476 lines
18 KiB
Python
476 lines
18 KiB
Python
#!/usr/bin/env python3
|
||
import sys
|
||
import asyncio
|
||
if sys.platform == 'win32':
|
||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||
|
||
from dotenv import load_dotenv
|
||
import os
|
||
import time
|
||
import json
|
||
import ccxt.async_support as ccxt
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
import numpy as np
|
||
from collections import deque
|
||
from datetime import datetime
|
||
import matplotlib.pyplot as plt
|
||
|
||
# --- Directories for saving models ---
|
||
LAST_DIR = os.path.join("models", "last")
|
||
BEST_DIR = os.path.join("models", "best")
|
||
os.makedirs(LAST_DIR, exist_ok=True)
|
||
os.makedirs(BEST_DIR, exist_ok=True)
|
||
|
||
CACHE_FILE = "candles_cache.json"
|
||
|
||
# -------------------------------------
|
||
# Utility functions for caching candles to file
|
||
# -------------------------------------
|
||
def load_candles_cache(filename):
|
||
if os.path.exists(filename):
|
||
try:
|
||
with open(filename, "r") as f:
|
||
data = json.load(f)
|
||
print(f"Loaded cached data from {filename}.")
|
||
return data
|
||
except Exception as e:
|
||
print("Error reading cache file:", e)
|
||
return {}
|
||
|
||
def save_candles_cache(filename, candles_dict):
|
||
try:
|
||
with open(filename, "w") as f:
|
||
json.dump(candles_dict, f)
|
||
except Exception as e:
|
||
print("Error saving cache file:", e)
|
||
|
||
# -------------------------------------
|
||
# Checkpoint Functions
|
||
# -------------------------------------
|
||
def maintain_checkpoint_directory(directory, max_files=10):
|
||
files = os.listdir(directory)
|
||
if len(files) > max_files:
|
||
full_paths = [os.path.join(directory, f) for f in files]
|
||
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
||
for f in full_paths[: len(files) - max_files]:
|
||
os.remove(f)
|
||
|
||
def get_best_models(directory):
|
||
best_files = []
|
||
for file in os.listdir(directory):
|
||
parts = file.split("_")
|
||
try:
|
||
r = float(parts[1])
|
||
best_files.append((r, file))
|
||
except Exception:
|
||
continue
|
||
return best_files
|
||
|
||
def save_checkpoint(model, epoch, reward, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
||
last_path = os.path.join(last_dir, last_filename)
|
||
torch.save({
|
||
"epoch": epoch,
|
||
"reward": reward,
|
||
"model_state_dict": model.state_dict()
|
||
}, last_path)
|
||
maintain_checkpoint_directory(last_dir, max_files=10)
|
||
|
||
best_models = get_best_models(best_dir)
|
||
add_to_best = False
|
||
if len(best_models) < 10:
|
||
add_to_best = True
|
||
else:
|
||
min_reward, min_file = min(best_models, key=lambda x: x[0])
|
||
if reward > min_reward:
|
||
add_to_best = True
|
||
os.remove(os.path.join(best_dir, min_file))
|
||
if add_to_best:
|
||
best_filename = f"best_{reward:.4f}_epoch_{epoch}_{timestamp}.pt"
|
||
best_path = os.path.join(best_dir, best_filename)
|
||
torch.save({
|
||
"epoch": epoch,
|
||
"reward": reward,
|
||
"model_state_dict": model.state_dict()
|
||
}, best_path)
|
||
maintain_checkpoint_directory(best_dir, max_files=10)
|
||
print(f"Saved checkpoint for epoch {epoch} with reward {reward:.4f}")
|
||
|
||
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
||
"""Attempt to load the best checkpoint. If the architecture is different,
|
||
catch the RuntimeError and skip loading."""
