gogo2/training/enhanced_cnn_trainer.py
Dobromir Popov 2f50ed920f new overhaul
2025-05-24 11:00:40 +03:00

566 lines
23 KiB
Python

"""
Enhanced CNN Trainer with Perfect Move Learning
This trainer implements:
1. Training on marked perfect moves with known outcomes
2. Multi-timeframe CNN model training with confidence scoring
3. Backpropagation on optimal moves when future outcomes are known
4. Progressive learning from real trading experience
5. Symbol-specific and timeframe-specific model fine-tuning
"""
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from core.config import get_config
from core.data_provider import DataProvider
from core.enhanced_orchestrator import PerfectMove, EnhancedTradingOrchestrator
from models import CNNModelInterface
import models
logger = logging.getLogger(__name__)
class PerfectMoveDataset(Dataset):
"""Dataset for training on perfect moves with known outcomes"""
def __init__(self, perfect_moves: List[PerfectMove], data_provider: DataProvider):
"""
Initialize dataset from perfect moves
Args:
perfect_moves: List of perfect moves with known outcomes
data_provider: Data provider to fetch additional context
"""
self.perfect_moves = perfect_moves
self.data_provider = data_provider
self.samples = []
self._prepare_samples()
def _prepare_samples(self):
"""Prepare training samples from perfect moves"""
logger.info(f"Preparing {len(self.perfect_moves)} perfect move samples")
for move in self.perfect_moves:
try:
# Get feature matrix at the time of the decision
feature_matrix = self.data_provider.get_feature_matrix(
symbol=move.symbol,
timeframes=[move.timeframe],
window_size=20,
end_time=move.timestamp
)
if feature_matrix is not None:
# Convert optimal action to label
action_to_label = {'SELL': 0, 'HOLD': 1, 'BUY': 2}
label = action_to_label.get(move.optimal_action, 1)
# Create confidence target (what confidence should have been)
confidence_target = move.confidence_should_have_been
sample = {
'features': feature_matrix,
'action_label': label,
'confidence_target': confidence_target,
'symbol': move.symbol,
'timeframe': move.timeframe,
'outcome': move.actual_outcome,
'timestamp': move.timestamp
}
self.samples.append(sample)
except Exception as e:
logger.warning(f"Error preparing sample for perfect move: {e}")
logger.info(f"Prepared {len(self.samples)} valid training samples")
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample = self.samples[idx]
# Convert to tensors
features = torch.FloatTensor(sample['features'])
action_label = torch.LongTensor([sample['action_label']])
confidence_target = torch.FloatTensor([sample['confidence_target']])
return {
'features': features,
'action_label': action_label,
'confidence_target': confidence_target,
'metadata': {
'symbol': sample['symbol'],
'timeframe': sample['timeframe'],
'outcome': sample['outcome'],
'timestamp': sample['timestamp']
}
}
class EnhancedCNNModel(nn.Module, CNNModelInterface):
"""Enhanced CNN model with timeframe-specific predictions and confidence scoring"""
def __init__(self, config: Dict[str, Any]):
nn.Module.__init__(self)
CNNModelInterface.__init__(self, config)
self.timeframes = config.get('timeframes', ['1h', '4h', '1d'])
self.n_features = len(config.get('features', ['open', 'high', 'low', 'close', 'volume']))
self.window_size = config.get('window_size', 20)
# Build the neural network
self._build_network()
# Initialize device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.to(self.device)
# Training components
self.optimizer = optim.Adam(self.parameters(), lr=config.get('learning_rate', 0.001))
self.action_criterion = nn.CrossEntropyLoss()
self.confidence_criterion = nn.MSELoss()
logger.info(f"Enhanced CNN model initialized for {len(self.timeframes)} timeframes")
def _build_network(self):
"""Build the CNN architecture"""
# Convolutional feature extraction
self.conv_layers = nn.Sequential(
# First conv block
nn.Conv1d(self.n_features, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.2),
# Second conv block
nn.Conv1d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Dropout(0.2),
# Third conv block
nn.Conv1d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.2),
# Global average pooling
nn.AdaptiveAvgPool1d(1)
)
# Timeframe-specific heads
self.timeframe_heads = nn.ModuleDict()
