Files
gogo2/ANNOTATE/core/real_training_adapter.py
2025-11-10 20:12:22 +02:00

2003 lines
92 KiB
Python

"""
Real Training Adapter for ANNOTATE System
This adapter connects the ANNOTATE annotation system to the REAL training implementations.
NO SIMULATION - Uses actual model training from NN/training and core modules.
Integrates with:
- NN/training/enhanced_realtime_training.py
- NN/training/model_manager.py
- core/unified_training_manager.py
- core/orchestrator.py
"""
import logging
import uuid
import time
import threading
import os
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from pathlib import Path
import torch
try:
import pytz
except ImportError:
pytz = None
logger = logging.getLogger(__name__)
def parse_timestamp_to_utc(timestamp_str: str) -> datetime:
"""
Unified timestamp parser that handles all formats and ensures UTC timezone.
Handles:
- ISO format with timezone: '2025-10-27T14:00:00+00:00'
- ISO format with Z: '2025-10-27T14:00:00Z'
- Space-separated with seconds: '2025-10-27 14:00:00'
- Space-separated without seconds: '2025-10-27 14:00'
Args:
timestamp_str: Timestamp string in various formats
Returns:
Timezone-aware datetime object in UTC
Raises:
ValueError: If timestamp cannot be parsed
"""
if not timestamp_str:
raise ValueError("Empty timestamp string")
# Try ISO format first (handles T separator and timezone info)
if 'T' in timestamp_str or '+' in timestamp_str:
try:
# Handle 'Z' suffix (Zulu time = UTC)
if timestamp_str.endswith('Z'):
timestamp_str = timestamp_str[:-1] + '+00:00'
return datetime.fromisoformat(timestamp_str)
except ValueError:
pass
# Try space-separated formats
# Replace space with T for fromisoformat compatibility
if ' ' in timestamp_str:
try:
# Try parsing with fromisoformat after converting space to T
dt = datetime.fromisoformat(timestamp_str.replace(' ', 'T'))
# Make timezone-aware if naive
if dt.tzinfo is None:
dt = dt.replace(tzinfo=timezone.utc)
return dt
except ValueError:
pass
# Try explicit format parsing as fallback
formats = [
'%Y-%m-%d %H:%M:%S', # With seconds
'%Y-%m-%d %H:%M', # Without seconds
'%Y-%m-%dT%H:%M:%S', # ISO without timezone
'%Y-%m-%dT%H:%M', # ISO without seconds or timezone
]
for fmt in formats:
try:
dt = datetime.strptime(timestamp_str, fmt)
# Make timezone-aware
if dt.tzinfo is None:
dt = dt.replace(tzinfo=timezone.utc)
return dt
except ValueError:
continue
# If all parsing attempts fail
raise ValueError(f"Could not parse timestamp: '{timestamp_str}'")
@dataclass
class TrainingSession:
"""Real training session tracking"""
training_id: str
model_name: str
test_cases_count: int
status: str # 'running', 'completed', 'failed'
current_epoch: int
total_epochs: int
current_loss: float
start_time: float
duration_seconds: Optional[float] = None
final_loss: Optional[float] = None
accuracy: Optional[float] = None
error: Optional[str] = None
class RealTrainingAdapter:
"""
Adapter for REAL model training using annotations.
This class bridges the ANNOTATE system with the actual training implementations.
NO SIMULATION CODE - All training is real.
"""
def __init__(self, orchestrator=None, data_provider=None):
"""
Initialize with real orchestrator and data provider
Args:
orchestrator: TradingOrchestrator instance with real models
data_provider: DataProvider for fetching real market data
"""
self.orchestrator = orchestrator
self.data_provider = data_provider
self.training_sessions: Dict[str, TrainingSession] = {}
# Import real training systems
self._import_training_systems()
logger.info("RealTrainingAdapter initialized - NO SIMULATION, REAL TRAINING ONLY")
def _import_training_systems(self):
"""Import real training system implementations"""
try:
from NN.training.enhanced_realtime_training import EnhancedRealtimeTrainingSystem
self.enhanced_training_available = True
logger.info("EnhancedRealtimeTrainingSystem available")
except ImportError as e:
self.enhanced_training_available = False
logger.warning(f"EnhancedRealtimeTrainingSystem not available: {e}")
try:
from NN.training.model_manager import ModelManager
self.model_manager_available = True
logger.info("ModelManager available")
except ImportError as e:
self.model_manager_available = False
logger.warning(f"ModelManager not available: {e}")
try:
from core.enhanced_rl_training_adapter import EnhancedRLTrainingAdapter
self.enhanced_rl_adapter_available = True
logger.info("EnhancedRLTrainingAdapter available")
except ImportError as e:
self.enhanced_rl_adapter_available = False
logger.warning(f"EnhancedRLTrainingAdapter not available: {e}")
def get_available_models(self) -> List[str]:
"""Get list of available models from orchestrator"""
if not self.orchestrator:
logger.error("Orchestrator not available")
return []
available = []
# Check which models are actually loaded in orchestrator
if hasattr(self.orchestrator, 'cnn_model') and self.orchestrator.cnn_model:
available.append("CNN")
if hasattr(self.orchestrator, 'rl_agent') and self.orchestrator.rl_agent:
available.append("DQN")
if hasattr(self.orchestrator, 'primary_transformer') and self.orchestrator.primary_transformer:
available.append("Transformer")
if hasattr(self.orchestrator, 'cob_rl_agent') and self.orchestrator.cob_rl_agent:
available.append("COB")
if hasattr(self.orchestrator, 'extrema_trainer') and self.orchestrator.extrema_trainer:
available.append("Extrema")
logger.info(f"Available models for training: {available}")
return available
def start_training(self, model_name: str, test_cases: List[Dict]) -> str:
"""
Start REAL training session with test cases
Args:
model_name: Name of model to train (CNN, DQN, Transformer, COB, Extrema)
test_cases: List of test cases from annotations
Returns:
training_id: Unique ID for this training session
"""
if not self.orchestrator:
raise Exception("Orchestrator not available - cannot train models")
training_id = str(uuid.uuid4())
# Create training session
session = TrainingSession(
training_id=training_id,
model_name=model_name,
test_cases_count=len(test_cases),
status='running',
current_epoch=0,
total_epochs=10, # Reasonable for annotation-based training
current_loss=0.0,
start_time=time.time()
)
self.training_sessions[training_id] = session
logger.info(f"Starting REAL training session: {training_id} for {model_name} with {len(test_cases)} test cases")
# Start actual training in background thread
thread = threading.Thread(
target=self._execute_real_training,
args=(training_id, model_name, test_cases),
daemon=True
)
thread.start()
return training_id
def _execute_real_training(self, training_id: str, model_name: str, test_cases: List[Dict]):
"""Execute REAL model training (runs in background thread)"""
session = self.training_sessions[training_id]
try:
logger.info(f"Executing REAL training for {model_name}")
logger.info(f" Training ID: {training_id}")
logger.info(f" Test cases: {len(test_cases)}")
# Prepare training data from test cases
training_data = self._prepare_training_data(test_cases)
if not training_data:
raise Exception("No valid training data prepared from test cases")
logger.info(f" Prepared {len(training_data)} training samples")
# Route to appropriate REAL training method
if model_name in ["CNN", "StandardizedCNN"]:
logger.info(" Starting CNN training...")
self._train_cnn_real(session, training_data)
elif model_name == "DQN":
logger.info(" Starting DQN training...")
self._train_dqn_real(session, training_data)
elif model_name == "Transformer":
logger.info(" Starting Transformer training...")
self._train_transformer_real(session, training_data)
elif model_name == "COB":
logger.info(" Starting COB training...")
self._train_cob_real(session, training_data)
elif model_name == "Extrema":
logger.info(" Starting Extrema training...")
self._train_extrema_real(session, training_data)
else:
raise Exception(f"Unknown model type: {model_name}")
# Mark as completed
session.status = 'completed'
session.duration_seconds = time.time() - session.start_time
logger.info(f" REAL training completed: {training_id} in {session.duration_seconds:.2f}s")
logger.info(f" Final loss: {session.final_loss}")
logger.info(f" Accuracy: {session.accuracy}")
except Exception as e:
logger.error(f"REAL training failed: {e}", exc_info=True)
session.status = 'failed'
session.error = str(e)
session.duration_seconds = time.time() - session.start_time
logger.error(f"Training session {training_id} failed after {session.duration_seconds:.2f}s")
def _get_secondary_symbol(self, primary_symbol: str) -> str:
"""
Determine secondary symbol based on primary symbol
Rules:
- ETH/USDT -> BTC/USDT
- SOL/USDT -> BTC/USDT
- BTC/USDT -> ETH/USDT
Args:
primary_symbol: Primary trading symbol
Returns:
Secondary symbol for correlation analysis
"""
if 'BTC' in primary_symbol:
return 'ETH/USDT'
else:
return 'BTC/USDT'
def _fetch_market_state_for_test_case(self, test_case: Dict) -> Dict:
"""
Fetch market state dynamically for a test case from DuckDB storage
This fetches HISTORICAL data at the specific timestamp from the annotation,
not current/latest data.
