# Live Updates Implementation Summary ## Overview Added real-time chart updates and model prediction visualization to the ANNOTATE dashboard, matching the functionality of the clean_dashboard. ## What Was Implemented ### 1. Live Chart Updates (1s and 1m charts) **Backend: `/api/live-updates` endpoint** (`ANNOTATE/web/app.py`) - Polls for latest candle data from orchestrator's data provider - Returns latest OHLCV data for requested symbol/timeframe - Provides model predictions (DQN, CNN, Transformer) **Frontend: Polling System** (`ANNOTATE/web/static/js/live_updates_polling.js`) - Polls `/api/live-updates` every 2 seconds - Subscribes to active timeframes (1s, 1m, etc.) - Automatically updates charts with new candles **Chart Updates** (`ANNOTATE/web/static/js/chart_manager.js`) - `updateLatestCandle()` - Updates or extends chart with new candle - Efficiently uses Plotly's `extendTraces` for new candles - Uses `restyle` for updating current candle ### 2. Model Prediction Visualization **Orchestrator Storage** (`core/orchestrator.py`) - Added `recent_transformer_predictions` tracking - Added `store_transformer_prediction()` method - Tracks last 50 predictions per symbol **Dashboard Visualization** (`web/clean_dashboard.py`) - Added `_add_transformer_predictions_to_chart()` method - Added `_get_recent_transformer_predictions()` helper - Transformer predictions shown as: - Cyan lines/stars for UP predictions - Orange lines/stars for DOWN predictions - Light blue lines/stars for STABLE predictions **ANNOTATE Visualization** (`ANNOTATE/web/static/js/chart_manager.js`) - Added `updatePredictions()` method - Added `_addDQNPrediction()` - Shows arrows (▲/▼) - Added `_addCNNPrediction()` - Shows trend lines with diamonds (◆) - Added `_addTransformerPrediction()` - Shows trend lines with stars (★) ## How It Works ### Live Chart Updates Flow ``` 1. JavaScript polls /api/live-updates every 2s 2. Backend fetches latest candle from data_provider 3. Backend returns candle + predictions 4. Frontend updates chart with new/updated candle 5. Frontend visualizes model predictions ``` ### Prediction Visualization Flow ``` 1. Model makes prediction 2. Call orchestrator.store_transformer_prediction(symbol, prediction_data) 3. Prediction stored in recent_transformer_predictions deque 4. Dashboard/ANNOTATE polls and retrieves predictions 5. Predictions rendered as shapes/annotations on charts ``` ## Usage ### Storing Transformer Predictions ```python orchestrator.store_transformer_prediction('ETH/USDT', { 'timestamp': datetime.now(), 'confidence': 0.75, 'current_price': 3500.0, 'predicted_price': 3550.0, 'price_change': 1.43, # percentage 'horizon_minutes': 10 }) ``` ### Enabling Live Updates Live updates start automatically when: - ANNOTATE dashboard loads - Charts are initialized - appState.currentTimeframes is set ### Prediction Display Predictions appear on the 1m chart as: - **DQN**: Green/red arrows for BUY/SELL - **CNN**: Dotted trend lines with diamond markers - **Transformer**: Dash-dot lines with star markers - Opacity/size scales with confidence ## Backtest Prediction Visualization ### Implemented 1. **Automatic prediction clearing** - Predictions are cleared when backtest starts 2. **Prediction storage during backtest** - All model predictions stored in orchestrator 3. **Model type detection** - Automatically detects Transformer/CNN/DQN models 4. **Real-time visualization** - Predictions appear on charts as backtest runs ## Training Prediction Visualization ### Implemented 1. **Automatic prediction clearing** - Predictions cleared when training starts 2. **Prediction storage during training** - Model predictions stored every 10 batches on first epoch 3. **Metadata tracking** - Current price and timestamp stored with each batch 4. **Real-time visualization** - Training predictions appear on charts via polling ### How It Works **Backtest:** ```python # When backtest starts: orchestrator.clear_predictions(symbol) # During backtest, for each prediction: if 'transformer' in model_type: orchestrator.store_transformer_prediction(symbol, prediction_data) elif 'cnn' in model_type: orchestrator.recent_cnn_predictions[symbol].append(prediction_data) elif 'dqn' in model_type: orchestrator.recent_dqn_predictions[symbol].append(prediction_data) # Predictions automatically appear via /api/live-updates polling ``` **Training:** ```python # When training starts: orchestrator.clear_predictions(symbol) # During training (every 10 batches on first epoch): with torch.no_grad(): trainer.model.eval() outputs = trainer.model(**batch) # Extract prediction and store orchestrator.store_transformer_prediction(symbol, { 'timestamp': batch['metadata']['timestamp'], 'current_price': batch['metadata']['current_price'], 'action': predicted_action, 'confidence': confidence, 'source': 'training' }) # Predictions automatically appear via /api/live-updates polling ``` ## What's Still Missing ### Not Yet Implemented 1. **Historical prediction replay** - Can't replay predictions from past sessions 2. **Prediction accuracy overlay** - No visual feedback on prediction outcomes 3. **Multi-symbol predictions** - Only primary symbol predictions are tracked 4. **Prediction persistence** - Predictions are lost when app restarts ## Files Modified ### Backend - `core/orchestrator.py` - Added transformer prediction tracking - `web/clean_dashboard.py` - Added transformer visualization - `ANNOTATE/web/app.py` - Added `/api/live-updates` endpoint ### Frontend - `ANNOTATE/web/static/js/chart_manager.js` - Added prediction visualization methods - `ANNOTATE/web/static/js/live_updates_polling.js` - Updated to call prediction visualization ## Testing ### Verify Live Updates 1. Open ANNOTATE dashboard 2. Check browser console for "Started polling for live updates" 3. Watch 1s/1m charts update every 2 seconds 4. Check network tab for `/api/live-updates` requests ### Verify Predictions 1. Ensure orchestrator is running 2. Make predictions using models 3. Call `orchestrator.store_transformer_prediction()` 4. Check charts for prediction markers 5. Verify predictions appear in `/api/live-updates` response ## Performance - **Polling frequency**: 2 seconds (configurable) - **Prediction storage**: 50 predictions per symbol (deque with maxlen) - **Chart updates**: Efficient Plotly operations (extendTraces/restyle) - **Memory usage**: Minimal (predictions auto-expire from deque) ## Next Steps 1. **Add backtest prediction storage** - Store predictions during backtest runs 2. **Add prediction outcome tracking** - Track if predictions were accurate 3. **Add prediction accuracy visualization** - Show success/failure markers 4. **Add prediction filtering** - Filter by model, confidence, timeframe 5. **Add prediction export** - Export predictions for analysis