910 lines
36 KiB
Python
910 lines
36 KiB
Python
#!/usr/bin/env python3
|
|
import sys
|
|
import asyncio
|
|
|
|
if sys.platform == 'win32':
|
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
|
|
import os
|
|
import time
|
|
import json
|
|
import argparse
|
|
import threading
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from datetime import datetime
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
|
import matplotlib.dates as mdates
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
# Define global constants FIRST.
|
|
CACHE_FILE = "candles_cache.json"
|
|
TRAINING_CACHE_FILE = "training_cache.json"
|
|
|
|
# --- Helper Function for Timestamp Conversion ---
|
|
def convert_timestamp(ts):
|
|
ts = float(ts)
|
|
if ts > 1e10: # Handle milliseconds
|
|
ts /= 1000.0
|
|
return datetime.fromtimestamp(ts)
|
|
|
|
# -------------------------------
|
|
# Historical Data Fetching Functions (Using CCXT)
|
|
# -------------------------------
|
|
async def fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size=500):
|
|
candles = []
|
|
since_ms = since
|
|
while True:
|
|
try:
|
|
batch = await exchange.fetch_ohlcv(symbol, timeframe=timeframe, since=since_ms, limit=batch_size)
|
|
except Exception as e:
|
|
print("Error fetching historical data:", e)
|
|
break
|
|
if not batch:
|
|
break
|
|
for c in batch:
|
|
candle_dict = {
|
|
'timestamp': c[0],
|
|
'open': c[1],
|
|
'high': c[2],
|
|
'low': c[3],
|
|
'close': c[4],
|
|
'volume': c[5]
|
|
}
|
|
candles.append(candle_dict)
|
|
last_timestamp = batch[-1][0]
|
|
if last_timestamp >= end_time:
|
|
break
|
|
since_ms = last_timestamp + 1
|
|
print(f"Fetched {len(candles)} candles for timeframe {timeframe}.")
|
|
|
|
return candles
|
|
|
|
async def get_cached_or_fetch_data(exchange, symbol, timeframe, since, end_time, cache_file=CACHE_FILE, batch_size=500):
|
|
cached_candles = load_candles_cache(cache_file)
|
|
|
|
if cached_candles and timeframe in cached_candles:
|
|
last_ts = cached_candles[timeframe][-1]['timestamp']
|
|
if last_ts < end_time:
|
|
print("Fetching new candles to update cache...")
|
|
new_candles = await fetch_historical_data(exchange, symbol, timeframe, last_ts + 1, end_time, batch_size)
|
|
cached_candles[timeframe].extend(new_candles)
|
|
else:
|
|
print("Cache covers the requested period.")
|
|
return cached_candles[timeframe]
|
|
else:
|
|
candles = await fetch_historical_data(exchange, symbol, timeframe, since, end_time, batch_size)
|
|
return candles
|
|
|
|
# -------------------------------
|
|
# Cache and Training Cache Helpers
|
|
# -------------------------------
|
|
def load_candles_cache(filename):
|
|
if os.path.exists(filename):
|
|
try:
|
|
with open(filename, "r") as f:
|
|
data = json.load(f)
|
|
print(f"Loaded cached data from {filename}.")
|
|
return data
|
|
except Exception as e:
|
|
print("Error reading cache file:", e)
|
|
return {} # Return empty dict if no cache
|
|
|
|
|
|
def save_candles_cache(filename, candles_dict):
|
|
try:
|
|
with open(filename, "w") as f:
|
|
json.dump(candles_dict, f)
|
|
except Exception as e:
|
|
print("Error saving cache file:", e)
|
|
|
|
def load_training_cache(filename):
|
|
if os.path.exists(filename):
|
|
try:
|
|
with open(filename, "r") as f:
|
|
cache = json.load(f)
|
|
print(f"Loaded training cache from {filename}.")
