.ticks)} ticks: {str(e)}")
|
|
pass # Continue even if cache fails
|
|
|
|
class Position:
|
|
"""Represents a trading position"""
|
|
|
|
def __init__(self, action, entry_price, amount, timestamp=None, trade_id=None, fee_rate=0.0002):
|
|
self.action = action
|
|
self.entry_price = entry_price
|
|
self.amount = amount
|
|
self.entry_timestamp = timestamp or datetime.now()
|
|
self.exit_timestamp = None
|
|
self.exit_price = None
|
|
self.pnl = None
|
|
self.is_open = True
|
|
self.trade_id = trade_id or str(uuid.uuid4())[:8]
|
|
self.fee_rate = fee_rate
|
|
self.paid_fee = entry_price * amount * fee_rate # Calculate entry fee
|
|
|
|
def close(self, exit_price, exit_timestamp=None):
|
|
"""Close an open position"""
|
|
self.exit_price = exit_price
|
|
self.exit_timestamp = exit_timestamp or datetime.now()
|
|
self.is_open = False
|
|
|
|
# Calculate P&L
|
|
if self.action == "BUY":
|
|
price_diff = self.exit_price - self.entry_price
|
|
# Calculate fee for exit trade
|
|
exit_fee = exit_price * self.amount * self.fee_rate
|
|
self.paid_fee += exit_fee # Add exit fee to total paid fee
|
|
self.pnl = (price_diff * self.amount) - self.paid_fee
|
|
else: # SELL
|
|
price_diff = self.entry_price - self.exit_price
|
|
# Calculate fee for exit trade
|
|
exit_fee = exit_price * self.amount * self.fee_rate
|
|
self.paid_fee += exit_fee # Add exit fee to total paid fee
|
|
self.pnl = (price_diff * self.amount) - self.paid_fee
|
|
|
|
return self.pnl
|
|
|
|
class RealTimeChart:
|
|
def __init__(self, app=None, symbol='BTCUSDT', timeframe='1m', standalone=True, chart_title=None,
|
|
run_signal_interpreter=False, debug_mode=False, historical_candles=None,
|
|
extended_hours=False, enable_logging=True, agent=None, trading_env=None,
|
|
max_memory_usage=90, memory_check_interval=10, tick_update_interval=0.5,
|
|
chart_update_interval=1, performance_monitoring=False, show_volume=True,
|
|
show_indicators=True, custom_trades=None, port=8050, height=900, width=1200,
|
|
positions_callback=None, allow_synthetic_data=True, tick_storage=None):
|
|
"""Initialize a real-time chart with support for multiple indicators and backtesting."""
|
|
|
|
# Store parameters
|
|
self.symbol = symbol
|
|
self.timeframe = timeframe
|
|
self.debug_mode = debug_mode
|
|
self.standalone = standalone
|
|
self.chart_title = chart_title or f"{symbol} Real-Time Chart"
|
|
self.extended_hours = extended_hours
|
|
self.enable_logging = enable_logging
|
|
self.run_signal_interpreter = run_signal_interpreter
|
|
self.historical_candles = historical_candles
|
|
self.performance_monitoring = performance_monitoring
|
|
self.max_memory_usage = max_memory_usage
|
|
self.memory_check_interval = memory_check_interval
|
|
self.tick_update_interval = tick_update_interval
|
|
self.chart_update_interval = chart_update_interval
|
|
self.show_volume = show_volume
|
|
self.show_indicators = show_indicators
|
|
self.custom_trades = custom_trades
|
|
self.port = port
|
|
self.height = height
|
|
self.width = width
|
|
self.positions_callback = positions_callback
|
|
self.allow_synthetic_data = allow_synthetic_data
|
|
|
|
# Initialize interval store
|
|
self.interval_store = {'interval': 1} # Default to 1s timeframe
|
|
|
|
# Initialize trading components
|
|
self.agent = agent
|
|
self.trading_env = trading_env
|
|
|
|
# Initialize button styles for timeframe selection
|
|
self.button_style = {
|
|
'background': '#343a40',
|
|
'color': 'white',
|
|
'border': 'none',
|
|
'padding': '10px 20px',
|
|
'margin': '0 5px',
|
|
'borderRadius': '4px',
|
|
'cursor': 'pointer'
|
|
}
|
|
|
|
self.active_button_style = {
|
|
'background': '#007bff',
|
|
'color': 'white',
|
|
'border': 'none',
|
|
'padding': '10px 20px',
|
|
'margin': '0 5px',
|
|
'borderRadius': '4px',
|
|
'cursor': 'pointer',
|
|
'fontWeight': 'bold'
|
|
}
|
|
|
|
# Initialize color schemes
|
|
self.colors = {
|
|
'background': '#1e1e1e',