for timeframe in self.timeframes:
self.timeframe_heads[timeframe] = nn.Sequential(
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.3)
)
# Action prediction heads (one per timeframe)
self.action_heads = nn.ModuleDict()
for timeframe in self.timeframes:
self.action_heads[timeframe] = nn.Linear(64, 3) # BUY, HOLD, SELL
# Confidence prediction heads (one per timeframe)
self.confidence_heads = nn.ModuleDict()
for timeframe in self.timeframes:
self.confidence_heads[timeframe] = nn.Sequential(
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
nn.Sigmoid() # Output between 0 and 1
)
def forward(self, x, timeframe: str = None):
"""
Forward pass through the network
Args:
x: Input tensor [batch_size, window_size, features]
timeframe: Specific timeframe to predict for
Returns:
action_probs: Action probabilities
confidence: Confidence score
"""
# Reshape for conv1d: [batch, features, sequence]
x = x.transpose(1, 2)
# Extract features
features = self.conv_layers(x) # [batch, 256, 1]
features = features.squeeze(-1) # [batch, 256]
if timeframe and timeframe in self.timeframe_heads:
# Timeframe-specific prediction
tf_features = self.timeframe_heads[timeframe](features)
action_logits = self.action_heads[timeframe](tf_features)
confidence = self.confidence_heads[timeframe](tf_features)
action_probs = torch.softmax(action_logits, dim=1)
return action_probs, confidence.squeeze(-1)
else:
# Multi-timeframe prediction (average across timeframes)
all_action_probs = []
all_confidences = []
for tf in self.timeframes:
tf_features = self.timeframe_heads[tf](features)
action_logits = self.action_heads[tf](tf_features)
confidence = self.confidence_heads[tf](tf_features)
action_probs = torch.softmax(action_logits, dim=1)
all_action_probs.append(action_probs)
all_confidences.append(confidence.squeeze(-1))
# Average predictions across timeframes
avg_action_probs = torch.stack(all_action_probs).mean(dim=0)
avg_confidence = torch.stack(all_confidences).mean(dim=0)
return avg_action_probs, avg_confidence
def predict(self, features: np.ndarray) -> Tuple[np.ndarray, float]:
"""Predict action probabilities and confidence"""
self.eval()
with torch.no_grad():
x = torch.FloatTensor(features).to(self.device)
if len(x.shape) == 2:
x = x.unsqueeze(0) # Add batch dimension
action_probs, confidence = self.forward(x)
return action_probs[0].cpu().numpy(), confidence[0].cpu().item()
def predict_timeframe(self, features: np.ndarray, timeframe: str) -> Tuple[np.ndarray, float]:
"""Predict for specific timeframe"""
self.eval()
with torch.no_grad():
x = torch.FloatTensor(features).to(self.device)
if len(x.shape) == 2:
x = x.unsqueeze(0) # Add batch dimension
action_probs, confidence = self.forward(x, timeframe)
return action_probs[0].cpu().numpy(), confidence[0].cpu().item()
def get_memory_usage(self) -> int:
"""Get memory usage in MB"""
if torch.cuda.is_available():
return torch.cuda.memory_allocated(self.device) // (1024 * 1024)
else:
# Rough estimate for CPU
param_count = sum(p.numel() for p in self.parameters())
return (param_count * 4) // (1024 * 1024) # 4 bytes per float32
def train(self, training_data: Dict[str, Any]) -> Dict[str, Any]:
"""Train the model (placeholder for interface compatibility)"""
return {}
class EnhancedCNNTrainer:
"""Enhanced CNN trainer using perfect moves and real market outcomes"""
def __init__(self, config: Optional[Dict] = None, orchestrator: EnhancedTradingOrchestrator = None):
"""Initialize the enhanced trainer"""
self.config = config or get_config()
self.orchestrator = orchestrator
self.data_provider = DataProvider(self.config)
# Training parameters
self.learning_rate = self.config.training.get('learning_rate', 0.001)
self.batch_size = self.config.training.get('batch_size', 32)
self.epochs = self.config.training.get('epochs', 100)
self.patience = self.config.training.get('early_stopping_patience', 10)
# Model
self.model = EnhancedCNNModel(self.config.cnn)
# Training history
self.training_history = {
'train_loss': [],
'val_loss': [],
'train_accuracy': [],
'val_accuracy': [],
'confidence_accuracy': []
} # Create save directory models_path = self.config.cnn.get('model_dir', "models/enhanced_cnn") self.save_dir = Path(models_path) self.save_dir.mkdir(parents=True, exist_ok=True) logger.info("Enhanced CNN trainer initialized")