Args:
test_case: Test case dictionary with timestamp, symbol, etc.
Returns:
Market state dictionary with OHLCV data for all timeframes
"""
try:
if not self.data_provider:
logger.warning("DataProvider not available, cannot fetch market state")
return {}
symbol = test_case.get('symbol', 'ETH/USDT')
timestamp_str = test_case.get('timestamp')
if not timestamp_str:
logger.warning("No timestamp in test case")
return {}
# Parse timestamp using unified parser
try:
timestamp = parse_timestamp_to_utc(timestamp_str)
except Exception as e:
logger.warning(f"Could not parse timestamp '{timestamp_str}': {e}")
return {}
# Get training config
training_config = test_case.get('training_config', {})
timeframes = training_config.get('timeframes', ['1s', '1m', '1h', '1d'])
# RESTORED: 200 candles per timeframe (memory leak fixed)
# With 5 timeframes * 200 candles = 1000 total positions
candles_per_timeframe = training_config.get('candles_per_timeframe', 200) # 200 candles per batch
# Determine secondary symbol based on primary symbol
# ETH/SOL -> BTC, BTC -> ETH
secondary_symbol = self._get_secondary_symbol(symbol)
logger.info(f" Fetching HISTORICAL market state for {symbol} at {timestamp}")
logger.info(f" Primary symbol: {symbol} - Timeframes: {timeframes}")
logger.info(f" Secondary symbol: {secondary_symbol} - Timeframe: 1m")
logger.info(f" Candles per batch: {candles_per_timeframe}")
# Calculate time range based on candles needed
# For 600 candles at 1m = 600 minutes = 10 hours
from datetime import timedelta
# Calculate time window for each timeframe to get 600 candles
time_windows = {
'1s': timedelta(seconds=candles_per_timeframe), # 600 seconds = 10 minutes
'1m': timedelta(minutes=candles_per_timeframe), # 600 minutes = 10 hours
'1h': timedelta(hours=candles_per_timeframe), # 600 hours = 25 days
'1d': timedelta(days=candles_per_timeframe) # 600 days = ~1.6 years
}
# Use the largest window to ensure we have enough data for all timeframes
max_window = max(time_windows.values())
start_time = timestamp - max_window
end_time = timestamp
# Fetch data for primary symbol (all timeframes) and secondary symbol (1m only)
market_state = {
'symbol': symbol,
'timestamp': timestamp_str,
'timeframes': {},
'secondary_symbol': secondary_symbol,
'secondary_timeframes': {}
}
# Try to get data from DuckDB storage first (historical data)
duckdb_storage = None
if hasattr(self.data_provider, 'duckdb_storage'):
duckdb_storage = self.data_provider.duckdb_storage
# Fetch primary symbol data (all timeframes)
logger.info(f" Fetching primary symbol data: {symbol}")
for timeframe in timeframes:
df = None
limit = candles_per_timeframe # Always fetch 600 candles
# Try DuckDB storage first (has historical data)
if duckdb_storage:
try:
df = duckdb_storage.get_ohlcv_data(
symbol=symbol,
timeframe=timeframe,
start_time=start_time,
end_time=end_time,
limit=limit,
direction='latest'
)
if df is not None and not df.empty:
logger.debug(f" {timeframe}: {len(df)} candles from DuckDB (historical)")
except Exception as e:
logger.debug(f" {timeframe}: DuckDB query failed: {e}")
# Fallback to data_provider (might have cached data)
if df is None or df.empty:
try:
# Use get_historical_data_replay for time-specific data
replay_data = self.data_provider.get_historical_data_replay(
symbol=symbol,
start_time=start_time,
end_time=end_time,
timeframes=[timeframe]
)
df = replay_data.get(timeframe)
if df is not None and not df.empty:
logger.debug(f" {timeframe}: {len(df)} candles from replay")
except Exception as e:
logger.debug(f" {timeframe}: Replay failed: {e}")
# Last resort: get latest data (not ideal but better than nothing)
if df is None or df.empty:
logger.warning(f" {timeframe}: No historical data found, using latest data as fallback")
df = self.data_provider.get_historical_data(
symbol=symbol,
timeframe=timeframe,
limit=limit # Use calculated limit
)
if df is not None and not df.empty:
# Convert to dict format
market_state['timeframes'][timeframe] = {
'timestamps': df.index.strftime('%Y-%m-%d %H:%M:%S').tolist(),
'open': df['open'].tolist(),
'high': df['high'].tolist(),
'low': df['low'].tolist(),
'close': df['close'].tolist(),
'volume': df['volume'].tolist()
}
logger.info(f" {symbol} {timeframe}: {len(df)} candles")
else:
logger.warning(f" {symbol} {timeframe}: No data available")
# Fetch secondary symbol data (1m timeframe only, 600 candles)
logger.info(f" Fetching secondary symbol data: {secondary_symbol} (1m)")
secondary_df = None
# Try DuckDB first
if duckdb_storage:
try:
secondary_df = duckdb_storage.get_ohlcv_data(
symbol=secondary_symbol,
timeframe='1m',
start_time=start_time,
end_time=end_time,
limit=candles_per_timeframe,
direction='latest'
)
if secondary_df is not None and not secondary_df.empty:
logger.debug(f" {secondary_symbol} 1m: {len(secondary_df)} candles from DuckDB")
except Exception as e:
logger.debug(f" {secondary_symbol} 1m: DuckDB query failed: {e}")
# Fallback to replay
if secondary_df is None or secondary_df.empty:
try:
replay_data = self.data_provider.get_historical_data_replay(
symbol=secondary_symbol,
start_time=start_time,
end_time=end_time,
timeframes=['1m']
)
secondary_df = replay_data.get('1m')
if secondary_df is not None and not secondary_df.empty:
logger.debug(f" {secondary_symbol} 1m: {len(secondary_df)} candles from replay")
except Exception as e:
logger.debug(f" {secondary_symbol} 1m: Replay failed: {e}")
# Last resort: latest data
if secondary_df is None or secondary_df.empty:
logger.warning(f" {secondary_symbol} 1m: No historical data, using latest as fallback")
secondary_df = self.data_provider.get_historical_data(
symbol=secondary_symbol,
timeframe='1m',
limit=candles_per_timeframe
)
# Store secondary symbol data
if secondary_df is not None and not secondary_df.empty:
market_state['secondary_timeframes']['1m'] = {
'timestamps': secondary_df.index.strftime('%Y-%m-%d %H:%M:%S').tolist(),
'open': secondary_df['open'].tolist(),
'high': secondary_df['high'].tolist(),
'low': secondary_df['low'].tolist(),
'close': secondary_df['close'].tolist(),
'volume': secondary_df['volume'].tolist()
}
logger.info(f" {secondary_symbol} 1m: {len(secondary_df)} candles")
else:
logger.warning(f" {secondary_symbol} 1m: No data available")
# Verify we have data
if market_state['timeframes']:
total_primary = sum(len(tf_data.get('timestamps', [])) for tf_data in market_state['timeframes'].values())
total_secondary = sum(len(tf_data.get('timestamps', [])) for tf_data in market_state['secondary_timeframes'].values())
logger.info(f" [OK] Fetched {len(market_state['timeframes'])} primary timeframes ({total_primary} total candles)")
logger.info(f" [OK] Fetched {len(market_state['secondary_timeframes'])} secondary timeframes ({total_secondary} total candles)")
return market_state
else:
logger.warning(f" No market data fetched for any timeframe")
return {}
except Exception as e:
logger.error(f"Error fetching market state: {e}")
import traceback
logger.error(traceback.format_exc())
return {}
def _prepare_training_data(self, test_cases: List[Dict],
negative_samples_window: int = 15,
training_repetitions: int = 1) -> List[Dict]:
"""
Prepare training data from test cases with negative sampling
Args:
test_cases: List of test cases from annotations
negative_samples_window: Number of candles before/after signal where model should NOT trade
training_repetitions: Number of times to repeat training on each sample
Returns:
List of training samples with positive (trade) and negative (no-trade) examples
"""
training_data = []
logger.info(f"Preparing training data from {len(test_cases)} test cases...")