|
||
best_models = get_best_models(best_dir)
|
||
if not best_models:
|
||
return None
|
||
best_reward, best_file = max(best_models, key=lambda x: x[0])
|
||
path = os.path.join(best_dir, best_file)
|
||
print(f"Loading best model from checkpoint: {best_file} with reward {best_reward:.4f}")
|
||
checkpoint = torch.load(path)
|
||
try:
|
||
model.load_state_dict(checkpoint["model_state_dict"])
|
||
except RuntimeError as e:
|
||
print("Warning: Failed to load best checkpoint due to:")
|
||
print(e)
|
||
print("This is likely due to a change in model architecture. Skipping checkpoint load.")
|
||
return None
|
||
return checkpoint
|
||
|
||
# -------------------------------------
|
||
# Technical Indicator Helper Functions
|
||
# -------------------------------------
|
||
def compute_sma(candles_list, index, period=10):
|
||
start = max(0, index - period + 1)
|
||
values = [candle["close"] for candle in candles_list[start:index+1]]
|
||
return sum(values) / len(values) if values else 0.0
|
||
|
||
def compute_sma_volume(candles_list, index, period=10):
|
||
start = max(0, index - period + 1)
|
||
values = [candle["volume"] for candle in candles_list[start:index+1]]
|
||
return sum(values) / len(values) if values else 0.0
|
||
|
||
def get_aligned_candle_with_index(candles_list, target_ts):
|
||
"""Find the candle in the list whose timestamp is the largest that is <= target_ts."""
|
||
best_idx = 0
|
||
for i, candle in enumerate(candles_list):
|
||
if candle["timestamp"] <= target_ts:
|
||
best_idx = i
|
||
else:
|
||
break
|
||
return best_idx, candles_list[best_idx]
|
||
|
||
def get_features_for_tf(candles_list, index, period=10):
|
||
"""Return a vector of 7 features: open, high, low, close, volume, sma_close, sma_volume."""
|
||
candle = candles_list[index]
|
||
f_open = candle["open"]
|
||
f_high = candle["high"]
|
||
f_low = candle["low"]
|
||
f_close = candle["close"]
|
||
f_volume = candle["volume"]
|
||
sma_close = compute_sma(candles_list, index, period)
|
||
sma_volume = compute_sma_volume(candles_list, index, period)
|
||
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
||
|
||
# -------------------------------------
|
||
# Neural Network Architecture Definition
|
||
# -------------------------------------
|
||
class TradingModel(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||
super(TradingModel, self).__init__()
|
||
self.net = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, output_dim)
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.net(x)
|
||
|
||
# -------------------------------------
|
||
# Replay Buffer for Experience Storage
|
||
# -------------------------------------
|
||
class ReplayBuffer:
|
||
def __init__(self, capacity=10000):
|
||
self.buffer = deque(maxlen=capacity)
|
||
|
||
def add(self, experience):
|
||
self.buffer.append(experience)
|
||
|
||
def sample(self, batch_size):
|
||
indices = np.random.choice(len(self.buffer), size=batch_size, replace=False)
|
||
return [self.buffer[i] for i in indices]
|
||
|
||
def __len__(self):
|
||
return len(self.buffer)
|
||
|
||
# -------------------------------------
|
||
# RL Agent with Q-Learning and Epsilon-Greedy Exploration
|
||
# -------------------------------------
|
||
class ContinuousRLAgent:
|
||
def __init__(self, model, optimizer, replay_buffer, batch_size=32, gamma=0.99):
|
||
self.model = model
|
||
self.optimizer = optimizer
|
||
self.replay_buffer = replay_buffer
|
||
self.batch_size = batch_size
|
||
self.loss_fn = nn.MSELoss()
|
||
self.gamma = gamma
|
||
|
||
def act(self, state, epsilon=0.1):
|
||
if np.random.rand() < epsilon:
|
||
return np.random.randint(0, 3)
|
||
state_tensor = torch.from_numpy(np.array(state, dtype=np.float32)).unsqueeze(0)
|
||
with torch.no_grad():
|
||