|
|
'text': '#ffffff',
|
|
'grid': '#333333',
|
|
'candle_up': '#26a69a',
|
|
'candle_down': '#ef5350',
|
|
'volume_up': 'rgba(38, 166, 154, 0.3)',
|
|
'volume_down': 'rgba(239, 83, 80, 0.3)',
|
|
'ma': '#ffeb3b',
|
|
'ema': '#29b6f6',
|
|
'bollinger_bands': '#ff9800',
|
|
'trades_buy': '#00e676',
|
|
'trades_sell': '#ff1744'
|
|
}
|
|
|
|
# Initialize data storage
|
|
self.all_trades = [] # Store trades
|
|
self.positions = [] # Store open positions
|
|
self.latest_price = 0.0
|
|
self.latest_volume = 0.0
|
|
self.latest_timestamp = datetime.now()
|
|
self.current_balance = 100.0 # Starting balance
|
|
self.accumulative_pnl = 0.0 # Accumulated profit/loss
|
|
|
|
# Initialize trade rate counter
|
|
self.trade_count = 0
|
|
self.start_time = time.time()
|
|
self.trades_per_second = 0
|
|
self.trades_per_minute = 0
|
|
self.trades_per_hour = 0
|
|
|
|
# Initialize trade rate tracking variables
|
|
self.trade_times = [] # Store timestamps of recent trades for rate calculation
|
|
self.last_trade_rate_calculation = datetime.now()
|
|
self.trade_rate = {"per_second": 0, "per_minute": 0, "per_hour": 0}
|
|
|
|
# Initialize interactive components
|
|
self.app = app
|
|
|
|
# Create a new app if not provided
|
|
if self.app is None and standalone:
|
|
self.app = dash.Dash(
|
|
__name__,
|
|
external_stylesheets=[dbc.themes.DARKLY],
|
|
suppress_callback_exceptions=True
|
|
)
|
|
|
|
# Initialize tick storage if not provided
|
|
if tick_storage is None:
|
|
# Check if TimescaleDB integration is enabled
|
|
use_timescaledb = TIMESCALEDB_ENABLED and timescaledb_handler is not None
|
|
|
|
# Create a new tick storage
|
|
self.tick_storage = TickStorage(
|
|
symbol=symbol,
|
|
timeframes=["1s", "1m", "5m", "15m", "1h", "4h", "1d"],
|
|
use_timescaledb=use_timescaledb
|
|
)
|
|
|
|
# Load historical data immediately for cold start
|
|
logger.info(f"Loading historical data for {symbol} during chart initialization")
|
|
try:
|
|
data_loaded = self.tick_storage.load_historical_data(symbol)
|
|
if data_loaded:
|
|
logger.info(f"Successfully loaded historical data for {symbol}")
|
|
# Log what we have
|
|
for tf in ["1s", "1m", "5m", "15m", "1h"]:
|
|
candle_count = len(self.tick_storage.candles.get(tf, []))
|
|
logger.info(f" {tf}: {candle_count} candles")
|
|
else:
|
|
logger.warning(f"Failed to load historical data for {symbol}")
|
|
except Exception as e:
|
|
logger.error(f"Error loading historical data during initialization: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
else:
|
|
self.tick_storage = tick_storage
|
|
|
|
# Create layout and callbacks if app is provided
|
|
if self.app is not None:
|
|
# Create the layout
|
|
self.app.layout = self._create_layout()
|
|
|
|
# Register callbacks
|
|
self._setup_callbacks()
|
|
|
|
# Log initialization
|
|
if self.enable_logging:
|
|
logger.info(f"RealTimeChart initialized: {self.symbol} ({self.timeframe}) ")
|
|
|
|
def _create_layout(self):
|
|
return html.Div([
|
|
# Header section with title and current price
|
|
html.Div([
|
|
html.H1(f"{self.symbol} Real-Time Chart", className="display-4"),
|
|
|
|
# Current price ticker
|
|
html.Div([
|
|
html.H4("Current Price:", style={"display": "inline-block", "marginRight": "10px"}),
|
|
html.H3(id="current-price", style={"display": "inline-block", "color": "#17a2b8"}),
|
|
html.Div([
|
|
html.H5("Balance:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.H5(id="current-balance", style={"display": "inline-block", "color": "#28a745"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
html.Div([
|
|
html.H5("Accumulated PnL:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.H5(id="accumulated-pnl", style={"display": "inline-block", "color": "#ffc107"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
|
|
# Add trade rate display
|
|
html.Div([
|
|
html.H5("Trade Rate:", style={"display": "inline-block", "marginRight": "10px", "marginLeft": "30px"}),