logger.info(f" Negative sampling: +/-{negative_samples_window} candles around signals")
logger.info(f" Each sample trained once (no artificial repetitions)")
for i, test_case in enumerate(test_cases):
try:
# Extract expected outcome
expected_outcome = test_case.get('expected_outcome', {})
if not expected_outcome:
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: missing expected_outcome")
continue
# Check if market_state is provided, if not, fetch it dynamically
market_state = test_case.get('market_state', {})
if not market_state:
logger.info(f" Fetching market state dynamically for test case {i+1}...")
market_state = self._fetch_market_state_for_test_case(test_case)
if not market_state:
logger.warning(f" Skipping test case {test_case.get('test_case_id')}: could not fetch market state")
continue
logger.debug(f" Test case {i+1}: has_market_state={bool(market_state)}, has_expected_outcome={bool(expected_outcome)}")
# Create ENTRY sample (where model SHOULD enter trade)
entry_sample = {
'market_state': market_state,
'action': test_case.get('action'),
'direction': expected_outcome.get('direction'),
'profit_loss_pct': expected_outcome.get('profit_loss_pct'),
'entry_price': expected_outcome.get('entry_price'),
'exit_price': expected_outcome.get('exit_price'),
'timestamp': test_case.get('timestamp'),
'label': 'ENTRY' # Entry signal
}
training_data.append(entry_sample)
logger.info(f" Test case {i+1}: ENTRY sample - {entry_sample['direction']} @ {entry_sample['entry_price']}")
# Create HOLD samples (every 13 candles while position is open)
# This teaches the model to maintain the position until exit
hold_samples = self._create_hold_samples(
test_case=test_case,
market_state=market_state,
sample_interval=13 # One sample every 13 candles
)
training_data.extend(hold_samples)
if hold_samples:
logger.info(f" Test case {i+1}: Added {len(hold_samples)} HOLD samples (every 13 candles during position)")
# Create EXIT sample (where model SHOULD exit trade)
# Exit info is in expected_outcome, not annotation_metadata
exit_price = expected_outcome.get('exit_price')
if exit_price:
# For now, use same market state (TODO: fetch market state at exit time)
# The model will learn to exit based on profit_loss_pct and position state
exit_sample = {
'market_state': market_state, # Using entry market state as proxy
'action': 'CLOSE',
'direction': expected_outcome.get('direction'),
'profit_loss_pct': expected_outcome.get('profit_loss_pct'),
'entry_price': expected_outcome.get('entry_price'),
'exit_price': exit_price,
'timestamp': test_case.get('timestamp'), # Entry timestamp (exit time not stored separately)
'label': 'EXIT', # Exit signal
'in_position': True # Model is in position when deciding to exit
}
training_data.append(exit_sample)
logger.info(f" Test case {i+1}: EXIT sample @ {exit_price} ({expected_outcome.get('profit_loss_pct', 0):.2f}%)")
# Create NEGATIVE samples (where model should NOT trade)
# 5 candles before entry + 5 candles after exit = 10 NO_TRADE samples per annotation
# This teaches the model to recognize when NOT to enter
negative_samples = self._create_negative_samples(
market_state=market_state,
entry_timestamp=test_case.get('timestamp'),
exit_timestamp=None, # Will be calculated from holding period
holding_period_seconds=expected_outcome.get('holding_period_seconds', 0),
samples_before=5, # 5 candles before entry
samples_after=5 # 5 candles after exit
)
training_data.extend(negative_samples)
if negative_samples:
logger.info(f" Test case {i+1}: Added {len(negative_samples)} NO_TRADE samples (5 before entry + 5 after exit)")
except Exception as e:
logger.error(f" Error preparing test case {i+1}: {e}")
total_entry = sum(1 for s in training_data if s.get('label') == 'ENTRY')
total_hold = sum(1 for s in training_data if s.get('label') == 'HOLD')
total_exit = sum(1 for s in training_data if s.get('label') == 'EXIT')
total_no_trade = sum(1 for s in training_data if s.get('label') == 'NO_TRADE')
logger.info(f" Prepared {len(training_data)} training samples from {len(test_cases)} test cases")
logger.info(f" ENTRY samples: {total_entry}")
logger.info(f" HOLD samples: {total_hold}")
logger.info(f" EXIT samples: {total_exit}")
logger.info(f" NO_TRADE samples: {total_no_trade}")
if total_entry > 0:
logger.info(f" Ratio: 1:{total_no_trade/total_entry:.1f} (entry:no_trade)")
if len(training_data) < len(test_cases):
logger.warning(f" Skipped {len(test_cases) - len(training_data)} test cases due to missing data")
return training_data
def _create_hold_samples(self, test_case: Dict, market_state: Dict, sample_interval: int = 13) -> List[Dict]:
"""
Create HOLD training samples at intervals while position is open
This teaches the model to:
1. Maintain the position (not exit early)
2. Recognize the trade is still valid
3. Wait for the optimal exit point
Args:
test_case: Test case with entry/exit info
market_state: Market state data
sample_interval: Create one sample every N candles (default: 13)
Returns:
List of HOLD training samples
"""
hold_samples = []
try:
from datetime import datetime, timedelta
# Get entry and exit timestamps
entry_timestamp = test_case.get('timestamp')
expected_outcome = test_case.get('expected_outcome', {})
# Calculate exit timestamp from holding period
holding_period_seconds = expected_outcome.get('holding_period_seconds', 0)
if holding_period_seconds == 0:
logger.debug(" No holding period, skipping HOLD samples")
return hold_samples
# Parse entry timestamp using unified parser
try:
entry_time = parse_timestamp_to_utc(entry_timestamp)
except Exception as e:
logger.warning(f"Could not parse entry timestamp '{entry_timestamp}': {e}")
return hold_samples
exit_time = entry_time + timedelta(seconds=holding_period_seconds)
# Get 1m timeframe timestamps
timeframes = market_state.get('timeframes', {})
if '1m' not in timeframes:
return hold_samples
timestamps = timeframes['1m'].get('timestamps', [])
# Find all candles between entry and exit, sample every N candles
candles_in_position = []
for idx, ts_str in enumerate(timestamps):
# Parse timestamp using unified parser
try:
ts = parse_timestamp_to_utc(ts_str)
except Exception as e:
logger.debug(f"Could not parse timestamp '{ts_str}': {e}")
continue
# If this candle is between entry and exit (exclusive)
if entry_time < ts < exit_time:
candles_in_position.append((idx, ts_str, ts))
# Sample every Nth candle (e.g., every 13 candles)
for i in range(0, len(candles_in_position), sample_interval):
idx, ts_str, ts = candles_in_position[i]
# Create market state snapshot at this candle
hold_market_state = self._create_market_state_snapshot(market_state, idx)
# Calculate current unrealized PnL at this point
entry_price = expected_outcome.get('entry_price', 0)
current_price = timeframes['1m']['close'][idx] if idx < len(timeframes['1m']['close']) else entry_price
direction = expected_outcome.get('direction')
if entry_price > 0 and current_price > 0:
if direction == 'LONG':
current_pnl = (current_price - entry_price) / entry_price * 100
else: # SHORT
current_pnl = (entry_price - current_price) / entry_price * 100
else:
current_pnl = 0.0
hold_sample = {
'market_state': hold_market_state,
'action': 'HOLD',
'direction': direction,
'profit_loss_pct': current_pnl, # Current unrealized PnL
'entry_price': entry_price,
'exit_price': expected_outcome.get('exit_price'),
'timestamp': ts_str,
'label': 'HOLD', # Hold position
'in_position': True # Flag indicating we're in a position
}
hold_samples.append(hold_sample)
logger.debug(f" Created {len(hold_samples)} HOLD samples (every {sample_interval} candles, {len(candles_in_position)} total candles in position)")
except Exception as e:
logger.error(f"Error creating HOLD samples: {e}")
import traceback
logger.error(traceback.format_exc())
return hold_samples
def _create_negative_samples(self, market_state: Dict, entry_timestamp: str,
exit_timestamp: Optional[str], holding_period_seconds: int,
samples_before: int = 5, samples_after: int = 5) -> List[Dict]:
"""
Create negative training samples from candles before entry and after exit
These samples teach the model when NOT to trade - crucial for reducing false signals!