output = self.model(state_tensor)
|
||
return torch.argmax(output, dim=1).item()
|
||
|
||
def train_step(self):
|
||
if len(self.replay_buffer) < self.batch_size:
|
||
return
|
||
|
||
batch = self.replay_buffer.sample(self.batch_size)
|
||
states, actions, rewards, next_states, dones = zip(*batch)
|
||
states_tensor = torch.from_numpy(np.array(states, dtype=np.float32))
|
||
actions_tensor = torch.tensor(actions, dtype=torch.int64)
|
||
rewards_tensor = torch.from_numpy(np.array(rewards, dtype=np.float32)).unsqueeze(1)
|
||
next_states_tensor = torch.from_numpy(np.array(next_states, dtype=np.float32))
|
||
dones_tensor = torch.tensor(dones, dtype=torch.float32).unsqueeze(1)
|
||
|
||
Q_values = self.model(states_tensor)
|
||
current_Q = Q_values.gather(1, actions_tensor.unsqueeze(1))
|
||
with torch.no_grad():
|
||
next_Q_values = self.model(next_states_tensor)
|
||
max_next_Q = next_Q_values.max(1)[0].unsqueeze(1)
|
||
target = rewards_tensor + self.gamma * max_next_Q * (1.0 - dones_tensor)
|
||
loss = self.loss_fn(current_Q, target)
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
self.optimizer.step()
|
||
|
||
# -------------------------------------
|
||
# Historical Data Fetching Function (for a given timeframe)
|
||
# -------------------------------------
|
||
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
||
candles = []
|
||
since_ms = since
|
||
while True:
|
||
try:
|
||
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
||
except Exception as e:
|
||
print(f"Error fetching historical data for {timeframe}:", e)
|
||
break
|
||
if not batch:
|
||
break
|
||
for c in batch:
|
||
candle_dict = {
|
||
'timestamp': c[0],
|
||
'open': c[1],
|
||
'high': c[2],
|
||
'low': c[3],
|
||
'close': c[4],
|
||
'volume': c[5]
|
||
}
|
||
candles.append(candle_dict)
|
||
last_timestamp = batch[-1][0]
|
||
if last_timestamp >= end_time:
|
||
break
|
||
since_ms = last_timestamp + 1
|
||
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
|
||
return candles
|
||
|
||
# -------------------------------------
|
||
# Backtest Environment with Multi-Timeframe State
|
||
# -------------------------------------
|
||
class BacktestEnvironment:
|
||
def __init__(self, candles_dict, base_tf="1m", timeframes=None):
|
||
self.candles_dict = candles_dict # dict of timeframe: candles_list
|
||
self.base_tf = base_tf
|
||
if timeframes is None:
|
||
self.timeframes = [base_tf] # fallback to single timeframe
|
||
else:
|
||
self.timeframes = timeframes
|
||
self.trade_history = [] # record of closed trades
|
||
self.current_index = 0 # index on base_tf candles
|
||
self.position = None # active position record
|
||
|
||
def reset(self, clear_trade_history=True):
|
||
self.current_index = 0
|
||
self.position = None
|
||
if clear_trade_history:
|
||
self.trade_history = []
|
||
return self.get_state(self.current_index)
|
||
|
||
def get_state(self, index):
|
||
"""Construct the state as the concatenated features of all timeframes.
|
||
For each timeframe, find the aligned candle for the base timeframe’s timestamp."""
|
||
state_features = []
|
||
base_candle = self.candles_dict[self.base_tf][index]
|
||
base_ts = base_candle["timestamp"]
|
||
for tf in self.timeframes:
|
||
candles_list = self.candles_dict[tf]
|
||
aligned_index, _ = get_aligned_candle_with_index(candles_list, base_ts)
|
||
features = get_features_for_tf(candles_list, aligned_index, period=10)
|
||
state_features.extend(features)
|
||
return np.array(state_features, dtype=np.float32)
|
||
|
||
def step(self, action):
|
||
"""
|
||
Simulate a trading step based on the base timeframe.
|
||
- If not in a position and action is BUY (2), record entry at next candle's open.
|
||
- If in a position and action is SELL (0), record exit at next candle's open, computing PnL.
