Files
gogo2/run_clean_dashboard.py
2025-07-26 22:32:45 +03:00

325 lines
14 KiB
Python

#!/usr/bin/env python3
"""
Run Clean Trading Dashboard with Full Training Pipeline
Integrated system with both training loop and clean web dashboard
"""
import os
# Fix OpenMP library conflicts before importing other modules
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
os.environ['OMP_NUM_THREADS'] = '4'
# Fix matplotlib backend issue - set non-interactive backend before any imports
import matplotlib
matplotlib.use('Agg') # Use non-interactive Agg backend
import asyncio
import logging
import sys
import platform
from safe_logging import setup_safe_logging
import threading
import time
from pathlib import Path
# Windows-specific async event loop configuration
if platform.system() == "Windows":
# Use ProactorEventLoop on Windows for better I/O handling
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))
from core.config import get_config, setup_logging
from core.data_provider import DataProvider
# Import checkpoint management
from utils.checkpoint_manager import get_checkpoint_manager
from utils.training_integration import get_training_integration
# Setup logging
setup_safe_logging()
logger = logging.getLogger(__name__)
async def start_training_pipeline(orchestrator, trading_executor):
"""Start the training pipeline in the background with comprehensive error handling"""
logger.info("=" * 70)
logger.info("STARTING TRAINING PIPELINE WITH CLEAN DASHBOARD")
logger.info("=" * 70)
# Set up async exception handler
def handle_async_exception(loop, context):
"""Handle uncaught async exceptions"""
exception = context.get('exception')
if exception:
logger.error(f"Uncaught async exception: {exception}")
logger.error(f"Context: {context}")
else:
logger.error(f"Async error: {context.get('message', 'Unknown error')}")
# Get current event loop and set exception handler
loop = asyncio.get_running_loop()
loop.set_exception_handler(handle_async_exception)
# Initialize checkpoint management
checkpoint_manager = get_checkpoint_manager()
training_integration = get_training_integration()
# Training statistics
training_stats = {
'iteration_count': 0,
'total_decisions': 0,
'successful_trades': 0,
'best_performance': 0.0,
'last_checkpoint_iteration': 0
}
try:
# Start real-time processing with error handling
try:
if hasattr(orchestrator, 'start_realtime_processing'):
await orchestrator.start_realtime_processing()
logger.info("Real-time processing started")
except Exception as e:
logger.error(f"Error starting real-time processing: {e}")
# Start COB integration with error handling
try:
if hasattr(orchestrator, 'start_cob_integration'):
await orchestrator.start_cob_integration()
logger.info("COB integration started - 5-minute data matrix active")
else:
logger.info("COB integration not available")
except Exception as e:
logger.error(f"Error starting COB integration: {e}")
# Main training loop
iteration = 0
last_checkpoint_time = time.time()
while True:
try:
iteration += 1
training_stats['iteration_count'] = iteration
# Get symbols to process
symbols = orchestrator.symbols if hasattr(orchestrator, 'symbols') else ['ETH/USDT']
# Process each symbol
for symbol in symbols:
try:
# Make trading decision (this triggers model training)
decision = await orchestrator.make_trading_decision(symbol)
if decision:
training_stats['total_decisions'] += 1
logger.debug(f"[{symbol}] Decision: {decision.action} @ {decision.confidence:.1%}")
except Exception as e:
logger.warning(f"Error processing {symbol}: {e}")
# Status logging every 100 iterations
if iteration % 100 == 0:
current_time = time.time()
elapsed = current_time - last_checkpoint_time
logger.info(f"[TRAINING] Iteration {iteration}, Decisions: {training_stats['total_decisions']}, Time: {elapsed:.1f}s")
# Models will save their own checkpoints when performance improves
training_stats['last_checkpoint_iteration'] = iteration
last_checkpoint_time = current_time
# Brief pause to prevent overwhelming the system
await asyncio.sleep(0.1) # 100ms between iterations
except Exception as e:
logger.error(f"Training loop error: {e}")
await asyncio.sleep(5) # Wait longer on error
except Exception as e:
logger.error(f"Training pipeline error: {e}")
import traceback
logger.error(traceback.format_exc())
def start_clean_dashboard_with_training():
"""Start clean dashboard with full training pipeline"""
try:
logger.info("=" * 80)
logger.info("CLEAN TRADING DASHBOARD + FULL TRAINING PIPELINE")
logger.info("=" * 80)
logger.info("Features: Real-time Training, COB Integration, Clean UI")
logger.info("Universal Data Stream: ENABLED")
logger.info("Neural Decision Fusion: ENABLED")
logger.info("COB Integration: ENABLED")
logger.info("GPU Training: ENABLED")
logger.info("TensorBoard Integration: ENABLED")
logger.info("Multi-symbol: ETH/USDT, BTC/USDT")
# Get port from environment or use default
dashboard_port = int(os.environ.get('DASHBOARD_PORT', '8051'))
tensorboard_port = int(os.environ.get('TENSORBOARD_PORT', '6006'))
logger.info(f"Dashboard: http://127.0.0.1:{dashboard_port}")
logger.info(f"TensorBoard: http://127.0.0.1:{tensorboard_port}")
logger.info("=" * 80)
# Check environment variables
enable_universal_stream = os.environ.get('ENABLE_UNIVERSAL_DATA_STREAM', '1') == '1'
enable_nn_fusion = os.environ.get('ENABLE_NN_DECISION_FUSION', '1') == '1'
enable_cob = os.environ.get('ENABLE_COB_INTEGRATION', '1') == '1'
logger.info(f"Universal Data Stream: {'ENABLED' if enable_universal_stream else 'DISABLED'}")
logger.info(f"Neural Decision Fusion: {'ENABLED' if enable_nn_fusion else 'DISABLED'}")
logger.info(f"COB Integration: {'ENABLED' if enable_cob else 'DISABLED'}")
# Get configuration
config = get_config()
# Initialize core components with standardized versions
from core.standardized_data_provider import StandardizedDataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
# Create standardized data provider
data_provider = StandardizedDataProvider()
logger.info("StandardizedDataProvider created with BaseDataInput support")
# Create enhanced orchestrator with standardized data provider
orchestrator = TradingOrchestrator(data_provider, enhanced_rl_training=True)
logger.info("Enhanced Trading Orchestrator created with COB integration")
# Create trading executor
trading_executor = TradingExecutor(config_path="config.yaml")
logger.info(f"Creating trading executor with {trading_executor.primary_name} configuration...")