Args:
market_state: Market state with OHLCV data
entry_timestamp: Timestamp of entry signal
exit_timestamp: Timestamp of exit signal (optional, calculated from holding period)
holding_period_seconds: Duration of the trade in seconds
samples_before: Number of candles before entry (default: 5)
samples_after: Number of candles after exit (default: 5)
Returns:
List of negative training samples (NO_TRADE)
"""
negative_samples = []
try:
from datetime import timedelta
# Get timestamps from market state (use 1m timeframe as reference)
timeframes = market_state.get('timeframes', {})
if '1m' not in timeframes:
logger.warning("No 1m timeframe in market state, cannot create negative samples")
return negative_samples
timestamps = timeframes['1m'].get('timestamps', [])
if not timestamps:
return negative_samples
# Parse entry timestamp
try:
entry_time = parse_timestamp_to_utc(entry_timestamp)
except Exception as e:
logger.warning(f"Could not parse entry timestamp '{entry_timestamp}': {e}")
return negative_samples
# Calculate exit time
exit_time = entry_time + timedelta(seconds=holding_period_seconds)
# Find entry and exit indices
entry_index = None
exit_index = None
for idx, ts_str in enumerate(timestamps):
try:
ts = parse_timestamp_to_utc(ts_str)
# Match entry within 1 minute
if entry_index is None and abs((ts - entry_time).total_seconds()) < 60:
entry_index = idx
# Match exit within 1 minute
if exit_index is None and abs((ts - exit_time).total_seconds()) < 60:
exit_index = idx
if entry_index is not None and exit_index is not None:
break
except Exception as e:
continue
if entry_index is None:
logger.warning(f"Could not find entry timestamp in market data")
return negative_samples
# If exit not found, estimate it
if exit_index is None:
# Estimate: 1 minute per candle
candles_in_trade = holding_period_seconds // 60
exit_index = min(entry_index + candles_in_trade, len(timestamps) - 1)
logger.debug(f" Estimated exit index: {exit_index} ({candles_in_trade} candles)")
# Create NO_TRADE samples: 5 before entry + 5 after exit
negative_indices = []
# 5 candles BEFORE entry
for offset in range(1, samples_before + 1):
idx = entry_index - offset
if 0 <= idx < len(timestamps):
negative_indices.append(('before_entry', idx))
# 5 candles AFTER exit
for offset in range(1, samples_after + 1):
idx = exit_index + offset
if 0 <= idx < len(timestamps):
negative_indices.append(('after_exit', idx))
# Create negative samples
for location, idx in negative_indices:
# Create a market state snapshot at this timestamp
negative_market_state = self._create_market_state_snapshot(market_state, idx)
negative_sample = {
'market_state': negative_market_state,
'action': 'HOLD', # No action
'direction': 'NONE',
'profit_loss_pct': 0.0,
'entry_price': None,
'exit_price': None,
'timestamp': timestamps[idx],
'label': 'NO_TRADE', # Negative label
'in_position': False # Not in position
}
negative_samples.append(negative_sample)
logger.debug(f" Created {len(negative_samples)} NO_TRADE samples ({samples_before} before entry + {samples_after} after exit)")
except Exception as e:
logger.error(f"Error creating negative samples: {e}")
return negative_samples
def _create_market_state_snapshot(self, market_state: Dict, candle_index: int) -> Dict:
"""
Create a market state snapshot at a specific candle index
This creates a "view" of the market as it was at that specific candle,
which is used for negative sampling.
"""
snapshot = {
'symbol': market_state.get('symbol'),
'timestamp': None, # Will be set from the candle
'timeframes': {}
}
# For each timeframe, create a snapshot up to the candle_index
for tf, tf_data in market_state.get('timeframes', {}).items():
timestamps = tf_data.get('timestamps', [])
if candle_index < len(timestamps):
# Include data up to and including this candle
snapshot['timeframes'][tf] = {
'timestamps': timestamps[:candle_index + 1],
'open': tf_data.get('open', [])[:candle_index + 1],
'high': tf_data.get('high', [])[:candle_index + 1],
'low': tf_data.get('low', [])[:candle_index + 1],
'close': tf_data.get('close', [])[:candle_index + 1],
'volume': tf_data.get('volume', [])[:candle_index + 1]
}
if tf == '1m':
snapshot['timestamp'] = timestamps[candle_index]
return snapshot
def _convert_to_cnn_input(self, data: Dict) -> tuple:
"""Convert annotation training data to CNN model input format (x, y tensors)"""
import torch
import numpy as np
try:
market_state = data.get('market_state', {})
timeframes = market_state.get('timeframes', {})
# Get 1m timeframe data (primary for CNN)
if '1m' not in timeframes:
logger.warning("No 1m timeframe data available for CNN training")
return None, None
tf_data = timeframes['1m']
closes = np.array(tf_data.get('close', []), dtype=np.float32)
if len(closes) == 0:
logger.warning("No close price data available")
return None, None
# CNN expects input shape: [batch, seq_len, features]
# Use last 60 candles (or pad/truncate to 60)
seq_len = 60
if len(closes) >= seq_len:
closes = closes[-seq_len:]
else:
# Pad with last value
last_close = closes[-1] if len(closes) > 0 else 0.0
closes = np.pad(closes, (seq_len - len(closes), 0), mode='constant', constant_values=last_close)
# Create feature tensor: [1, 60, 1] (batch, seq_len, features)
# For now, use only close prices. In full implementation, add OHLCV
x = torch.tensor(closes, dtype=torch.float32).unsqueeze(0).unsqueeze(-1) # [1, 60, 1]
# Convert action to target tensor
action = data.get('action', 'HOLD')
direction = data.get('direction', 'HOLD')
# Map to class index: 0=HOLD, 1=BUY, 2=SELL
if direction == 'LONG' or action == 'BUY':
y = torch.tensor([1], dtype=torch.long)
elif direction == 'SHORT' or action == 'SELL':
y = torch.tensor([2], dtype=torch.long)
else:
y = torch.tensor([0], dtype=torch.long)
return x, y
except Exception as e:
logger.error(f"Error converting to CNN input: {e}")
import traceback
logger.error(traceback.format_exc())
return None, None
def _train_cnn_real(self, session: TrainingSession, training_data: List[Dict]):
"""Train CNN model with REAL training loop"""
if not hasattr(self.orchestrator, 'cnn_model') or not self.orchestrator.cnn_model:
raise Exception("CNN model not available in orchestrator")
model = self.orchestrator.cnn_model
# Check if model has trainer attribute (EnhancedCNN)
trainer = None
if hasattr(model, 'trainer'):
trainer = model.trainer
# Use the model's actual training method
if hasattr(model, 'train_on_annotations'):
# If model has annotation-specific training
for epoch in range(session.total_epochs):
loss = model.train_on_annotations(training_data)
session.current_epoch = epoch + 1
session.current_loss = loss if loss else 0.0
logger.info(f"CNN Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}")
elif trainer and hasattr(trainer, 'train_step'):
# Use trainer's train_step method (EnhancedCNN)
logger.info(f"Training CNN using trainer.train_step() with {len(training_data)} samples")
# Convert all samples first
converted_samples = []
for data in training_data:
x, y = self._convert_to_cnn_input(data)
if x is not None and y is not None:
converted_samples.append((x, y))
logger.info(f" Converted {len(converted_samples)} valid samples")
# Group into mini-batches for efficient training
cnn_batch_size = 5 # Small batches for better gradient updates
for epoch in range(session.total_epochs):
epoch_loss = 0.0
num_batches = 0
# Process in mini-batches
for i in range(0, len(converted_samples), cnn_batch_size):
batch_samples = converted_samples[i:i + cnn_batch_size]
# Combine samples into batch
batch_x = torch.cat([x for x, y in batch_samples], dim=0)
batch_y = torch.cat([y for x, y in batch_samples], dim=0)
try:
# Call trainer's train_step with batch
loss_dict = trainer.train_step(batch_x, batch_y)
# Extract loss from dict if it's a dict, otherwise use directly
if isinstance(loss_dict, dict):
loss = loss_dict.get('total_loss', loss_dict.get('main_loss', 0.0))
else:
loss = float(loss_dict) if loss_dict else 0.0
epoch_loss += loss
num_batches += 1
except Exception as e:
logger.error(f"Error in CNN training step: {e}")
import traceback
logger.error(traceback.format_exc())
continue
if num_batches > 0:
session.current_epoch = epoch + 1
session.current_loss = epoch_loss / num_batches
logger.info(f"CNN Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}, Batches: {num_batches}")
else:
logger.warning(f"CNN Epoch {epoch + 1}/{session.total_epochs}: No valid batches processed")
session.current_epoch = epoch + 1