|
|
html.Span([
|
|
html.Span(id="trade-rate-second", style={"color": "#ff7f0e"}),
|
|
html.Span("/s, "),
|
|
html.Span(id="trade-rate-minute", style={"color": "#ff7f0e"}),
|
|
html.Span("/m, "),
|
|
html.Span(id="trade-rate-hour", style={"color": "#ff7f0e"}),
|
|
html.Span("/h")
|
|
], style={"display": "inline-block"}),
|
|
], style={"display": "inline-block", "marginLeft": "40px"}),
|
|
], style={"textAlign": "center", "margin": "20px 0"}),
|
|
], style={"textAlign": "center", "marginBottom": "20px"}),
|
|
|
|
# Add interval component for periodic updates
|
|
dcc.Interval(
|
|
id='interval-component',
|
|
interval=500, # in milliseconds
|
|
n_intervals=0
|
|
),
|
|
|
|
# Add timeframe selection buttons
|
|
html.Div([
|
|
html.Button('1s', id='btn-1s', n_clicks=0, style=self.active_button_style),
|
|
html.Button('5s', id='btn-5s', n_clicks=0, style=self.button_style),
|
|
html.Button('15s', id='btn-15s', n_clicks=0, style=self.button_style),
|
|
html.Button('1m', id='btn-1m', n_clicks=0, style=self.button_style),
|
|
html.Button('5m', id='btn-5m', n_clicks=0, style=self.button_style),
|
|
html.Button('15m', id='btn-15m', n_clicks=0, style=self.button_style),
|
|
html.Button('1h', id='btn-1h', n_clicks=0, style=self.button_style),
|
|
], style={"textAlign": "center", "marginBottom": "20px"}),
|
|
|
|
# Store for the selected timeframe
|
|
dcc.Store(id='interval-store', data={'interval': 1}),
|
|
|
|
# Chart content (without wrapper div to avoid callback issues)
|
|
dcc.Graph(id='live-chart', style={"height": "600px"}),
|
|
dcc.Graph(id='secondary-charts', style={"height": "500px"}),
|
|
html.Div(id='positions-list')
|
|
])
|
|
|
|
def _create_chart_and_controls(self):
|
|
"""Create the chart and controls for the dashboard."""
|
|
try:
|
|
# Get selected interval from the dashboard (default to 1s if not available)
|
|
interval_seconds = 1
|
|
if hasattr(self, 'interval_store') and self.interval_store:
|
|
interval_seconds = self.interval_store.get('interval', 1)
|
|
|
|
# Create chart components
|
|
chart_div = html.Div([
|
|
# Update chart with data for the selected interval
|
|
dcc.Graph(
|
|
id='live-chart',
|
|
figure=self._update_main_chart(interval_seconds),
|
|
style={"height": "600px"}
|
|
),
|
|
|
|
# Update secondary charts
|
|
dcc.Graph(
|
|
id='secondary-charts',
|
|
figure=self._update_secondary_charts(),
|
|
style={"height": "500px"}
|
|
),
|
|
|
|
# Update positions list
|
|
html.Div(
|
|
id='positions-list',
|
|
children=self._get_position_list_rows()
|
|
)
|
|
])
|
|
|
|
return chart_div
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating chart and controls: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
# Return a simple error message as fallback
|
|
return html.Div(f"Error loading chart: {str(e)}", style={"color": "red", "padding": "20px"})
|
|
|
|
def _setup_callbacks(self):
|
|
"""Setup Dash callbacks for the real-time chart"""
|
|
if self.app is None:
|
|
return
|
|
|
|
try:
|
|
# Update chart with all components based on interval
|
|
@self.app.callback(
|
|
[
|
|
Output('live-chart', 'figure'),
|
|
Output('secondary-charts', 'figure'),
|
|
Output('positions-list', 'children'),
|
|
Output('current-price', 'children'),
|
|
Output('current-balance', 'children'),
|
|
Output('accumulated-pnl', 'children'),
|
|
Output('trade-rate-second', 'children'),
|
|
Output('trade-rate-minute', 'children'),
|
|
Output('trade-rate-hour', 'children')
|
|
],
|
|
[
|
|
Input('interval-component', 'n_intervals'),
|
|
Input('interval-store', 'data')
|
|
]
|
|
)
|
|
def update_all(n_intervals, interval_data):
|
|
"""Update all chart components"""
|
|
try:
|
|
# Get selected interval
|
|
interval_seconds = interval_data.get('interval', 1) if interval_data else 1
|
|
|
|
# Update main chart - limit data for performance
|
|
main_chart = self._update_main_chart(interval_seconds)
|
|
|
|
# Update secondary charts - limit data for performance
|