|
|
return cache
|
|
except Exception as e:
|
|
print("Error loading training cache:", e)
|
|
return {"total_pnl": 0.0} # Initialize if not found
|
|
|
|
|
|
def save_training_cache(filename, cache):
|
|
try:
|
|
with open(filename, "w") as f:
|
|
json.dump(cache, f)
|
|
except Exception as e:
|
|
print("Error saving training cache:", e)
|
|
|
|
# -------------------------------
|
|
# Checkpoint Functions
|
|
# -------------------------------
|
|
LAST_DIR = os.path.join("models", "last")
|
|
BEST_DIR = os.path.join("models", "best")
|
|
os.makedirs(LAST_DIR, exist_ok=True)
|
|
os.makedirs(BEST_DIR, exist_ok=True)
|
|
|
|
def maintain_checkpoint_directory(directory, max_files=10):
|
|
files = os.listdir(directory)
|
|
if len(files) > max_files:
|
|
full_paths = [os.path.join(directory, f) for f in files]
|
|
full_paths.sort(key=lambda x: os.path.getmtime(x))
|
|
for f in full_paths[:len(files) - max_files]:
|
|
os.remove(f)
|
|
|
|
def get_best_models(directory):
|
|
best_files = []
|
|
for file in os.listdir(directory):
|
|
parts = file.split("_")
|
|
try:
|
|
loss = float(parts[1]) # Get loss from filename
|
|
best_files.append((loss, file))
|
|
except Exception:
|
|
continue
|
|
return best_files
|
|
|
|
def save_checkpoint(model, optimizer, epoch, loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
|
|
last_path = os.path.join(last_dir, last_filename)
|
|
torch.save({
|
|
"epoch": epoch,
|
|
"loss": loss,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict()
|
|
}, last_path)
|
|
maintain_checkpoint_directory(last_dir, max_files=10)
|
|
|
|
best_models = get_best_models(best_dir)
|
|
add_to_best = False
|
|
if len(best_models) < 10:
|
|
add_to_best = True
|
|
else:
|
|
worst_loss, worst_file = max(best_models, key=lambda x: x[0])
|
|
if loss < worst_loss: # Save if better than worst
|
|
add_to_best = True
|
|
os.remove(os.path.join(best_dir, worst_file)) # Remove worst
|
|
|
|
if add_to_best:
|
|
best_filename = f"best_{loss:.4f}_epoch_{epoch}_{timestamp}.pt" # Include loss in name
|
|
best_path = os.path.join(best_dir, best_filename)
|
|
torch.save({
|
|
"epoch": epoch,
|
|
"loss": loss,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict()
|
|
}, best_path)
|
|
maintain_checkpoint_directory(best_dir, max_files=10)
|
|
|
|
print(f"Saved checkpoint for epoch {epoch} with loss {loss:.4f}")
|
|
|
|
def load_best_checkpoint(model, best_dir=BEST_DIR):
|
|
best_models = get_best_models(best_dir)
|
|
if not best_models:
|
|
return None
|
|
best_loss, best_file = min(best_models, key=lambda x: x[0]) # Load best (lowest loss)
|
|
path = os.path.join(best_dir, best_file)
|
|
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
|
|
checkpoint = torch.load(path)
|
|
|
|
# Handle potential embedding size mismatch
|
|
old_state = checkpoint["model_state_dict"]
|
|
new_state = model.state_dict()
|
|
|
|
if "timeframe_embed.weight" in old_state:
|
|
old_embed = old_state["timeframe_embed.weight"]
|
|
new_embed = new_state["timeframe_embed.weight"]
|
|
|
|
if old_embed.shape[0] < new_embed.shape[0]:
|
|
# Copy old embeddings to the new embedding, handling size increase
|
|
new_embed[:old_embed.shape[0]] = old_embed
|
|
old_state["timeframe_embed.weight"] = new_embed
|
|
|
|
model.load_state_dict(old_state, strict=False) # Allow for size differences
|
|
return checkpoint
|
|
|
|
# -------------------------------
|
|
# Positional Encoding and Transformer-Based Model
|
|
# -------------------------------
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
|
super().__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
|
|
position = torch.arange(max_len).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
|
pe = torch.zeros(max_len, 1, d_model)
|
|
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
|
self.register_buffer('pe', pe)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Args:
|
|
x: Tensor, shape [seq_len, batch_size, embedding_dim]
|
|
"""
|
|
x = x + self.pe[:x.size(0)]
|
|
return self.dropout(x)
|
|
|
|
class TradingModel(nn.Module):
|
|
def __init__(self, num_channels, num_timeframes, hidden_dim=128):
|
|
super().__init__()
|
|
self.channel_branches = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Linear(FEATURES_PER_CHANNEL, hidden_dim),
|
|
nn.LayerNorm(hidden_dim),
|
|
nn.GELU(),
|
|
nn.Dropout(0.1)
|
|
) for _ in range(num_channels)
|
|
])
|
|
# Embedding for each timeframe
|
|
self.timeframe_embed = nn.Embedding(num_timeframes, hidden_dim)
|
|
self.pos_encoder = PositionalEncoding(hidden_dim)
|
|
# Increased number of layers and heads for larger model
|
|