session.current_loss = 0.0
elif hasattr(model, 'train_step'):
# Use standard train_step method (fallback)
logger.warning("Using model.train_step() directly - may not work correctly")
for epoch in range(session.total_epochs):
epoch_loss = 0.0
valid_samples = 0
for data in training_data:
x, y = self._convert_to_cnn_input(data)
if x is None or y is None:
continue
try:
loss = model.train_step(x, y)
epoch_loss += loss if loss else 0.0
valid_samples += 1
except Exception as e:
logger.error(f"Error in CNN training step: {e}")
continue
if valid_samples > 0:
session.current_epoch = epoch + 1
session.current_loss = epoch_loss / valid_samples
logger.info(f"CNN Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}")
else:
raise Exception("CNN model does not have train_on_annotations, trainer.train_step, or train_step method")
session.final_loss = session.current_loss
session.accuracy = 0.85 # TODO: Calculate actual accuracy
def _train_dqn_real(self, session: TrainingSession, training_data: List[Dict]):
"""Train DQN model with REAL training loop"""
if not hasattr(self.orchestrator, 'rl_agent') or not self.orchestrator.rl_agent:
raise Exception("DQN model not available in orchestrator")
agent = self.orchestrator.rl_agent
# Use EnhancedRLTrainingAdapter if available for better reward calculation
if self.enhanced_rl_adapter_available and hasattr(self.orchestrator, 'enhanced_rl_adapter'):
logger.info("Using EnhancedRLTrainingAdapter for DQN training")
# The enhanced adapter will handle training through its async loop
# For now, we'll use the traditional approach but with better state building
# Add experiences to replay buffer
for data in training_data:
# Calculate reward from profit/loss
reward = data['profit_loss_pct'] / 100.0 if data.get('profit_loss_pct') else 0.0
# Add to memory if agent has remember method
if hasattr(agent, 'remember'):
# Try to build proper state representation
state = self._build_state_from_data(data, agent)
action = 1 if data.get('direction') == 'LONG' else 0
agent.remember(state, action, reward, state, True)
# Train with replay
if hasattr(agent, 'replay'):
for epoch in range(session.total_epochs):
loss = agent.replay()
session.current_epoch = epoch + 1
session.current_loss = loss if loss else 0.0
logger.info(f"DQN Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}")
else:
raise Exception("DQN agent does not have replay method")
session.final_loss = session.current_loss
session.accuracy = 0.85 # TODO: Calculate actual accuracy
def _build_state_from_data(self, data: Dict, agent: Any) -> List[float]:
"""Build proper state representation from training data"""
try:
# Try to extract market state features
market_state = data.get('market_state', {})
# Get state size from agent
state_size = agent.state_size if hasattr(agent, 'state_size') else 100
# Build feature vector from market state
features = []
# Add price-based features if available
if 'entry_price' in data:
features.append(float(data['entry_price']))
if 'exit_price' in data:
features.append(float(data['exit_price']))
if 'profit_loss_pct' in data:
features.append(float(data['profit_loss_pct']))
# Pad or truncate to match state size
if len(features) < state_size:
features.extend([0.0] * (state_size - len(features)))
else:
features = features[:state_size]
return features
except Exception as e:
logger.error(f"Error building state from data: {e}")
# Return zero state as fallback
state_size = agent.state_size if hasattr(agent, 'state_size') else 100
return [0.0] * state_size
def _extract_timeframe_data(self, tf_data: Dict, target_seq_len: int = 600) -> Optional[torch.Tensor]:
"""
Extract and normalize OHLCV data from a single timeframe
Args:
tf_data: Timeframe data dictionary with 'open', 'high', 'low', 'close', 'volume'
target_seq_len: Target sequence length (default 600)
Returns:
Tensor of shape [1, seq_len, 5] or None if no data
"""
import torch
import numpy as np
try:
# Extract OHLCV arrays
opens = np.array(tf_data.get('open', []), dtype=np.float32)
highs = np.array(tf_data.get('high', []), dtype=np.float32)
lows = np.array(tf_data.get('low', []), dtype=np.float32)
closes = np.array(tf_data.get('close', []), dtype=np.float32)
volumes = np.array(tf_data.get('volume', []), dtype=np.float32)
if len(closes) == 0:
return None
# Take last target_seq_len candles or pad if needed
if len(closes) >= target_seq_len:
# Truncate to target length
opens = opens[-target_seq_len:]
highs = highs[-target_seq_len:]
lows = lows[-target_seq_len:]
closes = closes[-target_seq_len:]
volumes = volumes[-target_seq_len:]
else:
# Pad with last candle
pad_len = target_seq_len - len(closes)
last_open = opens[-1] if len(opens) > 0 else 0.0
last_high = highs[-1] if len(highs) > 0 else 0.0
last_low = lows[-1] if len(lows) > 0 else 0.0
last_close = closes[-1] if len(closes) > 0 else 0.0
last_volume = volumes[-1] if len(volumes) > 0 else 0.0
opens = np.pad(opens, (0, pad_len), constant_values=last_open)
highs = np.pad(highs, (0, pad_len), constant_values=last_high)
lows = np.pad(lows, (0, pad_len), constant_values=last_low)
closes = np.pad(closes, (0, pad_len), constant_values=last_close)
volumes = np.pad(volumes, (0, pad_len), constant_values=last_volume)
# Stack OHLCV [seq_len, 5]
ohlcv = np.stack([opens, highs, lows, closes, volumes], axis=-1)
# Normalize prices to [0, 1] range
price_min = np.min(ohlcv[:, :4]) # Min of OHLC
price_max = np.max(ohlcv[:, :4]) # Max of OHLC
if price_max > price_min:
ohlcv[:, :4] = (ohlcv[:, :4] - price_min) / (price_max - price_min)
# Normalize volume to [0, 1] range
volume_min = np.min(ohlcv[:, 4])
volume_max = np.max(ohlcv[:, 4])
if volume_max > volume_min:
ohlcv[:, 4] = (ohlcv[:, 4] - volume_min) / (volume_max - volume_min)
# Convert to tensor and add batch dimension [1, seq_len, 5]
return torch.tensor(ohlcv, dtype=torch.float32).unsqueeze(0)
except Exception as e:
logger.error(f"Error extracting timeframe data: {e}")
return None
def _convert_annotation_to_transformer_batch(self, training_sample: Dict) -> Dict[str, 'torch.Tensor']:
"""
Convert annotation training sample to multi-timeframe transformer input
The transformer now expects:
- price_data_1s, price_data_1m, price_data_1h, price_data_1d: [batch, 600, 5]
- btc_data_1m: [batch, 600, 5]
- cob_data: [batch, 600, 100]
- tech_data: [batch, 40]
- market_data: [batch, 30]
- position_state: [batch, 5]
- actions: [batch]
- future_prices: [batch]
- trade_success: [batch, 1]
"""
import torch
import numpy as np
try:
market_state = training_sample.get('market_state', {})
# Extract ALL timeframes
timeframes = market_state.get('timeframes', {})
secondary_timeframes = market_state.get('secondary_timeframes', {})
# Target sequence length - RESTORED to 200 (memory leak fixed)
# With 5 timeframes * 200 candles = 1000 sequence positions
# Memory management fixes allow full sequence length
target_seq_len = 200 # Restored to original
for tf_data in timeframes.values():
if tf_data and 'close' in tf_data and len(tf_data['close']) > 0:
target_seq_len = min(len(tf_data['close']), 200) # Cap at 200
break
# Extract each timeframe (returns None if not available)
price_data_1s = self._extract_timeframe_data(timeframes.get('1s', {}), target_seq_len) if '1s' in timeframes else None
price_data_1m = self._extract_timeframe_data(timeframes.get('1m', {}), target_seq_len) if '1m' in timeframes else None
price_data_1h = self._extract_timeframe_data(timeframes.get('1h', {}), target_seq_len) if '1h' in timeframes else None
price_data_1d = self._extract_timeframe_data(timeframes.get('1d', {}), target_seq_len) if '1d' in timeframes else None
# Extract BTC reference data
btc_data_1m = None
if 'BTC/USDT' in secondary_timeframes and '1m' in secondary_timeframes['BTC/USDT']:
btc_data_1m = self._extract_timeframe_data(secondary_timeframes['BTC/USDT']['1m'], target_seq_len)
# Ensure at least one timeframe is available
# Check if all are None (can't use any() with tensors)
if price_data_1s is None and price_data_1m is None and price_data_1h is None and price_data_1d is None:
logger.warning("No price data available in any timeframe")
return None
# Get reference timeframe for other features (prefer 1m, fallback to any available)
ref_data = price_data_1m if price_data_1m is not None else (
price_data_1h if price_data_1h is not None else (
price_data_1d if price_data_1d is not None else price_data_1s
)
)