|
secondary_charts = self._update_secondary_charts()
|
|
|
|
# Update positions list
|
|
positions_list = self._get_position_list_rows()
|
|
|
|
# Update current price and balance
|
|
current_price = f"${self.latest_price:.2f}" if self.latest_price else "Error"
|
|
current_balance = f"${self.current_balance:.2f}"
|
|
accumulated_pnl = f"${self.accumulative_pnl:.2f}"
|
|
|
|
# Calculate trade rates
|
|
trade_rate = self._calculate_trade_rate()
|
|
trade_rate_second = f"{trade_rate['per_second']:.1f}"
|
|
trade_rate_minute = f"{trade_rate['per_minute']:.1f}"
|
|
trade_rate_hour = f"{trade_rate['per_hour']:.1f}"
|
|
|
|
return (main_chart, secondary_charts, positions_list,
|
|
current_price, current_balance, accumulated_pnl,
|
|
trade_rate_second, trade_rate_minute, trade_rate_hour)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in update_all callback: {str(e)}")
|
|
# Return empty/error states
|
|
import plotly.graph_objects as go
|
|
empty_fig = go.Figure()
|
|
empty_fig.add_annotation(text="Chart Loading...", xref="paper", yref="paper", x=0.5, y=0.5)
|
|
|
|
return (empty_fig, empty_fig, [], "Loading...", "$0.00", "$0.00", "0.0", "0.0", "0.0")
|
|
|
|
# Timeframe selection callbacks
|
|
@self.app.callback(
|
|
[Output('interval-store', 'data'),
|
|
Output('btn-1s', 'style'), Output('btn-5s', 'style'), Output('btn-15s', 'style'),
|
|
Output('btn-1m', 'style'), Output('btn-5m', 'style'), Output('btn-15m', 'style'),
|
|
Output('btn-1h', 'style')],
|
|
[Input('btn-1s', 'n_clicks'), Input('btn-5s', 'n_clicks'), Input('btn-15s', 'n_clicks'),
|
|
Input('btn-1m', 'n_clicks'), Input('btn-5m', 'n_clicks'), Input('btn-15m', 'n_clicks'),
|
|
Input('btn-1h', 'n_clicks')]
|
|
)
|
|
def update_timeframe(n1s, n5s, n15s, n1m, n5m, n15m, n1h):
|
|
"""Update selected timeframe based on button clicks"""
|
|
ctx = dash.callback_context
|
|
if not ctx.triggered:
|
|
# Default to 1s
|
|
styles = [self.active_button_style] + [self.button_style] * 6
|
|
return {'interval': 1}, *styles
|
|
|
|
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
|
|
|
# Map button to interval seconds
|
|
interval_map = {
|
|
'btn-1s': 1, 'btn-5s': 5, 'btn-15s': 15,
|
|
'btn-1m': 60, 'btn-5m': 300, 'btn-15m': 900, 'btn-1h': 3600
|
|
}
|
|
|
|
selected_interval = interval_map.get(button_id, 1)
|
|
|
|
# Create styles - active for selected, normal for others
|
|
button_names = ['btn-1s', 'btn-5s', 'btn-15s', 'btn-1m', 'btn-5m', 'btn-15m', 'btn-1h']
|
|
styles = []
|
|
for name in button_names:
|
|
if name == button_id:
|
|
styles.append(self.active_button_style)
|
|
else:
|
|
styles.append(self.button_style)
|
|
|
|
return {'interval': selected_interval}, *styles
|
|
|
|
logger.info("Dash callbacks registered successfully")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error setting up callbacks: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
def _calculate_trade_rate(self):
|
|
"""Calculate trading rate per second, minute, and hour"""
|
|
try:
|
|
now = datetime.now()
|
|
current_time = time.time()
|
|
|
|
# Filter trades within different time windows
|
|
trades_last_second = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 1)
|
|
trades_last_minute = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 60)
|
|
trades_last_hour = sum(1 for trade_time in self.trade_times if current_time - trade_time <= 3600)
|
|
|
|
return {
|
|
"per_second": trades_last_second,
|
|
"per_minute": trades_last_minute,
|
|
"per_hour": trades_last_hour
|
|
}
|
|
except Exception as e:
|
|
logger.warning(f"Error calculating trade rate: {str(e)}")
|
|
return {"per_second": 0.0, "per_minute": 0.0, "per_hour": 0.0}
|
|
|
|
def _update_secondary_charts(self):
|
|
"""Create secondary charts for volume and indicators"""
|
|
try:
|
|
# Create subplots for secondary charts
|
|
fig = make_subplots(
|
|
rows=2, cols=1,
|
|
subplot_titles=['Volume', 'Technical Indicators'],