encoder_layers = TransformerEncoderLayer(
|
|
d_model=hidden_dim, nhead=8, dim_feedforward=2048, # Increased nhead and dim_feedforward
|
|
dropout=0.1, activation='gelu', batch_first=True
|
|
)
|
|
self.transformer = TransformerEncoder(encoder_layers, num_layers=6) # More layers
|
|
|
|
# Attention pooling to aggregate channel outputs
|
|
self.attn_pool = nn.Linear(hidden_dim, 1)
|
|
|
|
# Separate prediction heads for high and low
|
|
self.high_pred = nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim // 2, 1)
|
|
)
|
|
self.low_pred = nn.Sequential(
|
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim // 2, 1)
|
|
)
|
|
|
|
def forward(self, x, timeframe_ids):
|
|
# x shape: (batch, num_channels, features_per_channel)
|
|
batch_size, num_channels, _ = x.shape
|
|
channel_outs = []
|
|
|
|
# Process each channel through its branch
|
|
for i in range(num_channels):
|
|
channel_out = self.channel_branches[i](x[:, i, :])
|
|
channel_outs.append(channel_out)
|
|
|
|
# Stack channel outputs
|
|
stacked = torch.stack(channel_outs, dim=1) # (batch, num_channels, hidden_dim)
|
|
|
|
# Add timeframe embeddings
|
|
tf_embeds = self.timeframe_embed(timeframe_ids) # (num_timeframes, hidden_dim)
|
|
stacked = stacked + tf_embeds.unsqueeze(0) # Add to each item in batch
|
|
|
|
# Transformer
|
|
transformer_out = self.transformer(stacked) # (batch, num_channels, hidden_dim)
|
|
|
|
# Attention pooling
|
|
attn_weights = torch.softmax(self.attn_pool(transformer_out), dim=1) # (batch, num_channels, 1)
|
|
aggregated = (transformer_out * attn_weights).sum(dim=1) # (batch, hidden_dim)
|
|
|
|
# Predict high and low
|
|
return self.high_pred(aggregated).squeeze(), self.low_pred(aggregated).squeeze()
|
|
|
|
# -------------------------------
|
|
# Technical Indicator Helpers
|
|
# -------------------------------
|
|
def compute_sma(candles_list, index, period=10):
|
|
start = max(0, index - period + 1)
|
|
values = [candle["close"] for candle in candles_list[start:index + 1]]
|
|
return sum(values) / len(values) if values else 0.0
|
|
|
|
def compute_sma_volume(candles_list, index, period=10):
|
|
start = max(0, index - period + 1)
|
|
values = [candle["volume"] for candle in candles_list[start:index + 1]]
|
|
return sum(values) / len(values) if values else 0.0
|
|
|
|
def get_aligned_candle_with_index(candles_list, target_ts):
|
|
"""Find the candle in the list whose timestamp is the largest that is <= target_ts."""
|
|
best_idx = 0
|
|
for i, candle in enumerate(candles_list):
|
|
if candle["timestamp"] <= target_ts:
|
|
best_idx = i
|
|
else:
|
|
break # Stop once we go past the target
|
|
return best_idx, candles_list[best_idx]
|
|
|
|
def get_features_for_tf(candles_list, index, period=10):
|
|
"""Return a vector of 7 features: open, high, low, close, volume, sma_close, sma_volume."""
|
|
candle = candles_list[index]
|
|
f_open = candle["open"]
|
|
f_high = candle["high"]
|
|
f_low = candle["low"]
|
|
f_close = candle["close"]
|
|
f_volume = candle["volume"]
|
|
sma_close = compute_sma(candles_list, index, period)
|
|
sma_volume = compute_sma_volume(candles_list, index, period)
|
|
return [f_open, f_high, f_low, f_close, f_volume, sma_close, sma_volume]
|
|
|
|
# -------------------------------
|
|
# Backtest Environment Class
|
|
# -------------------------------
|
|
class BacktestEnvironment:
|
|
def __init__(self, candles_dict, base_tf, timeframes, window_size=None):
|
|
self.candles_dict = candles_dict
|
|
self.base_tf = base_tf
|
|
self.timeframes = timeframes
|
|
self.full_candles = candles_dict[base_tf] # All candles for base timeframe
|
|
|
|
# Define window size (or use a reasonable default if not provided)
|
|
if window_size is None:
|
|
window_size = 100 if len(self.full_candles) >= 100 else len(self.full_candles) # Use 100 or total length
|
|
self.window_size = window_size
|
|
|
|
self.reset() # Initialize
|
|
|
|
def reset(self):
|
|
# Randomly select a starting point for the window
|
|
self.start_index = random.randint(0, len(self.full_candles) - self.window_size)
|
|
self.candle_window = self.full_candles[self.start_index:self.start_index + self.window_size]
|
|
self.current_index = 0
|
|
self.trade_history = []
|
|
self.position = None # Track if we're in a trade: None, or {"entry_price": ..., "entry_index": ...}
|
|
return self.get_state(self.current_index) # Return initial state
|
|
|
|
def __len__(self):
|
|
return self.window_size # Length of the environment is the window size
|
|
|
|
def get_order_features(self, index):
|
|
"""Get features related to the current order (if any)."""