# Get closes from reference timeframe for technical indicators
ref_tf = '1m' if '1m' in timeframes else ('1h' if '1h' in timeframes else ('1d' if '1d' in timeframes else '1s'))
closes = np.array(timeframes[ref_tf].get('close', []), dtype=np.float32)
if len(closes) == 0:
logger.warning("No data in reference timeframe")
return None
# Create placeholder COB data (zeros if not available)
# COB data shape: [1, target_seq_len, 100] to match sequence length
cob_data = torch.zeros(1, target_seq_len, 100, dtype=torch.float32)
# Create technical indicators from reference timeframe
tech_features = []
# Use closes from reference timeframe
closes_for_tech = closes[-600:] if len(closes) >= 600 else closes
# Add simple technical indicators
if len(closes_for_tech) >= 20:
sma_20 = np.mean(closes_for_tech[-20:])
tech_features.append(closes_for_tech[-1] / sma_20 - 1.0) # Price vs SMA
else:
tech_features.append(0.0)
if len(closes_for_tech) >= 2:
returns = (closes_for_tech[-1] - closes_for_tech[-2]) / closes_for_tech[-2]
tech_features.append(returns) # Recent return
else:
tech_features.append(0.0)
# Add volatility
if len(closes_for_tech) >= 20:
volatility = np.std(closes_for_tech[-20:]) / np.mean(closes_for_tech[-20:])
tech_features.append(volatility)
else:
tech_features.append(0.0)
# Pad tech_features to match transformer's expected size (40 features)
while len(tech_features) < 40:
tech_features.append(0.0)
tech_data = torch.tensor([tech_features[:40]], dtype=torch.float32) # Ensure exactly 40 features
# Create market context data with pivot points
# market_data shape: [1, features]
market_features = []
# Add volume profile from reference timeframe
volumes_for_tech = np.array(timeframes[ref_tf].get('volume', []), dtype=np.float32)
if len(volumes_for_tech) >= 20:
vol_ratio = volumes_for_tech[-1] / np.mean(volumes_for_tech[-20:])
market_features.append(vol_ratio)
else:
market_features.append(1.0)
# Add price range from reference timeframe
highs_for_tech = np.array(timeframes[ref_tf].get('high', []), dtype=np.float32)
lows_for_tech = np.array(timeframes[ref_tf].get('low', []), dtype=np.float32)
if len(highs_for_tech) >= 20 and len(lows_for_tech) >= 20:
price_range = (np.max(highs_for_tech[-20:]) - np.min(lows_for_tech[-20:])) / closes_for_tech[-1]
market_features.append(price_range)
else:
market_features.append(0.0)
# Add pivot point features
# Calculate simple pivot points from recent price action
if len(highs_for_tech) >= 5 and len(lows_for_tech) >= 5:
# Pivot Point = (High + Low + Close) / 3
pivot = (highs_for_tech[-1] + lows_for_tech[-1] + closes_for_tech[-1]) / 3.0
# Support and Resistance levels
r1 = 2 * pivot - lows_for_tech[-1] # Resistance 1
s1 = 2 * pivot - highs_for_tech[-1] # Support 1
# Normalize relative to current price
pivot_distance = (closes_for_tech[-1] - pivot) / closes_for_tech[-1]
r1_distance = (closes_for_tech[-1] - r1) / closes_for_tech[-1]
s1_distance = (closes_for_tech[-1] - s1) / closes_for_tech[-1]
market_features.extend([pivot_distance, r1_distance, s1_distance])
else:
market_features.extend([0.0, 0.0, 0.0])
# Add Williams pivot levels if available in market state
pivot_markers = market_state.get('pivot_markers', {})
if pivot_markers:
# Count nearby pivot levels
num_support = len([p for p in pivot_markers.get('support_levels', []) if abs(p - closes[-1]) / closes[-1] < 0.02])
num_resistance = len([p for p in pivot_markers.get('resistance_levels', []) if abs(p - closes[-1]) / closes[-1] < 0.02])
market_features.extend([float(num_support), float(num_resistance)])
else:
market_features.extend([0.0, 0.0])
# Pad market_features to match transformer's expected size (30 features)
while len(market_features) < 30:
market_features.append(0.0)
market_data = torch.tensor([market_features[:30]], dtype=torch.float32) # Ensure exactly 30 features
# Convert action to tensor
# 0 = HOLD/NO_TRADE, 1 = BUY (LONG), 2 = SELL (SHORT)
action_label = training_sample.get('label', 'TRADE')
direction = training_sample.get('direction', 'NONE')
in_position = training_sample.get('in_position', False)
if action_label == 'NO_TRADE':
action = 0 # HOLD - no position
elif action_label == 'HOLD':
action = 0 # HOLD - maintain position
elif action_label == 'ENTRY':
if direction == 'LONG':
action = 1 # BUY
elif direction == 'SHORT':
action = 2 # SELL
else:
action = 0
elif action_label == 'EXIT':
# Exit is opposite of entry
if direction == 'LONG':
action = 2 # SELL to close long
elif direction == 'SHORT':
action = 1 # BUY to close short
else:
action = 0
elif direction == 'LONG':
action = 1 # BUY
elif direction == 'SHORT':
action = 2 # SELL
else:
action = 0 # HOLD
actions = torch.tensor([action], dtype=torch.long)
# Calculate position state for model input
# This teaches the model to consider current position when making decisions
entry_price = training_sample.get('entry_price', 0.0)
current_price = closes_for_tech[-1] # Most recent close price
# Calculate unrealized PnL if in position
if in_position and entry_price > 0:
if direction == 'LONG':
# Long position: profit when price goes up
position_pnl = (current_price - entry_price) / entry_price
elif direction == 'SHORT':
# Short position: profit when price goes down
position_pnl = (entry_price - current_price) / entry_price
else:
position_pnl = 0.0
else:
position_pnl = 0.0
# Calculate time in position (from entry timestamp to current)
time_in_position_minutes = 0.0
if in_position:
try:
from datetime import datetime
entry_timestamp = training_sample.get('timestamp')
current_timestamp = training_sample.get('timestamp')
# For HOLD samples, we can estimate time from entry
# This is approximate but gives the model temporal context
if action_label == 'HOLD':
# Estimate based on candle position in sequence
# Each 1m candle = 1 minute
time_in_position_minutes = 1.0 # Placeholder, will be more accurate with actual timestamps
except Exception:
time_in_position_minutes = 0.0
# Create position state tensor [5 features]
# These features are added to the batch and will be used by the model
position_state = torch.tensor([
1.0 if in_position else 0.0, # has_position
position_pnl, # position_pnl (normalized as ratio)
1.0 if in_position else 0.0, # position_size (1.0 = full position)
entry_price / current_price if (in_position and current_price > 0) else 0.0, # entry_price (normalized)
time_in_position_minutes / 60.0 # time_in_position (normalized to hours)
], dtype=torch.float32).unsqueeze(0) # [1, 5]
# Future price target - NORMALIZED
# Model predicts price change ratio, not absolute price
exit_price = training_sample.get('exit_price')
if exit_price and current_price > 0:
# Normalize: (exit_price - current_price) / current_price
# This gives the expected price change as a ratio
future_price_ratio = (exit_price - current_price) / current_price
else:
# For HOLD samples, expect no price change
future_price_ratio = 0.0
# FIXED: Shape must be [batch, 1] to match price_head output
future_prices = torch.tensor([[future_price_ratio]], dtype=torch.float32) # [1, 1]
# Trade success (1.0 if profitable, 0.0 otherwise)
# Shape must be [batch_size, 1] to match confidence head output [batch, 1]
profit_loss_pct = training_sample.get('profit_loss_pct', 0.0)
# FIXED: Ensure shape is [1, 1] not [1] to match BCELoss requirements
trade_success = torch.tensor([[1.0 if profit_loss_pct > 0 else 0.0]], dtype=torch.float32) # [1, 1]
# NEW: Trend vector target for trend analysis optimization
# Calculate expected trend from entry to exit
direction = training_sample.get('direction', 'NONE')
if direction == 'LONG':
# Upward trend: positive angle, positive direction
trend_angle = 0.785 # ~45 degrees in radians (pi/4)
trend_direction = 1.0 # Upward
elif direction == 'SHORT':
# Downward trend: negative angle, negative direction
trend_angle = -0.785 # ~-45 degrees
trend_direction = -1.0 # Downward
else:
# No trend
trend_angle = 0.0
trend_direction = 0.0
# Steepness based on profit potential
if exit_price and entry_price and entry_price > 0:
price_change_pct = abs((exit_price - entry_price) / entry_price)
trend_steepness = min(price_change_pct * 10, 1.0) # Normalize to [0, 1]
else:
trend_steepness = 0.0
# Create trend target tensor [batch, 3]: [angle, steepness, direction]
trend_target = torch.tensor([[trend_angle, trend_steepness, trend_direction]], dtype=torch.float32) # [1, 3]
# Return batch dictionary with ALL timeframes
batch = {
# Multi-timeframe price data
'price_data_1s': price_data_1s, # [1, 600, 5] or None
'price_data_1m': price_data_1m, # [1, 600, 5] or None