|
|
shared_xaxes=True,
|
|
vertical_spacing=0.1,
|
|
row_heights=[0.3, 0.7]
|
|
)
|
|
|
|
# Get latest candles (limit for performance)
|
|
candles = self.tick_storage.candles.get("1m", [])[-100:] # Last 100 candles for performance
|
|
|
|
if not candles:
|
|
fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
|
|
fig.update_layout(
|
|
title="Secondary Charts",
|
|
template="plotly_dark",
|
|
height=400
|
|
)
|
|
return fig
|
|
|
|
# Extract data
|
|
timestamps = [candle['timestamp'] for candle in candles]
|
|
volumes = [candle['volume'] for candle in candles]
|
|
closes = [candle['close'] for candle in candles]
|
|
|
|
# Volume chart
|
|
colors = ['#26a69a' if i == 0 or closes[i] >= closes[i-1] else '#ef5350' for i in range(len(closes))]
|
|
fig.add_trace(
|
|
go.Bar(
|
|
x=timestamps,
|
|
y=volumes,
|
|
name='Volume',
|
|
marker_color=colors,
|
|
showlegend=False
|
|
),
|
|
row=1, col=1
|
|
)
|
|
|
|
# Technical indicators
|
|
if len(closes) >= 20:
|
|
# Simple moving average
|
|
sma_20 = pd.Series(closes).rolling(window=20).mean()
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=timestamps,
|
|
y=sma_20,
|
|
name='SMA 20',
|
|
line=dict(color='#ffeb3b', width=2)
|
|
),
|
|
row=2, col=1
|
|
)
|
|
|
|
# RSI calculation
|
|
if len(closes) >= 14:
|
|
rsi = self._calculate_rsi(closes, 14)
|
|
fig.add_trace(
|
|
go.Scatter(
|
|
x=timestamps,
|
|
y=rsi,
|
|
name='RSI',
|
|
line=dict(color='#29b6f6', width=2),
|
|
yaxis='y3'
|
|
),
|
|
row=2, col=1
|
|
)
|
|
|
|
# Update layout
|
|
fig.update_layout(
|
|
title="Volume & Technical Indicators",
|
|
template="plotly_dark",
|
|
height=400,
|
|
showlegend=True,
|
|
legend=dict(x=0, y=1, bgcolor='rgba(0,0,0,0)')
|
|
)
|
|
|
|
# Update y-axes
|
|
fig.update_yaxes(title="Volume", row=1, col=1)
|
|
fig.update_yaxes(title="Price", row=2, col=1)
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating secondary charts: {str(e)}")
|
|
# Return empty figure on error
|
|
fig = go.Figure()
|
|
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
|
fig.update_layout(template="plotly_dark", height=400)
|
|
return fig
|
|
|
|
def _calculate_rsi(self, prices, period=14):
|
|
"""Calculate RSI indicator"""
|
|
try:
|
|
prices = pd.Series(prices)
|
|
delta = prices.diff()
|
|
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
|
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
|
rs = gain / loss
|
|
rsi = 100 - (100 / (1 + rs))
|
|
return rsi.fillna(50).tolist() # Fill NaN with neutral RSI value
|
|
except Exception:
|
|
return [50] * len(prices) # Return neutral RSI on error
|
|
|
|
def _get_position_list_rows(self):
|
|
"""Get list of current positions for display"""
|
|
try:
|
|
if not self.positions:
|
|
return [html.Div("No open positions", style={"color": "#888", "padding": "10px"})]
|
|
|
|
rows = []
|
|
for i, position in enumerate(self.positions):
|
|
try:
|
|
# Calculate current PnL
|
|
current_pnl = (self.latest_price - position.entry_price) * position.amount
|
|
if position.action.upper() == 'SELL':
|
|
current_pnl = -current_pnl
|
|
|
|
# Create position row
|
|
row = html.Div([
|
|
html.Span(f"#{i+1}: ", style={"fontWeight": "bold"}),
|
|
html.Span(f"{position.action.upper()} ",
|
|
style={"color": "#00e676" if position.action.upper() == "BUY" else "#ff1744"}),
|
|
html.Span(f"{position.amount:.4f} @ ${position.entry_price:.2f} "),
|
|
html.Span(f"PnL: ${current_pnl:.2f}",
|
|
style={"color": "#00e676" if current_pnl >= 0 else "#ff1744"})
|
|
], style={"padding": "5px", "borderBottom": "1px solid #333"})
|
|
|
|
rows.append(row)
|
|
except Exception as e:
|
|
logger.warning(f"Error formatting position {i}: {str(e)}")
|
|
|
|
return rows
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error getting position list: {str(e)}")
|
|
return [html.Div("Error loading positions", style={"color": "red", "padding": "10px"})]
|
|
|
|
def add_trade(self, action, price, amount, timestamp=None, trade_id=None):
