Dobromir Popov c8b0f77d32 suggestions
2025-02-12 01:38:05 +02:00

158 lines
6.8 KiB
Python

# training/train.py
import torch
import torch.nn as nn
import torch.optim as optim
from data.data_utils import preprocess_data, create_mask
from model.transformer import Transformer
from data.live_data import LiveDataManager
from visualization.plotting import plot_live_data
import asyncio
import time
import os
from datetime import datetime
from collections import deque
# --- Directories for saving models ---
LAST_DIR = os.path.join("models", "last")
BEST_DIR = os.path.join("models", "best")
os.makedirs(LAST_DIR, exist_ok=True)
os.makedirs(BEST_DIR, exist_ok=True)
# -------------------------------------
# Checkpoint Functions (same as before)
# -------------------------------------
def maintain_checkpoint_directory(directory, max_files=10):
files = os.listdir(directory)
if len(files) > max_files:
full_paths = [os.path.join(directory, f) for f in files]
full_paths.sort(key=lambda x: os.path.getmtime(x))
for f in full_paths[: len(files) - max_files]:
os.remove(f)
def get_best_models(directory):
best_files = []
for file in os.listdir(directory):
parts = file.split("_")
try:
r = float(parts[1])
best_files.append((r, file))
except Exception:
continue
return best_files
def save_checkpoint(model, epoch, total_loss, last_dir=LAST_DIR, best_dir=BEST_DIR):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
last_filename = f"model_last_epoch_{epoch}_{timestamp}.pt"
last_path = os.path.join(last_dir, last_filename)
torch.save({
"epoch": epoch,
"total_loss": total_loss,
"model_state_dict": model.state_dict()
}, last_path)
maintain_checkpoint_directory(last_dir, max_files=10)
best_models = get_best_models(best_dir)
add_to_best = False
if len(best_models) < 10:
add_to_best = True
else:
min_loss, min_file = min(best_models, key=lambda x: x[0])
if total_loss < min_loss:
add_to_best = True
os.remove(os.path.join(best_dir, min_file))
if add_to_best:
best_filename = f"best_{total_loss:.4f}_epoch_{epoch}_{timestamp}.pt"
best_path = os.path.join(best_dir, best_filename)
torch.save({
"epoch": epoch,
"total_loss": total_loss,
"model_state_dict": model.state_dict()
}, best_path)
maintain_checkpoint_directory(best_dir, max_files=10)
print(f"Saved checkpoint for epoch {epoch} with loss {total_loss:.4f}")
def load_best_checkpoint(model, best_dir=BEST_DIR):
best_models = get_best_models(best_dir)
if not best_models:
return None
best_loss, best_file = min(best_models, key=lambda x: x[0]) #changed to min to represent the loss
path = os.path.join(best_dir, best_file)
print(f"Loading best model from checkpoint: {best_file} with loss {best_loss:.4f}")
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["model_state_dict"])
return checkpoint
async def train(model, data_manager, optimizer, criterion_candle, criterion_volume, criterion_ticks, num_epochs=10, device='cpu'):
model.to(device)
model.train()
trade_history = deque(maxlen=100)
# Load best checkpoint if available.
load_best_checkpoint(model, BEST_DIR)
await data_manager._fetch_initial_candles()
for epoch in range(1, num_epochs + 1):
start_time = time.time()
total_loss = 0
while True: # Continuously train on live data
await data_manager.fetch_and_process_ticks()
candles, ticks = await data_manager.get_data()
if len(candles) < data_manager.window_size:
# print("Waiting for enough data...") # avoid to print too many lines
await asyncio.sleep(1) #wait and try again
continue
candle_features, tick_features, future_candle, future_volume, future_ticks = preprocess_data(candles, ticks)
# Skip if preprocessing fails (e.g., not enough data)
if candle_features is None:
await asyncio.sleep(1)
continue
# Convert to PyTorch tensors and move to the correct device
candle_features = torch.tensor(candle_features).unsqueeze(0).to(device) # Add batch dimension
tick_features = torch.tensor(tick_features).unsqueeze(0).to(device)
future_candle = torch.tensor(future_candle).unsqueeze(0).to(device)
future_volume = torch.tensor(future_volume).unsqueeze(0).to(device)
future_ticks = torch.tensor(future_ticks).unsqueeze(0).to(device)
future_candle_mask = create_mask(candle_features.size(1)).to(device)
future_ticks_mask = create_mask(tick_features.size(1)).to(device)
optimizer.zero_grad()
future_candle_pred, future_volume_pred, future_ticks_pred = model(candle_features, tick_features, future_candle_mask, future_ticks_mask)
# Calculate Loss
loss_candle = criterion_candle(future_candle_pred.squeeze(1), future_candle)
loss_volume = criterion_volume(future_volume_pred.squeeze(1), future_volume) # Add .squeeze() here
loss_ticks = criterion_ticks(future_ticks_pred.squeeze(1), future_ticks)
# Combine losses (you can add weights to each loss component)
total_loss = loss_candle + loss_volume + loss_ticks
total_loss.backward()
optimizer.step()
print(f"Epoch: {epoch}, Candle Loss: {loss_candle.item():.4f}, Volume Loss: {loss_volume.item():.4f}, Tick Loss: {loss_ticks.item():.4f}, Total: {total_loss.item():.4f}")
# Save checkpoint
if epoch % 1 == 0: # every epoch
save_checkpoint(model, epoch, total_loss.item(), LAST_DIR, BEST_DIR)
# --- Basic Trading Logic (Illustrative) ---
# This is a very simplified example. In a real system, you would have
# much more sophisticated entry/exit logic, risk management, etc.
predicted_close = future_candle_pred[0, 0, 3].item() # Predicted close
current_close = candles[-1]['close']
if predicted_close > current_close * 1.005: # Example: Buy if predicted close is 0.5% higher
trade_history.append({"type": "buy", "price": current_close, "time": time.time()})
print(f"BUY signal at {current_close}")
elif predicted_close < current_close * 0.995: # Example: Sell if predicted close is 0.5% lower
trade_history.append({"type": "sell", "price": current_close, "time": time.time()})
print(f"SELL signal at {current_close}")
# Plot data
if len(trade_history)>0: # only after the first trade
plot_live_data(candles, list(trade_history))
await asyncio.sleep(1) # Adjust sleep time as needed