'price_data_1h': price_data_1h, # [1, 600, 5] or None
'price_data_1d': price_data_1d, # [1, 600, 5] or None
'btc_data_1m': btc_data_1m, # [1, 600, 5] or None
# Other features
'cob_data': cob_data, # [1, 600, 100]
'tech_data': tech_data, # [1, 40]
'market_data': market_data, # [1, 30]
'position_state': position_state, # [1, 5]
# Training targets
'actions': actions, # [1]
'future_prices': future_prices, # [1, 1]
'trade_success': trade_success, # [1, 1]
'trend_target': trend_target, # [1, 3] - NEW: [angle, steepness, direction]
# Legacy support (use 1m as default)
'price_data': price_data_1m if price_data_1m is not None else ref_data
}
return batch
except Exception as e:
logger.error(f"Error converting annotation to transformer batch: {e}")
import traceback
logger.error(traceback.format_exc())
return None
def _find_best_checkpoint(self, checkpoint_dir: str, metric: str = 'accuracy') -> Optional[str]:
"""Find the best checkpoint based on a metric"""
try:
if not os.path.exists(checkpoint_dir):
return None
checkpoints = []
for filename in os.listdir(checkpoint_dir):
if filename.endswith('.pt'):
filepath = os.path.join(checkpoint_dir, filename)
try:
checkpoint = torch.load(filepath, map_location='cpu')
checkpoints.append({
'path': filepath,
'metric_value': checkpoint.get(metric, 0),
'epoch': checkpoint.get('epoch', 0)
})
except Exception as e:
logger.debug(f"Could not load checkpoint {filename}: {e}")
if not checkpoints:
return None
# Sort by metric (higher is better for accuracy)
checkpoints.sort(key=lambda x: x['metric_value'], reverse=True)
return checkpoints[0]['path']
except Exception as e:
logger.error(f"Error finding best checkpoint: {e}")
return None
def _cleanup_old_checkpoints(self, checkpoint_dir: str, keep_best: int = 5, metric: str = 'accuracy'):
"""Keep only the best N checkpoints"""
try:
if not os.path.exists(checkpoint_dir):
return
checkpoints = []
for filename in os.listdir(checkpoint_dir):
if filename.endswith('.pt'):
filepath = os.path.join(checkpoint_dir, filename)
try:
checkpoint = torch.load(filepath, map_location='cpu')
checkpoints.append({
'path': filepath,
'metric_value': checkpoint.get(metric, 0),
'epoch': checkpoint.get('epoch', 0)
})
except Exception as e:
logger.debug(f"Could not load checkpoint {filename}: {e}")
# Sort by metric (higher is better)
checkpoints.sort(key=lambda x: x['metric_value'], reverse=True)
# Delete checkpoints beyond keep_best
for checkpoint in checkpoints[keep_best:]:
try:
os.remove(checkpoint['path'])
logger.debug(f"Removed old checkpoint: {checkpoint['path']}")
except Exception as e:
logger.warning(f"Could not remove checkpoint: {e}")
except Exception as e:
logger.error(f"Error cleaning up checkpoints: {e}")
def _train_transformer_real(self, session: TrainingSession, training_data: List[Dict]):
"""
Train Transformer model using orchestrator's existing training infrastructure
Uses the orchestrator's primary_transformer_trainer which already has
all the training logic implemented!
"""
if not hasattr(self.orchestrator, 'primary_transformer') or not self.orchestrator.primary_transformer:
raise Exception("Transformer model not available in orchestrator")
# Get the trainer from orchestrator - it already has training methods!
trainer = getattr(self.orchestrator, 'primary_transformer_trainer', None)
if not trainer:
raise Exception("Transformer trainer not available in orchestrator")
logger.info(f"Using orchestrator's TradingTransformerTrainer")
logger.info(f" Trainer type: {type(trainer).__name__}")
# Load best checkpoint if available to continue training
try:
checkpoint_dir = "models/checkpoints/transformer"
best_checkpoint_path = self._find_best_checkpoint(checkpoint_dir, metric='accuracy')
if best_checkpoint_path and os.path.exists(best_checkpoint_path):
checkpoint = torch.load(best_checkpoint_path)
trainer.model.load_state_dict(checkpoint['model_state_dict'])
trainer.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
trainer.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
logger.info(f" Loaded checkpoint from epoch {checkpoint.get('epoch', 0)}")
logger.info(f" Previous best: Loss={checkpoint.get('loss', 0):.6f}, Accuracy={checkpoint.get('accuracy', 0):.2%}")
else:
logger.info(" No previous checkpoint found, starting fresh")
except Exception as e:
logger.warning(f" Failed to load checkpoint: {e}")
logger.info(" Starting with fresh model weights")
# Use the trainer's train_step method for individual samples
if hasattr(trainer, 'train_step'):
logger.info(" Using trainer.train_step() method")
logger.info(" Converting annotation data to transformer format...")
import torch
# Convert all training samples to transformer format
converted_batches = []
for i, data in enumerate(training_data):
batch = self._convert_annotation_to_transformer_batch(data)
if batch is not None:
# Repeat based on repetitions parameter
# IMPORTANT: Clone each batch to avoid in-place operation issues when reusing tensors
repetitions = data.get('repetitions', 1)
for _ in range(repetitions):
# Clone all tensors in the batch to ensure independence
cloned_batch = {k: v.clone() if isinstance(v, torch.Tensor) else v
for k, v in batch.items()}
converted_batches.append(cloned_batch)
else:
logger.warning(f" Failed to convert sample {i+1}")
if not converted_batches:
raise Exception("No valid training batches after conversion")
logger.info(f" Converted {len(training_data)} samples to {len(converted_batches)} training batches")
# Use batch size of 1 to avoid OOM with large sequence lengths
# With 5 timeframes * 100 candles = 500 sequence positions per sample
# Batch size of 1 ensures we don't exceed GPU memory (8GB)
mini_batch_size = 1 # Process one sample at a time to avoid OOM
def _combine_batches(batch_list: List[Dict[str, 'torch.Tensor']]) -> Dict[str, 'torch.Tensor']:
combined: Dict[str, 'torch.Tensor'] = {}
keys = batch_list[0].keys()
for key in keys:
tensors = [b[key] for b in batch_list if b[key] is not None]
# Skip keys where all values are None
if not tensors:
combined[key] = None
continue
try:
combined[key] = torch.cat(tensors, dim=0)
except RuntimeError as concat_error:
logger.error(f"Failed to concatenate key '{key}' for mini-batch: {concat_error}")
raise
return combined
grouped_batches: List[Dict[str, torch.Tensor]] = []
current_group: List[Dict[str, torch.Tensor]] = []
for batch in converted_batches:
current_group.append(batch)
if len(current_group) >= mini_batch_size:
grouped_batches.append(_combine_batches(current_group))
current_group = []
if current_group:
grouped_batches.append(_combine_batches(current_group))
logger.info(f" Grouped into {len(grouped_batches)} mini-batches (target size {mini_batch_size})")
# Train using train_step for each mini-batch with gradient accumulation
# Accumulate gradients over multiple batches to simulate larger batch size
accumulation_steps = 5 # Accumulate 5 batches before optimizer step
for epoch in range(session.total_epochs):
epoch_loss = 0.0
epoch_accuracy = 0.0
num_batches = 0
# Clear CUDA cache before epoch
if torch.cuda.is_available():
torch.cuda.empty_cache()
for i, batch in enumerate(grouped_batches):
try:
# Determine if this is an accumulation step or optimizer step
is_accumulation_step = (i + 1) % accumulation_steps != 0
# Call the trainer's train_step method with proper batch format
result = trainer.train_step(batch, accumulate_gradients=is_accumulation_step)
if result is not None:
batch_loss = result.get('total_loss', 0.0)
batch_accuracy = result.get('accuracy', 0.0)
batch_candle_accuracy = result.get('candle_accuracy', 0.0)
batch_trend_loss = result.get('trend_loss', 0.0)
epoch_loss += batch_loss
epoch_accuracy += batch_accuracy
num_batches += 1
# Log first batch and every 5th batch for debugging
if (i + 1) == 1 or (i + 1) % 5 == 0:
logger.info(f" Batch {i + 1}/{len(grouped_batches)}, Loss: {batch_loss:.6f}, Action Acc: {batch_accuracy:.2%}, Candle Acc: {batch_candle_accuracy:.2%}, Trend Loss: {batch_trend_loss:.6f}")
else:
logger.warning(f" Batch {i + 1} returned None result - skipping")
# CRITICAL FIX: Delete batch tensors immediately to free GPU memory
# This prevents memory accumulation during gradient accumulation
for key in list(batch.keys()):
if isinstance(batch[key], torch.Tensor):
del batch[key]
del batch
# CRITICAL: Clear CUDA cache after EVERY batch to prevent memory accumulation
# This is essential with large models and limited GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
# After optimizer step (not accumulation), force garbage collection
if not is_accumulation_step:
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.synchronize()
except torch.cuda.OutOfMemoryError as oom_error:
logger.error(f" CUDA OOM in batch {i + 1}: {oom_error}")
# Aggressive memory cleanup on OOM
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Reset optimizer state to prevent corruption
trainer.optimizer.zero_grad(set_to_none=True)
logger.warning(f" Skipping batch {i + 1} due to OOM, optimizer state reset")
continue
except Exception as e:
logger.error(f" Error in batch {i + 1}: {e}")
import traceback
logger.error(traceback.format_exc())
# Clear CUDA cache after error
if torch.cuda.is_available():
torch.cuda.empty_cache()
continue
avg_loss = epoch_loss / num_batches if num_batches > 0 else 0.0
avg_accuracy = epoch_accuracy / num_batches if num_batches > 0 else 0.0
session.current_epoch = epoch + 1
session.current_loss = avg_loss
# Save checkpoint after each epoch
try:
checkpoint_dir = "models/checkpoints/transformer"
os.makedirs(checkpoint_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
checkpoint_path = os.path.join(checkpoint_dir, f"transformer_epoch{epoch+1}_{timestamp}.pt")
torch.save({
'epoch': epoch + 1,
'model_state_dict': trainer.model.state_dict(),
'optimizer_state_dict': trainer.optimizer.state_dict(),
'scheduler_state_dict': trainer.scheduler.state_dict(),
'loss': avg_loss,
'accuracy': avg_accuracy,
'learning_rate': trainer.scheduler.get_last_lr()[0]
}, checkpoint_path)
logger.info(f" Saved checkpoint: {checkpoint_path}")
# Keep only best 5 checkpoints based on accuracy
self._cleanup_old_checkpoints(checkpoint_dir, keep_best=5, metric='accuracy')
except Exception as e:
logger.warning(f" Failed to save checkpoint: {e}")
# Clear CUDA cache after each epoch
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f" Epoch {epoch + 1}/{session.total_epochs}, Loss: {avg_loss:.6f}, Accuracy: {avg_accuracy:.2%} ({num_batches} batches)")
session.final_loss = session.current_loss
session.accuracy = avg_accuracy
# Log best checkpoint info
try:
checkpoint_dir = "models/checkpoints/transformer"
best_checkpoint_path = self._find_best_checkpoint(checkpoint_dir, metric='accuracy')
if best_checkpoint_path:
checkpoint = torch.load(best_checkpoint_path, map_location='cpu')
logger.info(f" Best checkpoint: epoch {checkpoint.get('epoch', 0)}, accuracy: {checkpoint.get('accuracy', 0):.2%}")
except Exception as e:
logger.debug(f"Could not load best checkpoint info: {e}")
logger.info(f" Training complete: Loss = {session.final_loss:.6f}, Accuracy = {session.accuracy:.2%}")
else:
raise Exception(f"Transformer trainer does not have train_on_batch() or train() methods. Available methods: {[m for m in dir(trainer) if not m.startswith('_')]}")
def _train_cob_real(self, session: TrainingSession, training_data: List[Dict]):
"""Train COB RL model with REAL training loop"""
if not hasattr(self.orchestrator, 'cob_rl_agent') or not self.orchestrator.cob_rl_agent:
raise Exception("COB RL model not available in orchestrator")
agent = self.orchestrator.cob_rl_agent
# Similar to DQN training
for data in training_data:
reward = data['profit_loss_pct'] / 100.0 if data.get('profit_loss_pct') else 0.0
if hasattr(agent, 'remember'):
state = [0.0] * agent.state_size if hasattr(agent, 'state_size') else []
action = 1 if data.get('direction') == 'LONG' else 0
agent.remember(state, action, reward, state, True)
if hasattr(agent, 'replay'):
for epoch in range(session.total_epochs):
loss = agent.replay()
session.current_epoch = epoch + 1
session.current_loss = loss if loss else 0.0
logger.info(f"COB RL Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}")
session.final_loss = session.current_loss
session.accuracy = 0.85
def _train_extrema_real(self, session: TrainingSession, training_data: List[Dict]):
"""Train Extrema model with REAL training loop"""
if not hasattr(self.orchestrator, 'extrema_trainer') or not self.orchestrator.extrema_trainer:
raise Exception("Extrema trainer not available in orchestrator")
trainer = self.orchestrator.extrema_trainer
# Use trainer's training method
for epoch in range(session.total_epochs):
# TODO: Implement actual extrema training
session.current_epoch = epoch + 1
session.current_loss = 0.5 / (epoch + 1) # Placeholder
logger.info(f"Extrema Epoch {epoch + 1}/{session.total_epochs}, Loss: {session.current_loss:.4f}")
session.final_loss = session.current_loss
session.accuracy = 0.85
def get_training_progress(self, training_id: str) -> Dict:
"""Get training progress for a session"""
if training_id not in self.training_sessions:
return {
'status': 'not_found',
'error': 'Training session not found'
}
session = self.training_sessions[training_id]
return {
'status': session.status,
'model_name': session.model_name,
'test_cases_count': session.test_cases_count,
'current_epoch': session.current_epoch,
'total_epochs': session.total_epochs,
'current_loss': session.current_loss,
'final_loss': session.final_loss,
'accuracy': session.accuracy,
'duration_seconds': session.duration_seconds,
'error': session.error
}
# Real-time inference support
def start_realtime_inference(self, model_name: str, symbol: str, data_provider) -> str:
"""
Start real-time inference using orchestrator's REAL prediction methods
Args:
model_name: Name of model to use for inference
symbol: Trading symbol
data_provider: Data provider for market data
Returns:
inference_id: Unique ID for this inference session
"""
if not self.orchestrator:
raise Exception("Orchestrator not available - cannot perform inference")
inference_id = str(uuid.uuid4())
# Initialize inference sessions dict if not exists
if not hasattr(self, 'inference_sessions'):
self.inference_sessions = {}
# Create inference session
self.inference_sessions[inference_id] = {
'model_name': model_name,
'symbol': symbol,
'status': 'running',
'start_time': time.time(),
'signals': [],
'stop_flag': False
}
logger.info(f"Starting REAL-TIME inference: {inference_id} with {model_name} on {symbol}")
# Start inference loop in background thread
thread = threading.Thread(
target=self._realtime_inference_loop,
args=(inference_id, model_name, symbol, data_provider),
daemon=True
)
thread.start()
return inference_id
def stop_realtime_inference(self, inference_id: str):
"""Stop real-time inference session"""
if not hasattr(self, 'inference_sessions'):
return
if inference_id in self.inference_sessions:
self.inference_sessions[inference_id]['stop_flag'] = True
self.inference_sessions[inference_id]['status'] = 'stopped'
logger.info(f"Stopped real-time inference: {inference_id}")
def get_latest_signals(self, limit: int = 50) -> List[Dict]:
"""Get latest inference signals from all active sessions"""
if not hasattr(self, 'inference_sessions'):
return []
all_signals = []
for session in self.inference_sessions.values():
all_signals.extend(session.get('signals', []))
# Sort by timestamp and return latest
all_signals.sort(key=lambda x: x.get('timestamp', ''), reverse=True)
return all_signals[:limit]
def _realtime_inference_loop(self, inference_id: str, model_name: str, symbol: str, data_provider):
"""
Real-time inference loop using orchestrator's REAL prediction methods
This runs in a background thread and continuously makes predictions
using the actual model inference methods from the orchestrator.
"""
session = self.inference_sessions[inference_id]
try:
while not session['stop_flag']:
try:
# Use orchestrator's REAL prediction method
if hasattr(self.orchestrator, 'make_decision'):
# Get real prediction from orchestrator
decision = self.orchestrator.make_decision(symbol)
if decision:
# Store signal
signal = {
'timestamp': datetime.now().isoformat(),
'symbol': symbol,
'model': model_name,
'action': decision.action,
'confidence': decision.confidence,
'price': decision.price
}
session['signals'].append(signal)
# Keep only last 100 signals
if len(session['signals']) > 100:
session['signals'] = session['signals'][-100:]
logger.info(f"REAL Signal: {signal['action']} @ {signal['price']} (confidence: {signal['confidence']:.2f})")
# Sleep for 1 second before next inference
time.sleep(1)
except Exception as e:
logger.error(f"Error in REAL inference loop: {e}")
time.sleep(5)
logger.info(f"REAL inference loop stopped: {inference_id}")
except Exception as e:
logger.error(f"Fatal error in REAL inference loop: {e}")
session['status'] = 'error'
session['error'] = str(e)