import faiss import numpy as np # Define the knowledge graph schema entities = ['Alice', 'Bob', 'Charlie'] relationships = [('Alice', 'friend', 'Bob'), ('Alice', 'friend', 'Charlie')] # Create the database schema db = faiss.Database('knowledge_graph.db') db.create_table('entities', entities) db.create_table('relationships', relationships) # Implement the knowledge graph embedding model = Word2Vec(sentences=['Alice is friends with Bob and Charlie'], dim=100) # Store the knowledge graph in the database for entity in entities: db.insert('entities', entity) for relationship in relationships: db.insert('relationships', relationship) # Implement the LLM llm = LanguageModel(model) # Integrate the knowledge graph embedding with the LLM def get_entity_vector(entity): entity_vector = np.array(db.get('entities', entity)) return entity_vector def get_relationship_vector(relationship): relationship_vector = np.array(db.get('relationships', relationship)) return relationship_vector llm.add_entity_vector_fn(get_entity_vector) llm.add_relationship_vector_fn(get_relationship_vector) # Test the system llm.process('Alice is friends with Bob and Charlie')