|
||
Returns: (current_state, reward, next_state, done)
|
||
"""
|
||
base_candles = self.candles_dict[self.base_tf]
|
||
if self.current_index >= len(base_candles) - 1:
|
||
return self.get_state(self.current_index), 0.0, None, True
|
||
|
||
current_state = self.get_state(self.current_index)
|
||
next_index = self.current_index + 1
|
||
next_state = self.get_state(next_index)
|
||
current_candle = base_candles[self.current_index]
|
||
next_candle = base_candles[next_index]
|
||
reward = 0.0
|
||
|
||
# Action mapping: 0 -> SELL, 1 -> HOLD, 2 -> BUY.
|
||
if self.position is None:
|
||
if action == 2: # BUY signal: enter position at next candle's open.
|
||
entry_price = next_candle["open"]
|
||
self.position = {"entry_price": entry_price, "entry_index": self.current_index}
|
||
else:
|
||
if action == 0: # SELL signal: close position at next candle's open.
|
||
exit_price = next_candle["open"]
|
||
reward = exit_price - self.position["entry_price"]
|
||
trade = {
|
||
"entry_index": self.position["entry_index"],
|
||
"entry_price": self.position["entry_price"],
|
||
"exit_index": next_index,
|
||
"exit_price": exit_price,
|
||
"pnl": reward
|
||
}
|
||
self.trade_history.append(trade)
|
||
self.position = None
|
||
|
||
self.current_index = next_index
|
||
done = (self.current_index >= len(base_candles) - 1)
|
||
return current_state, reward, next_state, done
|
||
|
||
# -------------------------------------
|
||
# Chart Plotting: Trade History & PnL
|
||
# -------------------------------------
|
||
def plot_trade_history(candles, trade_history):
|
||
close_prices = [candle["close"] for candle in candles]
|
||
x = list(range(len(close_prices)))
|
||
plt.figure(figsize=(12, 6))
|
||
plt.plot(x, close_prices, label="Close Price", color="black", linewidth=1)
|
||
|
||
buy_plotted = False
|
||
sell_plotted = False
|
||
for trade in trade_history:
|
||
entry_idx = trade["entry_index"]
|
||
exit_idx = trade["exit_index"]
|
||
entry_price = trade["entry_price"]
|
||
exit_price = trade["exit_price"]
|
||
pnl = trade["pnl"]
|
||
if not buy_plotted:
|
||
plt.plot(entry_idx, entry_price, marker="^", color="green", markersize=10, label="BUY")
|
||
buy_plotted = True
|
||
else:
|
||
plt.plot(entry_idx, entry_price, marker="^", color="green", markersize=10)
|
||
if not sell_plotted:
|
||
plt.plot(exit_idx, exit_price, marker="v", color="red", markersize=10, label="SELL")
|
||
sell_plotted = True
|
||
else:
|
||
plt.plot(exit_idx, exit_price, marker="v", color="red", markersize=10)
|
||
plt.text(exit_idx, exit_price, f"{pnl:+.2f}", color="blue", fontsize=8)
|
||
plt.title("Trade History with PnL")
|
||
plt.xlabel("Base Candle Index (1m)")
|
||
plt.ylabel("Price")
|
||
plt.legend()
|
||
plt.grid(True)
|
||
plt.show()
|
||
|
||
# -------------------------------------
|
||
# Training Loop: Backtesting Trading Episodes
|
||
# -------------------------------------
|
||
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
|
||
for epoch in range(1, num_epochs + 1):
|
||
state = env.reset() # clear trade history each epoch
|
||
done = False
|
||
total_reward = 0.0
|
||
steps = 0
|
||
while not done:
|
||
action = rl_agent.act(state, epsilon=epsilon)
|
||
prev_state = state
|
||
state, reward, next_state, done = env.step(action)
|
||
if next_state is None:
|
||
next_state = np.zeros_like(prev_state)
|
||
rl_agent.replay_buffer.add((prev_state, action, reward, next_state, done))
|
||
rl_agent.train_step()
|
||
total_reward += reward
|
||
steps += 1
|
||
print(f"Epoch {epoch}/{num_epochs} completed, total reward: {total_reward:.4f} over {steps} steps.")
