gogo2/test_tick_processor_simple.py
2025-05-26 16:02:40 +03:00

311 lines
12 KiB
Python

#!/usr/bin/env python3
"""
Simple Real-Time Tick Processor Test
This script tests the core Neural Network functionality of the Real-Time Tick Processing Module
without requiring live WebSocket connections.
"""
import logging
import sys
import numpy as np
from pathlib import Path
from datetime import datetime
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.realtime_tick_processor import (
RealTimeTickProcessor,
ProcessedTickFeatures,
TickData,
create_realtime_tick_processor
)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def test_neural_network_functionality():
"""Test the neural network processing without WebSocket connections"""
logger.info("="*80)
logger.info("🧪 TESTING NEURAL NETWORK TICK PROCESSING")
logger.info("="*80)
try:
# Test 1: Create tick processor
logger.info("\n📊 TEST 1: Creating Real-Time Tick Processor")
logger.info("-" * 40)
symbols = ['ETH/USDT', 'BTC/USDT']
tick_processor = create_realtime_tick_processor(symbols)
logger.info("✅ Tick processor created successfully")
logger.info(f" Symbols: {tick_processor.symbols}")
logger.info(f" Device: {tick_processor.device}")
logger.info(f" Neural network input size: 9")
# Test 2: Generate mock tick data
logger.info("\n📈 TEST 2: Generating Mock Tick Data")
logger.info("-" * 40)
# Create realistic mock tick data
mock_ticks = []
base_price = 3500.0 # ETH price
base_time = datetime.now()
for i in range(50): # Generate 50 ticks
# Simulate price movement
price_change = np.random.normal(0, 0.001) # Small random changes
price = base_price * (1 + price_change)
# Simulate volume
volume = np.random.exponential(0.1) # Exponential distribution for volume
# Random buy/sell
side = 'buy' if np.random.random() > 0.5 else 'sell'
tick = TickData(
timestamp=base_time,
price=price,
volume=volume,
side=side,
trade_id=f"trade_{i}"
)
mock_ticks.append(tick)
base_price = price # Update base price for next tick
logger.info(f"✅ Generated {len(mock_ticks)} mock ticks")
logger.info(f" Price range: {min(t.price for t in mock_ticks):.2f} - {max(t.price for t in mock_ticks):.2f}")
logger.info(f" Volume range: {min(t.volume for t in mock_ticks):.4f} - {max(t.volume for t in mock_ticks):.4f}")
# Test 3: Add ticks to processor buffer
logger.info("\n💾 TEST 3: Adding Ticks to Processor Buffer")
logger.info("-" * 40)
symbol = 'ETH/USDT'
with tick_processor.data_lock:
for tick in mock_ticks:
tick_processor.tick_buffers[symbol].append(tick)
buffer_size = len(tick_processor.tick_buffers[symbol])
logger.info(f"✅ Added ticks to buffer: {buffer_size} ticks")
# Test 4: Extract neural features
logger.info("\n🧠 TEST 4: Neural Network Feature Extraction")
logger.info("-" * 40)
features = tick_processor._extract_neural_features(symbol)
if features is not None:
logger.info("✅ Neural features extracted successfully")
logger.info(f" Timestamp: {features.timestamp}")
logger.info(f" Confidence: {features.confidence:.3f}")
logger.info(f" Neural features shape: {features.neural_features.shape}")
logger.info(f" Price features shape: {features.price_features.shape}")
logger.info(f" Volume features shape: {features.volume_features.shape}")
logger.info(f" Microstructure features shape: {features.microstructure_features.shape}")
# Show sample values
logger.info(f" Neural features sample: {features.neural_features[:5]}")
logger.info(f" Price features sample: {features.price_features[:3]}")
logger.info(f" Volume features sample: {features.volume_features[:3]}")
else:
logger.error("❌ Failed to extract neural features")
return False
# Test 5: Test feature conversion methods
logger.info("\n🔧 TEST 5: Feature Conversion Methods")
logger.info("-" * 40)
# Test tick-to-features conversion
tick_features = tick_processor._ticks_to_features(mock_ticks)
logger.info(f"✅ Tick features converted: shape {tick_features.shape}")
logger.info(f" Expected shape: ({tick_processor.processing_window}, 9)")
# Test individual feature extraction
price_features = tick_processor._extract_price_features(mock_ticks)
volume_features = tick_processor._extract_volume_features(mock_ticks)
microstructure_features = tick_processor._extract_microstructure_features(mock_ticks)
logger.info(f"✅ Price features: {len(price_features)} features")
logger.info(f"✅ Volume features: {len(volume_features)} features")
logger.info(f"✅ Microstructure features: {len(microstructure_features)} features")
# Test 6: Neural network forward pass
logger.info("\n⚡ TEST 6: Neural Network Forward Pass")
logger.info("-" * 40)
import torch
# Test direct neural network inference
tick_tensor = torch.FloatTensor(tick_features).unsqueeze(0).to(tick_processor.device)
with torch.no_grad():
neural_features, confidence = tick_processor.tick_nn(tick_tensor)
logger.info("✅ Neural network forward pass successful")
logger.info(f" Input shape: {tick_tensor.shape}")
logger.info(f" Output features shape: {neural_features.shape}")