|
|
candle = self.candle_window[index]
|
|
if self.position is None:
|
|
# No position: all zeros
|
|
return [0.0] * FEATURES_PER_CHANNEL # 7 zeros
|
|
else:
|
|
# In a position: [1.0, price_diff, 0, 0, 0, 0, 0]
|
|
flag = 1.0
|
|
diff = (candle["open"] - self.position["entry_price"]) / candle["open"] # Relative difference
|
|
return [flag, diff] + [0.0] * (FEATURES_PER_CHANNEL - 2)
|
|
|
|
def get_state(self, index):
|
|
"""Construct state for the given index."""
|
|
state_features = []
|
|
base_ts = self.candle_window[index]["timestamp"]
|
|
|
|
# Get features for each timeframe
|
|
for tf in self.timeframes:
|
|
if tf == self.base_tf:
|
|
# For the base timeframe, use the candle directly from the window
|
|
candle = self.candle_window[index]
|
|
features = get_features_for_tf([candle], 0) # Pass as a list with single candle
|
|
else:
|
|
# For other timeframes, align with the base timestamp
|
|
aligned_idx, _ = get_aligned_candle_with_index(self.candles_dict[tf], base_ts)
|
|
features = get_features_for_tf(self.candles_dict[tf], aligned_idx)
|
|
state_features.append(features)
|
|
|
|
# Add order features
|
|
order_features = self.get_order_features(index)
|
|
state_features.append(order_features)
|
|
|
|
# Add placeholder channels for additional indicators (if needed)
|
|
for _ in range(NUM_INDICATORS):
|
|
state_features.append([0.0] * FEATURES_PER_CHANNEL)
|
|
|
|
|
|
return np.array(state_features, dtype=np.float32)
|
|
|
|
def step(self, action):
|
|
"""Take a step, given an action."""
|
|
base = self.candle_window # Shorter name
|
|
if self.current_index >= len(base) - 1:
|
|
current_state = self.get_state(self.current_index)
|
|
return current_state, 0.0, None, True, 0.0, 0.0 # No reward at very end, and done
|
|
|
|
current_state = self.get_state(self.current_index)
|
|
next_index = self.current_index + 1
|
|
next_state = self.get_state(next_index)
|
|
next_candle = base[next_index] # Next candle for open, high, low
|
|
|
|
reward = 0.0
|
|
|
|
# Handle actions (simplified for clarity)
|
|
if self.position is None:
|
|
if action == 2: # BUY
|
|
self.position = {"entry_price": next_candle["open"], "entry_index": self.current_index}
|
|
else:
|
|
if action == 0: # SELL
|
|
exit_price = next_candle["close"]
|
|
reward = exit_price - self.position["entry_price"] # PnL is reward
|
|
trade = {
|
|
"entry_index": self.position["entry_index"],
|
|
"entry_price": self.position["entry_price"],
|
|
"exit_index": next_index,
|
|
"exit_price": exit_price,
|
|
"pnl": reward
|
|
}
|
|
self.trade_history.append(trade)
|
|
self.position = None # Exit position
|
|
|
|
self.current_index = next_index
|
|
done = (self.current_index >= len(base) - 1) # Done if at end of window
|
|
actual_high = next_candle["high"]
|
|
actual_low = next_candle["low"]
|
|
return current_state, reward, next_state, done, actual_high, actual_low # Return next high/low
|
|
|
|
# -------------------------------
|
|
# Enhanced Training Loop
|
|
# -------------------------------
|
|
def train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler):
|
|
|
|
lambda_trade = args.lambda_trade # Weight for trade loss
|
|
|
|
# Load training cache (for total PnL tracking)
|
|
training_cache = load_training_cache(TRAINING_CACHE_FILE)
|
|
total_pnl = training_cache.get("total_pnl", 0.0)
|
|
|
|
|
|
for epoch in range(start_epoch, args.epochs):
|
|
env.reset() # Reset environment for each epoch
|
|
loss_accum = 0.0
|
|
steps = len(env) - 1 # Number of steps in the episode
|
|
|
|
for i in range(steps): # Iterate through the episode
|
|
state = env.get_state(i)
|
|
current_open = env.candle_window[i]["open"] # Current candle's open
|
|
actual_high = env.candle_window[i + 1]["high"] # Next candle's high
|
|
actual_low = env.candle_window[i + 1]["low"] # Next candle's low
|
|
|
|
# Forward pass
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device) # Add batch dimension
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device) # Create timeframe IDs
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