# Connect trading executor to orchestrator
orchestrator.trading_executor = trading_executor
logger.info("Trading Executor connected to Orchestrator")
# Initialize system resource monitoring
from utils.system_monitor import start_system_monitoring
system_monitor = start_system_monitoring()
# Set up cleanup callback for memory management
def cleanup_callback():
"""Custom cleanup for memory management"""
try:
# Clear orchestrator caches
if hasattr(orchestrator, 'recent_decisions'):
for symbol in orchestrator.recent_decisions:
if len(orchestrator.recent_decisions[symbol]) > 50:
orchestrator.recent_decisions[symbol] = orchestrator.recent_decisions[symbol][-25:]
# Clear data provider caches
if hasattr(data_provider, 'clear_old_data'):
data_provider.clear_old_data()
logger.info("Custom memory cleanup completed")
except Exception as e:
logger.error(f"Error in custom cleanup: {e}")
system_monitor.set_callbacks(cleanup=cleanup_callback)
logger.info("System resource monitoring started with memory cleanup")
# Import clean dashboard
from web.clean_dashboard import create_clean_dashboard
# Create clean dashboard
logger.info("Creating clean dashboard...")
dashboard = create_clean_dashboard(data_provider, orchestrator, trading_executor)
logger.info("Clean Trading Dashboard created")
# Add memory cleanup method to dashboard
def cleanup_dashboard_memory():
"""Clean up dashboard memory caches"""
try:
if hasattr(dashboard, 'recent_decisions'):
dashboard.recent_decisions = dashboard.recent_decisions[-50:] # Keep last 50
if hasattr(dashboard, 'closed_trades'):
dashboard.closed_trades = dashboard.closed_trades[-100:] # Keep last 100
if hasattr(dashboard, 'tick_cache'):
dashboard.tick_cache = dashboard.tick_cache[-1000:] # Keep last 1000
logger.debug("Dashboard memory cleanup completed")
except Exception as e:
logger.error(f"Error in dashboard memory cleanup: {e}")
# Set cleanup method on dashboard
dashboard.cleanup_memory = cleanup_dashboard_memory
# Start training pipeline in background thread with enhanced error handling
def training_worker():
"""Run training pipeline in background with comprehensive error handling"""
try:
asyncio.run(start_training_pipeline(orchestrator, trading_executor))
except KeyboardInterrupt:
logger.info("Training worker stopped by user")
except Exception as e:
logger.error(f"Training worker error: {e}")
import traceback
logger.error(f"Training worker traceback: {traceback.format_exc()}")
# Don't exit - let main thread handle restart
training_thread = threading.Thread(target=training_worker, daemon=True)
training_thread.start()
logger.info("Training pipeline started in background with error handling")
# Wait a moment for training to initialize
time.sleep(3)
# Start TensorBoard in background
from web.tensorboard_integration import get_tensorboard_integration
tensorboard_port = int(os.environ.get('TENSORBOARD_PORT', '6006'))
tensorboard_integration = get_tensorboard_integration(log_dir="runs", port=tensorboard_port)
# Start TensorBoard server
tensorboard_started = tensorboard_integration.start_tensorboard(open_browser=False)
if tensorboard_started:
logger.info(f"TensorBoard started at {tensorboard_integration.get_tensorboard_url()}")
else:
logger.warning("Failed to start TensorBoard - training metrics will not be visualized")
# Start dashboard server with error handling (this blocks)
logger.info("Starting Clean Dashboard Server with error handling...")
try:
dashboard.run_server(host='127.0.0.1', port=dashboard_port, debug=False)
except Exception as e:
logger.error(f"Dashboard server error: {e}")
import traceback
logger.error(f"Dashboard server traceback: {traceback.format_exc()}")
raise # Re-raise to trigger main error handling
except KeyboardInterrupt:
logger.info("System stopped by user")
# Stop TensorBoard
try:
tensorboard_integration = get_tensorboard_integration()
tensorboard_integration.stop_tensorboard()
except:
pass
except Exception as e:
logger.error(f"Error running clean dashboard with training: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
def main():
"""Main function with comprehensive error handling"""
try:
start_clean_dashboard_with_training()
except KeyboardInterrupt:
logger.info("Dashboard stopped by user (Ctrl+C)")
sys.exit(0)
except Exception as e:
logger.error(f"Critical error in main: {e}")
import traceback
logger.error(traceback.format_exc())
sys.exit(1)
if __name__ == "__main__":
# Ensure logging is flushed on exit
import atexit
def flush_logs():
logging.shutdown()
atexit.register(flush_logs)
main()