|
|
"""Add a trade to the chart and update tracking"""
|
|
try:
|
|
if timestamp is None:
|
|
timestamp = datetime.now()
|
|
|
|
# Create trade record
|
|
trade = {
|
|
'id': trade_id or str(uuid.uuid4()),
|
|
'action': action.upper(),
|
|
'price': float(price),
|
|
'amount': float(amount),
|
|
'timestamp': timestamp,
|
|
'value': float(price) * float(amount)
|
|
}
|
|
|
|
# Add to trades list
|
|
self.all_trades.append(trade)
|
|
|
|
# Update trade rate tracking
|
|
self.trade_times.append(time.time())
|
|
# Keep only last hour of trade times
|
|
cutoff_time = time.time() - 3600
|
|
self.trade_times = [t for t in self.trade_times if t > cutoff_time]
|
|
|
|
# Update positions
|
|
if action.upper() in ['BUY', 'SELL']:
|
|
position = Position(
|
|
action=action.upper(),
|
|
entry_price=float(price),
|
|
amount=float(amount),
|
|
timestamp=timestamp,
|
|
trade_id=trade['id']
|
|
)
|
|
self.positions.append(position)
|
|
|
|
# Update balance and PnL
|
|
if action.upper() == 'BUY':
|
|
self.current_balance -= trade['value']
|
|
else: # SELL
|
|
self.current_balance += trade['value']
|
|
|
|
# Calculate PnL for this trade
|
|
if len(self.all_trades) > 1:
|
|
# Simple PnL calculation - more sophisticated logic could be added
|
|
last_opposite_trades = [t for t in reversed(self.all_trades[:-1])
|
|
if t['action'] != action.upper()]
|
|
if last_opposite_trades:
|
|
last_trade = last_opposite_trades[0]
|
|
if action.upper() == 'SELL':
|
|
pnl = (float(price) - last_trade['price']) * float(amount)
|
|
else: # BUY
|
|
pnl = (last_trade['price'] - float(price)) * float(amount)
|
|
self.accumulative_pnl += pnl
|
|
|
|
logger.info(f"Added trade: {action.upper()} {amount} @ ${price:.2f}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error adding trade: {str(e)}")
|
|
|
|
def _get_interval_key(self, interval_seconds):
|
|
"""Convert interval seconds to timeframe key"""
|
|
if interval_seconds <= 1:
|
|
return "1s"
|
|
elif interval_seconds <= 5:
|
|
return "5s" if "5s" in self.tick_storage.timeframes else "1s"
|
|
elif interval_seconds <= 15:
|
|
return "15s" if "15s" in self.tick_storage.timeframes else "1m"
|
|
elif interval_seconds <= 60:
|
|
return "1m"
|
|
elif interval_seconds <= 300:
|
|
return "5m"
|
|
elif interval_seconds <= 900:
|
|
return "15m"
|
|
elif interval_seconds <= 3600:
|
|
return "1h"
|
|
elif interval_seconds <= 14400:
|
|
return "4h"
|
|
else:
|
|
return "1d"
|
|
|
|
def _update_main_chart(self, interval_seconds):
|
|
"""Update the main chart for the specified interval"""
|
|
try:
|
|
# Convert interval seconds to timeframe key
|
|
interval_key = self._get_interval_key(interval_seconds)
|
|
|
|
# Get candles for this timeframe (limit to last 100 for performance)
|
|
candles = self.tick_storage.candles.get(interval_key, [])[-100:]
|
|
|
|
if not candles:
|
|
logger.warning(f"No candle data available for {interval_key}")
|
|
# Return empty figure with a message
|
|
fig = go.Figure()
|
|
fig.add_annotation(
|
|
text=f"No data available for {interval_key}",
|
|
xref="paper", yref="paper",
|
|
x=0.5, y=0.5,
|
|
showarrow=False,
|
|
font=dict(size=16, color="white")
|
|
)
|
|
fig.update_layout(
|
|
title=f"{self.symbol} - {interval_key} Chart",
|
|
template="plotly_dark",
|
|
height=600
|
|
)
|
|
return fig
|
|
|
|
# Extract data from candles
|
|
timestamps = [candle['timestamp'] for candle in candles]
|
|
opens = [candle['open'] for candle in candles]
|
|
highs = [candle['high'] for candle in candles]
|
|
lows = [candle['low'] for candle in candles]
|
|
closes = [candle['close'] for candle in candles]
|
|
volumes = [candle['volume'] for candle in candles]
|
|
|
|
# Create candlestick chart
|
|
fig = go.Figure()
|
|
|
|
# Add candlestick trace
|
|
fig.add_trace(go.Candlestick(
|
|
x=timestamps,
|
|
open=opens,
|
|
high=highs,
|
|
low=lows,
|
|
close=closes,
|
|
name="Price",
|
|
increasing_line_color='#26a69a',