logger.info(f" Confidence shape: {confidence.shape}")
logger.info(f" Confidence value: {confidence.item():.3f}")
return True
except Exception as e:
logger.error(f"❌ Neural network test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def test_dqn_integration():
"""Test DQN integration with real-time tick features"""
logger.info("\n🤖 TESTING DQN INTEGRATION WITH TICK FEATURES")
logger.info("-" * 50)
try:
from NN.models.dqn_agent import DQNAgent
import numpy as np
# Create DQN agent
state_shape = (3, 5) # 3 timeframes, 5 features
dqn = DQNAgent(state_shape=state_shape, n_actions=3)
logger.info("✅ DQN agent created")
logger.info(f" State shape: {state_shape}")
logger.info(f" Actions: {dqn.n_actions}")
logger.info(f" Device: {dqn.device}")
logger.info(f" Tick feature weight: {dqn.tick_feature_weight}")
# Test state enhancement
test_state = np.random.rand(3, 5)
logger.info(f" Test state shape: {test_state.shape}")
# Simulate realistic tick features
mock_tick_features = {
'neural_features': np.random.rand(64) * 0.1, # Small neural features
'volume_features': np.array([1.2, 0.8, 0.15, 850.5, 720.3, 0.05, 0.02]), # Realistic volume features
'microstructure_features': np.array([12.5, 0.3, 0.001, 0.1]), # Realistic microstructure
'confidence': 0.85
}
# Update DQN with tick features
dqn.update_realtime_tick_features(mock_tick_features)
logger.info("✅ DQN updated with mock tick features")
# Test enhanced action selection
action_with_ticks = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action with tick features: {action_with_ticks}")
# Test without tick features
dqn.realtime_tick_features = None
action_without_ticks = dqn.act(test_state, explore=False)
logger.info(f"✅ DQN action without tick features: {action_without_ticks}")
# Test state enhancement method directly
dqn.realtime_tick_features = mock_tick_features
enhanced_state = dqn._enhance_state_with_tick_features(test_state)
logger.info(f"✅ State enhancement test:")
logger.info(f" Original state shape: {test_state.shape}")
logger.info(f" Enhanced state shape: {enhanced_state.shape}")
logger.info("✅ DQN integration test completed successfully")
return True
except Exception as e:
logger.error(f"❌ DQN integration test failed: {e}")
import traceback
logger.error(traceback.format_exc())
return False
def test_performance_metrics():
"""Test performance and statistics functionality"""
logger.info("\n📊 TESTING PERFORMANCE METRICS")
logger.info("-" * 40)
try:
tick_processor = create_realtime_tick_processor(['ETH/USDT'])
# Test stats without processing
stats = tick_processor.get_processing_stats()
logger.info("✅ Basic stats retrieved")
logger.info(f" Symbols: {stats['symbols']}")
logger.info(f" Streaming: {stats['streaming']}")
logger.info(f" Tick counts: {stats['tick_counts']}")
logger.info(f" Buffer sizes: {stats['buffer_sizes']}")
logger.info(f" Subscribers: {stats['subscribers']}")
# Test feature subscriber
received_features = []
def test_callback(symbol: str, features: ProcessedTickFeatures):
received_features.append((symbol, features))
tick_processor.add_feature_subscriber(test_callback)
logger.info("✅ Feature subscriber added")
# Test subscriber removal
tick_processor.remove_feature_subscriber(test_callback)
logger.info("✅ Feature subscriber removed")
return True
except Exception as e:
logger.error(f"❌ Performance metrics test failed: {e}")
return False
def main():
"""Main test function"""
logger.info("🚀 Starting Simple Real-Time Tick Processor Tests...")
# Test neural network functionality
nn_success = test_neural_network_functionality()
# Test DQN integration
dqn_success = test_dqn_integration()
# Test performance metrics
perf_success = test_performance_metrics()
# Summary
logger.info("\n" + "="*80)
logger.info("🎉 SIMPLE TICK PROCESSOR TEST SUMMARY")
logger.info("="*80)
if nn_success and dqn_success and perf_success:
logger.info("✅ ALL TESTS PASSED!")
logger.info("")
logger.info("📋 VERIFIED FUNCTIONALITY:")
logger.info(" ✓ Neural network tick processing")
logger.info(" ✓ Feature extraction (price, volume, microstructure)")
logger.info(" ✓ DQN integration with tick features")
logger.info(" ✓ State enhancement for RL models")
logger.info(" ✓ Performance monitoring")
logger.info("")
logger.info("🎯 NEURAL DPS ALTERNATIVE READY:")
logger.info(" • Real-time tick processing ✓")
logger.info(" • Volume-weighted analysis ✓")
logger.info(" • Neural feature extraction ✓")
logger.info(" • Model integration ready ✓")
logger.info("")
logger.info("🚀 Your Neural DPS alternative is working correctly!")
logger.info(" The system can now process real-time tick data with volume")
logger.info(" information and feed enhanced features to your DQN models.")
else:
logger.error("❌ SOME TESTS FAILED!")
logger.error(f" Neural Network: {'' if nn_success else ''}")
logger.error(f" DQN Integration: {'' if dqn_success else ''}")
logger.error(f" Performance: {'' if perf_success else ''}")
sys.exit(1)
logger.info("="*80)
if __name__ == "__main__":
main()