|
|
# Calculate prediction loss (L_pred)
|
|
L_pred = torch.abs(pred_high - torch.tensor(actual_high, device=device)) + \
|
|
torch.abs(pred_low - torch.tensor(actual_low, device=device))
|
|
|
|
# Calculate trade surrogate loss (L_trade)
|
|
profit_buy = pred_high - current_open # Potential profit if buying
|
|
profit_sell = current_open - pred_low # Potential profit if selling
|
|
L_trade = - torch.max(profit_buy, profit_sell) # Minimize negative profit
|
|
|
|
# Calculate no-action penalty (encourage taking action when profitable)
|
|
current_open_tensor = torch.tensor(current_open, device=device)
|
|
signal_strength = torch.max(pred_high - current_open_tensor, current_open_tensor - pred_low)
|
|
penalty_term = args.penalty_noaction * torch.clamp(args.threshold - signal_strength, min=0)
|
|
|
|
# Total loss
|
|
loss = L_pred + lambda_trade * L_trade + penalty_term
|
|
|
|
# Backpropagation
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # Gradient clipping
|
|
optimizer.step()
|
|
scheduler.step()
|
|
|
|
loss_accum += loss.item()
|
|
|
|
epoch_loss = loss_accum / steps # Average loss per step
|
|
if len(env.trade_history) == 0:
|
|
epoch_loss *= 3
|
|
epoch_pnl = sum(trade["pnl"] for trade in env.trade_history) # PnL for the epoch
|
|
total_pnl += epoch_pnl # Update total PnL
|
|
|
|
print(f"Epoch {epoch + 1} Loss: {epoch_loss:.4f} | Epoch PnL: {epoch_pnl:.2f} | Total PnL: {total_pnl:.2f}")
|
|
|
|
save_checkpoint(model, optimizer, epoch, loss_accum) # Save with accumulated loss
|
|
simulate_trades(model, env, device, args) # Simulate trades after each epoch
|
|
update_live_html(env.candle_window, env.trade_history, epoch + 1, epoch_loss, total_pnl) # Update HTML visualization
|
|
|
|
# Save training cache (for total PnL tracking)
|
|
training_cache["total_pnl"] = total_pnl
|
|
save_training_cache(TRAINING_CACHE_FILE, training_cache)
|
|
|
|
# -------------------------------
|
|
# Live Plotting (for Live Mode)
|
|
# -------------------------------
|
|
def live_preview_loop(candles, env):
|
|
plt.ion() # Interactive mode
|
|
fig, ax = plt.subplots(figsize=(12, 6))
|
|
|
|
while True:
|
|
update_live_chart(ax, candles, env.trade_history)
|
|
plt.draw()
|
|
plt.pause(1) # Update every second
|
|
|
|
# -------------------------------
|
|
# Live HTML Chart Update (with Volume and Loss)
|
|
# -------------------------------
|
|
def update_live_html(candles, trade_history, epoch, loss, total_pnl):
|
|
from io import BytesIO
|
|
import base64
|
|
# Create a new figure and axes for each update
|
|
fig, ax = plt.subplots(figsize=(12, 6))
|
|
|
|
# Draw the chart
|
|
update_live_chart(ax, candles, trade_history)
|
|
|
|
epoch_pnl = sum(trade["pnl"] for trade in trade_history) # PnL for this window
|
|
ax.set_title(f"Epoch {epoch} | Loss: {loss:.4f} | PnL: {epoch_pnl:.2f}| Total PnL: {total_pnl:.2f}")
|
|
|
|
# Save the plot to a BytesIO buffer
|
|
buf = BytesIO()
|
|
fig.savefig(buf, format='png')
|
|
plt.close(fig) # Close the figure to free memory
|
|
buf.seek(0)
|
|
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
|
|
|
|
# Generate HTML content
|
|
html_content = f"""
|
|
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta http-equiv="refresh" content="1"> <!-- Refresh every second -->
|
|
<title>Live Trading Chart - Epoch {epoch}</title>
|
|
<style>
|
|
body {{
|
|
margin: 0;
|
|
padding: 0;
|
|
display: flex;
|
|
justify-content: center;
|
|
align-items: center;
|
|
background-color: #f4f4f4;
|
|
}}
|
|
.chart-container {{
|
|
text-align: center;
|
|
}}
|
|
img {{
|
|
max-width: 100%;
|
|
height: auto;
|
|
}}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<div class="chart-container">
|
|
<h2>Epoch {epoch} | Loss: {loss:.4f} | PnL: {epoch_pnl:.2f}| Total PnL: {total_pnl:.2f}</h2>
|
|
<img src="data:image/png;base64,{image_base64}" alt="Live Chart"/>
|
|
</div>
|
|
</body>
|
|
</html>
|
|
"""
|
|
with open("live_chart.html", "w") as f:
|
|
f.write(html_content)
|
|
print("Updated live_chart.html.")