|
||
save_checkpoint(rl_agent.model, epoch, total_reward, LAST_DIR, BEST_DIR)
|
||
|
||
# -------------------------------------
|
||
# Main Asynchronous Function for Training & Charting
|
||
# -------------------------------------
|
||
async def main_backtest():
|
||
symbol = 'BTC/USDT'
|
||
# Define timeframes: 5 different ones.
|
||
timeframes = ["1m", "5m", "15m", "1h", "1d"]
|
||
now = int(time.time() * 1000)
|
||
# For base timeframe 1m, get 1500 candles (1500 minutes)
|
||
period_ms = 1500 * 60 * 1000
|
||
since = now - period_ms
|
||
end_time = now
|
||
|
||
# Initialize exchange using MEXC
|
||
mexc_api_key = os.environ.get('MEXC_API_KEY', 'YOUR_API_KEY')
|
||
mexc_api_secret = os.environ.get('MEXC_API_SECRET', 'YOUR_SECRET_KEY')
|
||
exchange = ccxt.mexc({
|
||
'apiKey': mexc_api_key,
|
||
'secret': mexc_api_secret,
|
||
'enableRateLimit': True,
|
||
})
|
||
|
||
try:
|
||
candles_dict = {}
|
||
for tf in timeframes:
|
||
print(f"Fetching historical data for timeframe {tf}...")
|
||
candles = await fetch_historical_data(exchange, symbol, tf, since, end_time, batch_size=500)
|
||
candles_dict[tf] = candles
|
||
|
||
# Optionally, save the multi-timeframe cache.
|
||
save_candles_cache(CACHE_FILE, candles_dict)
|
||
|
||
# Create the backtest environment using multi-timeframe data.
|
||
env = BacktestEnvironment(candles_dict, base_tf="1m", timeframes=timeframes)
|
||
|
||
# Neural network dimensions: each timeframe produces 7 features.
|
||
input_dim = len(timeframes) * 7 # 7 features x 5 timeframes = 35.
|
||
hidden_dim = 128
|
||
output_dim = 3 # Actions: SELL, HOLD, BUY.
|
||
|
||
model = TradingModel(input_dim, hidden_dim, output_dim)
|
||
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
||
replay_buffer = ReplayBuffer(capacity=10000)
|
||
rl_agent = ContinuousRLAgent(model, optimizer, replay_buffer, batch_size=32, gamma=0.99)
|
||
|
||
# Load best checkpoint if available. (In case of architecture change, it will be skipped.)
|
||
load_best_checkpoint(model, BEST_DIR)
|
||
|
||
# Train the agent over the historical period.
|
||
num_epochs = 10 # Adjust as needed.
|
||
train_on_historical_data(env, rl_agent, num_epochs=num_epochs, epsilon=0.1)
|
||
|
||
# Run a final simulation (without exploration) to record trade history.
|
||
state = env.reset(clear_trade_history=True)
|
||
done = False
|
||
cumulative_reward = 0.0
|
||
while not done:
|
||
action = rl_agent.act(state, epsilon=0.0)
|
||
state, reward, next_state, done = env.step(action)
|
||
cumulative_reward += reward
|
||
state = next_state
|
||
print("Final simulation cumulative profit:", cumulative_reward)
|
||
|
||
# Evaluate trade performance.
|
||
trades = env.trade_history
|
||
num_trades = len(trades)
|
||
num_wins = sum(1 for trade in trades if trade["pnl"] > 0)
|
||
win_rate = (num_wins / num_trades * 100) if num_trades > 0 else 0.0
|
||
total_profit = sum(trade["pnl"] for trade in trades)
|
||
print(f"Total trades: {num_trades}, Wins: {num_wins}, Win rate: {win_rate:.2f}%, Total Profit: {total_profit:.4f}")
|
||
|
||
# Plot chart with buy/sell markers on the base timeframe ("1m").
|
||
plot_trade_history(candles_dict["1m"], trades)
|
||
finally:
|
||
# Ensure that exchange resources are released even if errors occur.
|
||
await exchange.close()
|
||
|
||
if __name__ == "__main__":
|
||
load_dotenv()
|
||
asyncio.run(main_backtest()) |