""" Training Simulator - Handles model loading, training, and inference simulation Integrates with the main system's orchestrator and models for training and testing. """ import logging import uuid import time from typing import Dict, List, Optional, Any from dataclasses import dataclass, asdict from datetime import datetime from pathlib import Path import json logger = logging.getLogger(__name__) @dataclass class TrainingResults: """Results from training session""" training_id: str model_name: str test_cases_used: int epochs_completed: int final_loss: float training_duration_seconds: float checkpoint_path: str metrics: Dict[str, float] status: str = "completed" @dataclass class InferenceResults: """Results from inference simulation""" annotation_id: str model_name: str predictions: List[Dict] accuracy: float precision: float recall: float f1_score: float confusion_matrix: Dict prediction_timeline: List[Dict] class TrainingSimulator: """Simulates training and inference on annotated data""" def __init__(self, orchestrator=None): """Initialize training simulator""" self.orchestrator = orchestrator self.model_cache = {} self.training_sessions = {} # Storage for training results self.results_dir = Path("TESTCASES/data/training_results") self.results_dir.mkdir(parents=True, exist_ok=True) logger.info("TrainingSimulator initialized") def load_model(self, model_name: str): """Load model from orchestrator""" if model_name in self.model_cache: return self.model_cache[model_name] if not self.orchestrator: logger.error("Orchestrator not available") return None # Get model from orchestrator # This will be implemented when we integrate with actual models logger.info(f"Loading model: {model_name}") return None def start_training(self, model_name: str, test_cases: List[Dict]) -> str: """Start training session with test cases""" training_id = str(uuid.uuid4()) # Create training session self.training_sessions[training_id] = { 'status': 'running', 'model_name': model_name, 'test_cases_count': len(test_cases), 'current_epoch': 0, 'total_epochs': 50, 'current_loss': 0.0, 'start_time': time.time() } logger.info(f"Started training session: {training_id}") # TODO: Implement actual training in background thread # For now, simulate training completion self._simulate_training(training_id) return training_id def _simulate_training(self, training_id: str): """Simulate training progress (placeholder)""" import threading def train(): session = self.training_sessions[training_id] total_epochs = session['total_epochs'] for epoch in range(total_epochs): time.sleep(0.1) # Simulate training time session['current_epoch'] = epoch + 1 session['current_loss'] = 1.0 / (epoch + 1) # Decreasing loss # Mark as completed session['status'] = 'completed' session['final_loss'] = session['current_loss'] session['duration_seconds'] = time.time() - session['start_time'] session['accuracy'] = 0.85 logger.info(f"Training completed: {training_id}") thread = threading.Thread(target=train, daemon=True) thread.start() def get_training_progress(self, training_id: str) -> Dict: """Get training progress""" if training_id not in self.training_sessions: return { 'status': 'not_found', 'error': 'Training session not found' } return self.training_sessions[training_id] def simulate_inference(self, annotation_id: str, model_name: str) -> InferenceResults: """Simulate inference on annotated period""" # Placeholder implementation logger.info(f"Simulating inference for annotation: {annotation_id}") # Generate dummy predictions predictions = [] for i in range(10): predictions.append({ 'timestamp': datetime.now().isoformat(), 'predicted_action': 'BUY' if i % 2 == 0 else 'SELL', 'confidence': 0.7 + (i * 0.02), 'actual_action': 'BUY' if i % 2 == 0 else 'SELL', 'correct': True }) results = InferenceResults( annotation_id=annotation_id, model_name=model_name, predictions=predictions, accuracy=0.85, precision=0.82, recall=0.88, f1_score=0.85, confusion_matrix={ 'tp_buy': 4, 'fn_buy': 1, 'fp_sell': 1, 'tn_sell': 4 }, prediction_timeline=predictions ) return results