def train_on_perfect_moves(self, min_samples: int = 100) -> Dict[str, Any]:
"""Train the model on perfect moves from the orchestrator"""
if not self.orchestrator:
raise ValueError("Orchestrator required for perfect move training")
# Get perfect moves from orchestrator
perfect_moves = []
for symbol in self.config.symbols:
symbol_moves = self.orchestrator.get_perfect_moves_for_training(symbol=symbol)
perfect_moves.extend(symbol_moves)
if len(perfect_moves) < min_samples:
logger.warning(f"Not enough perfect moves for training: {len(perfect_moves)} < {min_samples}")
return {'error': 'insufficient_data', 'samples': len(perfect_moves)}
logger.info(f"Training on {len(perfect_moves)} perfect moves")
# Create dataset
dataset = PerfectMoveDataset(perfect_moves, self.data_provider)
# Split into train/validation
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
# Training loop
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(self.epochs):
# Training phase
train_loss, train_acc = self._train_epoch(train_loader)
# Validation phase
val_loss, val_acc, conf_acc = self._validate_epoch(val_loader)
# Update history
self.training_history['train_loss'].append(train_loss)
self.training_history['val_loss'].append(val_loss)
self.training_history['train_accuracy'].append(train_acc)
self.training_history['val_accuracy'].append(val_acc)
self.training_history['confidence_accuracy'].append(conf_acc)
# Log progress
logger.info(f"Epoch {epoch+1}/{self.epochs}: "
f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f}, "
f"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}, "
f"Conf Acc: {conf_acc:.4f}")
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
self._save_model('best_model.pt')
else:
patience_counter += 1
if patience_counter >= self.patience:
logger.info(f"Early stopping at epoch {epoch+1}")
break
# Save final model
self._save_model('final_model.pt')
# Generate training report
return self._generate_training_report()
def _train_epoch(self, train_loader: DataLoader) -> Tuple[float, float]:
"""Train for one epoch"""
self.model.train()
total_loss = 0.0
correct_predictions = 0
total_predictions = 0
for batch in train_loader:
features = batch['features'].to(self.model.device)
action_labels = batch['action_label'].to(self.model.device).squeeze(-1)
confidence_targets = batch['confidence_target'].to(self.model.device).squeeze(-1)
# Zero gradients
self.model.optimizer.zero_grad()
# Forward pass
action_probs, confidence_pred = self.model(features)
# Calculate losses
action_loss = self.model.action_criterion(action_probs, action_labels)
confidence_loss = self.model.confidence_criterion(confidence_pred, confidence_targets)
# Combined loss
total_loss_batch = action_loss + 0.5 * confidence_loss
# Backward pass
total_loss_batch.backward()
self.model.optimizer.step()
# Track metrics
total_loss += total_loss_batch.item()
predicted_actions = torch.argmax(action_probs, dim=1)
correct_predictions += (predicted_actions == action_labels).sum().item()
total_predictions += action_labels.size(0)
avg_loss = total_loss / len(train_loader)
accuracy = correct_predictions / total_predictions
return avg_loss, accuracy
def _validate_epoch(self, val_loader: DataLoader) -> Tuple[float, float, float]:
"""Validate for one epoch"""
self.model.eval()
total_loss = 0.0
correct_predictions = 0
total_predictions = 0
confidence_errors = []
with torch.no_grad():
for batch in val_loader:
features = batch['features'].to(self.model.device)
action_labels = batch['action_label'].to(self.model.device).squeeze(-1)
confidence_targets = batch['confidence_target'].to(self.model.device).squeeze(-1)
# Forward pass
action_probs, confidence_pred = self.model(features)
# Calculate losses
action_loss = self.model.action_criterion(action_probs, action_labels)
confidence_loss = self.model.confidence_criterion(confidence_pred, confidence_targets)
total_loss_batch = action_loss + 0.5 * confidence_loss
# Track metrics
total_loss += total_loss_batch.item()
predicted_actions = torch.argmax(action_probs, dim=1)
correct_predictions += (predicted_actions == action_labels).sum().item()
total_predictions += action_labels.size(0)
