gogo2/crypto/gogo/training/train_historical.py
2025-02-12 01:27:38 +02:00

195 lines
7.0 KiB
Python

# training/train_historical.py
import os
import json
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from model.trading_model import TradingModel
from data.data_utils import get_aligned_candle_with_index, get_features_for_tf
# --- Directories for saving models ---
LAST_DIR = os.path.join("models", "last")
BEST_DIR = os.path.join("models", "best")
os.makedirs(LAST_DIR, exist_ok=True)
os.makedirs(BEST_DIR, exist_ok=True)
# --- File for saving candles cache ---
CACHE_FILE = "candles_cache.json"
# -------------------------------------
# Checkpoint Functions (same as before)
# -------------------------------------
def maintain_checkpoint_directory(directory, max_files=10):
files = os.listdir(directory)
if len(files) > max_files:
full_paths = [os.path.join(directory, f) for f in files]
full_paths.sort(key=lambda x: os.path.getmtime(x))
for f in full_paths[: len(files) - max_files]:
os.remove(f)
def get_best_models(directory):
best_files = []
for file in os.listdir(directory):
parts = file.split("_")
try:
r = float(parts[1])
best_files.append((r, file))
except Exception:
continue
return best_files
def save_checkpoint(model, epoch, total_loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
timestamp = time.strftime("%Y%m%d_%H%M%S")
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
last_path = os.path.join(last_dir, last_filename)
torch.save({
"epoch": epoch,
"total_loss": total_loss,
"model_state_dict": model.state_dict()
}, last_path)
maintain_checkpoint_directory(last_dir, max_files=10)
best_models = get_best_models(best_dir)
add_to_best = False
if len(best_models) < 10:
add_to_best = True
else:
min_loss, min_file = min(best_models, key=lambda x: x[0])
if total_loss < min_loss:
add_to_best = True
os.remove(os.path.join(best_dir, min_file))
if add_to_best:
best_filename = f"best_{total_loss:.4f}_epoch_{epoch}_{timestamp}.pt"
best_path = os.path.join(best_dir, best_filename)
torch.save({
"epoch": epoch,
"total_loss": total_loss,
"model_state_dict": model.state_dict()
}, best_path)
maintain_checkpoint_directory(best_dir, max_files=10)
print(f"Saved checkpoint for epoch {epoch} with loss {total_loss:.4f}")
def load_best_checkpoint(model, best_dir=BEST_DIR):
best_models = get_best_models(best_dir)
if not best_models:
return None
best_loss, best_file = min(best_models, key=lambda x: x[0]) #changed to min to represent the loss
path = os.path.join(best_dir, best_file)
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["model_state_dict"])
return checkpoint
# -------------------------------------
# Training Loop on Historical Data
# -------------------------------------
def train_on_historical_data(env, rl_agent, num_epochs=10, epsilon=0.1):
"""
Train the RL agent on historical data using the backtest environment.
"""
model = rl_agent.model
optimizer = rl_agent.optimizer
replay_buffer = rl_agent.replay_buffer
batch_size = rl_agent.batch_size
gamma = rl_agent.gamma
model.train()
criterion = nn.MSELoss() # or another suitable loss
for epoch in range(num_epochs):
state = env.reset()
done = False
total_reward = 0
total_loss = 0
while not done:
# Agent takes action (with exploration).
action = rl_agent.act(state, epsilon=epsilon)
current_state, reward, next_state, done = env.step(action)
total_reward += reward
# Store experience in replay buffer.
replay_buffer.push(state, action, reward, next_state, done)
# Train on a batch from the replay buffer.
if len(replay_buffer) > batch_size:
# Sample a batch from the replay buffer.
states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
# Convert data to PyTorch tensors.
states = torch.tensor(states, dtype=torch.float32)
actions = torch.tensor(actions, dtype=torch.float32)
rewards = torch.tensor(rewards, dtype=torch.float32)
next_states = torch.tensor(next_states, dtype=torch.float32)
dones = torch.tensor(dones, dtype=torch.float32)
# Compute Q-values for current states.
q_values = model(states)
# Compute Q-values for next states.
next_q_values = model(next_states)
# Compute the TD target.
td_target = rewards + gamma * torch.max(next_q_values, dim=1)[0] * (1 - dones)
# Compute the loss.
loss = criterion(q_values.gather(1, actions.long().unsqueeze(1)).squeeze(), td_target)
# Optimize the model.
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# Move to the next state.
state = next_state
print(f"Epoch {epoch + 1}/{num_epochs}, Total Reward: {total_reward:.4f}, Loss: {total_loss:.4f}")
save_checkpoint(model, epoch, total_loss, LAST_DIR, BEST_DIR)
# -------------------------------------
# Caching Functions (for candles data)
# -------------------------------------
def save_candles_cache(filename, candles_dict):
"""
Save the candles data to a JSON file.
"""
# Convert numpy arrays to lists for JSON serialization.
serializable_candles_dict = {}
for timeframe, candles in candles_dict.items():
serializable_candles = []
for candle in candles:
serializable_candle = {
'timestamp': candle['timestamp'],
'open': candle['open'],
'high': candle['high'],
'low': candle['low'],
'close': candle['close'],
'volume': candle['volume']
}
serializable_candles.append(serializable_candle)
serializable_candles_dict[timeframe] = serializable_candles
with open(filename, 'w') as f:
json.dump(serializable_candles_dict, f)
def load_candles_cache(filename):
"""
Load the candles data from a JSON file.
"""
with open(filename, 'r') as f:
candles_dict = json.load(f)
# Convert lists back to numpy arrays.
for timeframe, candles in candles_dict.items():
for candle in candles:
candle['open'] = float(candle['open'])
candle['high'] = float(candle['high'])
candle['low'] = float(candle['low'])
candle['close'] = float(candle['close'])
candle['volume'] = float(candle['volume'])
return candles_dict