Files
gogo2/run_clean_dashboard.py
2025-09-02 15:30:05 +03:00

149 lines
5.2 KiB
Python

#!/usr/bin/env python3
"""
Clean Trading Dashboard Runner with Enhanced Stability and Error Handling
"""
# Ensure we run with the project's virtual environment Python
try:
import os
import sys
from pathlib import Path
import platform
def _ensure_project_venv():
try:
project_root = Path(__file__).resolve().parent
if platform.system().lower().startswith('win'):
venv_python = project_root / 'venv' / 'Scripts' / 'python.exe'
else:
venv_python = project_root / 'venv' / 'bin' / 'python'
if venv_python.exists():
current = Path(sys.executable).resolve()
target = venv_python.resolve()
if current != target:
os.execv(str(target), [str(target), *sys.argv])
except Exception:
# If anything goes wrong, continue with current interpreter
pass
_ensure_project_venv()
except Exception:
pass
import sys
import logging
import traceback
import gc
import time
import psutil
import torch
from pathlib import Path
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def check_system_resources():
"""Check if system has enough resources"""
available_ram = psutil.virtual_memory().available / 1024**3
if available_ram < 2.0: # Less than 2GB available
logger.warning(f"Low RAM: {available_ram:.1f} GB available")
gc.collect()
clear_gpu_memory()
return False
return True
def run_dashboard_with_recovery():
"""Run dashboard with automatic error recovery"""
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
logger.info(f"Starting Clean Trading Dashboard (attempt {retry_count + 1}/{max_retries})")
# Check system resources
if not check_system_resources():
logger.warning("System resources low, waiting 30 seconds...")
time.sleep(30)
continue
# Import here to avoid memory issues on restart
from core.data_provider import DataProvider
from core.orchestrator import TradingOrchestrator
from core.trading_executor import TradingExecutor
from web.clean_dashboard import create_clean_dashboard
logger.info("Creating data provider...")
data_provider = DataProvider()
logger.info("Creating trading orchestrator...")
orchestrator = TradingOrchestrator(
data_provider=data_provider,
enhanced_rl_training=True
)
logger.info("Creating trading executor...")
trading_executor = TradingExecutor()
logger.info("Creating clean dashboard...")
dashboard = create_clean_dashboard(data_provider, orchestrator, trading_executor)
logger.info("Dashboard created successfully")
logger.info("=== Clean Trading Dashboard Status ===")
logger.info("- Data Provider: Active")
logger.info("- Trading Orchestrator: Active")
logger.info("- Trading Executor: Active")
logger.info("- Enhanced Training: Active")
logger.info("- Dashboard: Ready")
logger.info("=======================================")
# Start the dashboard server with error handling
try:
logger.info("Starting dashboard server on http://127.0.0.1:8050")
dashboard.run_server(host='127.0.0.1', port=8050, debug=False)
except KeyboardInterrupt:
logger.info("Dashboard stopped by user")
break
except Exception as e:
logger.error(f"Dashboard server error: {e}")
logger.error(traceback.format_exc())
raise
except Exception as e:
logger.error(f"Critical error in dashboard: {e}")
logger.error(traceback.format_exc())
retry_count += 1
if retry_count < max_retries:
logger.info(f"Attempting recovery... ({retry_count}/{max_retries})")
# Cleanup
gc.collect()
clear_gpu_memory()
# Wait before retry
wait_time = 30 * retry_count # Exponential backoff
logger.info(f"Waiting {wait_time} seconds before retry...")
time.sleep(wait_time)
else:
logger.error("Max retries reached. Exiting.")
sys.exit(1)
if __name__ == "__main__":
try:
run_dashboard_with_recovery()
except KeyboardInterrupt:
logger.info("Application stopped by user")
sys.exit(0)
except Exception as e:
logger.error(f"Fatal error: {e}")
logger.error(traceback.format_exc())
sys.exit(1)