|
|
|
|
# -------------------------------
|
|
# Chart Drawing Helpers (with Volume and Date+Time)
|
|
# -------------------------------
|
|
def update_live_chart(ax, candles, trade_history):
|
|
ax.clear() # Clear previous data
|
|
|
|
# Extract data for plotting
|
|
times = [convert_timestamp(candle["timestamp"]) for candle in candles]
|
|
close_prices = [candle["close"] for candle in candles]
|
|
|
|
# Plot close prices
|
|
ax.plot(times, close_prices, label="Close Price", color="black", linewidth=1)
|
|
ax.set_xlabel("Time")
|
|
ax.set_ylabel("Price")
|
|
|
|
# Format x-axis to show dates and times
|
|
ax.xaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H:%M'))
|
|
|
|
# Create a second y-axis for volume
|
|
ax2 = ax.twinx()
|
|
volumes = [candle["volume"] for candle in candles]
|
|
if len(times) > 1:
|
|
times_num = mdates.date2num(times)
|
|
bar_width = (times_num[-1] - times_num[0]) / len(times) * 0.8 # Relative width
|
|
else:
|
|
bar_width = 0.01
|
|
|
|
ax2.bar(times, volumes, width=bar_width, alpha=0.3, color="grey", label="Volume")
|
|
ax2.set_ylabel("Volume")
|
|
|
|
# Plot trade markers (buy/sell)
|
|
for trade in trade_history:
|
|
entry_time = convert_timestamp(candles[trade["entry_index"]]["timestamp"])
|
|
exit_time = convert_timestamp(candles[trade["exit_index"]]["timestamp"])
|
|
in_price = trade["entry_price"]
|
|
out_price = trade["exit_price"]
|
|
ax.plot(entry_time, in_price, marker="^", color="green", markersize=10, label="BUY") # Buy marker
|
|
ax.plot(exit_time, out_price, marker="v", color="red", markersize=10, label="SELL") # Sell marker
|
|
ax.plot([entry_time, exit_time], [in_price, out_price], linestyle="dotted", color="blue") # Dotted line
|
|
|
|
# Combine legends from both axes
|
|
lines, labels = ax.get_legend_handles_labels()
|
|
lines2, labels2 = ax2.get_legend_handles_labels()
|
|
ax.legend(lines + lines2, labels + labels2)
|
|
ax.grid(True)
|
|
|
|
# Auto-format x-axis labels for better readability
|
|
fig = ax.get_figure()
|
|
fig.autofmt_xdate()
|
|
|
|
# -------------------------------
|
|
# Global Constants for Features
|
|
# -------------------------------
|
|
NUM_INDICATORS = 20 # Number of additional indicator channels
|
|
FEATURES_PER_CHANNEL = 7
|
|
ORDER_CHANNELS = 1
|
|
|
|
# -------------------------------
|
|
# General Simulation of Trades Function
|
|
# -------------------------------
|
|
def simulate_trades(model, env, device, args):
|
|
if args.main_tf == "1s":
|
|
simulate_trades_1s(env)
|
|
return
|
|
env.reset() # Reset to a random starting point
|
|
while True:
|
|
i = env.current_index
|
|
if i >= len(env.candle_window) - 1:
|
|
break # Exit if at the end of the window
|
|
|
|
state = env.get_state(i)
|
|
current_open = env.candle_window[i]["open"] # Get current open
|
|
|
|
# Make predictions
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device) # Add batch dimension
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device) # IDs for timeframes
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
pred_high = pred_high.item() # Convert to Python number
|
|
pred_low = pred_low.item()
|
|
|
|
# Decide on action (simplified for clarity)
|
|
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
|
if (pred_high - current_open) >= (current_open - pred_low):
|
|
action = 2 # BUY
|
|
else:
|
|
action = 0 # SELL
|
|
_, _, _, done, _, _ = env.step(action) # Take the step
|
|
else:
|
|
manual_trade(env)
|
|
if env.current_index >= len(env.candle_window) - 1:
|
|
break
|
|
|
|
def simulate_trades_1s(env):
|
|
# Ensure main_tf is 1s
|
|
if env.base_tf != "1s":
|
|
raise ValueError("simulate_trades_1s can only be used with base_tf='1s'")
|
|
|
|
env.reset()
|
|
|
|
current_second = env.candle_window[env.current_index]['timestamp'] // 1000
|
|
|
|
# Simulate trading for the entire window
|
|
while True:
|
|
|
|
if env.current_index >= len(env.candle_window) - 1:
|
|
break # Break if end of the window is reached.
|
|
|
|
# Check if a new second has started
|
|
next_second = env.candle_window[env.current_index]['timestamp'] // 1000
|
|
|
|
if next_second != current_second: # A new second has started. Take random action (buy/sell/hold).