|
|
decreasing_line_color='#ef5350',
|
|
increasing_fillcolor='#26a69a',
|
|
decreasing_fillcolor='#ef5350'
|
|
))
|
|
|
|
# Add trade markers if we have trades
|
|
if self.all_trades:
|
|
# Filter trades to match the current timeframe window
|
|
start_time = timestamps[0] if timestamps else datetime.now() - timedelta(hours=1)
|
|
end_time = timestamps[-1] if timestamps else datetime.now()
|
|
|
|
filtered_trades = [
|
|
trade for trade in self.all_trades
|
|
if start_time <= trade['timestamp'] <= end_time
|
|
]
|
|
|
|
if filtered_trades:
|
|
buy_trades = [t for t in filtered_trades if t['action'] == 'BUY']
|
|
sell_trades = [t for t in filtered_trades if t['action'] == 'SELL']
|
|
|
|
# Add BUY markers
|
|
if buy_trades:
|
|
fig.add_trace(go.Scatter(
|
|
x=[t['timestamp'] for t in buy_trades],
|
|
y=[t['price'] for t in buy_trades],
|
|
mode='markers',
|
|
marker=dict(
|
|
symbol='triangle-up',
|
|
size=12,
|
|
color='#00e676',
|
|
line=dict(color='white', width=1)
|
|
),
|
|
name='BUY',
|
|
text=[f"BUY {t['amount']:.4f} @ ${t['price']:.2f}" for t in buy_trades],
|
|
hovertemplate='<b>%{text}</b><br>Time: %{x}<extra></extra>'
|
|
))
|
|
|
|
# Add SELL markers
|
|
if sell_trades:
|
|
fig.add_trace(go.Scatter(
|
|
x=[t['timestamp'] for t in sell_trades],
|
|
y=[t['price'] for t in sell_trades],
|
|
mode='markers',
|
|
marker=dict(
|
|
symbol='triangle-down',
|
|
size=12,
|
|
color='#ff1744',
|
|
line=dict(color='white', width=1)
|
|
),
|
|
name='SELL',
|
|
text=[f"SELL {t['amount']:.4f} @ ${t['price']:.2f}" for t in sell_trades],
|
|
hovertemplate='<b>%{text}</b><br>Time: %{x}<extra></extra>'
|
|
))
|
|
|
|
# Add moving averages if we have enough data
|
|
if len(closes) >= 20:
|
|
# 20-period SMA
|
|
sma_20 = pd.Series(closes).rolling(window=20).mean()
|
|
fig.add_trace(go.Scatter(
|
|
x=timestamps,
|
|
y=sma_20,
|
|
name='SMA 20',
|
|
line=dict(color='#ffeb3b', width=1),
|
|
opacity=0.7
|
|
))
|
|
|
|
if len(closes) >= 50:
|
|
# 50-period SMA
|
|
sma_50 = pd.Series(closes).rolling(window=50).mean()
|
|
fig.add_trace(go.Scatter(
|
|
x=timestamps,
|
|
y=sma_50,
|
|
name='SMA 50',
|
|
line=dict(color='#ff9800', width=1),
|
|
opacity=0.7
|
|
))
|
|
|
|
# Update layout
|
|
fig.update_layout(
|
|
title=f"{self.symbol} - {interval_key} Chart ({len(candles)} candles)",
|
|
template="plotly_dark",
|
|
height=600,
|
|
xaxis_title="Time",
|
|
yaxis_title="Price ($)",
|
|
legend=dict(
|
|
yanchor="top",
|
|
y=0.99,
|
|
xanchor="left",
|
|
x=0.01,
|
|
bgcolor="rgba(0,0,0,0.5)"
|
|
),
|
|
hovermode='x unified',
|
|
dragmode='pan'
|
|
)
|
|
|
|
# Remove range slider for better performance
|
|
fig.update_layout(xaxis_rangeslider_visible=False)
|
|
|
|
# Update the latest price
|
|
if closes:
|
|
self.latest_price = closes[-1]
|
|
self.latest_timestamp = timestamps[-1]
|
|
|
|
return fig
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error updating main chart: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
# Return error figure
|
|
fig = go.Figure()
|
|
fig.add_annotation(
|
|
text=f"Chart Error: {str(e)}",
|
|
xref="paper", yref="paper",
|
|
x=0.5, y=0.5,
|
|
showarrow=False,
|
|
font=dict(size=16, color="red")
|
|
)
|
|
fig.update_layout(
|
|
title="Chart Error",
|
|
template="plotly_dark",
|
|
height=600
|
|
)
|
|
return fig
|
|
|
|
def set_trading_env(self, trading_env):
|
|
"""Set the trading environment to monitor for new trades"""
|
|
self.trading_env = trading_env
|
|
if hasattr(trading_env, 'add_trade_callback'):
|
|
trading_env.add_trade_callback(self.add_trade)
|
|
logger.info("Trading environment integrated with chart")
|
|
|
|
def set_agent(self, agent):
|
|
"""Set the agent to monitor for trading decisions"""
|
|
self.agent = agent
|
|
logger.info("Agent integrated with chart")
|
|
|
|
def update_from_env(self, env_data):
|
|
"""Update chart data from trading environment"""
|
|
try:
|
|
if 'latest_price' in env_data:
|
|
self.latest_price = env_data['latest_price']
|
|
|
|
if 'balance' in env_data:
|
|
self.current_balance = env_data['balance']
|
|
|
|
if 'pnl' in env_data:
|
|
self.accumulative_pnl = env_data['pnl']
|
|
|
|
if 'trades' in env_data:
|
|
# Add any new trades
|
|
for trade in env_data['trades']:
|
|
if trade not in self.all_trades:
|
|
self.add_trade(
|
|
action=trade.get('action', 'HOLD'),
|
|
price=trade.get('price', self.latest_price),
|
|
amount=trade.get('amount', 0.1),
|
|
timestamp=trade.get('timestamp', datetime.now()),
|
|
trade_id=trade.get('id')
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error updating from environment: {str(e)}")
|
|
|
|
def get_latest_data(self):
|
|
"""Get the latest data for external systems"""
|
|
return {
|
|
'latest_price': self.latest_price,
|
|
'latest_volume': self.latest_volume,
|
|
'latest_timestamp': self.latest_timestamp,
|
|
'current_balance': self.current_balance,
|
|
'accumulative_pnl': self.accumulative_pnl,
|
|
'positions': len(self.positions),
|
|
'trade_count': len(self.all_trades),
|
|
'trade_rate': self._calculate_trade_rate()
|
|
}
|
|
|
|
async def start_websocket(self):
|
|
"""Start the websocket connection for real-time data"""
|
|
try:
|
|
logger.info("Starting websocket connection for real-time data")
|
|
|
|
# Start the websocket data fetching
|
|
websocket_url = "wss://stream.binance.com:9443/ws/ethusdt@ticker"
|
|
|
|
async def websocket_handler():
|
|
"""Handle websocket connection and data updates"""
|
|
try:
|
|
async with websockets.connect(websocket_url) as websocket:
|
|
logger.info(f"WebSocket connected for {self.symbol}")
|
|
message_count = 0
|
|
|
|
async for message in websocket:
|
|
try:
|
|
data = json.loads(message)
|
|
|
|
# Update tick storage with new price data
|
|
tick = {
|
|
'price': float(data['c']), # Current price
|
|
'volume': float(data['v']), # Volume
|
|
'timestamp': pd.Timestamp.now()
|
|
}
|
|
|
|
self.tick_storage.add_tick(tick)
|
|
|
|
# Update chart's latest price and volume
|
|
self.latest_price = float(data['c'])
|
|
self.latest_volume = float(data['v'])
|
|
self.latest_timestamp = pd.Timestamp.now()
|
|
|
|
message_count += 1
|
|
|
|
# Log periodic updates
|
|
if message_count % 100 == 0:
|
|
logger.info(f"Received message #{message_count}")
|
|
logger.info(f"Processed {message_count} ticks, current price: ${self.latest_price:.2f}")
|
|
|
|
# Log candle counts
|
|
candle_count = len(self.tick_storage.candles.get("1s", []))
|
|
logger.info(f"Current 1s candles count: {candle_count}")
|
|
|
|
except json.JSONDecodeError as e:
|
|
logger.warning(f"Failed to parse websocket message: {str(e)}")
|
|
except Exception as e:
|
|
logger.error(f"Error processing websocket message: {str(e)}")
|
|
|
|
except websockets.exceptions.ConnectionClosed:
|
|
logger.warning("WebSocket connection closed")
|
|
except Exception as e:
|
|
logger.error(f"WebSocket error: {str(e)}")
|
|
|
|
# Start the websocket handler in the background
|
|
await websocket_handler()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error starting websocket: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|
|
|
|
def run(self, host='127.0.0.1', port=8050, debug=False):
|
|
"""Run the Dash app"""
|
|
try:
|
|
if self.app is None:
|
|
logger.error("No Dash app instance available")
|
|
return
|
|
|
|
logger.info("="*60)
|
|
logger.info("🔗 ACCESS WEB UI AT: http://localhost:8050/")
|
|
logger.info("📊 View live trading data and charts in your browser")
|
|
logger.info("="*60)
|
|
|
|
# Run the app - FIXED: Updated for newer Dash versions
|
|
self.app.run(
|
|
host=host,
|
|
port=port,
|
|
debug=debug,
|
|
use_reloader=False, # Disable reloader to avoid conflicts
|
|
threaded=True # Enable threading for better performance
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error running Dash app: {str(e)}")
|
|
import traceback
|
|
logger.error(traceback.format_exc())
|