# Track confidence accuracy
conf_errors = torch.abs(confidence_pred - confidence_targets)
confidence_errors.extend(conf_errors.cpu().numpy())
avg_loss = total_loss / len(val_loader)
accuracy = correct_predictions / total_predictions
confidence_accuracy = 1.0 - np.mean(confidence_errors) # 1 - mean absolute error
return avg_loss, accuracy, confidence_accuracy
def _save_model(self, filename: str):
"""Save the model"""
save_path = self.save_dir / filename
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.model.optimizer.state_dict(),
'config': self.config.cnn,
'training_history': self.training_history
}, save_path)
logger.info(f"Model saved to {save_path}")
def load_model(self, filename: str) -> bool:
"""Load a saved model"""
load_path = self.save_dir / filename
if not load_path.exists():
logger.error(f"Model file not found: {load_path}")
return False
try:
checkpoint = torch.load(load_path, map_location=self.model.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.model.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.training_history = checkpoint.get('training_history', {})
logger.info(f"Model loaded from {load_path}")
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
return False
def _generate_training_report(self) -> Dict[str, Any]:
"""Generate comprehensive training report"""
if not self.training_history['train_loss']:
return {'error': 'no_training_data'}
# Calculate final metrics
final_train_loss = self.training_history['train_loss'][-1]
final_val_loss = self.training_history['val_loss'][-1]
final_train_acc = self.training_history['train_accuracy'][-1]
final_val_acc = self.training_history['val_accuracy'][-1]
final_conf_acc = self.training_history['confidence_accuracy'][-1]
# Best metrics
best_val_loss = min(self.training_history['val_loss'])
best_val_acc = max(self.training_history['val_accuracy'])
best_conf_acc = max(self.training_history['confidence_accuracy'])
report = {
'training_completed': True,
'epochs_trained': len(self.training_history['train_loss']),
'final_metrics': {
'train_loss': final_train_loss,
'val_loss': final_val_loss,
'train_accuracy': final_train_acc,
'val_accuracy': final_val_acc,
'confidence_accuracy': final_conf_acc
},
'best_metrics': {
'val_loss': best_val_loss,
'val_accuracy': best_val_acc,
'confidence_accuracy': best_conf_acc
},
'model_info': {
'timeframes': self.model.timeframes,
'memory_usage_mb': self.model.get_memory_usage(),
'device': str(self.model.device)
}
}
# Generate plots
self._plot_training_history()
logger.info("Training completed successfully")
logger.info(f"Final validation accuracy: {final_val_acc:.4f}")
logger.info(f"Final confidence accuracy: {final_conf_acc:.4f}")
return report
def _plot_training_history(self):
"""Plot training history"""
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle('Enhanced CNN Training History')
# Loss plot
axes[0, 0].plot(self.training_history['train_loss'], label='Train Loss')
axes[0, 0].plot(self.training_history['val_loss'], label='Val Loss')
axes[0, 0].set_title('Loss')
axes[0, 0].set_xlabel('Epoch')
axes[0, 0].set_ylabel('Loss')
axes[0, 0].legend()
# Accuracy plot
axes[0, 1].plot(self.training_history['train_accuracy'], label='Train Accuracy')
axes[0, 1].plot(self.training_history['val_accuracy'], label='Val Accuracy')
axes[0, 1].set_title('Action Accuracy')
axes[0, 1].set_xlabel('Epoch')
axes[0, 1].set_ylabel('Accuracy')
axes[0, 1].legend()
# Confidence accuracy plot
axes[1, 0].plot(self.training_history['confidence_accuracy'], label='Confidence Accuracy')
axes[1, 0].set_title('Confidence Prediction Accuracy')
axes[1, 0].set_xlabel('Epoch')
axes[1, 0].set_ylabel('Accuracy')
axes[1, 0].legend()
# Learning curves comparison
axes[1, 1].plot(self.training_history['val_loss'], label='Validation Loss')
axes[1, 1].plot(self.training_history['confidence_accuracy'], label='Confidence Accuracy')
axes[1, 1].set_title('Model Performance Overview')
axes[1, 1].set_xlabel('Epoch')
axes[1, 1].legend()
plt.tight_layout()
plt.savefig(self.save_dir / 'training_history.png', dpi=300, bbox_inches='tight')
plt.close()
logger.info(f"Training plots saved to {self.save_dir / 'training_history.png'}")
def get_model(self) -> EnhancedCNNModel:
"""Get the trained model"""
return self.model