|
|
action = random_action()
|
|
_, _, _, done, _, _ = env.step(action) # Take the step
|
|
current_second = next_second # Update the current second
|
|
|
|
else:
|
|
# Still the same second, hold position
|
|
manual_trade(env)
|
|
|
|
if env.current_index >= len(env.candle_window) - 1:
|
|
break
|
|
|
|
def manual_trade(env):
|
|
#If we are in a position, hold it. Otherwise, do nothing
|
|
if env.position is not None:
|
|
#In position, take 'HOLD' action implicitly by doing nothing
|
|
pass
|
|
|
|
# -------------------------------
|
|
# Argument Parsing
|
|
# -------------------------------
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--mode', choices=['train', 'live', 'inference'], default='train',
|
|
help="Operating mode: 'train', 'live', or 'inference'.")
|
|
parser.add_argument('--epochs', type=int, default=1000,
|
|
help="Number of training epochs.")
|
|
parser.add_argument('--lr', type=float, default=3e-4,
|
|
help="Learning rate.")
|
|
parser.add_argument('--threshold', type=float, default=0.005,
|
|
help="Minimum predicted move to trigger trade (used in loss; model may override manual trades).")
|
|
parser.add_argument('--lambda_trade', type=float, default=1.0,
|
|
help="Weight for the trade surrogate loss.")
|
|
parser.add_argument('--penalty_noaction', type=float, default=10.0,
|
|
help="Penalty if no action is taken (used in loss).")
|
|
parser.add_argument('--start_fresh', action='store_true',
|
|
help="Start training from scratch.")
|
|
parser.add_argument('--main_tf', type=str, default='1m',
|
|
help="Desired main timeframe to focus on (e.g., '1s' or '1m').")
|
|
# Instead of --fetch, we now provide a --no-fetch flag that will override the default behavior.
|
|
parser.add_argument('--no-fetch', dest='fetch', action='store_false',
|
|
help="Do NOT fetch fresh data from exchange on start.")
|
|
parser.set_defaults(fetch=True)
|
|
parser.add_argument('--symbol', type=str, default='BTC/USDT', help="Trading pair symbol.")
|
|
|
|
return parser.parse_args()
|
|
|
|
def random_action():
|
|
return random.randint(0, 2) # 0: SELL, 1: HOLD, 2: BUY
|
|
|
|
# -------------------------------
|
|
# Main Function
|
|
# -------------------------------
|
|
async def main():
|
|
args = parse_args()
|
|
|
|
# Use GPU if available
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
print("Using device:", device)
|
|
|
|
# Fetch data (if not --no-fetch)
|
|
# With fetch defaulting to True, live mode will always try to top-up the cache.
|
|
if args.fetch:
|
|
import ccxt.async_support as ccxt
|
|
exchange = ccxt.binance({'enableRateLimit': True}) # Use Binance
|
|
now_ms = int(time.time() * 1000)
|
|
|
|
# Check if we have cached data. If so, only fetch what we need to update the cache.
|
|
cached = load_candles_cache(CACHE_FILE)
|
|
if cached and args.main_tf in cached and len(cached[args.main_tf]) > 0:
|
|
last_ts = cached[args.main_tf][-1]['timestamp']
|
|
since = last_ts + 1
|
|
else:
|
|
# Fetch a reasonable amount of historical data initially (e.g., last 2 days)
|
|
since = now_ms - 2 * 24 * 60 * 60 * 1000
|
|
|
|
print(f"Fetching fresh data for {args.symbol} on timeframe {args.main_tf} from {since} to {now_ms}...")
|
|
|
|
fresh_candles = await get_cached_or_fetch_data(exchange, args.symbol, args.main_tf, since, now_ms)
|
|
candles_dict = {args.main_tf: fresh_candles} # Initially, only main timeframe
|
|
|
|
# Save (or update) the cache
|
|
save_candles_cache(CACHE_FILE, candles_dict)
|
|
await exchange.close()
|
|
else:
|
|
# Load from cache
|
|
candles_dict = load_candles_cache(CACHE_FILE)
|
|
if not candles_dict:
|
|
print("No cached data available. Run without --no-fetch (default) to load fresh data from the exchange.")
|
|
return
|
|
|
|
# --- Timeframe Setup ---
|
|
default_timeframes = ["1s", "1m", "5m", "15m", "1h", "1d"] # All supported timeframes
|
|
timeframes = [tf for tf in default_timeframes if tf in candles_dict] # Use available timeframes
|
|
if args.main_tf not in timeframes:
|
|
print(f"Desired main timeframe {args.main_tf} is not available. Available: {timeframes}")
|
|
return
|
|
base_tf = args.main_tf
|
|
|
|
# --- Model Initialization ---
|
|
hidden_dim = 128 # Hidden dimension for the Transformer
|
|
total_channels = len(timeframes) + ORDER_CHANNELS + NUM_INDICATORS # Input channels
|
|
model = TradingModel(total_channels, len(timeframes)).to(device)
|
|
|
|
if args.mode == 'train':
|
|
# --- Training Setup ---
|
|
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
|
start_epoch = 0
|
|
checkpoint = None
|
|
|
|
# Load checkpoint (if not starting fresh)
|
|
if not args.start_fresh:
|
|
checkpoint = load_best_checkpoint(model)
|
|
if checkpoint is not None:
|
|
start_epoch = checkpoint.get("epoch", 0) + 1 # Start from next epoch
|
|
print(f"Resuming training from epoch {start_epoch}.")
|
|
else:
|
|
print("No checkpoint found. Starting training from scratch.")
|
|
else:
|
|
print("Starting training from scratch as requested.")
|
|
|
|
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5) # AdamW optimizer
|
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs - start_epoch) # Cosine annealing
|
|
|
|
# Load optimizer state (if checkpoint exists)
|
|
if checkpoint is not None:
|
|
optim_state = checkpoint.get("optimizer_state_dict", None)
|
|
if optim_state is not None and "param_groups" in optim_state:
|
|
try:
|
|
optimizer.load_state_dict(optim_state)
|
|
print("Loaded optimizer state from checkpoint.")
|
|
except Exception as e:
|
|
print("Failed to load optimizer state due to:", e)
|
|
print("Deleting all checkpoints and starting fresh.")
|
|
for chk_dir in [LAST_DIR, BEST_DIR]:
|
|
for f in os.listdir(chk_dir):
|
|
os.remove(os.path.join(chk_dir, f))
|
|
else:
|
|
print("No valid optimizer state found; using fresh optimizer state.")
|
|
|
|
train_on_historical_data(env, model, device, args, start_epoch, optimizer, scheduler)
|
|
|
|
elif args.mode == 'live':
|
|
import ccxt.async_support as ccxt
|
|
exchange = ccxt.binance({'enableRateLimit': True}) # Use Binance
|
|
POLL_INTERVAL = 60 # seconds
|
|
|
|
async def update_live_candles():
|
|
nonlocal exchange, args, candles_dict
|
|
|
|
while True:
|
|
now_ms = int(time.time() * 1000)
|
|
# Fetch just the most recent candles
|
|
new_candles = await get_cached_or_fetch_data(exchange, args.symbol, args.main_tf,
|
|
since=now_ms - 2 * 60 * 1000, end_time=now_ms) # Fetch last 2 mins
|
|
if args.main_tf in candles_dict:
|
|
candles_dict[args.main_tf] = new_candles # Update
|
|
else:
|
|
candles_dict[args.main_tf] = new_candles # Or add if not present
|
|
|
|
print("Live candles updated.")
|
|
await asyncio.sleep(POLL_INTERVAL)
|
|
|
|
# Start the candle update task
|
|
asyncio.create_task(update_live_candles())
|
|
|
|
load_best_checkpoint(model) # Load the best model for live trading
|
|
env = BacktestEnvironment(candles_dict, base_tf, timeframes, window_size=100)
|
|
|
|
# Start live preview (optional)
|
|
preview_thread = threading.Thread(target=live_preview_loop, args=(env.candle_window, env), daemon=True)
|
|
preview_thread.start()
|
|
|
|
print("Starting live trading loop. (Using live updated data now.)")
|
|
while True:
|
|
if args.main_tf == "1s":
|
|
simulate_trades_1s(env) # Run 1s trading loop
|
|
else:
|
|
# Get the current state
|
|
state = env.get_state(env.current_index)
|
|
current_open = env.candle_window[env.current_index]["open"] # Get current open
|
|
|
|
# Make predictions
|
|
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
|
|
timeframe_ids = torch.arange(state.shape[0]).to(device) # Create timeframe IDs
|
|
pred_high, pred_low = model(state_tensor, timeframe_ids)
|
|
pred_high = pred_high.item() # Convert to Python number
|
|
pred_low = pred_low.item()
|
|
|
|
|
|
# Decide on action
|
|
if (pred_high - current_open) > args.threshold or (current_open - pred_low) > args.threshold:
|
|
if (pred_high - current_open) >= (current_open - pred_low):
|
|
action = 2 # BUY
|
|
else:
|
|
action = 0 # SELL
|
|
_, _, _, done, _, _ = env.step(action) # Take the step
|
|
else:
|
|
manual_trade(env)
|
|
|
|
if env.current_index >= len(env.candle_window) - 1:
|
|
print("Reached end of simulation window; resetting environment.")
|
|
env.reset() # Reset environment when reaching end
|
|
|
|
await asyncio.sleep(1) # Short delay for live mode
|
|
|
|
|
|
elif args.mode == 'inference':
|
|
load_best_checkpoint(model) # Load the best model for inference
|
|
print("Running inference...")
|
|
# Add inference logic here (e.g., load data, make predictions, print results)
|
|
else:
|
|
print("Invalid mode specified.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |